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Abstract. We describe two well-known semantics for intuitionistic propositional
logic: Heyting algebras and Kripke models. We prove both semantics are sound for
an intuitionistic propositional logic with only implication and false. We use Heyting
algebras to prove undefinability results. We also prove a Kripke model can be con-
verted into a Heyting algebra. If the metalogic is classical we can convert a Heyting
algebra into a Kripke model. In some ways our task is made easier by the fact that
the logic does not have disjunction. The results have been formalized in Coq.

1. Introduction

We study two well-known semantics of intuitionistic propositional logic: Heyting
algebras and Kripke models. To simplify matters we consider propositional logic with
only implication and false. For some results the fact that we do not include disjunction
is a significant simplification. Most of these results can be found in Chapter 2 of [4].
Many historical notes and other references can be found starting from [4].
The results have been formalized in Coq [2] and we will at times give pointers to the

formalization.

2. Intuitionistic Propositional Logic

We use s, t to range over propositional formulas, which we take to be defined by the
grammar

x|s → t|⊥

where x ranges over (propositional) variables. For finite lists Γ of propositional formulas,
Γ ⊢ s is defined using the natural deduction calculus in Figure 1 (see [3]).

3. Heyting Algebras

Heyting algebras originated by using topological spaces to give models of intuitionistic
logic. According to [4] the technique can be traced back to Tarski [5].
A Heyting algebra is typically defined as a lattice with an implication operation. In

the formalization we did not need antisymmetry, so we dropped this condition. One
could argue that the definition is of a “Heyting prealgebra,” but we will simply say
Heyting algebra.
In Coq one can represent the collection of Heyting algebras as a record type consisting

of the following information:1 a type H, a relation ≤, ⊥ : H, ⊤ : H, operations
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1See HeytingAlgebra in the formalization.
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Γ ⊢ s
s ∈ Γ

Γ, s ⊢ t

Γ ⊢ s → t

Γ ⊢ s → t Γ ⊢ s

Γ ⊢ t

Γ ⊢ ⊥

Γ ⊢ s

Figure 1. Natural Deduction Rules

∧,∨,⇒: H → H → H and a number of properties.2 The properties are that ≤ is
reflexive and transitive (a partial preorder), ⊥ is ≤-least, ⊤ is ≤-greatest, ∧ gives
greatest lower bounds, ∨ gives least upper bounds, and that u ⇒ v is the greatest
element w such that w ∧ u ≤ v.
Given a Heyting algebra A, an interpretation ϕ (into A) maps variables to HA. Given

a Heyting algebra A and an interpretation ϕ, we can define an evaluation function J−KAϕ
mapping formulas to elements of HA by recursion:

JxKAϕ = ϕ(x)

Js → tKAϕ = JsKAϕ ⇒ JtKAϕ
and

J⊥KAϕ = ⊥.

If we included conjunction and/or disjunction in the propositional logic, then we would
interpret them using ∧ and ∨ in the Heyting algebra.
We can also extend the evaluation function to lists Γ of propositions using ⊤ and ∧:

J·KAϕ = ⊤

and
JΓ, sKAϕ = JΓKAϕ ∧ JsKAϕ .

We can now state and prove soundness.3

Theorem 3.1. If Γ ⊢ s, then JΓKAϕ ≤ JΓKsϕ

Proof. We argue by induction on the derivation of Γ ⊢ s. If s ∈ Γ, then JΓKAϕ ≤ JΓKsϕ
follows by an easy subinduction on Γ using transitivity of ≤ and the properties of ∧.
For the implication introduction rule, the inductive hypothesis gives

JΓKAϕ ∧ JsKAϕ ≤ JtKAϕ .

Since JΓKAϕ is an element w such that

w ∧ JsKAϕ ≤ JtKAϕ

and JsKAϕ ⇒ JtKAϕ is the greatest such element, we conclude

JΓKAϕ ≤ JsKAϕ ⇒ JtKAϕ

which is precisely what we need to prove.
For the implication elimination rule, the inductive hypotheses give

JΓKAϕ ≤ JsKAϕ ⇒ JtKAϕ

2We use ⊥ both for a propositional formula and the bottom element of a Heyting algebra, since
confusion seems unlikely.

3See nd soundH in the formalization.
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and

JΓKAϕ ≤ JsKAϕ .

Since ∧ gives greatest upper bounds, we know

JΓKAϕ ≤ (JsKAϕ ⇒ JtKAϕ) ∧ JsKAϕ

and so

JΓKAϕ ≤ JtKAϕ

by transitivity of ≤ and the main property of ⇒.
For the false elimination rule, the inductive hypothesis gives

JΓKAϕ ≤ ⊥.

Since ⊥ is ≤-least, we know JΓKAϕ is also ≤-least. In particular, JΓKAϕ ≤ JsKAϕ . �

4. Examples of Heyting Algebras

We consider two examples of Heyting Algebras. Both will consist of 5 elements. The
first will demonstrate that conjunction cannot be expressed via implication and false.
The second will demonstrate that disjunction cannot be expressed via implication and
false.

Example 4.1. Let H be {⊥, c, a, b,⊤}.4 We define ≤ so that ≤ is reflexive, ⊥ is the

only ≤-least element, ⊤ is the only ≤-greatest element, and a 6≤ b, b 6≤ a, c ≤ a but

a 6≤ c, c ≤ b but b 6≤ c. We give ∧, ∨ and ⇒ using tables.

∧ ⊥ c a b ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
c ⊥ c c c c
a ⊥ c a c a
b ⊥ c c b b
⊤ ⊥ c a b ⊤

∨ ⊥ c a b ⊤
⊥ ⊥ c a b ⊤
c c c a b ⊤
a a a a ⊤ ⊤
b b b ⊤ b ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤

⇒ ⊥ c a b ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
c ⊥ ⊤ ⊤ ⊤ ⊤
a ⊥ b ⊤ b ⊤
b ⊥ a a ⊤ ⊤
⊤ ⊥ c a b ⊤

This is chosen so that c is a ∧ b and is not ⊥. It is easy to check this is a Heyting

algebra.5 Let A be this Heyting algebra. As an interpretation, consider ϕ such that

ϕ(x) = a for a chosen variable x and ϕ(y) = b for all other variables y. An easy

induction on s can be used to prove JsKAϕ 6= c for all s. Clearly if we had conjunction in

our logic this would be false, since JxKAϕ ∧ JyKAϕ = a ∧ b = c. Hence conjunction is not

definable using implication and false.

For the next example we consider a Heyting algebra dual to the Heyting algebra in
the previous example.

4In the formalization this is the inductive type Ha5 with five elements Ha5bot for ⊥, Ha5ab for c,
Ha5a for a, Ha5b for b and Ha5top for ⊤.

5In fact, since it is computational, Coq can check each of the conditions simply by case analysis,
simplification and tauto.
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Example 4.2. Let H be {⊥, a, b, c,⊤}.6 We define ≤ so that ≤ is reflexive, ⊥ is the

only ≤-least element, ⊤ is the only ≤-greatest element, and a 6≤ b, b 6≤ a, a ≤ c but

c 6≤ a, b ≤ c but c 6≤ b. We define the operations as follows.

∧ ⊥ a b c ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a ⊥ a a
b ⊥ ⊥ b b b
c ⊥ a b c c
⊤ ⊥ a b c ⊤

∨ ⊥ a b c ⊤
⊥ ⊥ a b c ⊤
a a a c c ⊤
b b c b c ⊤
c c c c c ⊤
⊤ ⊤ ⊤ ⊤ ⊤ ⊤

⇒ ⊥ a b c ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
a b ⊤ b ⊤ ⊤
b a a ⊤ ⊤ ⊤
c ⊥ a b ⊤ ⊤
⊤ ⊥ a b c ⊤

Again it is easy to check this is a Heyting algebra, which we again call A. We again

take the intepretation such that ϕ(x) = a for a chosen x and ϕ(y) = b for all other

variables y. Again we can prove JsKAϕ 6= c for all s. In this case we can conclude that

disjunction is not definable using implication and false since JxKAϕ ∨ JyKAϕ = c.

5. Kripke Models

Kripke models were introduced by Kripke in 1963 [1]. A Kripke model is a partial
order of “states” (or “worlds”) with a relation indicating which variables are true at
each state. Again, we will not need antisymmetry, so we will omit it.
In Coq we represent Kripke models as a record type consisting of the following infor-

mation:7 a type of states, a ≤ relation which is reflexive and transitive, and a labelling
relation L on variables and states such that if L(x, σ) and σ ≤ τ , then L(x, τ).
Given a Kripke modelM , we define an evaluation function J−KM taking propositional

formulas to sets of states as follows:8

JxKM = {σ|LM(x, σ)}

Js → tKM = {σ|∀τ.σ ≤ τ → τ ∈ JsKM → τ ∈ JtKM}

J⊥KM = ∅

For lists Γ, JΓKM = {σ|∀s ∈ Γ.σ ∈ JsKM}.
We prove the following monotonicity result. If we included conjunction or disjunc-

tion in our logic, the result would require induction on formulas. Since we only have
implication and false, a case analysis suffices.9

Lemma 5.1. If σ ≤ τ and σ ∈ JsKM , then τ ∈ JsKM . In other words, each JsKM is

upwards closed.

Proof. For variables we assumed this property for L. For ⊥ the result is trival since
J⊥KM is empty. For s → t, suppose σ ≤ τ and σ ∈ Js → tKM . We need to prove
τ ∈ Js → tKM . Let µ be a state such that be such that τ ≤ µ and µ ∈ JsKM . Since ≤ is
transitive, σ ≤ µ. Hence µ ∈ JtKM follows from σ ∈ Js → tKM and we are done. �

6In the formalization this is the inductive type Hb5 with five elements Hb5bot for ⊥, Hb5a for a,
Hb5b for b, Hb5ab for c and Hb5top for ⊤.

7See KripkeModel in the formalization.
8See evalK in the formalization.
9See monotone in the formalization.
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We can now prove the following soundness result.10

Theorem 5.1. If Γ ⊢ s and σ ∈ JΓKM , then σ ∈ JsKM .

Proof. We argue by induction on the derivation of Γ ⊢ s. The assumption case is trivial.
For the implication introduction rule, assume we have σ ∈ JΓKM . We need to prove

σ ∈ Js → tKM . Let τ be such that σ ≤ τ and τ ∈ JsKM . By monotonicity, we know
τ ∈ JΓKM and so τ ∈ JΓ, sKM . By the inductive hypothesis we know τ ∈ JtKM and we
are done.
For the implication elimination rule, assume we have σ ∈ JΓKM . The inductive

hypotheses give σ ∈ Js → tKM and σ ∈ JsKM . Since ≤ is reflexive, we conclude
σ ∈ JtKM as desired.
Finally we consider the false elimination rule. Assume we have σ ∈ JΓKM . The

inductive hypothesis implies σ ∈ J⊥KM = ∅, a contradiction. �

6. Heyting Algebras from Kripke Models

Suppose M is a Kripke model with (pre)ordering ≤ and labelling relation L. We can
construct a Heyting algebra by consider the upward closed sets relative to ≤. That is,
we take H to be the sets X of states such that if σ ∈ X and σ ≤ τ , then τ ∈ X.11 For
the ordering on H we take ⊆. We take ⊥ to be the empty set of states and ⊤ to be
the set of all states. We define ∧ by intersection and ∨ by union as expected. Given
X, Y ∈ H, we define X ⇒ Y to be the set

{σ|∃Z ∈ H.Z ∩X ⊆ Y and σ ∈ Z}.

The fact that this yields a Heyting algebra is easy to verify.12 We write AM for this
Heyting algebra.
The Kripke model also yields an interpretation ϕM into the Heyting algebra by

ϕM(x) := {σ|L(x, σ)}.
We can then prove the Kripke model and the corresponding Heyting algebra agree.13

Theorem 6.1. σ ∈ JsKM if and only if σ ∈ JsKA
M

ϕM .

Proof. The proof is by induction on s. For variables and ⊥ the equivalence is obvious.
We turn immediately to the implication case.
Suppose σ ∈ Js → tKM . We need to prove σ ∈ Js → tKA

M

ϕM . By the definition of ⇒

above, we need to prove there is some Z ∈ H such that Z ∩ JsKM ⊆ JtKM and σ ∈ Z.
Let Z be Js → tKM . By Lemma 5.1 Z is upward closed, i.e., Z ∈ H. By reflexivity of
≤ we know Js → tKM ∩ JsKM ⊆ JtKM . Since σ ∈ Js → tKM we are done.

For the other direction suppose σ ∈ Js → tKA
M

ϕM . We will prove σ ∈ Js → tKM . Let τ

be a state such that σ ≤ τ and τ ∈ JsKM . We will prove τ ∈ JtKM . Since σ ∈ Js → tKA
M

ϕM

there is some upward closed Z such that Z ∩ JsKM ⊆ JtKM and σ ∈ Z. Hence τ ∈ Z
and so τ ∈ JtKM as desired. �

10See nd soundK in the formalization.
11In the formalization we use a sigma type.
12See HeytingAlgebraOfKripkeModel in the formalization.
13See evalK evalH agree in the formalization.
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7. Kripke Models from Heyting Algebras

Under enough assumptions one can convert a Heyting algebra into a Kripke model.
The argument in [4] makes use of Zorn’s Lemma (a form of the axiom of choice).
However, since we do not have disjunction we can simplify the construction. As a con-
sequence, we will not need the axiom of choice, but we will still need to assume excluded
middle in order to prove the two interpretations agree. We leave open the possibility
that the agreement can be proven (for the simplified logic with only implication and
false) without using excluded middle.
Suppose A is a Heyting algebra with components H, ≤, ⊥, ⊤, ∧, ∨ and ⇒. A proper

filter is a set F ⊆ H such that ⊥ /∈ F , ⊤ ∈ F , F is closed under ∧, and F is ≤-upwards
closed. A prime filter is a proper filter F such that if a ∨ b ∈ F , then a ∈ F or b ∈ F .
In [4] a Kripke model is formed by taking prime filters as states. Zorn’s Lemma is

required to extend a proper filter to an appropriate prime filter. Using prime filters is
important for handling disjunction. Since we do not have disjunction, we can simply
take proper filters as states and avoid the use of Zorn’s Lemma.
Suppose ϕ is an interpretation into A. We define a Kripke model MA

ϕ as follows:14

The states are proper filters, the order is given by ⊆ and the labelling relation L is
given such that L(x, F ) holds if {a ∈ H|ϕ(x) ≤ a} ⊆ F .
The fact that this is a Kripke model is easy to verify and does not require excluded

middle.
We finally prove the agreement theorem using excluded middle.15

Theorem 7.1. Let F be a proper filter. F ∈ JsKM
A
ϕ if and only if JsKAϕ ∈ F .

Proof. The proof is by induction on s. It is easy to see that neither F ∈ J⊥KM
A
ϕ nor

J⊥KAϕ ∈ F can hold since ⊥ 6∈ F .

For variables we need to prove F ∈ JxKM
A
ϕ is equivalent to JxKAϕ ∈ F . That is,

{a ∈ H|ϕ(x) ≤ a} ⊆ F if and only if ϕ(x) ∈ F . If {a ∈ H|ϕ(x) ≤ a} ⊆ F , then
ϕ(x) ∈ F since ϕ(x) ∈ {a ∈ H|ϕ(x) ≤ a}. If ϕ(x) ∈ F , a ∈ H and ϕ(x) ≤ a, then
a ∈ F since F is upwards closed.
It only remains to consider the implication case. For the first direction assume

F ∈ Js → tKM
A
ϕ . We need to prove Js → tKAϕ ∈ F . LetG be {a ∈ H|∃b ∈ F.b∧JsKAϕ ≤ a}.

It is easy to see that ⊤ ∈ G since ⊤ ∈ F . Likewise G is clearly upward closed: if a ∈ G
and a ≤ a′, then the same witness b ∈ F can be used to prove a′ ∈ G. Also, G is
closed under ∧: If b ∈ F witnesses a ∈ G and b′ ∈ F witnesses a′ ∈ G, then b ∧ b′ ∈ F
witnesses a ∧ a′ ∈ G. In order to conclude G is a proper filter, we only need to prove
⊥ /∈ G. However, it is possible that ⊥ actually is a member of G. This is where we
need to use excluded middle: either ⊥ ∈ G or ⊥ /∈ G.
Suppose ⊥ ∈ G. Then there is some b ∈ F such that b ∧ JsKAϕ ≤ ⊥. Recall we want

to prove Js → tKAϕ ∈ F . Since F is upward closed it is enough to prove b ≤ Js → tKAϕ .

Since b ∧ JsKAϕ ≤ ⊥ ≤ JtKAϕ we know b ≤ JsKAϕ ⇒ JtKAϕ as desired.

14See KripkeModelOfHeytingAlgebra in the formalization.
15See evalH evalK agree in the formalization.
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Suppose ⊥ 6∈ G. In this case G is a proper filter. Also, F ⊆ G since each a ∈ F
can be used as the witness that a ∈ G. We can use ⊤ ∈ F to witness JsKAϕ ∈ G. By

the inductive hypothesis for s we know G ∈ JsKM
A
ϕ . Since F ∈ Js → tKM

A
ϕ , F ⊆ G and

G ∈ JsKM
A
ϕ , we know G ∈ JtKM

A
ϕ . By the inductive hypothesis for t we know JtKAϕ ∈ G.

Hence there is a b ∈ F such that b ∧ JsKAϕ ≤ JtKAϕ and so b ≤ JsKAϕ ⇒ JtKAϕ . Since F is

upwards closed we conclude Js → tKAϕ ∈ F as desired.

For the other direction assume Js → tKAϕ ∈ F . We need to prove F ∈ Js → tKM
A
ϕ . Let

G be a proper filter such that F ⊆ G and G ∈ JsKM
A
ϕ . We need to prove G ∈ JtKM

A
ϕ . By

the inductive hypothesis for s we know JsKAϕ ∈ G. Since F ⊆ G we know Js → tKAϕ ∈ G.
Note that

(JsKAϕ ⇒ JtKAϕ) ∧ JsKAϕ ≤ JtKAϕ .

Since G is a proper filter we conclude (JsKAϕ ⇒ JtKAϕ)∧ JsKAϕ is in G and so JtKAϕ ∈ G. By

the inductive hypothesis for t we have G ∈ JtKM
A
ϕ as desired. �
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