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1 Introduction

In this paper we will give a complete, cut-free sequent calculus for a frag-
ment of higher-order logic with ξ-extensionality, a weak form of functional
extensionality. When one wants a calculus appropriate for automation, a
common first step is to find such a complete, cut-free sequent calculus. For
example, Andrews proved cut-elimination for a sequent calculus for elemen-
tary type theory [1]. Elementary type theory is a fragment of higher-order
logic with no extensionality principles. In [3], we showed there is a cube of
eight model classes which vary with respect to extensionality principles. For
purposes of automation, we would like to have a complete, cut-free sequent
calculus for each of these eight model classes. The essential ingredients for
obtaining complete, cut-free sequent calculi for three of the eight model
classes are already known. The sequent calculus for elementary type the-
ory in [1] essentially provides a complete, cut-free calculus for one of the
eight model classes. (Completeness of a similar calculus will follow from
the results in this paper.) There are also results for two of the other model
classes (the case with η and the fully extensional case) in [6, 7], though the
framework is slightly different from the one here. In this paper, we prove
completeness of a cut-free sequent calculus for a fourth point on the exten-
sionality cube, elementary type theory with ξ-extensionality. To handle the
case with ξ-extensionality, we will combine the techniques used in [1] with
recent results on cut-simulation [4, 5].

As mentioned above, in [1] Andrews proved cut-elimination for a sequent
calculus G for elementary type theory (Corollary 4.11 there). In particu-
lar, Andrews proved that provability in G is equivalent to provability in a
Hilbert-style calculus T (where admissibility of cut is immediate). The dif-
ficult direction of this equivalence is proving that one has ⊢T A whenever
one has ⊢G A (Theorem 4.10 in [1]). A key fact in Andrews’ proof is his
Theorem 3.5: “If Γ is an abstract consistency property and S is a finite set
of wffso such that Γ(S ), then S is consistent.” Here, consistency is defined
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with respect to the calculus T . In order to prove Theorem 3.5 from [1],
Andrews proves that S can be used to obtain a semivaluation V such that
VA = T for all A ∈ S (see Theorem 3.3 in [1]) and then proves the set
{A|VA = T} is consistent (see Theorem 3.4 in [1]). To prove consistency
of {A|VA = T}, Andrews constructs a structure of V -complexes (following
ideas in Takahashi [11] and Prawitz [10]) and proves this structure satisfies
properties similar to that of a Henkin model [9].

The Andrews structure of V -complexes is not a Henkin model. In fact, it
was not until much later that a notion of a nonextensional model of higher-
order logic was proposed which includes V -complexes (see [3]). Given this
more recent notion of a model, the Andrews structure can be viewed in a
new light, and further properties of the structure can be proven.

The V -complex construction (up to the treatment of free variables) was
generalized to the notion of a possible values structure in [6, 7]. We will
use several results from [6, 7] to quickly conclude that the construction
(starting from a Hintikka set H instead of a semivaluation V ) yields a model.
Furthermore, the model will satisfy a weak form of functional extensionality
known as property ξ (cf. Definition 3.46 in [3]). If the Hintikka set is
not saturated, then the model will satisfy property q (cf. Definition 3.46
in [3]). Using these facts, we will prove completeness of a sequent calculus for
higher-order logic with ξ-functionality relative to the model class Mβξ (cf.
Definition 3.49 in [3]) and conclude cut-elimination for the sequent calculus.
We will also prove completeness of a sequent calculus for elementary type
theory (similar to the one given in [1]) relative to the model class Mβ .

2 Preliminaries

We review the fundamental framework from [3] (which can be consulted for
details).

As in [8], we formulate higher-order logic (HOL) based on the simply
typed λ-calculus. The set of simple types T is freely generated from basic
types o and ι using the function type constructor →.

We start with a set V of (typed) variables (denoted byXα, Y, Z,X
1
β, X

2
γ . . .)

and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .). We let
Vα (Σα) denote the set of variables (constants) of type α. The signature Σ
of constants includes the logical constants ¬o→o, ∨o→o→o and Πα

(α→o)→o for

each type α. All other constants in Σ are called parameters. As in [3], we
assume there is an infinite cardinal ℵs such that the cardinality of Σα is ℵs
for each type α (cf. Remark 3.16 in [3]). The set of HOL-formulae (or terms)
are constructed from typed variables and constants using application and
λ-abstraction. We let wffα(Σ) be the set of all terms of type α and wff(Σ)
be the set of all terms.
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We use vector notation to abbreviate k-fold applications and abstractions
as AUk and λXk A, respectively. We also use Church’s dot notation so
that stands for a (missing) left bracket whose mate is as far to the right
as possible (consistent with given brackets). We use infix notation A ∨ B

for ((∨A)B) and binder notation ∀XαA for (ΠαλXαAo). We further use
A ∧ B, A ⇒ B, A ⇔ B and ∃XαA as shorthand for formulae defined in
terms of ¬, ∨ and Πα (cf. [3]). Finally, we let (Aα

.
=
α

Bα) denote the
Leibniz equation ∀Pα→o (PA) ⇒ (PB).

Each occurrence of a variable in a term is either bound by a λ or free.
We use free(A) to denote the set of free variables of A (i.e., variables
with a free occurrence in A). We consider two terms to be equal if the
terms are the same up to the names of bound variables (i.e., we consider
α-conversion implicitly). A term A is closed if free(A) is empty. We let
cwffα(Σ) denote the set of closed terms of type α and cwff(Σ) denote the
set of all closed terms. Each term A ∈ wffo(Σ) is called a proposition and
each term A ∈ cwffo(Σ) is called a sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by
[A/X ]B. Since we consider α-conversion implicitly, we assume the bound
variables of B avoid variable capture. Similarly, we consider simultaneous
substitutions σ for the finitely many free variables in the domain Dom(σ) of
σ. A substitution σ, [A/X ] is the substitution such that (σ, [A/X ])(X) ≡ A

and (σ, [A/X ])(Y ) ≡ σ(Y ) for variables Y other than X . Note that here
and everywhere we use · ≡ · for syntactical identity (modulo α equivalence).

A common relation on terms is given by β-reduction. A β-redex (λXA)B
β-reduces to [B/X ]A. For A,B ∈ wffα(Σ), we write A≡βB to mean A can
be converted to B by a series of β-reductions and expansions. For each
A ∈ wff(Σ) there is a unique β-normal form (denoted A↓β; the set of all

β-normal formulae is denoted by wff(Σ)


y

β
). From this fact we know A≡βB

iff A↓β and B↓β are syntactically equal (A↓β ≡ B↓β).

A model of HOL is given by four objects: a typed collection of nonempty
sets (Dα)α∈T , an application operator @:Dα→β×Dα −→ Dβ , an evaluation
function E for terms and a valuation function υ:Do −→ {T, F}. A pair
(D,@) is called a Σ-applicative structure (cf. Definition 16). If E is an
evaluation function for (D,@) (cf. Definition 3.18 in [3]), then we call the
triple (D,@, E) a Σ-evaluation. If υ satisfies appropriate properties, then
we call the tuple (D,@, E , υ) a Σ-model (cf. Definitions 3.40 and 3.41 in
[3]).

Given an applicative structure (D,@), an assignment ϕ is a (typed) func-
tion from V to D. An evaluation function E maps an assignment ϕ and a
term Aα ∈ wffα(Σ) to an element Eϕ(A) ∈ Dα. Evaluations E are required
to satisfy four properties (cf. Definition 3.18 in [3]):
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1. Eϕ
∣

∣

V
≡ ϕ.

2. Eϕ(FA) ≡ Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and A ∈ wffα(Σ)
and types α and β.

3. Eϕ(A) ≡ Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ and ψ
coincide on free(A).

4. Eϕ(A) ≡ Eϕ(A↓β) for all A ∈ wffα(Σ).

If A is closed, then we can simply write E(A) since the value Eϕ(A) cannot
depend on ϕ.

Given an evaluation (D,@, E), Figure 1 shows the definition of several
properties a function υ:Do −→ {T, F} may satisfy (cf. Definition 3.40 in
[3]). A valuation υ:Do −→ {T, F} is required to satisfy L¬(E(¬)), L∨(E(∨))
and Lα∀ (E(Πα)) for every type α.

prop. where holds when for all

L¬(n) n ∈ Do→o υ(n@a) ≡ T iff υ(a) ≡ F a ∈ Do

L∨(d) d ∈ Do→o→o υ(d@a@b) ≡ T iff υ(a) ≡ T or υ(b) ≡ T a, b ∈ Do

Lα

∀
(π) π ∈ D(α→o)→o

υ(π@f) ≡ T iff ∀a ∈ Dα υ(f@a) ≡ T f ∈ Dα→o

Lα

=(q) q ∈ Dα→α→o υ(q@a@b) ≡ T iff a ≡ b a, b ∈ Dα

Figure 1. Logical Properties in Σ-Models

Given a model M := (D,@, E , υ), an assignment ϕ and a proposition A

(or set of propositions Φ), we say M satisfies A (or Φ) and write M |=ϕ A

(or M |=ϕ Φ) if υ(Eϕ(A)) ≡ T (or υ(Eϕ(A)) ≡ T for each A ∈ Φ). If A is
closed (or every member of Φ is closed), then we simply write M |= A (or
M |= Φ) and say M is a model of A (or Φ).

In order to define model classes which correspond to different notions
of extensionality, five properties of models are defined (q, η, ξ, f, and b;
cf. Definitions 3.46, 3.21 and 3.5 in [3]). In this paper, we will only refer
to properties q and ξ. Let M := (D,@, E , υ) be a model. We say M has
property

q iff for all α ∈ T there is some qα ∈ Dα→α→o such that Lα=(qα) holds.

ξ iff (D,@, E) is ξ-functional (i.e., for each M,N ∈ wffβ(Σ), X ∈ Vα
and assignment ϕ, we have Eϕ(λXαMβ) ≡ Eϕ(λXαNβ) whenever
Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα).

For each ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} there is a model class M∗ (cf.
Definition 3.49 in [3]). Here we only consider ∗ ∈ {β,βξ}: Mβ is the class
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of all Σ-models M satisfying property q. Mβξ is the class of all Σ-models
M satisfying properties q and ξ.

Finally, we review the model existence theorems proved in [3]. There are
three stages to obtaining a model in our framework. First, we obtain an
abstract consistency class ΓΣ (usually defined as the class of irrefutable sets
of sentences with respect to some calculus). Second, given a (sufficiently
pure) set of sentences Φ in the abstract consistency class ΓΣ we construct a
Hintikka set H extending Φ. Third, we construct a model of this Hintikka
set (hence a model of Φ).

We say ΓΣ is an abstract consistency class if it is closed under subsets and
satisfies properties ∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃ (cf. Definitions 6.1 and 6.5
in [3]). We let Accβ denote the collection of all abstract consistency classes.
For each ∗ ∈ we refine Accβ to a collection Acc∗ where the additional
properties {∇η,∇ξ,∇f,∇b} indicated by ∗ are required (cf. Definition 6.7 in
[3]). We say an abstract consistency class ΓΣ is saturated if ∇sat holds. The
only condition we will explicitly use in this paper is ∇ξ which is defined as
follows:

∇ξ If ¬(λXα M
.
=
α→β

λXαN) ∈ Φ, then Φ ∗¬([w/X ]M
.
=
β

[w/X ]N) ∈ ΓΣ
for any parameter wα ∈ Σα which does not occur in any sentence of
Φ.

In order to obtain a Hintikka set extending a set Φ, we must have param-
eters which will act as witnesses. For this we require sufficient purity of Φ.
A set Φ of Σ-sentences is called sufficiently Σ-pure (cf. Definition 6.3 in [3])
if for each type α there is a set Pα of parameters of type α with cardinality
ℵs (the cardinality of wffα(Σ)), such that no parameter in P occurs in a
sentence in Φ. Note that since Σ is assumed to have infinite cardinality ℵs
for each type, every finite set of Σ-sentences is sufficiently Σ-pure.

A Hintikka set is a set of sentences satisfying certain properties. The
following is a list of some of the properties a set H of sentences may satisfy
(cf. Definition 6.19 in [3]):

~∇c A /∈ H or ¬A /∈ H.

~∇¬ If ¬¬A ∈ H, then A ∈ H.

~∇β If A ∈ H and A≡βB , then B ∈ H.

~∇∨ If A ∨ B ∈ H, then A ∈ H or B ∈ H.

~∇∧ If ¬(A ∨ B) ∈ H, then ¬A ∈ H and ¬B ∈ H.

~∇∀ If Πα
F ∈ H, then FW ∈ H for each W ∈ cwffα(Σ).
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~∇∃ If ¬Πα
F ∈ H, then there is a parameter wα ∈ Σα such that ¬(Fw) ∈ H.

~∇ξ If ¬(λXα M
.
=
α→β

λXN) ∈ H, then there is a parameter wα ∈ Σα such

that ¬([w/X ]M
.
=
β

[w/X ]N) ∈ H.

~∇sat Either A ∈ H or ¬A ∈ H.

[3] also defines properties ~∇η, ~∇b, and ~∇f, but these will not be used here.

A set H of sentences is called a Σ-Hintikka set if ~∇c, ~∇¬, ~∇β , ~∇∨, ~∇∧, ~∇∀ and
~∇∃ hold. We define the following collections of Hintikka sets: Hintβ, Hintβη,
Hintβξ, Hintβf, Hintβb, Hintβηb, Hintβξb, and Hintβfb, where we indicate by

indices which additional properties from {~∇η, ~∇ξ, ~∇f, ~∇b} are required (cf.

Definition 6.20 in [3]). We call a Hintikka set H saturated if ~∇sat holds (cf.
Definition 6.24 in [3]).

One of the main theorems of [3] is the Model Existence Theorem for
Saturated Sets which states the following:

THEOREM 1 (Model Existence Theorem for Saturated Sets (Theorem 6.33
in [3])).

For all ∗ ∈ we have: If H is a saturated Hintikka set in Hint∗, then there
exists a model M ∈ M∗ that satisfies H. Furthermore, each domain Dα of
M has cardinality at most ℵs.

Since saturated abstract consistency classes give rise to saturated Hin-
tikka sets, we conclude a corresponding model existence theorem for satu-
rated abstract consistency classes.

THEOREM 2 (Theorem 6.34 in [3]). For all ∗ ∈ , if ΓΣ is a saturated
abstract consistency class in Acc∗ and Φ ∈ ΓΣ is a sufficiently Σ-pure set of
sentences, then there exists a model M ∈ M∗ that satisfies Φ. Furthermore,
each domain of M has cardinality at most ℵs.

3 Possible Values

We now review a framework developed in [6, 7] which is essentially a general
version of Andrews construction using V -complexes given in [1]. There
are slight differences between the construction here and that in [1]. One
difference is that our domains are constructed using pairs 〈A, a〉 where A is
closed , whereas in [1] A may contain free variables. This difference stems
from the fact that we use parameters as existential witnesses and Andrews
uses variables for this purpose in [1]. Another difference is that we start
from a Hintikka set H instead of a semivaluation V .

Except for the different treatment of variables, the V -complex construc-
tion provides an instance of a possible values structure for β (cf. Defini-
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tion 3) and a possible values evaluation for β (cf. Definition 8). The defini-
tions in [6, 7] are for both the β and βη cases. We repeat these definitions
(specialized for the β case) and a few results here. We then prove that any
possible values evaluation is ξ-functional (a new result).

The results in [7] are stated with respect to a signature of logical constants
S which is distinct from the set of parameters P . In order to apply the
results from [7] we take S to be the set

{¬,∨} ∪ {Πα|α ∈ T }

and P to be the typed family of sets of parameters (non-logical constants)
in Σ. Note that Σ ≡ (S ∪ P).

DEFINITION 3 (Definition 4.1.1 from [6, 7]). A possible values structure
for β is an applicative structure F ≡ (D,@) satisfying the following:

1. For each type α ∈ T , a ∈ Dα implies a ≡ 〈A, a〉 for some a and term
A ∈ cwffα(Σ) such that A↓β ≡ A.

2. At each base type α ∈ {o, ι}, for every A ∈ cwffα(Σ), there exists some
p with 〈A↓β , p〉 ∈ Dα.

3. For each function type α→ β, 〈G, g〉 ∈ Dα→β iff G ∈ cwffα→β(Σ),
G↓β ≡ G, g : Dα −→ Dβ and for every 〈A, a〉 ∈ Dα the first compo-

nent of g(〈A, a〉) is [GA]


y

β
.

4. For each 〈G, g〉 ∈ Dα→β and 〈A, a〉 ∈ Dα,

〈G, g〉@〈A, a〉 ≡ g(〈A, a〉).

DEFINITION 4 (Definition 4.1.2 from [6, 7]). Let A ≡ (D,@) be a possi-
ble values structure for β. We call p a possible value for A ∈ cwffα(Σ) if
〈A↓β , p〉 ∈ Dα.

The next lemma is similar to Lemma 3.4.2 in [1] which provided the idea
for the proof by induction on types.

LEMMA 5 (Lemma 4.1.3 from [6, 7]). Let F be a possible values structure
for β. For each closed term A ∈ cwffα(Σ), there is a possible value p for A

in F .

DEFINITION 6 (Definition 4.1.4 from [6, 7]). Let A ≡ (D,@) be a possible
values structure for β. We define

DA

α := {〈A↓β , a〉 ∈ Dα
∣

∣ a is a possible value for A}.
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for each A ∈ cwffα.

DEFINITION 7 (Definition 4.1.5 from [6, 7]). Let A ≡ (D,@) be a pos-
sible values structure for β and ϕ be an assignment into A. For any
A ∈ wffα(Σ), we define ϕ1(A) to be θ(A) ∈ cwffα(Σ) where θ is the substitu-
tion with Dom(θ) ≡ free(A) and ϕ(xβ) ≡ 〈θ(xβ), b〉 ∈ Dβ for each variable

xβ ∈ free(A). We define ϕβ1 (A) to be ϕ1(A)


y

β
.

DEFINITION 8 (Definition 4.1.7 from [6, 7]). We call an evaluationJ ≡ (D,@, E)
a possible values evaluation for β if (D,@) is a possible values structure for

β and Eϕ(A) ∈ D
ϕ1(A)
α for every A ∈ wffα(Σ) and assignment ϕ.

We can always extend an appropriate interpretation of parameters and
constants in a possible values structure to obtain a possible values evalua-
tion.

THEOREM 9 (Theorem 4.1.8 from [6, 7]). Let A ≡ (D,@) be a possible
values structure for β and I : Σ −→ D be an interpretation of parameters
and constants such that I(cα) ∈ Dc

α for every c ∈ Σ. There is an evaluation
function E such that J := (D,@, E) is a possible values evaluation for β,
E(cα) ≡ I(cα) for every cα ∈ Σ.

We now verify the only new result of this section: possible values evalu-
ations are ξ-functional.

PROPOSITION 10. Every possible values evaluation for β is ξ-functional.

Proof. Let (D,@, E) be a possible values evaluation. Let M,N ∈ wffβ(Σ)
and Xα be a variable such that Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for all a ∈
Dα. We must verify Eϕ(λXαM) ≡ Eϕ(λXαN). We know Eϕ(λXαM) ≡

〈ϕβ1 (λXα M), f〉 and Eϕ(λXαN) ≡ 〈ϕβ1 (λXαN), g〉 for some f, g : Dα →
Dβ . We first check that the first components are equal. Let wα be a param-
eter which occurs neither in M nor in N. By Lemma 5 there is some p such
that 〈w, p〉 ∈ Dα. By assumption, Eϕ,[〈w,p〉/X](M) ≡ Eϕ,[〈w,p〉/X](N). Since
E is a possible values evaluation, the first component of Eϕ,[〈w,p〉/X](M) is

(ϕ, [〈w, p〉/X ])β1 (M). It is easy to see that this is the same as [w/X ]ϕβ1 (M).

Similarly, the first component of Eϕ,[〈w,p〉/X](N) is [w/X ]ϕβ1 (N). Hence

[w/X ]ϕβ1 (M) ≡ [w/X ]ϕβ1 (N). Since w was chosen to be fresh, ϕβ1 (M) ≡

ϕβ1 (N) and so

ϕβ1 (λXM) ≡ λX ϕβ1 (M) ≡ λX ϕβ1 (N) ≡ ϕβ1 (λX N).

Next, we show the second components are equal. Using the properties of
evaluation functions and the definition of @, we easily compute

f(a) ≡ Eϕ(λX M)@a ≡ Eϕ,[a/X]((λX M)X) ≡ Eϕ,[a/X](M)
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and

g(a) ≡ Eϕ(λXN)@a ≡ Eϕ,[a/X]((λXN)X) ≡ Eϕ,[a/X](N)

for any a ∈ Dα. Hence f = g as desired. �

4 Model Existence Theorems Without Saturation

Model existence theorems generally say that in order to show that a set Φ
of formulae has a model M in a given class M, it is sufficient to prove that
Φ is a member of suitably defined abstract consistency classes Γ. Model
existence theorems are usually proven in two steps: first we show that any
Φ ∈ Γ can be extended to a Hintikka set H ∈ Γ with Φ ⊆ H, and then
for a given Hintikka set H we construct a model M ∈ M that satisfies
H. The first step is already addressed by the Abstract Extension Lemma
(Lemma 6.32) in [3] and it will be reused below. The second step — for the
model classes Mβ and Mβξ and without assuming saturation — is a novel
contribution of this paper.

When constructing models in M∗ of a Hintikka set H, we must verify
property q. For this purpose, the assumption that H contains no Leibniz
equations is very helpful.

DEFINITION 11. Let H be a set of formulae. We say H is Leibniz-free if
there are no terms Aα,Bα such that (A

.
=
α

B) ∈ H.

We can now show every Hintikka set is either saturated (in which case
we have already constructed models in [3]) or Leibniz-free. Hence we will
only need to construct models for Leibniz-free Hintikka sets. This result is
closely related to the fact the Leibniz equations are cut-strong (see Example
14 in [4]).

THEOREM 12. Let H be a Hintikka set. Either H is saturated or H is
Leibniz-free.

Proof. Suppose H is not Leibniz-free. Then (A
.
=
α

B) ∈ H for some

Aα,Bα. We show H satisfies ~∇sat. Let Co be a closed formula. Since
(∀Qα→oQA ⇒ QB) ∈ H, we know (¬C ∨ C) ∈ H by ~∇∀ (with the term

λXαC) and ~∇β . By ~∇∨, either ¬C ∈ H or C ∈ H. �

The proof of the following theorem is the main contribution in the paper.
It the construction is based on Andrew’s V -complexes but extends the ar-
gument by checking properties ξ (from Prop 10) and q (by choosing Leibniz
and using that H is Leibniz free since unsaturated).

THEOREM 13. Let H be a Σ-Hintikka set which is not saturated. There is
a Σ-model M ∈ Mβξ such that M |= H.
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Proof. We first define a set BA

H of possible booleans for each A ∈ wffo(Σ):

BA

H :=







{T} if A ∈ H
{F} if ¬A ∈ H
{T, F} otherwise.

We define Dα for each type α ∈ T by induction:

• Do := {〈Ao, p〉|A ∈ wffo(Σ)


y

β
, p ∈ BA

H}.

• Dι := {〈Aι, ι〉|A ∈ wffι(Σ)


y

β
}.

• Dα→β := {〈Fα→β , f〉|F ∈ wffα→β(Σ)


y

β
, f : Dα → Dβ ,

∀〈A, a〉 ∈ Dα, 〈B, b〉 ∈ Dβ f(〈A, a〉) ≡ 〈B, b〉 ⇒ B ≡ (FA)


y

β
}.

We define an application operator @ by setting 〈F, f〉@a to be f(a) for each
〈F, f〉 ∈ Dα→β and a ∈ Dα. It is easy to check that (D,@) is a possible
values structure for β. Note that for all A ∈ wffo(Σ) either A /∈ H or

¬A /∈ H (by ~∇c) and so either 〈A, F〉 ∈ Do or 〈A, T〉 ∈ Do. (It is possible
that both 〈A, F〉 ∈ Do and 〈A, T〉 ∈ Do.)

For each parameter wα, we can choose some pw such that 〈w, pw〉 ∈ Dα
using Lemma 5. These values can be used to interpret parameters. To
interpret logical constants, we must make appropriate choices so that the
corresponding logical properties will hold.

¬ Let p¬:Do → Do be defined by p¬(〈A, a〉) := 〈¬A, b〉 where b is T if a is

F and b is F if a is T. The ~∇¬ and ~∇c properties of H guarantees this
is well-defined. So, p¬ is a possible value for ¬.

∨ For each 〈A, F〉 ∈ Do, let p∨〈A,F〉:Do → Do be the function defined by

p∨〈A,F〉(〈B, b〉) := 〈A∨B, b〉. For each 〈A, T〉 ∈ Do, let p∨〈A,T〉:Do → Do
be the function defined by p∨〈A,T〉(〈B, b〉) := 〈A ∨ B, T〉.

The properties ~∇∨, ~∇∧ and ~∇c of H guarantees these are well-defined
and 〈∨A, p∨〈A,a〉〉 ∈ Do→o. Now, let p∨:Do → Do→o be defined by

p∨(〈A, a〉) := 〈∨A, p∨〈A,a〉〉. Clearly, p∨ is a possible value for ∨.

Πα Let pΠα

:Dα→o → Do be the function defined by pΠα

(F, f) := 〈Πα
F, p〉

where p ≡ T if for every 〈A, a〉 ∈ Dα, the second component of

f(〈A, a〉) is T, and p ≡ F otherwise. This is well-defined by ~∇∀, ~∇∃

and ~∇c, and pΠα

is a possible value for Πα.
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Let I(c) := 〈c, pc〉 for each c ∈ Σ and E be the evaluation function extending
I guaranteed to exist by Theorem 9 so that (D,@, E) is a ξ-functional
possible values evaluation.

To make this a Σ-model, we must define a valuation υ:Do −→ {T, F}. We
take the obvious choice υ(〈A, p〉) := p. So let M := (D,@, E , υ). To check
M is a Σ-model, we must check the requirements for υ. Each condition is
trivial:

¬: υ(E(¬)@a) ≡ T iff υ(a) ≡ F by the definition of p¬.

∨: υ(E(∨)@a@b) ≡ T iff υ(a) ≡ T or υ(b) ≡ T by the definition of p∨.

Π: υ(E(Πα)@f) ≡ T iff υ(f@a) ≡ T for each a ∈ Dα by the definition of pΠα

.

We verify M |= H. Suppose A ∈ H and let B be A↓β . Note that

E(A) ≡ 〈B, p〉 ∈ Do for some p ∈ BB

H. Since A ∈ H, we have B ∈ H by ~∇β .
Thus BB

H ≡ {T}, p ≡ T and so M |= A.
In general, we can use Theorem 3.62 in [3] to obtain a model of H satisfy-

ing property q, though this would not preserve property ξ (cf. Remark 3.57
in [3]). Instead, we use the assumption that H is not saturated and hence
Leibniz-free to show the possible values model M already satisfies property
q. To see this, for each 〈A, a〉 ∈ Dα, let s〈A,a〉:Dα → Do be defined by

s〈A,a〉(〈B, b〉) :=

{

〈 (A
.
= A)



y

β
, T〉 if A = B and a = b

〈 (A
.
= B)



y

β
, F〉 else

This is well-defined since we never have ¬ (A
.
= A)



y

β
∈ H, and at the same

time (A
.
= B)



y

β
/∈ H since H is Leibniz-free. Then, qα := 〈

.
=
α
, l〉 with

l(〈A, a〉) := 〈 (λXA
.
= x)



y

β
, s〈A,a〉〉 witnesses that M satisfies property q.

Thus, M ∈ Mβξ as desired. �

THEOREM 14 (Model Existence for Hintβ and Hintβξ). For each ∗ ∈
{β,βξ} and Σ-Hintikka set H ∈ Hint∗, there is a Σ-model M ∈ M∗ such
that M |= H.

Proof. If H is not saturated, then we can obtain such an M by applying
Theorem 13 above. If H is saturated, then we can obtain such an M by
applying the Model Existence Theorem for Saturated Sets (Theorem 1). �

THEOREM 15 (Model Existence for Accβ and Accβξ). For each ∗ ∈ {β,βξ},
abstract consistency class ΓΣ ∈ Acc∗ and sufficiently Σ-pure Φ ∈ ΓΣ, there is
a Σ-model M ∈ M∗ such that M |= Φ.
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Proof. By the Abstract Extension Lemma (Lemma 6.32 in [3]), there is a
Hintikka set H ∈ Hint∗ such that Φ ⊆ H. By Theorem 14 above there is a
Σ-model M ∈ M∗ such that M |= H. �

5 A Sequent Calculus

As in [4, 5], we consider a sequent to be a finite set ∆ of β-normal sentences
from cwffo(Σ). A sequent calculus G provides an inductive definition for
when ⊢⊢G ∆ holds. We say a sequent calculus rule

∆1 · · · ∆n

∆

is admissible if ⊢⊢G ∆ holds whenever ⊢⊢G ∆i for all 1 ≤ i ≤ n. Given a
sequent ∆ and a model M, we say ∆ is valid for M if M |= D for some
D ∈ ∆. For a class M of models, we say ∆ is valid for M if ∆ is valid
for every M ∈ M. As for sets in abstract consistency classes, we use the
notation ∆ ∗ A to denote the set ∆ ∪ {A} (which is simply ∆ if A ∈ ∆).
We adopt the notation ¬Φ for the set {¬A|A ∈ Φ} where Φ ⊆ cwffo(Σ).
Furthermore, we assume this use of ¬ binds more strongly than ∪ or ∗, so
that ¬Φ∪∆ means (¬Φ)∪∆ and ¬Φ ∗A means (¬Φ) ∗A. For any sequent
calculus G, we can define a class of sets of sentences ΓG

Σ as in [4, 5].

DEFINITION 16 (Definition 1 from [4]/Definition 3.1 from [5]). Let G be
a sequent calculus. We define ΓG

Σ to be the class of all finite Φ ⊂ cwffo(Σ)
such that ⊢⊢G ¬ Φ↓β does not hold.

Under certain conditions, ΓG
Σ will be an abstract consistency class. The

conditions are the admissibility of certain rules given in Figures 2 and 3.

LEMMA 17 (Lemma 2 from [4]/Lemma 3.2 from [5]). Let G be a sequent
calculus such that G(Inv¬) is admissible. For any finite sets Φ and ∆ of
sentences, if Φ ∪ ¬∆ /∈ ΓG

Σ , then ⊢⊢G ¬ Φ↓β ∪ ∆↓β holds.

THEOREM 18 (Theorem 3 from [4]/Theorem 3.3 from [5]). Let G be a se-
quent calculus. If the rules G(Inv¬), G(¬), G(weak), G(init), G(∨−), G(∨+),
G(Π C

− ) and G(Π c

+) are admissible in G, then ΓG
Σ ∈ Accβ.

We also have the following result relating saturation with admissibility
of cut.

THEOREM 19 (Theorem 4 from [4]/Theorem 3.4 from [5]). Let G be a
sequent calculus.

1. If G(cut) is admissible in G, then ΓG
Σ is saturated.

2. If G(¬) and G(Inv¬) are admissible in G and ΓG
Σ is saturated, then

G(cut) is admissible in G.
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A atomic
G(init)

∆ ∗ A ∗ ¬A

∆ ∗ A
G(¬)

∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B
G(∨−)

∆ ∗ ¬(A ∨B)

∆ ∗ A ∗ B
G(∨+)

∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)


y

β
C ∈ cwffα(Σ)

G(Π C
− )

∆ ∗ ¬Πα
A

∆ ∗ (Ac)


y

β
cα ∈ Σ fresh parameter

G(Π c

+)
∆ ∗ Πα

A

Figure 2. Basic Sequent Calculus Rules

∆ ∗ ¬¬A
G(Inv¬)

∆ ∗ A

∆
G(weak)

∆ ∪ ∆′

∆ ∗ C ∆ ∗ ¬C
G(cut)

∆

Figure 3. Inversion Rule, Weakening Rule and Cut Rule

The proofs of the previous three results are given in the appendix of [5].
We now turn our attention to the two particular sequent calculi of interest

in this paper.

DEFINITION 20 (Sequent Calculi Gβ and Gβξ). Let Gβ be the sequent cal-
culus defined by the rules in Figure 2. Let Gβξ be the sequent calculus
defined by the rules in Figure 2 and the G(ξ) rule in Figure 4

A straightforward induction on derivations proves that Gβ and Gβξ are
sound with respect to to the model classes Mβ and Mβξ, respectively. The
only case which presents any difficulty is that for G(Π c

+) which uses a fresh
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∆ ∗ (∀XαM
.
=
β

N)
G(ξ)

∆ ∗ (λXαM
.
=
α→β

λXαN)

Figure 4. ξ Extensionality Rule

parameter c. We will show only this case. In this case one can modify a
given model by changing the value of the parameter c in the model. This is
worked out in detail in [7] and we will refer to some of the results there.

THEOREM 21. Let ∗ ∈ {β,βξ} and ∆ be a sequent. If ⊢⊢G∗ ∆, then for all
M ∈ M∗ there is some A ∈ ∆ such that M |= A.

Proof. This can be proven by induction on the derivation of ⊢⊢G∗ ∆.
Suppose G(Π c

+) is the last rule of the derivation. Then ∆ is ∆′ ∗ Πα
A and

⊢⊢G∗ ∆′ ∗ (Ac)


y

β
for some parameter c which occurs neither in A nor in

any sentence in ∆′. Let M ≡ (D,@, E , υ) ∈ M∗ be given. If M |= B for
some B ∈ ∆′, then we are done. Assume there is no such B ∈ ∆′, then we
must prove M |= Πα

A, i.e. that υ(E(A)@a) ≡ T for all a ∈ Dα. Let a ∈ Dα
be given. We let Ec 7→a denote the function from Definition 3.2.16 in [7] and
Mc 7→a denote (D,@, Ec 7→a, υ). We have the following:

• Ec 7→a(c) ≡ a (see Theorem 3.2.18 in [7]).

• Ec 7→a(D) ≡ E(D) if c does not occur in D (see Theorem 3.2.18 in [7]).

• Mc 7→a ∈ M∗ (see Theorem 3.3.14 in [7]).

Applying the inductive hypothesis using Mc 7→a, we have Mc 7→a |= (Ac)


y

β
.

Hence υ(Ec 7→a(Ac)) ≡ T. Using the properties above, we have υ(E(A)@a) ≡
T as desired. �

We can also prove that Gβ and Gβξ are complete with respect to the model
classes Mβ and Mβξ, respectively. In order to apply the results from [4, 5],
we begin by noting that certain rules are admissible.

LEMMA 22. G(weak) and G(Inv¬) (see Figure 3) are admissible in Gβ and
Gβξ.

Proof. Both of these follow by an induction on derivations. In the case of
weakening we must also carry a parameter renaming to ensure freshness of
the parameter in each application of G(Π c

+). �
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Using this result, we can conclude that Γ
Gβ

Σ and Γ
Gβξ

Σ are abstract consis-
tency classes.

PROPOSITION 23. Γ
Gβ

Σ ∈ Accβ and Γ
Gβξ

Σ ∈ Accβξ.

Proof. By Lemma 22 and Theorem 18. we know Γ
Gβ

Σ ∈ Accβ and Γ
Gβξ

Σ ∈

Accβ. To complete the proof, we must verify ∇ξ holds in Γ
Gβξ

Σ . Suppose

¬(λXα M
.
=
α→β

λXαN) ∈ Φ ∈ Γ
Gβξ

Σ but Φ ∗ ¬([w/X ]M
.
=
β

[w/X ]N) /∈

Γ
Gβξ

Σ where wα is a parameter which does not occur in any sentence in Φ.

By Lemma 17, we have ⊢⊢Gβξ
¬ Φ↓β ∗ ([w/X ]M

.
=
β

[w/X ]N)




y

β
. Using the

rule G(Π w

+ ), we have ⊢⊢Gβξ
¬ Φ↓β ∗ (∀X (M↓β

.
=
β

N↓β). Using the rule

G(ξ), we have ⊢⊢Gβξ
¬ Φ↓β ∗ (λXM

.
=
α→β

λXN)




y

β
. Using the rule G(¬),

we have ⊢⊢Gβξ
¬ Φ↓β ∗¬¬ (λX M

.
=
α→β

λXN)




y

β
. and so ⊢⊢Gβξ

¬ Φ↓β since

¬(λXα M
.
=
α→β

λXαN) ∈ Φ. This contradicts Φ ∈ Γ
Gβξ

Σ . �

We can now prove completeness.

THEOREM 24. Let ∗ ∈ {β,βξ} and ∆ be a sequent. If for all M ∈ M∗

there is some A ∈ ∆ such that M |= A, then ⊢⊢G∗ ∆.

Proof. Assume ∆ is a sequent such that 6 ⊢⊢G∗ ∆. Our goal is to find a
model M ∈ M∗ such that M 6|= A for all A ∈ ∆ (i.e., M |= ¬∆). Since
G(Inv¬) is admissible, we can apply Lemma 17 to conclude that ¬∆ ∈ ΓG∗

Σ .
Since ¬∆ is finite, it is sufficiently Σ-pure. Hence we obtain an M ∈ M∗

such that M |= ¬∆ by applying Theorem 15. �

Consequently, cut is admissible in both calculi.

COROLLARY 25. For each ∗ ∈ {β,βξ}, the cut rule G(cut) is admissible
in the calculus G∗.

Proof. Let ∆ be a sequent and C be a sentence such that ⊢⊢G∗ ∆ ∗C and
⊢⊢G∗ ∆ ∗ ¬C. Using Theorem 24 we can prove ⊢⊢G∗ ∆ by proving for every
M ∈ M∗ there is some A ∈ ∆ such that M |= A. Let M ∈ M∗ be given.
Assume M 6|= A for all A ∈ ∆. By soundness (Theorem 21), M |= C since
⊢⊢G∗ ∆ ∗C. Also, M |= ¬C since ⊢⊢G∗ ∆ ∗ ¬C. This is a contradiction. �

Note that since cut is admissible, we can conclude that ΓG∗
Σ is saturated

(by Theorem 19). If we had known ΓG∗
Σ were saturated in advance, then we

could have used the model existence theorems from [3] instead of the new
model existence theorems proven in this paper. However, there seems to be



16 Christoph E. Benzmüller, Chad E. Brown, Michael Kohlhase

no easier way to prove ΓG∗
Σ is saturated than to prove cut-elimination, and

there seems to be no easier way to prove cut-elimination than construction
of a V -complex/possible values style of model.

6 Conclusion and Further Work

In this paper, we have employed a construction based Peter Andrews’ V -
complexes to prove a model existence theorem for a form of higher-order
logic with a weak form of functional extensionality.

In [3] we have introduced and studied eight different model classes (in-
cluding Henkin models) for classical type theory which generalize the no-
tion of standard models and which allow for complete calculi. These model
classes were motivated by different roles of extensionality and they ade-
quately characterize the deductive power of existing theorem-proving cal-
culi. Unfortunately, the model existence theorems in [3] assume saturation,
which makes them useless for proving completeness of machine-oriented cal-
culi since saturation is equivalent to cut-elimination.

This paper addresses the saturation problem for two of the model classes.
This gives a framework that supports the development and proof-theoretical
investigation of human-oriented as well as machine-oriented (ground) cal-
culi for the corresponding type theories. For non-ground machine-oriented
calculi the lifting issue has to be additionally addressed and extending our
framework by tools that may also support lifting arguments remains future
work.

For a complete picture, the results reported here need to be extended
for the remaining six model classes, and for logics that include primitive
equality (see, e.g. [2]). As mentioned in the introduction, the essential
ingredients for handling two of the other six model classes are in [6, 7]. The
remaining four cases include the case with full functional extensionality but
not Boolean extensionality and the three cases with Boolean extensionality
but not full functional extensionality.
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