
Appeared in the Proceedings of the 11th International Conference on AutomatedDeduction 1992Cycle Uni�cationWolfgang Bibel�, Ste�en H�olldobler�, J�org W�urtzyAbstract Two-literal clauses of the form L  R occur quite frequently in logicprograms, deductive databases, and { disguised as an equation { in term rewritingsystems. These clauses de�ne a cycle if the atoms L and R are weakly uni�able,ie. if L uni�es with a new variant of R. The obvious problem with cycles is tocontrol the number of iterations through the cycle. In this paper we consider thecycle uni�cation problem of unifying two literals G and F modulo a cycle. Wereview the state of the art of cycle uni�cation and give some new results for aspecial type of cycles called matching cycles, ie. cycles L R for which there existsa substitution � such that �L = R or L = �R . Altogether, these results showhow the deductive process can be e�ciently controlled for special classes of cycleswithout losing completeness.1 IntroductionIt is the foremost goal of the research in the �eld of automated deduction todevelop general and adequate proof methods and techniques for the logics underconsideration. It is comparatively easy to invent a general proof method, butit is much more di�cult to develop a general and adequate proof technique.For example, the resolution principle [15] and the connection method [1] aregeneral proof methods for �rst-order logic. But are they adequate? What is themeaning of adequateness in the �rst place? Roughly speaking, we will considera technique as being adequate if it solves simpler problems faster than moredi�cult ones. We illustrate the notion of adequateness by a problem, where theknown general proof techniques face di�culties whereas trained humans seemto be able to solve it quite reasonably.For this purpose, consider the following set of clauses in Prolog-like notationwhich is taken from [14] and was originally studied by  Lucasiewicz. Pi(iab; i(ibc; iac)): GPw  Pv; P ivw: MPPi(i(ixy; z); i(izx; iux)): A�Fachgruppe Intellektik, Fachbereich Informatik, Technische Hochschule Darmstadt,Alexanderstra�e 10, 6100 Darmstadt, GermanyyDeutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzenhausweg 3, 6600Saarbr�ucken 11, Germany 1



The terms represent implicational formulas, ie. iab encodes a ! b and P as-serts the derivability of its argument. Thus, the second clause represents modusponens. It contains several cycles [2] de�ned by the connections between theatom Pw and the atoms Pivw and Pv . The clause MP can be applied to itselfand this may lead to an exponential growth of the search space. The obviousproblem is to control the self-applicability of MP while retaining completeness. Lukasiewicz has found a 29 step proof. He must have exercised a good controlover MP! Quintus Prolog on a Sun SPARC station 2 did not �nd a proof inseveral days. Nearly all existing automatic theorem provers cannot solve thisproblem as well since they are not able to exercise a good control over MP. E.Lusk1 reports that the parallel version of Otter at Argonne is able to obtain ahyperresolution proof with about 150 proof-steps while generating 6.5 millionclauses in about half an hour during the search for it. Their prover does nothave a good control over MP as well. It solves the problem by sheer power.In [3] it was conjectured that a problem like the  Lucasiewicz-formula couldbe solved in less than a second by way of a technique called cycle uni�cation.At present this conjecture remains a challenge since the  Lucasiewicz-formula isa particularly di�cult instance of a class of formulas which could eventually betreated by cycle uni�cation. In this paper we make a �rst step towards thisgoal by restricting our attention to the special case of formulas with exactly onecycle. In fact, we even focus our analysis on the simple class of two-literal clausesof the form P l1 : : : ln Pr1 : : : rn which consists of nothing but a single cycle.This additional restriction simpli�es the discussion without loss of generality ofthe method.Such a two-literal clause is usually embedded in the context of some largerformula, or set of clauses. Again for simplicity of the discussion and with-out loss of generality, we restrict the treatment to the case of two addition-al clauses, namely a goal clause { referred to as (calling) goal { of the form Ps1 : : : sn , which calls the cycle, and a fact { called (terminating) fact { ofthe form Pt1 : : : tn , which terminates the cycle. In our restricted case a cycleuni�cation problem is then the following one:Is there a substitution � such that �Ps1 : : : sn is a logical conse-quence of P l1 : : : ln Pr1 : : : rn and Pt1 : : : tn ?If such a substitution � exists, then � is said to be a solution for the cycleuni�cation problem. For more general cases, cycle uni�cation can be de�ned inan analogue way.In order to be able to control a cycle we have to answer the following ques-tions. Is cycle uni�cation decidable? How many independent most general solu-tions has a cycle uni�cation problem? Does there exist a uni�cation algorithmwhich enumerates a minimal and complete set of solutions for a cycle uni�cationproblem? Answers to these questions may help to increase the power of auto-mated theorem provers signi�cantly. For example, if a cycle is embedded in a1private communications 2



larger formula and it can be determined that the corresponding cycle uni�cationproblem is unsolvable, then the clauses de�ning the cycle can be eliminated fromthe formula. If a minimal and complete set � of solutions for a cycle uni�cationproblem exists and can be enumerated, then any other solution is subsumed bya solution in � and need not to be considered. If � is �nite, then this mayprune a potentially in�nite search space to a �nite one. But theorem proving isnot the only task which may bene�t from cycle uni�cation. There are a varietyof applications for cycle uni�cation such as intelligent backtracking, deductivedatabases, program transformation, and termination proofs for logic programs,to mention just a few.Although cycle uni�cation is of signi�cant importance for the �eld of auto-mated deduction, it has received surprisingly little attention in the literature.Function-free cycle uni�cation problems, ie. cycle uni�cation problems de�nedover variables and constants only, occur mainly in deductive databases and itcan be shown that under certain conditions these problems do not give riseto in�nite computations (cf. [10]). In [13] the number of iterations through acycle can be limited via a user-de�ned parameter. In [20] certain cycle uni-�cation problems are solved by generalization and subsumption. There, afterseveral iterations through a cycle, subterms occurring in a goal are replaced byvariables. Subsumption techniques may now be applied to terminate otherwisein�nite derivations. The technique is shown to be complete. Unfortunately,answers to the generalized goal need not to be answers to the initial goal. M.Schmidt{Schau� [16] has shown that cycle uni�cation is decidable provided thatthe goal and the fact are ground, ie. they do not contain variable occurrences.Independently, P. Devienne [7] has given a more general result for cycle uni�ca-tion problems with linear goals and facts, ie. each variable occurs at most oncein the goal and the fact. He uses essentially the same ideas as Schmidt{Schau�,but a very special technique based on directed weighted graphs. Devienne'sresults were used by De Schreye et al. [17] to decide whether cycles admit non-terminating queries to deductive systems. Another approach has been taken byH.J. Ohlbach [11] who represented sets of terms by so-called abstraction treeswhich may compress the search space. Moreover, abstraction trees can be usedto compile two-literal clauses and in certain cases a �nite abstraction tree canrepresent in�nitely many solutions of a cycle uni�cation problem [12].This paper is a �rst step towards a theoretical foundation of cycle uni�cation.After some preliminary notes on de�nitions and notations we formally de�necycle uni�cation in Section 3. In Section 4 we de�ne various new classes ofrestricted cycle uni�cation problems with increasing complexity and show thattheir uni�cation problems are decidable, determine the uni�cation types, anddevelop uni�cation algorithms. The paper concludes with a summary of theresults on cycle uni�cation and an outline of future work.3



2 De�nitions and NotationsOur de�nitions and notations follow those suggested in [6]. Throughout this pa-per capital letters such as P , Q , : : : denote predicate symbols, small letters suchas a , b , : : : denote constants, f , g , : : : function symbols, and z , y , : : : vari-ables. A term is either a variable or of the form f(t1; : : : ; tn) , where t1; : : : ; tnare terms. s , t , : : : denote terms. An atom is of the form P (t1; : : : ; tn) . LetX be an atom or a term. Var (X) denotes the set of variables occurring inX . X is called ground i� X does not contain any variable. X is called lineari� every variable occurs at most once in X . By Xk we denote the syntacticobject where each variable occurring in X has the index k attached to it.A substitution is a mapping from the set of variables into the set of termswhich is equal to the identity almost everywhere. Hence, it can be representedas a �nite set of pairs fx1 7! t1; : : : ; xn 7! tng , xi 6= ti , 1 � i � n .Substitutions are denoted by small greek letters such as � , � , : : : . The identitysubstitution is called " . �t = �(t) if t is a variable and �t = f(�t1; : : : ; �tn)if t = f(t1; : : : ; tn) . Dom(�) = fx j x is a variable and �x 6= xg is the domainof � . VRan(�) = Sx2Dom(�) Var (�x) is the variable range of � .The composition �� of two substitutions � and � is de�ned by (�� )x =�(�x) . The restriction of the substitution � to the set V of variables is de�nedby �jV x = �x if x 2 V and �jV x = x otherwise. A substitution � is calledvariable-pure if f�x j x 2 Dom(�)g only consists of variables. A renaming isa variable-pure substitution � such that �x = �y implies x = y for x; y 2Dom(�) .If W is a set of variables, then � = � [W ] i� 8x 2 W : �x = �x . Asubstitution � is called more general than a substitution � on W , � �� � [W ] ,i� there exists a substitution � such that �� = � [W ] . Two substitutions �and � are called equivalent (or variants) on W , � � � [W ] , i� � �� � [W ]and � �� � [W ] . � and � are equal on W modulo renaming i� there existsa renaming � such that �� = � [W ] . Two substitutions � and � are calledindependent on W i� � 6 �� � [W ] and � 6 �� � [W ] .� is called a uni�er for t and t0 i� Dom(�) � Var (t) [ Var (t0) and �t =�t0 . A uni�er � of t and t0 is called most general uni�er i� � �� � [Var (t) [Var (t0)] for all uni�ers � of t and t0 . � is called a matcher for t and t0 i�Dom(�) � Var (t0) and t = �t0 holds. A matcher � of t and t0 is called amost general matcher i� � �� � [Var (t0)] for all matchers � of t and t0 . Thede�nitions above can be extended to atoms, equations, and sets of equations inthe obvious way.3 Cycle Uni�cationC = fL Rg is called a cyclic theory , or cycle for short, if the atoms L andR are weakly uni�able, ie. there exist two substitutions � and �0 such that4



�L = �0R [8]. Let G and F be two atoms such that Var (G) \ Var (F ) =; . A cycle uni�cation problem hG �C�! F i (or hG ��! F iC ) is the problemwhether there exists a substitution � such that �G is a logical consequence ofF and C . A substitution � is a solution for the cycle uni�cation problem ifDom(�) � Var (G) and �G is a logical consequence of F and C .2Since solutions to cycle uni�cation problems are substitutions, the notions ofmore general, independent, etc. substitutions can be extended to more general,independent, etc. solutions of cycle uni�cation problems in the obvious way.As a �rst example consider the problemhPa ��! P�faifPx Pfxg :The empty substitution " is the only most general solution for this problem.However, there may be more than one solution as the examplehPxy ��! PabifPvw Pwvgshows. This problem has the two independent most general solutions fx 7!a; y 7!bg and fx 7!b; y 7!ag . But, there may be even in�nitely many indepen-dent most general solutions. As an example considerhPx ��! PaifPfy Pyg:This problem has the most general solutions fx 7!ag; fx 7! fag; fx 7!�ag; : : : .For a cycle uni�cation problem hG ��! F ifL Rg to be solvable, the atomsF and G must be of the form P (t1; : : : ; tn) and P (s1; : : : ; sn) , respectively.Since L and R are weakly uni�able, their predicate symbols must also beidentical, ie. L and R must be of the form P 0(l1; : : : ; ln) and P 0(r1; : : : ; rn) ,respectively. In the sequel we will only consider cycle uni�cation problems ofthis form. Furthermore, as the case P 6= P 0 is trivial, we assume P = P 0 .To solve a cycle uni�cation problem hG �C�! F i we have to �nd a substitu-tion which either uni�es G and F or uni�es { viz. simultaneously uni�es eachequation in { Ck = N [ Yk [ X k;whereN = fs1 := l11; : : : ; sn := l1ng is the set of entry equations,Yk = fri1 := li+11 ; : : : ; rin := li+1n j 1 � i � kgis the set of cycle equations for k iterations through the cycle, andX k = frk+11 := t1; : : : ; rk+1n := tngis the set of exit equations after k iterations through the cycle.2A cycle uni�cation problem should not be confused with a theory uni�cation problemhG =C F i , ie. the problem whether there exists a substitution � such that �G =C �F[1, 19]. 5



The following proposition is an immediate consequence of the completeness andsoundness of the connection method [1] or SLD-resolution, eg. [9]. Due to lackof space we had to omit the proof of this proposition and all further theorems.They can be found in detail in [4].Proposition 1 � is a solution for hG �C�! F i i� there exists a substitution� such that � uni�es G and F and � = �jVar(G) or there exists a naturalnumber k such that � uni�es Ck and � = �jVar(G) .Throughout the paper � will denote the most general uni�er of G and Frestricted to Var (G) , if it exist. Similarly, �k will denote the most generaluni�er of Ck restricted to Var (G) , if it exists.Let C = hG �C�! F i be a cycle uni�cation problem. A set � of substitutionsis a complete set of solutions for C i� each substitution in � is a solution forC and for each solution � for C we �nd a substitution � in � such that� �� �[Var (G)] . A complete set � of solutions for C is said to be minimal i�for all �; � 2 � we �nd that � �� �[Var (G)] implies � = � .In order to be able control a cycle, we are interested in the answer to threebasic questions. Is cycle uni�cation decidable? How many independent mostgeneral solutions has a cycle uni�cation problem? Does there exist a uni�cationalgorithm which enumerates a minimal and complete set of solutions for a cycleuni�cation problem?Following [18], we de�ne the type of a cycle uni�cation problem as follows.A cycle uni�cation problem is of type unitary i� there exists a single mostgeneral solution, �nitary i� there exist �nitely many most general solutions,and in�nitary i� there exist in�nitely many most general solutions.4 Matching Cycles ( Cm )A cycle L R is called left matching and right matching i� there is a substi-tution � such that �L = R and L = �R , respectively. We assume � to bethe most general matcher. Throughout the paper we will consider only rightmatching cycles. The corresponding results for left matching cycles can be ob-tained analogously. The class of cycle uni�cation problems with matching cyclesis denoted by Cm .Matching cycles show some interesting properties. The substitution �iwhich is the most general uni�er of Ri and Li+1 in the i -th iteration throughthe cycle can easily be obtained from the substitution � which matches Lagainst R as follows. LetP� = f(x; �x) j x 2 Dom(�)g [ f(x; x) j x 2 Var (R) n Dom(�)g:Then, �i = fxi 7! ti+1 j (x; t) 2 P�g:6



For example, the cycle fPgz,ga,z  Pxyzg is right matching with � = fx 7!gz; y 7! gag and we obtain P� = f(x; gz); (y; ga); (z; z)g and �i = fxi 7!gzi+1; yi 7! ga; zi 7! zi+1g . Furthermore, since Dom(�i) \ Dom(�i+1) = ;the most general solution of the cycle equations Yk is simply the composition� = �k � � ��1 . The solution �k for Ck can now be obtained by simultaneouslyunifying the atoms �G , �L1 and �Rk+1 , �F and restricting their most generaluni�er to Var (G) , if it exists. Since �G = G , �Rk+1 = Rk+1 , and �F = F ,the interesting bindings in � are those for the variables occurring in L1 .We will now consider two classes of matching cycle uni�cation problemsde�ned by the matching substitution � . These are the classes of variable-purematching cycles and non-recursive matching cycles.4.1 Variable-pure Matching Cycles ( Cvp )A variable-pure matching cycle L R is a matching cycle, where the matchingsubstitution � is variable-pure. Hence, � must be of the formfx1 7!y1; : : : ; xl 7!ylg;where xj 2 Var (R); yj 2 Var (L); 1 � j � l , and, thus, P� is a set ofvariable-pairs.A set of variable-pairs P recursively de�nes a sequence of variables as fol-lows. If (x1; x2) 2 P , then P de�nes the sequence hx1; x2i . If hx1; : : : ; xli isa sequence de�ned by P and (xl; xl+1) 2 P , then hx1; : : : ; xl; xl+1i is a se-quence de�ned by P . A sequence hx1; : : : ; xli is called linear i� xi 6= xj; 1 �i; j � l; i 6= j . A sequence � = hx1; : : : ; xli contains (or is a subsequence of)sequence � i� there exists an i � 1 and an j � l such that � = hxi; : : : ; xji. A sequence � is called maximal i� there is no longer sequence containing � .A sequence � = hx1; : : : ; xli is called a (cyclic) permutation i� hx1; : : : ; xl�1iis linear and x1 = xl . A sequence hx1; : : : ; xli is called a (cyclic) permutationwith linear entry-sequence i� hx1; : : : ; xl�1i is maximal and linear and thereexists an j , 1 < j < l , such that xl = xj . It is obvious that a permutationwith linear entry-sequence can be divided into the linear entry-sequence and thepermutation. Finally, a sequence hx1; : : : ; xl+1i has length l .Let C = fL Rg be a variable-pure matching cycle with matching substi-tution � . C is a linear sequence i� P� de�nes a single maximal and linearsequence. A cycle C is a permutation i� P� de�nes a permutation such thatthe variables occurring in it are equal to the variables occurring in P� . C is apermutation with linear entry-sequence i� P� de�nes precisely one permutationwith linear entry-sequence.In the following paragraphs we will formally investigate the properties ofthe classes of cycles de�ning a linear sequence ( Cls ), a permutation ( Cp ), anda permutation with linear entry-sequence ( Cpls ). As a combination we obtainresults for the class of variable-pure matching cycles ( Cvp ).7



Linear Sequences ( Cls ). In this section we consider variable-pure match-ing cycles fL Rg with matching substitution � where P� de�nes a single,maximal linear sequence. Such a cycle is contained in the uni�cation problemhPw1w2w3 ��! Pfa,bcifPfy;zv Pfx;yzg;where � = fx 7! y; y 7! z; z 7! vg is the matching substitution. P� de�nesthe linear sequence hx; y; z; vi with length l = 3 and �i = fxi 7! yi+1; yi 7!zi+1; zi 7!vi+1g . As mentioned before, the solution for the cycle-equations Ykis �k � � ��1 and we are only interested in the restriction of �k � � ��1 to Var (L1) .Thus, we compute �1jfy1; z1; v1g = fy1 7!z2; z1 7!v2gand �2�1jfy1; z1; v1g = fy1 7!v3; z1 7!v2g:Since Dom(�i) , i � 1 , does not contain any (superscribed) variable v , we �ndthat for all k > 2 �k � � ��1jfy1; z1; v1g = �2�1jfy1; z1 ; v1gholds. One should observe that (i) a (superscribed) variable v is never in thedomain of a most general solution for the exit equations and (ii) more and morevariables in Var (L1) are mapped on a (superscribed) variable v until eventuallyall variables in Var (L1) are mapped on (superscribed) v . This is not only truein the example but holds for all solvable linear sequences. Intuitively, the moreiterations through the cycle are considered the less is the inuence of the exitequations on the solution of the cycle uni�cation problem Ck . In the examplewe obtain the solutions �0 = fw1 7! fb; w2 7!cg for C0 , �1 = fw1 7! fcg for C1 ,�2 = fw1 7! fv3g for C2 , �3 = �2 for C3 , etc. One should observe that�l�1 �� �l�i for 0 < i � l (1)and �l�1 = �l+i for 0 � i: (2)Thus, from (1) and (2) we conclude that cycle uni�cation problems de�ninglinear sequences with length l can be solved either by � , ie. the restriction ofthe most general uni�er of G and F to Var (G) , or by �l�1 , ie. the restrictionof the most general uni�er of Cl�1 to Var (G) , if they exist. In the example�l�1 = �2 is even more general than the most general uni�er � = fw1 7!fa; w2 7! b; w3 7! cg of Pw1w2w3 and Pfa,bc , but this is not the case ingeneral. Conversely, if neither G and F are uni�able nor Cl�1 is solvable,then the cycle uni�cation problem is unsolvable.8



Permutations ( Cp ). We recall that a sequence hx1; : : : ; xl+1i is a permuta-tion i� hx1; : : : ; xli is linear and x1 = xl+1 . The cycle uni�cation problemhPxy ��! PabifPvw Pwvgde�nes the permutation hw; v; wi of length l = 2 . If we solveC0 = fx := v1; y := w1; w1 := a; v1 := bg;we obtain the solution �0 = fx 7!b; y 7!ag . Considering one iteration throughthe cycle we have to solveC1 = fx := v1; y := w1; w1 := v2; v1 := w2; w2 := a; v2 := bg;which results in �1 = fx 7! a; y 7! bg . Two iterations through the cycle andsolvingC2 = fx := v1; y := w1; w1 := v2; v1 := w2; w2 := v3; v2 := w3; w3 := a; v3 := bgyields fx 7! b; y 7! ag = �0 . Thus, we periodically return to previously com-puted solutions. In general, we have only to consider the uni�er of G and F ,if it exists, and �nitely many iterations through the cycle to obtain all possiblemost general solutions for a cycle uni�cation problem in the class of permuta-tions. Conversely, if neither G and F are uni�able nor any one of the sets Ci ,0 � i < l , is solvable, then the cycle uni�cation problem is unsolvable.Permutations with Linear Entry-sequence ( Cpls ). We recall that a per-mutation with linear entry-sequence has the formhx1; : : : ; xl; xl+1; : : : ; xl+m; xl+1iin which hx1; : : : ; xl+1i is a linear (entry-) sequence and hxl+1; : : : ; xl+m; xl+1iis a permutation. Since the permutations with linear entry-sequence can besplitted into these two parts, their behaviour is determined as a combina-tion of these parts. After l�1 iterations through the cycle the variables oc-curring in L1 depend only on the (superscribed) variables xl+1; : : : ; xl+m .The values for xl+1; : : : ; xl+m are solely determined by the permutationhxl+1; : : : ; xl+m; xl+1i and the exit equations. As before, we have only to con-sider �nitely many { viz. m�1 { further iterations to obtain all possible mostgeneral solutions for a cycle uni�cation problem in the class Cpls . Conversely,if neither G and F are uni�able nor any one of the sets Ci , 0 � i < l+m�1 ,is solvable, then the cycle uni�cation problem is unsolvable. We will give anexample of Cpls at the end of Section 4.1.9



Variable-pure Matching Cycles ( Cvp ). Variable-pure matching cycles de-�ne combinations of permutations, permutations with linear entry-sequence,and maximal linear sequences. Let a variable-pure matching cycle de�ne ppermutations hx1;i; : : : ; xmi ;i; x1;ii; 1 � i � p;pl permutations with linear entry-sequencehy1;i; : : : ; yli ;i; yli+1;i; : : : ; yli+ni;i; yli+1;ii; 1 � i � pl;and l maximal linear sequenceshz1;i; : : : ; z~li+1;ii; 1 � i � l:Let M = max(1; l1; : : : ; lpl; ~l1; : : : ; ~ll) and N = lcm(1;m1; : : : ;mp; n1; : : : ; npl) ,where lcm denotes the least common multiple.As in the previous subsection we �nd that after M�1 iterations through thecycle the variables occurring in L1 depend only on the (superscribed) variablesoccurring in the permutations { ie. in fx1;i; : : : ; xmi;i j 1 � i � pg .3 { andthat the values for the (superscribed) variables x1;i; : : : ; xmi;i; 1 � i � p;are solely determined by the permutations hx1;i; : : : ; xmi;i; x1;ii; 1 � i � p;and the exit equations. As before, we have only to consider �nitely many { viz.N�1 { further iterations to obtain all possible most general solutions for a cycleuni�cation problem in the class Cvp . More formally, we can show that for alli � 0 and k > 0 the claimsCM�1+i is solvable i� CM�1+i+k�N is solvableand �M�1+i �� �M�1+i+k�Nhold. One should observe that this result subsumes the result of linear sequences(where N = 1 ), of permutations (where M = 1 ) and of permutations withlinear entry-sequence.Let hG ��! F ifL Rg be a cycle uni�cation problem. The steps in Fig-ure 1 de�ne a cycle uni�cation algorithm for variable-pure matching cycles.Algorithms for Cls; Cp; and Cpls are special cases. To illustrate the algorithmconsider the cycle uni�cation problemhPu1u2u3u4u5 ��! PabcdeifPyzvzv Pxyzvwg:We obtain the following steps.1. Pu1u2u3u4u5 and Pabcde are uni�able by � = fu1 7! a; u2 7! b; u3 7!c; u4 7!d; u5 7!eg .3Note, fhyli+1;i; : : : ; yli+ni ;i; yli+1;ii j 1 � i � plg � fhx1;i; : : : ; xmi ;i; x1;ii j 1 � i � pg .10



1. If G and F are uni�able, then compute � as the most generaluni�er for G and F restricted to the variables in G .2. If hG ��! F ifL Rg 2 Cvp , then compute the lengths l1; : : : ; liof all de�ned maximal linear sequences/linear entry-sequences andthe lengths m1; : : : ; mj of all de�ned permutations. Let M =max(1; l1; : : : ; li) and N = lcm(1;m1; : : : ;mj) .3. If Ck is solvable, then compute �k as the most general uni�er forCk , restricted to the variables occurring in G , 0 � k �M+N�2 .4. Let � be the set of solutions obtained in steps (1) and (3). If� = ; , the problem is unsolvable. Otherwise, iteratively eliminatea substitution � if the current set of solutions contains anothersubstitution � with � �� � [Var(G)] . The obtained set is a mini-mal and complete set of solutions for the cycle uni�cation problemhG ��! F ifL Rg .Figure 1: A Uni�cation Algorithm for Cvp .2. � = fx 7!y; y 7!z; z 7!v; v 7!z; w 7!vg is a most general right matcherof Pxyzvw against Pyzvzv . P� de�nes two permutations with linearentry-sequence, viz. hx; y; z; v; zi and hw; v; z; vi . Hence, M = 2; N = 2and the problem is in Cvp .3. �0 = fu1 7!b; u2 7!c; u3 7!d; u4 7!c; u5 7!dg; �1 = fu1 7!c; u2 7!d; u3 7!c; u4 7!d; u5 7!cg; �2 = fu1 7!d; u2 7!c; u3 7!d; u4 7!c; u5 7!dg are themost general solutions obtained by solving C0; C1 , and C2 , restricted tofu1; u2; u3; u4; u5g , respectively.4. We obtain the set f�; �0; �1; �2g as a minimal and complete set ofsolutions.
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Theorem 2 Let C be a variable-pure matching cycle.(a) hG �C�! F i is decidable.(b) hG �C�! F i is �nitary.(c) There exists an algorithm computing a minimal and complete set of solu-tions for hG �C�! F i .One should observe that this result holds for Cls; Cp; and Cpls as well be-cause they are subsets of Cvp .4.2 Non-recursive Matching Cycles ( Cnr )In the preceding subsection we have considered only variable-pure matchingcycles. We will now lift this restriction by considering matching cycles inwhich the matching substitution may bind variables to terms including function-symbols and constants. As an example consider the cycle uni�cation prob-lem hPy ��! PaifPfx Pxg , which has an in�nite, complete and minimal setffy 7!ag , fy 7! fag , fy 7!�ag , : : :g of solutions. Since we do not yet know howto control such cycles, we restrict ourselves and exclude bindings like x 7! fx ,as it is contained in the matcher of the example. A variable x is called re-cursive i� there exists an i; i > 0; such that x 7! t 2 �i , x 2 Var (t) , andt 6= x .4 Because t 6= x , variables occurring in permutations are not recursive.However, the variable x in the example above is recursive. It is easy to ver-ify that it is decidable whether � contains recursive variables by considering�j; 1 � j � k , where k is the number of bindings in � . A cycle fL Rg iscalled non-recursive matching i� the domain of the matcher does not containany recursive variable. The class of non-recursive matching cycle uni�cationproblems is denoted by Cnr .One should observe that if � is a matching substitution for a cycle in Cnr ,then P� may contain pairs (x; t) , where t is not a variable. To be able todeal with those pairs, we have to extend the de�nition of sequences. A set ofvariable-term pairs P de�nes a sequence as follows. If (x; t) 2 P and t isground, then P de�nes hx; ti . If (x; t) 2 P and Var (t) = fx1; : : : ; xng , thenP de�nes hx; x1i; : : : ; hx; xni . Let hx1; : : : ; xni be a sequence de�ned by Pand (xn; t) 2 P . If t is ground, then P de�nes hx1; : : : ; xn; ti . If Var (t) =fy1; : : : ; yng , then P de�nes hx1; : : : ; xn; y1i; : : : ; hx1; : : : ; xn; yni . A sequence� = hx1; : : : ; xl; ti is called linear i� each variable occurs at most once in � . Oneshould observe that since non-recursive cycles do not contain recursive variables,a (superscribed) variable x occurring in a permutation cannot be mapped on aterm t such that x 2 Var (t) and t 6= x . Thus, permutations are constructedfrom pairs of variables in P� only.4By �i we denote the i{fold composition of � with itself, ie. �1 = � and �i = �(�i�1) .12



It is easy to see, that we can allow linear sequences ending in a ground termwithout changing our previous results. Let a non-recursive matching cycle de�nep permutations, pl permutations with linear entry-sequence, and l maximallinear sequences possibly ending in a ground term. Furthermore, let M and Nbe de�ned as in the previous subsection. As before we obtainCM�1+i is solvable i� CM�1+i+k�N is solvableand �M�1+i �� �M�1+i+k�Nfor i � 0 and k > 0 . Thus, the results for variable-pure cycle uni�cation prob-lems can be generalized to non-recursive matching cycle uni�cation problems.The uni�cation algorithm for non-recursive matching cycles is analogous tothe algorithm for variable-pure matching cycles but with the extended de�nitionof sequences. As an example consider the cycle uni�cation problemhPu1u2u3u4 ��! Pabcd ifPfyz;vwz Pxyzwg:An application of the algorithm yields the following results.1. Pu1u2u3u4 and Pabcd are uni�able by � = fu1 7! a; u2 7! b; u3 7!c; u4 7!dg .2. � = fx 7! fyz ; z 7!w; w 7! z; y 7!vg is a most general right matcher ofPxyzw against Pfyz,vwz . P� de�nes the sequences hx; y; vi and hx; z; w; zisuch that M = 2; N = 2 and the problem is in Cnr because the cycle'smatcher does not contain any recursive variable.3. �0 = fu1 7! fbc; u2 7! v1; u3 7! d; u4 7! cg; �1 = fu1 7! fv2d; u3 7!c; u4 7! dg; �2 = fu1 7! fv2c; u3 7! d; u4 7! cg are the most generalsolutions obtained by solving C0; C1 , C2 , restricted to fu1; u2; u3; u4g ,respectively.4. We obtain the set f�; �1; �2g as a minimal and complete set of solutions.Theorem 3 Statements (a), (b), and (c) of Theorem 2 hold also for non-recursive matching cycles.5 Summary and Future WorkIn this paper we have formally de�ned cycle uni�cation (for a restricted class offormulas). We have considered various classes of cycle uni�cation problems withincreasing complexity, have shown that they are decidable and �nitary, and havespeci�ed a minimal and complete uni�cation algorithm for these classes. Table1 gives an overview of these results as well as of previous work. In each row13



Class Decidability Type Algorithm ReferencesC open in�nitary openCl decidable in�nitary open [7]Cg decidable unitary yes [16]Cm open in�nitary openCnr decidable �nitary yes this paperCu decidable �nitary yes [22]Table 1: Properties of cycle uni�cation classes.C Cl Cg CmCnrCuFigure 2: The relation between the classes C , Cl , Cg , Cm , Cnr , and Cu .we state the decidability and the uni�cation type for a particular class of cycleuni�cation problems, indicate whether there exists an algorithm to compute aminimal and complete set of solutions, and provide the reference if there existsone. C denotes the class of unrestricted cycle uni�cation problems. In Cl andCg goals and facts are restricted to be linear and ground, respectively. Cudenotes the class of unifying cycles, ie. cycles L R , for which L and R areuni�able. This class has recently been investigated in [22]. For the de�nition ofthe more complicated classes Cm and Cnr the reader is referred to Section 4.The various classes are related as shown in Figure 2.One might think that our results for the class Cnr may easily be extendedfor cycle uni�cation problems hG ��! F ifL Rg such that there exist two non-recursive substitutions � and � with �L = �R . But this is not true. Forthe cycle fPx  Pfxg we �nd fx 7! fygPx = fx 7! ygPfx . Yet, as shown inSubsection 4.2 there are in�nitely many independent solutions for this problem.In the case fPfx,z  Pyfxg we �nd fz 7! fxgPfx,z = fy 7! fxgPyfx and onemight expect that only a single instance of the cycle is needed. However, asshown in [22], the latter example belongs to a class of unifying cycles, ie. cycles14



L R for which there exists a substitution � with �L = �R , which need onecycle iteration, ie. two instances of the clause.One of the major open problems in our restricted context is the questionwhether C is decidable. Cl , Cu , and Cnr are decidable. However, there areseveral results which point into the opposite direction for the case of C . In[5] it is shown that the termination of a one rule term rewriting system, whererewriting may occur at proper subterms, is undecidable. Similarly, we knowfrom [16] that the class of Horn clauses consisting of two clauses of the formL R and two ground unit clauses is undecidable. It is, however, not obvious,how these result could be adapted to cycle uni�cation problems.In the future we intend to develop heuristics to control further classes ofcycle uni�cation problems. We are looking for a well{founded ordering basedon a measure of complexity for the instances of the cycle in order to apply anidea similar to the one contained in [16]. Certain cycles L R cause someof the terms occurring in L and R to grow or shrink monotonically at eachiteration of the cycle. If there were an upper bound for these terms de�nedby G or F , then one would be able to decide the cycle uni�cation problemhG ��! F ifL Rg . For illustration of this idea consider the cycle uni�cationproblem hP�x,x ��! PufuifPfffy;fz Pfy;zg :The i-th instance of the right-hand side of the cycle P�fy,fz ePfy,z is matchedagainst the i+1-st instance of the left-hand side by �i = fyi := �y i+1; zi :=fz i+1g . We observe that the depth of y and z decreases with each iterationthrough the cycle and the goal as well as the fact de�ne upper bounds becausethe multiple occurrences of x and u correlate y and z via the entry- andexit equations. In [4] we have exploited this insight for the computation of thenumber k of iterations through the cycle to obtain a solution. For the examplewe obtain k = 2 and the solution �2 = fx 7! f5y3g .As shown in Section 3, there might be in�nitely many independent solutionsof a cycle uni�cation problem. Hence, we need a compact representation ofin�nitely many terms for such cases and intend to use the one suggested in [11].In order to solve the  Lukasiewicz formula mentioned in the introduction asa challenge problem, the results obtained so far and in the future need to begeneralized to the case of more than one interacting cycles. [3] contains �rstideas how this might be achieved. Altogether there is quite a bit of work aheadof us until this challenge problem might be solved in less than a second asthought possible in [3].As an example of an application of cycle uni�cation in logic programmingmentioned in the introduction consider the cycle max (X;Y; Z) :�max (Y;X;Z)in Prolog notation. It is contained in a clause set representing SAM's lemma[21]. The cycle expresses the commutativity of the �rst two arguments of themaximum-predicate. This clause may be used in a Prolog program which15



computes the maximum of two numbers.max (X;Y; Y ) :� X =< Y:max (X;Y; Z) :� max (Y;X;Z):If we ask the query ?�max (2; 3; V ) , Prolog yields the desired result and Vis bound to 3. But if we ask for all solutions, the program does not terminatebecause the search space is in�nite. Similarly, negative queries handled bynegation-as-failure may not produce the expected results because of possiblyin�nite evaluation trees; for example consider the query ?� � max (2; 3; 2)5leading to the subgoal ?�max (2; 3; 2) .With the tools of this paper it can be seen, however, that the cycle is apermutation of length 2. Therefore, it is su�cient to consider at most one self-application of the cycle to obtain all correct answers. As a result, the in�nitesearch space collapses to a trivial one and the computation of the two programclauses becomes roughly equivalent with the following program.max (X;Y;X) :� X > Y:max (X;Y; Y ) :� X =< Y:No query asked to this program will give rise to a non-terminating computationbecause all queries have a �nite evaluation tree.Acknowledgement: The third author was partially supported by the ES-PRIT project MEDLAR and the Stadt Dreieich. We would like to thank FranzBaader and two anonymous referees. Their very valuable comments led to asigni�cant improvement of the paper.References[1] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, 2edition, 1987.[2] W. Bibel. Advanced topics in automated deduction. In R. Nossum, editor,Fundamentals of Arti�cial Intelligence II, pages 41{59. Springer, LNCS345, 1988.[3] W. Bibel. Perspectives on automated deduction. In R. S. Boyer, editor,Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 77{104.Kluwer Academic, Utrecht, 1991.[4] W. Bibel, S. H�olldobler, and J. W�urtz. Cycle uni�cation. Technical ReportAIDA-91-15, FG Intellektik, FB Informatik, TH Darmstadt, 1991.5� denotes the negation-as-failure. 16
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