
Solving Linear Pseudo-Boolean Constraint Problems with Local Search

Joachim P. Walser
Programming Systems Lab

Universität des Saarlandes, Postfach 151150
66041 Saarbrücken, Germany

walser@ps.uni-sb.de

Abstract

Stochastic local search is one of the most successful methods
for model finding in propositional satisfiability. However,
many combinatorial problems have no concise propositional
encoding. In this paper, we show that domain-independent
local search for satisfiability (Walksat) can be generalized to
handle systems of linear pseudo-Boolean (0-1 integer) con-
straints, a representation that is widely used in operations re-
search. We introduce the algorithm WSAT (PB) and demon-
strate its potential in two case studies. The first application
is an optimization problem from radar surveillance. Exper-
iments on problems of realistic size show that WSAT (PB)
is an efficient heuristic to find good approximate solutions.
For most of the test problems, it found provably optimal
solutions. In the second case study, we show that pseudo-
Boolean local search can efficiently solve the progressive
party problem, a problem that is hard for constraint pro-
gramming with chronological backtracking, and whose 0-1
encoding is beyond the size limitations of integer linear pro-
gramming.

Introduction
Local search is versatile and many successful applica-
tions of domain-specific local search methods have been
reported. Further, a number of successful domain-
independent methods exist that include strategies for max-
imum satisfiability (Hansen & Jaumard 1990), for certain
realistic constraint satisfaction (CSP) problems (Mintonet
al. 1990; Hao & Dorne 1996), and some of the most
efficient methods for hard realistic and randomly gener-
ated propositional satisfiability (SAT) problems (Selman,
Levesque, & Mitchell 1992; Selman, Kautz, & Cohen 1994;
Selman & Kautz 1996).

However, many combinatorial problems have no con-
cise propositional encoding and hence local search algo-
rithms for SAT cannot be applied. Nonetheless, many of
these problems can be modeled concisely with linear 0-1
integer inequalities (pseudo-Boolean constraints). Pseudo-
Boolean constraints have a long tradition in operations re-
search (OR) and cover many problems like scheduling, se-
quencing, time-tabling, etc. While in OR these problems1Copyright c1997, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

are typically solved with methods based on linear program-
ming (Nemhauser & Wolsey 1988), we show in this paper
that stochastic local search can be an alternative for dis-
crete 0-1 feasibility problems and, using over-constrained
systems, for certain optimization problems as well.

We generalize stochastic local search for satisfiability,
Walksat (Selman, Kautz, & Cohen 1994), to handle linear
pseudo-Boolean constraint systems and introduce the algo-
rithm WSAT (PB). Only a small decrease in the number of
local moves (variable flips) per second is incurred by this
generalization. WSAT (PB) inherits the variable selection
strategy of Walksat and is equipped with a history mecha-
nism (Gent & Walsh 1993) and a short tabu memory (see
(Glover & Laguna 1993) for an overview of tabu search).

To explore the potential of local search for this con-
straint class we perform two case studies on realistic prob-
lems. We first consider an optimization problem from the
radar surveillance domain which we model as an over-
constrained system using hard and soft constraints. For all
test problems, WSAT (PB) efficiently finds good approx-
imate solutions whereas problems of realistic size appear
to be beyond exact optimization with integer programming
branch-and-bound. Linear programming (LP) relaxations
can provide lower bounds on the solution quality and for
many of the test problems optimality of the local search so-
lutions can be proved.

The problem in the second case study, “progressive
party,” was recently introduced in a comparison between
constraint programming and integer linear programming
(Smith et al. 1996). A main result of the study is that
the problem appears to be beyond the size limitations of
integer linear programming (ILP) but can be solved us-
ing constraint propagation and chronological backtracking.
Our experiments show that the problem can be solved sig-
nificantly faster using WSAT (PB). Further, we looked at
slight random variations of the instance given in (Smithet
al. 1996) and found that local search was robust with re-
spect to the modifications. On the other hand we were not
able to find a constraint program that solved all test prob-
lems. To solve the problem with WSAT (PB), we factor it
into two stages. In the first stage, a small number of prin-
cipal variables are explicitly enumerated while in the sec-
ond stage the remaining subproblem is attacked with local
search.



Pseudo-Boolean Constraints
Many combinatorial problems have no concise encoding
in propositional logic but can be stated concisely using
slightly richer constraints. For example, consider a state-
ment of the pigeonhole problem with Boolean variablespij ,
wherepij means pigeoni is in holej. A natural encoding
is to use two different constraints, (a) every pigeon is in ex-
actly one hole

Pj pij = 1 (for all i), and (b) no two pigeons
are in the same hole

Pi pij � 1 (for all j). Givenn pigeons
andm holes, this formulation consists ofn + m pseudo-
Boolean clauses. On the other hand, a SAT encoding would
be (a)_j pij (for all i) and 8j8k 6= j : pij ! pik (for
all i); similarly for (b). WithO(m2n + n2m) clauses, the
size of this SAT encoding would be impractical for larger
instances.

The class of linear pseudo-Boolean constraints is defined
as follows (Hammer & Rudeanu 1968). Alinear pseudo-
Boolean clausehas the formXi2I ci � Li � d;
whereci; d 2 ZZ; �2 f=;�; <;�; >g; and theLi are lit-
erals for alli 2 I (a literal is a Boolean variable or its nega-
tion). Pseudo-Boolean constraints generalize SAT in the
sense that every Boolean clause (disjunction of literals) can
be translated into a single linear pseudo-Boolean inequality
but not vice versa.

In general, converting linear pseudo-Boolean constraints
to propositional satisfiability can largely increase the size of
the encoding. Additionally, algorithms like Walksat require
input formulas to be in conjunctive normal form (CNF),
which may cause a further (exponential) increase in the
size of the formula or an enlargement of the search space
through additional variables. Alternatively, CNF conver-
sion can be avoided at the cost of a decreased flip-rate
(Sebastiani 1994). In the following section, we will ex-
tend propositional local search (Walksat) to handle pseudo-
Boolean constraint problems.

The WSAT (PB) procedure
WSAT (PB) performs randomized greedy local search on
linear pseudo-Boolean constraints, equipped with a history
mechanism and a tabu memory. Figure 1 gives the out-
line of a general local search routine (Selman, Levesque,
& Mitchell 1992) to find a satisfying assignment for a set
of constraints�. Local moves of the search are the “flips”
of Boolean variables that are chosen byselect–variableac-
cording to a randomized greedy strategy. The parameter
Max-Flipsgoverns restarts whileMax-Triesensures termi-
nation. New assignments are chosen by a biased random
function such that with probabilitypz, a variable is assigned
0 and with probability1� pz it is assigned 1. This can help
reducing the number of initially violated clauses but did not
appear to be critical in our experiments.

Variable selection. This section describes a carefully en-
gineered variable selection strategy for WSAT (PB) that

proc local-search
input clauses�;Max-Flips;Max-Tries
for i := 1 to Max-TriesdoA := new total truth assignment

for j := 1 to Max-Flips do
if A satisfies� then return AP := select–variable(�;A)A := A with P flipped

end
end
return “No satisfying assignment found”

end

Figure 1: A generic local search procedure for SAT or linear
pseudo-Boolean clauses.

originates from Walksat’s variable selection (Selman &
Kautz 1996). It is capable of handling systems of linear
pseudo-Boolean constraints with hard and soft constraints.

First, an unsatisfied clause is selected as follows. If at
any time only hard or only soft unsatisfied clauses exist, an
unsatisfied clause is picked at random. If both hard and soft
unsatisfied clauses exist, with probabilityphard a random
unsatisfied hard clause and with1�phard a soft clause is se-
lected. Next, we need to decide which variable to flip from
the clause. Notice that unlike for propositional Walksat, the
selected clause may remain unsatisfied when flipping a vari-
able in it. Therefore, with every flip, we attempt to reduce
the overallscorewhich we define as follows: For an assign-
mentA, let d(c; A) be thenet integer distanceof clausec
from being satisfied. Ifc is satisfied underA, d(c; A) = 0.
Thescoreof an assignmentA is the sum of the scores of all
clauses. If an assignment is satisfying, its score is 0. Em-
pirically, a good rule appears to be to choose the variable
that decreases the score most, if there is one that decreases
it. Otherwise, with a given probabilitypnoise, choose a ran-
dom variable from the clause, and with1 � pnoise, choose
the variable that increases the score least.

Additionally, WSAT (PB) is equipped with a tabu mem-
ory (Glover & Laguna 1993) of sizet: No proposition may
be flipped that has been flipped in the previoust moves.
Further, all ties between variables are broken by a his-
tory mechanism (Gent & Walsh 1993): On ties, the history
mechanism chooses the variable that was flipped longest
ago. In the greedy branch, there is a tie between two vari-
ables if flipping either one causes equal score improvement.
In the noise branch, the history mechanism avoids ran-
domness and uses non-random diversification instead since
there is a tie between all variables in the selected clause.

Unlike for many propositional problems, the algorithm
appeared to perform best if run in a very greedy way (we
set pnoise = 0:01). Extending Walksat to handle clauses
with different relational operators, coefficients, and addi-
tion instead of disjunction incurs only a relatively small
overhead over the propositional case. In the following, we
present two case studies that apply WSAT (PB) to realistic
problems.11The encodings of all sample instances are available through
http://www.cirl.uoregon.edu/constraints/.



Case study I: Radar surveillance
The following problem and its modeling originate from
a project currently carried out at the Swedish Institute of
Computer Science (SICS) (Brand, Haridi, & Olsson 1997).
The problem is to allocate a number of radar stations for
observation of a geographic area, such that each point is
observed by at least three stations. As customary in the
radar surveillance domain, the area is divided into hexago-
nal cells and radar stations are located in a number of cells.
Each radar station can divide its signal scope circle into six
sectors and each station can vary the signal strength in each
sector independently from zero to some given maximum
distancedmax. Each cell must be covered by 3 radar sta-
tions (desired coveragedc=3) and all coverage beyond this
is to be minimized (over-coverage) for economic reasons
and for detectability.2 Figure 2 gives an illustration.

sector 2

distance

sector 1

1 2

2

3

radar station

3

3

Figure 2: Radar map with hexagonal cells.

The problem can be encoded by the following over-
constrained pseudo-Boolean system. For every combina-
tion of radar stationu, sector1 � s � 6 and possible ob-
servation distance1 � d � dmax, a Boolean variable�usd
is introduced. Variable�usd = 1 if and only if stationu is
switched on in sectors at distanced. The set of all cells
that stationu can reach in sectors at distanced is denoted
byCusd. The constraints are the following.

Constraints MC. There are significant and insignificant
cells. Significant cells must be covered by at least three
stations Xc2Cusd �usd � 3 for all c
Similarly, insignificant cells have desired coveragedc=0.

Consistency constraints PC. If stationu is switched on at
distanced > 1 in sectors, it must also be switched on at
distanced� 1 in sectors.�usd � �usd0 � 0 for all u; s; 1 < d � dmax; d0 = d� 1

Soft constraints OC. Cells should not be covered by more
than three stations.Xc2Cusd �usd � 3 for all c2Cells that physically cannot be covered by at least three sta-
tions must be covered by as many stations as possible and are then
factored out. In the original model a radar station can be switched
on to cover only the cell it is located in and always covers it pro-
vided it is switched on for some sector.

Minimizing over-coverage. In order to minimize the to-
tal over-coverage, minimizing the number of violated soft
constraints is not sufficient because over-coverage can oc-
cur to different degrees for each cell. However, because
there is one soft clause for each cell, the over-coverage of
the system corresponds exactly to the score that is mini-
mized by WSAT (PB).

To solve the problem with linear/integer programming,
the soft constraints were replaced by an objective function
that measures total over-coverage (ns is the number of sig-
nificant cells),

min (Xc Xc2Cusd �usd)� 3ns
Experimental results

Table 1 summarizes the experimental results. Based on
a sample of radar instances (generated at SICS), we ran
WSAT (PB) and a commercial integer branch-and-bound
algorithm (CPLEX). All instances were randomly gener-
ated and vary in size (100 to 2100 cells), in the percent-
age of insignificant cells (0% and 2%), and in the spread
of radar stations (even or uneven). The density of stations
remained constant.

Of course, it is in general not possible to compare a
heuristic with a complete algorithm because the latter is
guaranteed to find optimal solutions while the former is not.
However, many instances of the sample have the charac-
teristic that the optimal value of the over-coverage is the
same as the LP lower bound.3 These lower bounds can
be efficiently computed with linear programming and pro-
vide a guaranteed bound for the quality of solutions found
by WSAT (PB). According to Haridiet al., the long-term
goal of the project is to cover a large geographical area with
thousands of cells. It is thus an important criterion of suc-
cess that the solution strategy scales well. From the exper-
iments we see that for smaller problems branch-and-bound
performs well, while it appears that solving realistic in-
stances optimally will be infeasible. Scaling of local search
has previously been examined on hard randomly gener-
ated satisfiability problems where sub-exponential (aver-
age) scaling was observed (Gent & Walsh 1993; Parkes &
Walser 1996).

At any point during the search the lower bounds can
give a provable maximum deviation from the optimal over-
coverage. To improve the runtimes of WSAT (PB), it could
be cut off as soon as the lower bound is reached. Con-
versely, branch-and-bound could be cut off at any point
with a near-optimal solution and a comparison could be
done based on fixed allowed runtimes. For WSAT (PB),
a history mechanism appeared to be critical for success; a
tabu memory of size 1 was used and variables were initial-
ized with pz = 0:5. Hard clauses were always prefered
for repair (phard = 1:0). CPLEX was run with standard
parameter settings which is arguably unfair but partly com-
pensated by the fact that CPLEX is the product of years of
development.3We thank Alexander Bockmayr for pointing this out.



size n m spread %sig LP lb WSAT (PB) CPLEX
best fast time/s oc* time/s

100:22 434 606 even 100 0 0 0.0 0.1 0 2
200:44 933 1273 even 100 1 1 1.0 0.6 1 23

900:200 4616 6203 even 100 2 2 2.0 18.3 2 3356
2100:467 10975 14644 even 100 3 3 3.5 41.2 3 –

100:22 410 581 even 98 1 1 1.1 1.4 1 2
200:44 905 1246 even 98 2 2 2.0 4.0 2 17

900:200 4623 6174 even 98 4 6 8.0 25.9 4 1653
2100:467 10989 14595 even 98 11.5 19 23.2 62.0 –

100:22 371 518 uneven 100 3 3 3.0 1.1 3 2
200:44 772 1065 uneven 100 0 0 0.1 0.6 0 16

900:200 4446 5699 uneven 100 5 5 5.0 18.8 5 4134
2100:467 10771 14002 uneven 100 8.1 14 16.6 43.2 –

Table 1: Experimental comparison on radar surveillance problems: Columns are problem size in number of cells and stations (stations
have a maximal reach ofdmax = 4), encoding size in number of variablesn and clausesm, spread of stations on the map, percentage
of significant cells, and LP lower bound for over-coverage. ‘Fast’ measures best over-coverage found in 30K, 100K, 300K,and 500K
flips respectively (averaged over 20 runs), ‘time’ gives average time needed. ‘Best’ measures best over-coverage foundwithin all 20 runs.
CPLEX columns are optimal over-coverage and runtime. ‘–’ means not optimally solved in hours of computation. All runtimes measured
on a SPARCstation 20.

Experiments with constraint programming. Various
models (finite domain integer and Boolean) and enumer-
ation schemes have been tried (Brand, Haridi, & Olsson
1997). Although small problems are solved to optimality
quickly, the larger sample instances can be solved within
reasonable time with large over-coverage only. We hypoth-
esize that it is thrashing that makes these problems hard
for a constraint program that backtracks chronologically:
Two distant radar stations hardly affect each other, yet with
chronological backtracking the state of one station is only
changed after visiting the complete subspace of configura-
tions of many other stations.

One could argue that the success of local search on the
radar domain is caused by the geometric locality of the in-
fluence of each radar station. The motivation for the second
case study is to look at a hard constraint problem that does
not have this property.

Case study II: Progressive party
Recently, a comparison study between integer linear pro-
gramming and constraint programming has been performed
based on a problem called the “progressive party problem”
(Smith et al. 1996). The 0-1 modeling of this problem is
large and uses a variety of different constraints which sug-
gested that it would be an interesting test case for pseudo-
Boolean local search and could indicate whether the results
from radar surveillance could carry over to other domains.
The problem scenario is an evening party in the context of
a yachting rally. Certain boats are selected to be hosts, and
the crews of the remaining boats in turn visit the host boats
for several successive half-hour periods. The crew of a host
boat remains on board to act as hosts while the crew of
a guest boat together visits several hosts. Every boat can
only host a limited number of guests at a time and crew
sizes are different. The table with boat capacities and crew
sizes can be found in (Smithet al. 1996); there are six
time periods. A guest boat cannot revisit a host and guest

crews cannot meet more than once. The problem facing
the rally organizer is that of minimizing the number of host
boats: Certain boats are constrained to be hosts, and select-
ing the hosts among the remaining boats is stated as part of
the problem.

We do not claim that this problem is of immediate prac-
tical significance; however, it has the advantage of being
a well-studied hard assignment problem with a variety of
constraints. The variables in the problem are the following:�i = 1 iff boat i is used as host boat. Variablesikt = 1 iff
boatk is a guest of boati in periodt. Constantci is the crew
size of boati andKi is its total capacity. The objective is
to minimize the number of hosts

Pi �i, subject to:
Constraints CD. A boat can only be visited if it is a host

boat. ikt � �i � 0 for all i; k; t; i 6= k.

Constraints CCAP. The capacity of a host boat cannot be
exceeded. Xk;k 6=i ckikt � Ki � ci for all i; t.

Constraints GA. Each crew must always have a host or
be a host. �k +Xi;i6=k ikt = 1 for all k; t.

Constraints GB. A guest crew cannot visit a host boat
more than once.Xt ikt � 1 for all i; k; i 6= k:

An additional set of 0-1 variables was introduced to state
the meet-once restrictions.mklt = 1 if boatsk andl meet



at timet. This simplifies the ILP model described in (Smith
et al. 1996).4

Constraints U. Linkmklt with ikt. ikt+ilt�mklt � 1
for all k; l; t; k < l.

Constraints M. Every pair of hosts can meet at most once.Xt mklt � 1 for all k; l; k < l.
With B boats andT time periods, the problem hasO(B2T ) variables andO(B2T ) constraints in this formu-

lation. Smithet al.note that the CP representation is more
compact and has “far fewer constraints and variables than
the ILP”. This is not the case since the number of both con-
straints and variables is actuallyO(B2T ) in both encodings
(even in the improved ILP model in (Smithet al. 1996)).

Although the problem is formulated as an optimization
problem, given the particular description of the participat-
ing boats the task is to find a feasible assignment with 13
host boats. Every solution with 13 hosts is optimal because
the capacity constraints cannot be met with 12 hosts even
for a single time period. Solving the problem can be di-
vided into two stages: (i) selection of the host boats, and
(ii) assignment of guest boats to hosts for all time periods.
It turns out that thespare capacityof the boats is a good
indicator of whether a boat should be host or guest, so after
forcing special boats to be hosts (e.g. the rally organizer),
the remaining hosts were selected by decreasing spare ca-
pacity (the spare capacity of a boat is its total capacity mi-
nus its crew size). In both the ILP and the CP approach,
Smithet al. treat both stages of the problem. However, the
search-space for a particular host selection is too large to
be explored exhaustively within hours of computation. This
shows that solving stage (ii) by itself is a hard subproblem
and we therefore focus on stage (ii): Finding a guest allo-
cation given a fixed selection of hosts. Thereafter we will
outline a strategy that captures both stages.

Smithet al.report the problem could not be solved with a
commercial integer programming tool (XPRESSMP, using
a variety of tricks) because it appears to be beyond the size
limitations of ILP.

Experimental results
For the experiments, we used the original problem instance
of Smith et al. and randomly varied the host selection to
produce 5 additional instances. For all instances, we kept
the original description of boat capacities and crew sizes.
After fixing the 13 hosts and performing constraint prop-
agation as an efficient preprocessing, the original problem
has 4632 variables and 30965 remaining clauses in pseudo-
Boolean formulation. WSAT (PB) finds a feasible guest
allocation in 5.5 seconds (averaged over 20 successful runs
on a SPARCstation 20) using a tabu memory of size 1 and
initializing with a bias ofpz = 0:9. Additionally, setting4The original ILP description (Smithet al. 1996) ismklt = 1
iff boatsk andl meet at timet. The modification simplifies the
problem and saves approximately 30K clauses. According to Sally
Brailsford (personal communication) this had been tried inthe ILP
model.

host boats h g %cap WSAT (PB)
1–12,16 100 92 .92 2.9s
1–13 (orig) 98 94 .96 5.5s
1,3-13,19 96 92 .96 6.4s
3–13,25,26 98 94 .96 8.8s
1–11,19,21 95 93 .98 31.6s
1–9,16–19 93 91 .98 42.5s

Table 2: Empirical comparison on variations of the progres-
sive party problem. The columns are: Selected hosts, total
sum of host spare capacitiesh, total sum of guest crew sizesg; percentage of total capacity used as a measure of con-
strainedness (%cap= g=h). Runtimes averaged over 20
runs of WSAT (PB), Max-Flips=1, flip-rate 1.1 K-flips/s.

up the constraints from an abstract representation requires
around 15 seconds. Table 2 summarizes the results.

For comparison, Smithet al. report 27 minutes of run-
time of their ILOG Solver program on a SPARCstation IPX.
To reproduce the results, we implemented the described
modeling in Oz, a concurrent constraint language (Smolka
1995).5 We used constraints and a labelling strategy simi-
lar to the one described by Smithet al.. Although our con-
straint program was able to solve the original instance in
8 minutes (on a SPARCstation 20), we could not find a la-
belling strategy that was able to solve all sample instances.6
Embedding into constraint programming. To solve
both stages of the problem, we propose a loose cou-
pling of systematic and local search. The approach sim-
ply enumerates the principal variables heuristically (in this
case the�i’s, stage (i)), then performs constraint propaga-
tion/simplification and applies local search to solve the re-
maining subproblem (stage (ii)). In our implementation, we
use an embedding of WSAT (PB) into the constraint lan-
guage Oz. The advantage of using a constraint language
is the high-level support for problem modeling and solu-
tion checking. Oz additionally offers the use of computa-
tion spaces which simplifies the embedding of a solver like
WSAT (PB) into CP.

Historic remarks. Before using the two-stage approach,
we experimented with local search on a reduced version of
the problem that included host selection. Observation of the
local search process revealed that host selection and guest
allocation were mixed and hosts were changed almost as
often as the guest allocation was repaired. This seemed to
be an unreasonable strategy.

Related Work
The tabu search meta heuristic has been applied to find good
initial feasible solutions for 0-1 integer programs. However,
in most examples the subroutine is domain specific. Based
on the pivot and complement heuristic (Balas & Martin5Publically available fromhttp:://www.ps.uni-sb.de/oz/.6Jörg Würtz, personal communication.



1980), a general 0-1 integer tabu search has been proposed
(Aboudi & Jörnsten 1994). The problems reported were
hard optimization problems with up to 90 variables and 30
constraints. Our approach is different in that WSAT (PB)
aims at finding solutions to hard, possibly over-constrained
feasibility problems without an explicit objective function.
Local moves of WSAT (PB) are exclusively variable flips
and tabu memory structures are simple. We would be inter-
ested in a comparison of the approaches.

Pseudo-Boolean constraints have been introduced into
the framework of constraint logic programming with the
language CLP(PB) where they can be solved with logic-
based methods (Bockmayr 1992).

Conclusions
We have generalized the Walksat algorithm to handle sys-
tems of linear pseudo-Boolean constraints and introduced
the algorithm WSAT (PB). In two case studies, we have
applied this algorithm to 0-1 integer programming prob-
lems, radar surveillance and progressive party, and find its
performance to be superior to existing techniques for these
domains. This shows that domain-independent local search
can successfully solve more expressive constraint systems
than SAT and CSP. It opens the field to attack those pseudo-
Boolean constraint problems with stochastic local search
for which a compilation to propositional logic is problem-
atic. For the two domains we considered, we found that lit-
tle customization was necessary and that parameter settings
were similar. What seems to matter beyond a carefully en-
gineered variable selection was a high degree of greediness,
a history mechanism, and a short tabu memory.

From the OR perspective, further investigation is needed
to assess how WSAT (PB) will perform as a primal heuris-
tic for discrete optimization in general. We have shown that
if the objective function can be expressed with soft con-
straints (case study I), or if the problem can be stated as a
short sequence of feasibility problems (case study II), local
search can outperform its competition.

Acknowledgments
The author is supported by a DFG (Deutsche Forschungs-
gemeinschaft) doctoral fellowship. Many thanks to Seif
Haridi and Per Brand for providing the radar surveillance
problems which sparked this work. The author is grateful
to Martin Henz and Gert Smolka for illuminating discus-
sions of this work and for comments on an earlier draft.
Many thanks to Jörg Würtz and ThorstenÖlgart for model-
ing the progressive party problem in Oz, and to Alexander
Bockmayr and Thomas Kasper for providing insights into
optimization issues. Thanks also to Andrew Parkes and the
anonymous reviewers for helpful suggestions.

References
Aboudi, R., and Jörnsten, K. 1994. Tabu search for gen-
eral zero-one integer programs using the pivot and com-
plement heuristic.ORSA Journal on Computing6(1):82–
93.

Balas, E., and Martin, C. 1980. Pivot and complement – a
heuristic for zero-one programming.Management Science
26:86–96.

Bockmayr, A. 1992. Logic programming with pseudo-
boolean constraints. In Colmerauer, A., and Benhamou,
F., eds.,Constraint Logic Programming – Selected Re-
search. MIT Press.

Brand, P.; Haridi, S.; and Olsson, O. 1997. Some radar
surveillance problems. Technical report, Swedish Institute
of Computer Science, SICS. To appear.

Gent, I., and Walsh, T. 1993. Towards an understanding of
hill-climbing procedures for SAT. InProceedings AAAI-
93, 28–33.

Glover, F., and Laguna, M. 1993. Tabu search. In Reeves,
C. R., ed.,Modern Heuristic Techniques for Combinato-
rial Problems. Halsted Press. chapter 3, 70–150.

Hammer, P., and Rudeanu, S. 1968.Boolean Methods in
Operations Research and Related Areas. Springer.

Hansen, P., and Jaumard, B. 1990. Algorithms for the
maximum satisfiability problem.Computing44:279–303.

Hao, J.-K., and Dorne, R. 1996. Empirical studies of
heuristic local search for constraint solving. InProceed-
ings CP-96, 194–208.

Minton, S.; Johnston, M. D.; Philips, A. B.; and Laird,
P. 1990. Solving large-scale constraint satisfcation and
scheduling problems using a heuristic repair method.Ar-
tificial Intelligence58:161–205.

Nemhauser, G., and Wolsey, L. 1988.Integer and Com-
binatorial Optimization. Series in Discrete Mathematics
and Optimization. Wiley-Intersience.

Parkes, A., and Walser, J. 1996. Tuning local search for
satisfiability testing. InProceedings AAAI-96, 356–362.

Sebastiani, R. 1994. Applying GSAT to non-clausal for-
mulas.JAIR-941:309–314.

Selman, B., and Kautz, H. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings AAAI-96, 1194–1201.

Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise strate-
gies for improving local search. InProceedings AAAI-94,
337–343.

Selman, B.; Levesque, H.; and Mitchell, D. 1992. A new
method for solving hard satisfiability problems. InPro-
ceedings AAAI-92, 440–446.

Smith, B.; Brailsford, S.; Hubbard, P.; and Williams, H.
1996. The progressive party problem: Integer linear pro-
gramming and constraint programming compared.Con-
straints1:119–138.

Smolka, G. 1995. The Oz programming model. InCom-
puter Science Today, Lecture Notes in Computer Science,
vol. 1000. Berlin: Springer-Verlag. 324–343.


