Appeared in the Proceedings of the 11th International Conference on Automated
Deduction 1992

Cycle Unification

Wolfgang Bibel: Steffen Hélldobler*, Jorg Wiirtz!

Abstract Two-literal clauses of the form I + R occur quite frequently in logic
programs, deductive databases, and — disguised as an equation — in term rewriting
systems. These clauses define a cycle if the atoms L and R are weakly unifiable,
ie. if I unifies with a new variant of R. The obvious problem with cycles is to
control the number of iterations through the cycle. In this paper we consider the
cycle unification problem of unifying two literals G and F' modulo a cycle. We
review the state of the art of cycle unification and give some new results for a
special type of cycles called matching cycles, ie. cycles L+ R for which there exists
a substitution o such that ¢, = R or L = oR. Altogether, these results show
how the deductive process can be efficiently controlled for special classes of cycles
without losing completeness.

1 Introduction

It is the foremost goal of the research in the field of automated deduction to
develop general and adequate proof methods and techniques for the logics under
consideration. It is comparatively easy to invent a general proof method, but
it 1s much more difficult to develop a general and adequate proof technique.
For example, the resolution principle [15] and the connection method [1] are
general proof methods for first-order logic. But are they adequate? What is the
meaning of adequateness in the first place? Roughly speaking, we will consider
a technique as being adequate if it solves simpler problems faster than more
difficult ones. We illustrate the notion of adequateness by a problem, where the
known general proof techniques face difficulties whereas trained humans seem
to be able to solve it quite reasonably.

For this purpose, consider the following set of clauses in Prolog-like notation
which is taken from [14] and was originally studied by Lucasiewicz.

— Pi(iab, i(ibe,iac)). G
Pw +— Pv, Pww. MP
Pi(i(izy, z), i(izx, fux)). A

*Fachgruppe Intellektik, Fachbereich Informatik, Technische Hochschule Darmstadt,
Alexanderstrafle 10, 6100 Darmstadt, Germany

tDeutsches Forschungszentrum fiir Kiinstliche Intelligenz, Stuhlsatzenhausweg 3, 6600
Saarbriicken 11, Germany

The terms represent implicational formulas, ie. iab encodes ¢ — b and P as-
serts the derivability of its argument. Thus, the second clause represents modus
ponens. It contains several cycles [2] defined by the connections between the
atom Pw and the atoms Pivw and Pv. The clause MP can be applied to itself
and this may lead to an exponential growth of the search space. The obvious
problem is to control the self-applicability of MP while retaining completeness.
Lukasiewicz has found a 29 step proof. He must have exercised a good control
over MP! Quintus Pror.oG on a Sun SPARC station 2 did not find a proof in
several days. Nearly all existing automatic theorem provers cannot solve this
problem as well since they are not able to exercise a good control over MP. E.
Lusk! reports that the parallel version of Otter at Argonne is able to obtain a
hyperresolution proof with about 150 proof-steps while generating 6.5 million
clauses in about half an hour during the search for it. Their prover does not
have a good control over MP as well. It solves the problem by sheer power.

In [3] it was conjectured that a problem like the Lucasiewicz-formula could
be solved in less than a second by way of a technique called cycle unification.
At present this conjecture remains a challenge since the Lucasiewicz-formula is
a particularly difficult instance of a class of formulas which could eventually be
treated by cycle unification. In this paper we make a first step towards this
goal by restricting our attention to the special case of formulas with exactly one
cycle. In fact, we even focus our analysis on the simple class of two-literal clauses
of the form Pl ...l, + Pry...r, which consists of nothing but a single cycle.
This additional restriction simplifies the discussion without loss of generality of
the method.

Such a two-literal clause is usually embedded in the context of some larger
formula, or set of clauses. Again for simplicity of the discussion and with-
out loss of generality, we restrict the treatment to the case of two addition-
al clauses, namely a goal clause — referred to as (calling) goal — of the form
< Psy...sp, which calls the cycle, and a fact — called (terminating) fact — of
the form Pt;...t,, which terminates the cycle. In our restricted case a cycle
unification problem is then the following one:

Is there a substitution ¢ such that o¢Ps;...s, is a logical conse-
quence of Ply...l, < Pry...r, and Pty...t,7

If such a substitution ¢ exists, then ¢ is said to be a solution for the cycle
unification problem. For more general cases, cycle unification can be defined in
an analogue way.

In order to be able to control a cycle we have to answer the following ques-
tions. Is cycle unification decidable? How many independent most general solu-
tions has a cycle unification problem? Does there exist a unification algorithm
which enumerates a minimal and complete set of solutions for a cycle unification
problem? Answers to these questions may help to increase the power of auto-
mated theorem provers significantly. For example, if a cycle is embedded in a

I private communications

larger formula and it can be determined that the corresponding cycle unification
problem is unsolvable, then the clauses defining the cycle can be eliminated from
the formula. If a minimal and complete set ¥ of solutions for a cycle unification
problem exists and can be enumerated, then any other solution is subsumed by
a solution in ¥ and need not to be considered. If ¥ is finite, then this may
prune a potentially infinite search space to a finite one. But theorem proving is
not the only task which may benefit from cycle unification. There are a variety
of applications for cycle unification such as intelligent backtracking, deductive
databases, program transformation, and termination proofs for logic programs,
to mention just a few.

Although cycle unification 1s of significant importance for the field of auto-
mated deduction, it has received surprisingly little attention in the literature.
Function-free cycle unification problems, ie. cycle unification problems defined
over variables and constants only, occur mainly in deductive databases and it
can be shown that under certain conditions these problems do not give rise
to infinite computations (cf. [10]). In [13] the number of iterations through a
cycle can be limited via a user-defined parameter. In [20] certain cycle uni-
fication problems are solved by generalization and subsumption. There, after
several iterations through a cycle, subterms occurring in a goal are replaced by
variables. Subsumption techniques may now be applied to terminate otherwise
infinite derivations. The technique is shown to be complete. Unfortunately,
answers to the generalized goal need not to be answers to the initial goal. M.
Schmidt—Schauf [16] has shown that cycle unification is decidable provided that
the goal and the fact are ground, ie. they do not contain variable occurrences.
Independently, P. Devienne [7] has given a more general result for cycle unifica-
tion problems with linear goals and facts, ie. each variable occurs at most once
in the goal and the fact. He uses essentially the same ideas as Schmidt—Schauf,
but a very special technique based on directed weighted graphs. Devienne’s
results were used by De Schreye et al. [17] to decide whether cycles admit non-
terminating queries to deductive systems. Another approach has been taken by
H.J. Ohlbach [11] who represented sets of terms by so-called abstraction trees
which may compress the search space. Moreover, abstraction trees can be used
to compile two-literal clauses and in certain cases a finite abstraction tree can
represent infinitely many solutions of a cycle unification problem [12].

This paper is a first step towards a theoretical foundation of cycle unification.
After some preliminary notes on definitions and notations we formally define
cycle unification in Section 3. In Section 4 we define various new classes of
restricted cycle unification problems with increasing complexity and show that
their unification problems are decidable, determine the unification types, and
develop unification algorithms. The paper concludes with a summary of the
results on cycle unification and an outline of future work.

2 Definitions and Notations

Our definitions and notations follow those suggested in [6]. Throughout this pa-
per capital letters such as P, @), ... denote predicate symbols, small letters such
as a, b, ... denote constants, f, g, ... function symbols, and z, y, ... vari-
ables. A term is either a variable or of the form f(t1,...,t,), where t1, ..., t,
are terms. s, t, ... denote terms. An atom is of the form P(t1,...,t,). Let
X be an atom or a term. Var(X) denotes the set of variables occurring in
X . X is called ground iff X does not contain any variable. X is called linear
iff every variable occurs at most once in X . By X* we denote the syntactic
object where each variable occurring in X has the index k attached to it.

A substitution 1s a mapping from the set of variables into the set of terms
which is equal to the identity almost everywhere. Hence, it can be represented

as a finite set of pairs {@1 — 11, ..., 2y = t}, @ # 4, 1 < i < n.
Substitutions are denoted by small greek letters such as o, 8, The identity
substitution is called £. ot = o(t) if ¢ is a variable and ot = f(ot1,...,0tp)

if t=f(t1,...,tn). Dom(o) = {x | x is a variable and o # #} is the domain
of o. VRan(o) = UxEDom(U) Var(ox) is the variable range of o .

The composition ot of two substitutions ¢ and 7 is defined by (o7)z =
o(rz). The restriction of the substitution o to the set V' of variables is defined
by olv e =cz if x €V and |y« = # otherwise. A substitution o is called
variable-pure if {ocx | # € Dom(c)} only consists of variables. A renaming is
a variable-pure substitution ¢ such that cx = oy implies *x = y for =, y €
Dom(o).

If W is a set of variables, then ¢ = 7 [W]iffVe € W : o2 = 7. A
substitution ¢ is called more general than a substitution 7 on W, o< 7 [W],
iff there exists a substitution p such that po = 7 [W]. Two substitutions ¢
and 7 are called equivalent (or variants) on W, o ~ 7 [W], iff ¢ < 7 [W]
and 7 <€ o [W]. o and 7 are equal on W modulo renaming iff there exists
a renaming p such that po = 7 [W]. Two substitutions ¢ and 7 are called
independent on W iff o€ 7 [W] and 7€ o [W].

o is called a unifier for t and t' iff Dom(c) C Var(t) UVar(t') and ot =
ot'. A unifier ¢ of t and t’ is called most general unifier iff ¢ < r [Var(t) U
Var(t')] for all unifiers 7 of ¢ and ¢'. ¢ is called a maicher for ¢ and t' iff
Dom(o) C Var(t') and t = ot’ holds. A matcher ¢ of ¢ and ¢ is called a
most general matcher iff ¢ < 7 [Var(t')] for all matchers 7 of ¢ and '. The
definitions above can be extended to atoms, equations, and sets of equations in
the obvious way.

3 Cycle Unification

C = {L+ R} is called a cyclic theory, or cycle for short, if the atoms L and
R are weakly unifiable, ie. there exist two substitutions ¢ and ¢’ such that

oL = ¢’R [8]. Let G and F be two atoms such that Var(G) N Var(F) =
#. A cycle unification problem (G & F) (or (G —23 F)¢) is the problem
whether there exists a substitution o such that ¢G is a logical consequence of
F and C'. A substitution o is a solution for the cycle unification problem if
Dom(c) C Var(G) and oG is a logical consequence of F' and C'.2
Since solutions to cycle unification problems are substitutions, the notions of
more general, independent, etc. substitutions can be extended to more general,
independent, etc. solutions of cycle unification problems in the obvious way.
As a first example consider the problem
(Pa —>» Pﬁfa>{Pm_Pfx}.
The empty substitution ¢ is the only most general solution for this problem.
However, there may be more than one solution as the example
<P[L’y - Pab>{va<—Pwv}
shows. This problem has the two independent most general solutions {a
a, y—b} and {z—b, y—a}. But, there may be even infinitely many indepen-
dent most general solutions. As an example consider

(Pr —» Pa>{Pfy<_Py}.
This problem has the most general solutions {z—a}, {x— fa}, {x— ffa},

For a cycle unification problem (G —+ [I");; g} to be solvable, the atoms
F and G must be of the form P(t1,...,t,) and P(s1,...,s,), respectively.
Since L and R are weakly unifiable, their predicate symbols must also be
identical, ie. L and R must be of the form P'(l1,...,{,) and P'(ry,...,7),
respectively. In the sequel we will only consider cycle unification problems of
this form. Furthermore, as the case P # P’ is trivial, we assume P = P’.

To solve a cycle unification problem (G —%> F) we have to find a substitu-
tion which either unifies ¢ and F or unifies — viz. simultaneously unifies each
equation in —

Ck=NUYruU Xk,

where
N={s1 =1}, ..., s, =1L} is the set of entry equations,
Vo I 2 1< i<)

is the set of cycle equations for k iterations through the cycle, and

Xk = {r’f"’l =ty ., R =)

is the set of exit equations after k iterations through the cycle.

bl

2A cycle unification problem should not be confused with a theory unification problem
(G =¢ F), ie. the problem whether there exists a substitution o such that ¢G =¢ oF
[1, 19].

The following proposition is an immediate consequence of the completeness and
soundness of the connection method [1] or SLD-resolution, eg. [9]. Due to lack
of space we had to omit the proof of this proposition and all further theorems.
They can be found in detail in [4].

Proposition 1 ¢ is a solution for (G —2> F) iff there exists a substitution
6 such that 0 unifies G and F and o = 9|VM(G) or there erists a natural
number k such that 8 unifies C* and o = 9|VM(G).

Throughout the paper 7 will denote the most general unifier of G and F
restricted to Var(G), if it exist. Similarly, 7 will denote the most general
unifier of C* restricted to Var(G), if it exists.

Let C = (G —2> F) be acycle unification problem. A set ¥ of substitutions
is a complete set of solutions for C iff each substitution in X is a solution for
C and for each solution # for C we find a substitution ¢ in X such that
o< 0Var(G)]. A complete set ¥ of solutions for C is said to be minimal iff
for all o, 6 € X we find that ¢ < 0[Var(G)] implies ¢ = 6.

In order to be able control a cycle, we are interested in the answer to three
basic questions. Is cycle unification decidable? How many independent most
general solutions has a cycle unification problem? Does there exist a unification
algorithm which enumerates a minimal and complete set of solutions for a cycle
unification problem?

Following [18], we define the type of a cycle unification problem as follows.
A cycle unification problem is of type wunitary iff there exists a single most
general solution, finitary iff there exist finitely many most general solutions,
and infinitary iff there exist infinitely many most general solutions.

4 Matching Cycles (C,,)

A cycle L+ R is called left matching and right matching iff there 1s a substi-
tution o such that ¢L = R and L = oR, respectively. We assume o to be
the most general matcher. Throughout the paper we will consider only right
matching cycles. The corresponding results for left matching cycles can be ob-
tained analogously. The class of cycle unification problems with matching cycles
is denoted by C,, .

Matching cycles show some interesting properties. The substitution o;
which is the most general unifier of R’ and Li*! in the i-th iteration through
the cycle can easily be obtained from the substitution ¢ which matches L
against R as follows. Let

P, ={(z,02) | e € Dom(o)} U{(z,z) | x € Var(R) \ Dom(o)}.

Then, ' '
o; = {x' =t | (x,t) € P, }.

For example, the cycle {Pgzga,z + Pryz} is right matching with o = {2 —
gz, y+> ga} and we obtain P, = {(z,92), (y,9a), (z,2)} and o; = {z' —
g2ty s ga, '+ 2T} Furthermore, since Dom(o;) N Dom(oiy1) = 0
the most general solution of the cycle equations }* is simply the composition
p = o ---01. The solution 7, for C* can now be obtained by simultaneously
unifying the atoms pG, pL' and pR**! | pF and restricting their most general
unifier to Var(G), if it exists. Since pG = G, pR**t! = R**! and pF = F,
the interesting bindings in p are those for the variables occurring in L.

We will now consider two classes of matching cycle unification problems
defined by the matching substitution o . These are the classes of variable-pure
matching cycles and non-recursive matching cycles.

4.1 Variable-pure Matching Cycles (C,,)

A variable-pure matching cycle L+« R is a matching cycle, where the matching
substitution ¢ is variable-pure. Hence, ¢ must be of the form

{xl'ﬁyla R leyl}a

where z; € Var(R), y; € Var(L), 1 < j <[, and, thus, P, is a set of
variable-pairs.

A set of variable-pairs P recursively defines a sequence of variables as fol-
lows. If (z1,22) € P, then P defines the sequence (x1,®2). If (®y,... ,2;) is
a sequence defined by P and (z;,2;41) € P, then {(x1,...,2;, 2;141) is a se-
quence defined by P. A sequence (z1,...,2;) is called linear iff z; # z;, 1 <
i,j <, i# j. A sequence p = (x1,...,2;) contains (or is a subsequence of)
sequence 7 iff there exists an ¢ > 1 and an j <[such that = = (&;,..., ;)
. A sequence 7 is called mazimal iff there is no longer sequence containing 7 .
A sequence m = (x1,...,2;) is called a (cyelic) permutation iff (z1,... 2_1)
is linear and #; = #;. A sequence (x1,...,%;) is called a (cyelic) permutation
with linear entry-sequence iff (x1,...,2/-1) is maximal and linear and there
exists an j, 1 < j <[, such that »; = z;. It is obvious that a permutation
with linear entry-sequence can be divided into the linear entry-sequence and the
permutation. Finally, a sequence (z1,...,2;41) has length [.

Let €' = {L+ R} be a variable-pure matching cycle with matching substi-
tution o. C' is a linear sequence iff P, defines a single maximal and linear
sequence. A cycle C' 1s a permutation iff P, defines a permutation such that
the variables occurring in it are equal to the variables occurring in P, . C' is a
permutation with linear entry-sequence iff P, defines precisely one permutation
with linear entry-sequence.

In the following paragraphs we will formally investigate the properties of
the classes of cycles defining a linear sequence (Cj,), a permutation (C,), and
a permutation with linear entry-sequence (Cpis). As a combination we obtain
results for the class of variable-pure matching cycles (C,,).

Linear Sequences (C;;). In this section we consider variable-pure match-
ing cycles {L < R} with matching substitution o where P, defines a single,
maximal linear sequence. Such a cycle is contained in the unification problem

<Pw1w2w3 —= Pfaybc>{Pfy,zv<—Pfx,yz}a

where o = {&— vy, y— 2, 2+ v} is the matching substitution. P, defines
the linear sequence (z,y,z,v) with length [= 3 and o; = {2’ — y'T! ' s
21 259t} | As mentioned before, the solution for the cycle-equations Y*
18 0 - - -o1 and we are only interested in the restriction of oy - - - o1 to Var(Ll) .
Thus, we compute

0'1|{yl7 21, w1} = {y1'—>22, z1'—>v2}

and
0201 |(yr, 21 w1y = (Y 0?2l

Since Dom(o;), i > 1, does not contain any (superscribed) variable v, we find
that for all k& > 2

g - - 'Ul|{y1, 21, yll = 0-20-1|{y1, 21, w1l

holds. One should observe that (i) a (superscribed) variable v is never in the
domain of a most general solution for the exit equations and (ii) more and more
variablesin Var(L!) are mapped on a (superscribed) variable v until eventually
all variables in Var(L!) are mapped on (superscribed) v . This is not only true
in the example but holds for all solvable linear sequences. Intuitively, the more
iterations through the cycle are considered the less is the influence of the exit
equations on the solution of the cycle unification problem C*. In the example
we obtain the solutions 79 = {wy+fb, warsc} for C°, 7 = {wy s fe} for Ct,
™ = {w; b—)fv?’} for C?, 73 = 1 for C3, etc. One should observe that

1€ for 0<i<li (1)

and
Ti—1 = T4 for 0 <. (2)

Thus, from (1) and (2) we conclude that cycle unification problems defining
linear sequences with length [can be solved either by 7, ie. the restriction of
the most general unifier of G and F' to Var(G), or by 71, ie. the restriction
of the most general unifier of C'=1 to Var(G), if they exist. In the example
Ti—1 = T2 is even more general than the most general unifier 7 = {w; —
fa, wy b, w3 ¢} of Pwywsws and Pfa,be, but this is not the case in
general. Conversely, if neither G and F are unifiable nor C'~' is solvable,
then the cycle unification problem is unsolvable.

Permutations (C,). We recall that a sequence (z1,...,#;41) is a permuta-
tion iff (#q,...,2;) is linear and 21 = #41 . The cycle unification problem

<P[L’y — Pab>{va<—Pwv}
defines the permutation (w,v,w) of length { = 2. If we solve
C'={x=v y=w', w' =a, v' =0},

we obtain the solution 75 = {#— b, y—a}. Considering one iteration through
the cycle we have to solve

which results in 7 = {&+a, y—b}. Two iterations through the cycle and
solving

CP={e=v', y=w w =07, o' Zw? w? = v = WP =, 0P =)
yields {z+— b, y+—a} = 79. Thus, we periodically return to previously com-
puted solutions. In general, we have only to consider the unifier of ¢ and F',
if 1t exists, and finitely many iterations through the cycle to obtain all possible
most general solutions for a cycle unification problem in the class of permuta-
tions. Conversely, if neither G and F' are unifiable nor any one of the sets C*,
0 <2< 1,18 solvable, then the cycle unification problem is unsolvable.

Permutations with Linear Entry-sequence (Cp,). We recall that a per-
mutation with linear entry-sequence has the form

(T1y ooy U BTy -y Bl TU41)

in which (zy1,...,2;41) is a linear (entry-) sequence and (@11, .., Zi4m, Ci41)
is a permutation. Since the permutations with linear entry-sequence can be
splitted into these two parts, their behaviour is determined as a combina-
tion of these parts. After {—1 iterations through the cycle the variables oc-

curring in L' depend only on the (superscribed) variables 41, ..., i1 -
The values for 41, ..., Zi4m are solely determined by the permutation
(xi41, -+, Tigm, ti41) and the exit equations. As before, we have only to con-

sider finitely many — viz. m—1 — further iterations to obtain all possible most
general solutions for a cycle unification problem in the class Cp; . Conversely,
if neither G and F are unifiable nor any one of the sets C', 0 < i <I4+m—1,
is solvable, then the cycle unification problem is unsolvable. We will give an
example of Cp;s at the end of Section 4.1.

Variable-pure Matching Cycles (C,,). Variable-pure matching cycles de-
fine combinations of permutations, permutations with linear entry-sequence,
and maximal linear sequences. Let a variable-pure matching cycle define p
permutations

(14, ooy Ty, 1), 1 <0< p,

pl permutations with linear entry-sequence
<y1,ia cees Ylis YL+l oo Ylidng i yl;+1,i>’ 1 S i S pla
and [maximal linear sequences

(z14,.. "Zf,+1,z'>’ 1< <1

Let M :max(l,ll,...,lpl,l~1,..., lNl) and N = lem(Ll,mq,...,mp, 01, ..., 0np),
where lcm denotes the least common multiple.

As in the previous subsection we find that after M—1 iterations through the
cycle the variables occurring in L' depend only on the (superscribed) variables

occurring in the permutations — ie. in {@1;, ..., @y, ; | 1 <i < p}.® —and
that the values for the (superscribed) variables @1, ..., Zm,s, 1 < ¢ < p,
are solely determined by the permutations (#1;,...,Zm,:,214), 1 < 1 < p,

and the exit equations. As before, we have only to consider finitely many — viz.
N—1 — further iterations to obtain all possible most general solutions for a cycle
unification problem in the class C,, . More formally, we can show that for all
t> 0 and k > 0 the claims

CM—1%7 {5 solvable iff ¢M—1H1+5N {g golvable

and
TM—14i € TM_14i+k-N

hold. One should observe that this result subsumes the result of linear sequences
(where N = 1), of permutations (where M = 1) and of permutations with
linear entry-sequence.

Let (G —3 F);r—r} be a cycle unification problem. The steps in Fig-
ure 1 define a cycle unification algorithm for variable-pure matching cycles.
Algorithms for Cj,, Cp, and C,;; are special cases. To illustrate the algorithm
consider the cycle unification problem

<PU1U2U3U4U5 —= Pab6d6>{Pyzvzv<—nysz}~
We obtain the following steps.

1. Pujusususus and Pabcde are unifiable by 7 = {uy —a, us b, us—
e, uard, usrre}.

3N0t67 {(yl,+1,i7"'7yl,+n,,i7yl,+l,i> | 1 S { S pl} g {<$17i,...,$m17i,$17i> | 1 S @ S p}

10

1. If G and F are unifiable, then compute 7 as the most general
unifier for G and F restricted to the variables in G.

2. If (G = F)irr) € Cyp, then compute the lengths Iy, ..., [;
of all defined maximal linear sequences/linear entry-sequences and
the lengths my, ..., m; of all defined permutations. Let M =
max(l,ly,...,5) and N =lem(1,mq,...,my).

3. If C* is solvable, then compute 7, as the most general unifier for
C" | restricted to the variables occurring in G, 0 < k < M4+N—2.

4. Let X be the set of solutions obtained in steps (1) and (3). If
3 =}, the problem is unsolvable. Otherwise, iteratively eliminate
a substitution « if the current set of solutions contains another
substitution § with J € « [Var(G)]. The obtained set is a mini-
mal and complete set of solutions for the cycle unification problem
<G — F>{L<—R} .

Figure 1: A Unification Algorithm for C,; .

2. o ={x—y, y—>z, 2—v, vz, w—v} is a most general right matcher
of Pryzvw against Pyzvzv. P, defines two permutations with linear
entry-sequence, viz. (x,y,z,v,z) and {w,v,z,v). Hence, M =2, N =2
and the problem is in Cyp .

3. o={u1—=b usrrc, us—d, uar—e, us—d}, 1 = {ur—e, us—d, us—
e, ugr—d, usrrct, 7 = {up—=d, usrre, us—>d, usr>e, us—>d} are the
most general solutions obtained by solving €°, C', and C?, restricted to
{u1, w9, us, w4, us}, respectively.

4. We obtain the set {7, 7, 71, ™} as a minimal and complete set of
solutions.

11

Theorem 2 Let C' be a variable-pure matching cycle.

(a) (G =& F) is decidable.
(b) (G =& F) is finitary.

(c) There exists an algorithm computing a minimal and complete set of solu-
tions for (G &> F).

Omne should observe that this result holds for Ci;, C,, and Cp, as well be-
cause they are subsets of Cyp .

4.2 Non-recursive Matching Cycles (C,,)

In the preceding subsection we have considered only variable-pure matching
cycles. We will now lift this restriction by considering matching cycles in
which the matching substitution may bind variables to terms including function-
symbols and constants. As an example consider the cycle unification prob-
lem (Py —3 Pa){pfscpr), which has an infinite, complete and minimal set
Hy—a}, {y—fa}, {y—ffa}, ...} of solutions. Since we do not yet know how
to control such cycles, we restrict ourselves and exclude bindings like & — fz |
as it is contained in the matcher of the example. A variable x is called re-
cursive iff there exists an 4, i > 0, such that =+t € ¢', € Var(t), and
t # x.* Because t # z, variables occurring in permutations are not recursive.
However, the variable x in the example above i1s recursive. It is easy to ver-
ify that it is decidable whether o contains recursive variables by considering
0/, 1 < j <k, where k is the number of bindings in o. A cycle {L <+ R} is
called non-recursive matching iff the domain of the matcher does not contain
any recursive variable. The class of non-recursive matching cycle unification
problems is denoted by C,, .

One should observe that if ¢ is a matching substitution for a cycle in C,, ,
then P, may contain pairs (x,t), where ¢ is not a variable. To be able to
deal with those pairs, we have to extend the definition of sequences. A set of
variable-term pairs P defines a sequence as follows. If (z,t) € P and t is
ground, then P defines (z,¢). If (x,t) € P and Var(t) = {x1,...,2,}, then
P defines (@, 21), ..., (&, 2,). Let (x1,...,2,) be a sequence defined by P
and (xp,t) € P. If t is ground, then P defines (x1,...,2p,t). If Var(t) =
{y1,...,yn}, then P defines {(x1,... @0, y1), ..., {(&1,..., Zn, Yn). A sequence
m={x1,...,2,1t) is called lineariff each variable occurs at most once in w. One
should observe that since non-recursive cycles do not contain recursive variables,
a (superscribed) variable # occurring in a permutation cannot be mapped on a
term ¢ such that z € Var(t) and ¢t # «. Thus, permutations are constructed
from pairs of variables in P, only.

4By o' we denote the i—fold composition of ¢ with itself, ie. 6! = ¢ and o' = O'(O'i_l) .

12

It is easy to see, that we can allow linear sequences ending in a ground term
without changing our previous results. Let a non-recursive matching cycle define
p permutations, pl permutations with linear entry-sequence, and ! maximal
linear sequences possibly ending in a ground term. Furthermore, let M and N
be defined as in the previous subsection. As before we obtain

CM—1%7 {5 solvable iff ¢M—1H1+5N {g golvable

and
TM—14i € TM_14i+k-N

for ¢ > 0 and k& > 0. Thus, the results for variable-pure cycle unification prob-
lems can be generalized to non-recursive matching cycle unification problems.

The unification algorithm for non-recursive matching cycles is analogous to
the algorithm for variable-pure matching cycles but with the extended definition
of sequences. As an example consider the cycle unification problem

<PU1U2U3U4 —= Pab6d>{Pfyz,vwz<—nyzw}~
An application of the algorithm yields the following results.

1. Pujususus and Pabed are unifiable by 7 = {uj — a, us — b, us—
¢, ug—df.

2. o ={e—fyz, z—w, w2z, y—ov} is a most general right matcher of
Pryzw against Pfyz,vwz . P, defines the sequences (z,y,v) and (z,z, w, z)
such that M =2, N = 2 and the problem is in C,, because the cycle’s
matcher does not contain any recursive variable.

3. 10 = {uy = foe, ug vt uz = d, ugcl, o= {up = foid, uz —
c, ug —d}, ™ = {u; — fvle, uz > d, uy > c} are the most general
solutions obtained by solving C° Ct, C?, restricted to {uy, us, us, us},
respectively.

4. We obtain the set {7, 7, 7} as a minimal and complete set of solutions.

Theorem 3 Statements (a), (b), and (¢) of Theorem 2 hold also for non-
recursive matching cycles.

5 Summary and Future Work

In this paper we have formally defined cycle unification (for a restricted class of
formulas). We have considered various classes of cycle unification problems with
increasing complexity, have shown that they are decidable and finitary, and have
specified a minimal and complete unification algorithm for these classes. Table
1 gives an overview of these results as well as of previous work. In each row

13

| Class | Decidability | Type | Algorithm | References |

C open infinitary open
C decidable | infinitary open [7]
Cy decidable unitary yes [16]
Cm open infinitary open
Chr decidable finitary yes this paper
Cu decidable finitary yes [22]

Table 1: Properties of cycle unification classes.

G

Cy

Figure 2: The relation between the classes C, C;, Cy, Cn, Cpr, and Cy .

we state the decidability and the unification type for a particular class of cycle
unification problems, indicate whether there exists an algorithm to compute a
minimal and complete set of solutions, and provide the reference if there exists
one. C denotes the class of unrestricted cycle unification problems. In €; and
Cy goals and facts are restricted to be linear and ground, respectively. C,
denotes the class of unifying cycles, ie. cycles L+ R, for which L and R are
unifiable. This class has recently been investigated in [22]. For the definition of
the more complicated classes C,, and C,, the reader is referred to Section 4.
The various classes are related as shown in Figure 2.

One might think that our results for the class C,, may easily be extended
for cycle unification problems (G —+ [I"){1 g} such that there exist two non-
recursive substitutions ¢ and 7 with ¢ = 7R. But this is not true. For
the cycle {Pz + Pfr} we find {&— fy}Pz = {&— y}Pfr. Yet, as shown in
Subsection 4.2 there are infinitely many independent solutions for this problem.
In the case {Pfr,z < Pyfr} we find {z+— fz}Pfr,z = {y+— fx}Pyfr and one
might expect that only a single instance of the cycle is needed. However, as
shown in [22], the latter example belongs to a class of unifying cycles, ie. cycles

14

L+ R for which there exists a substitution ¢ with ¢L = ¢ R, which need one
cycle iteration, ie. two instances of the clause.

One of the major open problems in our restricted context is the question
whether C 1s decidable. C;, C,, and C,, are decidable. However, there are
several results which point into the opposite direction for the case of C. In
[5] it is shown that the termination of a one rule term rewriting system, where
rewriting may occur at proper subterms, is undecidable. Similarly, we know
from [16] that the class of Horn clauses consisting of two clauses of the form
L+ R and two ground unit clauses is undecidable. It is, however, not obvious,
how these result could be adapted to cycle unification problems.

In the future we intend to develop heuristics to control further classes of
cycle unification problems. We are looking for a well-founded ordering based
on a measure of complexity for the instances of the cycle in order to apply an
idea similar to the one contained in [16]. Certain cycles L < R cause some
of the terms occurring in L and R to grow or shrink monotonically at each
iteration of the cycle. If there were an upper bound for these terms defined
by G or F, then one would be able to decide the cycle unification problem
(G = F)ircpy. For illustration of this idea consider the cycle unification
problem

(Pffr,x = Pufu)(prsryfeepPry}-

The i-th instance of the right-hand side of the cycle Pfffy,fz < e Pfy,z 1s matched
against the 74 1-st instance of the left-hand side by o; = {y' = it 2t =
sz'l}. We observe that the depth of y and z decreases with each iteration
through the cycle and the goal as well as the fact define upper bounds because
the multiple occurrences of # and u correlate y and z via the entry- and
exit equations. In [4] we have exploited this insight for the computation of the
number k of iterations through the cycle to obtain a solution. For the example
we obtain k =2 and the solution 7 = {z — f5y°}.

As shown in Section 3, there might be infinitely many independent solutions
of a cycle unification problem. Hence, we need a compact representation of
infinitely many terms for such cases and intend to use the one suggested in [11].

In order to solve the Lukasiewicz formula mentioned in the introduction as
a challenge problem, the results obtained so far and in the future need to be
generalized to the case of more than one interacting cycles. [3] contains first
ideas how this might be achieved. Altogether there is quite a bit of work ahead
of us until this challenge problem might be solved in less than a second as
thought possible in [3].

As an example of an application of cycle unification in logic programming
mentioned in the introduction consider the cycle maz(X,Y, 7) : — maz(Y, X, Z)
in PROLOG notation. It is contained in a clause set representing SAM’s lemma
[21]. The cycle expresses the commutativity of the first two arguments of the
maximum-predicate. This clause may be used in a PROLOG program which

15

computes the maximum of two numbers.

maz(X,Y,)Y) — X =<Y.
maz(X,Y,7) — maz(Y,X, 7).

If we ask the query 7— maz(2,3,V), PRoOLOG yields the desired result and V
is bound to 3. But if we ask for all solutions, the program does not terminate
because the search space 1s infinite. Similarly, negative queries handled by
negation-as-failure may not produce the expected results because of possibly
infinite evaluation trees; for example consider the query 7— ~ maz(2,3,2)°
leading to the subgoal ?— maz(2,3,2).

With the tools of this paper it can be seen, however, that the cycle is a
permutation of length 2. Therefore, it is sufficient to consider at most one self-
application of the cycle to obtain all correct answers. As a result, the infinite
search space collapses to a trivial one and the computation of the two program
clauses becomes roughly equivalent with the following program.

maz(X,Y,X) (— X>Y.
maz(X,Y,)Y) — X =<Y.

No query asked to this program will give rise to a non-terminating computation
because all queries have a finite evaluation tree.

Acknowledgement: The third author was partially supported by the ES-
PRIT project MEDLAR and the Stadt Dreieich. We would like to thank Franz
Baader and two anonymous referees. Their very valuable comments led to a
significant improvement of the paper.

References

[1] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, 2
edition, 1987.

[2] W. Bibel. Advanced topics in automated deduction. In R. Nossum, editor,
Fundamentals of Artificial Intelligence II, pages 41-59. Springer, LNCS
345, 1988.

[3] W. Bibel. Perspectives on automated deduction. In R. S. Boyer, editor,
Automated Reasoning: FEssays in Honor of Woody Bledsoe, pages T7-104.
Kluwer Academic, Utrecht, 1991.

[4] W. Bibel, S. Hélldobler, and J. Wiirtz. Cycle unification. Technical Report
AIDA-91-15, FG Intellektik, FB Informatik, TH Darmstadt, 1991.

5~ denotes the negation-as-failure.

16

[5]

[14]

[15]

[16]

[18]

M. Dauchet. Simulation of a turing machine by a left-linear rewrite rule. In
Proceedings of the Conference on Rewriting Techniques and Applications,

pages 109-120. Springer, LNCS 355, 1989.

N. Dershowitz and J.-P. Jouannaud. Notations for rewriting. FEATCS
Bulletin, 43:162-172, 1991.

P. Devienne. Weighted graphs: A tool for studying the halting problem and
time complexity in term rewriting systems and logic programming. Journal

of Theoretical Computer Science, 75:157-215, 1990.

E. Eder. Properties of substitutions and unifications. Journal of Symbolic
Computation, 1:31-46, 1985.

J. W. Lloyd. Foundations of Logic Programming. Springer, 1984.

J. Minker and J.-M. Nicolas. On recursive axioms in deductive databases.
Information Systems, 8(1):1-13, 1983.

H. J. Ohlbach. Abstraction tree indexing for terms. In L. C. Aiello, editor,
Proceedings of the European Conference on Artificial Intelligence, pages

479-484, 1990.

H. J. Ohlbach. Compilation of recursive two-literal clauses into unifica-
tion algorithms. In P. Jorrand and V. Sgurev, editors, Proceedings of the
AIMSA, pages 13-22, 1990.

H. J. Ohlbach and G. Wrightson. Solving a problem in relevance logic with
an automated theorem prover. In R. E. Shostak, editor, Proceedings of the
Conference on Automated Deduction, pages 496-508. Springer, LNCS 170,
1984.

F. Pfenning. Single axioms in the implicational propositional calculus.
In E. Lusk and R. Overbeek, editors, Proceedings of the Conference on
Automated Deduction, pages 710-713. Springer, LNCS 310, 1988.

J. A. Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM, 12:23-41, 1965.

M. Schmidt-Schaufl. Implication of clauses is undecidable. Journal of The-
oretical Computer Science, 59:287-296, 1988.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A practical technique
for detecting non-terminating queries for a restricted class of horn claus-
es, using directed, weighted graphs. In Proceedings of the International
Conference on Logic Programming, pages 649-663, 1990.

J. H. Siekmann. Unification theory. Journal of Symbolic Computation,
7:207 — 274, 1989.

17

[19] M. E. Stickel. Automated deduction by theory resolution. Journal of
Automated Reasonsing, 1:333-356, 1985.

[20] L. Vielle. Recursive query processing: The power of logic. Technical Report
TR-KB-17, European Computer-Industry Research Center, 1987.

[21] L. Wos. The problem of finding a strategy to control binary paramodula-
tion. Journal of Automated Reasonsing, pages 101-107, 1988.

[22] J. Wiirtz. Unifying cycles. Technical report, Deutsches Forschungszentrum
fur Kunstliche Intelligenz, 1992. To appear.

18

