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Abstract

We employ the model-theoretic method of Ehrenfeucht-Fraissé Games to
prove the completeness of the theory CFT, which has been introduced in [22] for
describing rational trees in a language of selector functions. The comparison to
other techniques used in this field shows that Ehrenfeucht—Fraissé Games lead
to simpler proofs.

1 Introduction

Trees are the prevailing data structure in symbolic computation since they provide
for a mathematical model of hierarchically structured data. In the area of symbolic
computation, trees come in two flavors: constructor trees and feature trees [4]. In
both kinds of trees the nodes are decorated with so-called labels. In the case of
constructor trees, the outgoing edges of a node are ordered, that is they can be seen
as consecutively numbered. In case of feature trees, the outgoing edges of a node
are unordered but decorated with different symbols, called feature symbols. Finite
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constructor trees are often identified with finite ground terms, and they may come
with additional restrictions: There may be an arity function associating the number
of outgoing edges with the label of a node, or they may be additional sort restrictions
which are conveniently expressed with tree automata [6].

In this paper, we are not only interested in finite trees but also in rational trees [9],
that is infinite trees with only finitely many different subtrees. Rational trees repre-
sent cyclic data structures (see the last example in Figure 1 where a cyclic graph is
used to depict an infinite rational feature tree). Cyclic graphs could also be used to
represent cyclic data structures, but in this case special care has to be taken to avoid
multiple representations of the same data item, as it is for instance the case with
different finite automata describing the same regular language. In fact, rational trees
could be identified with equivalence classes (modulo renaming of states) of a certain
kind of minimal finite automata. However, generalizing finite trees to rational trees
leads to a simpler model than generalizing finite trees to arbitrary finite graphs. In
the following, “trees” are always rational trees.

Furthermore, we are interested in the situation that there is an infinite supply of
symbols. An instance of a symbolic computation system (e.g. a program) can use
only a finite number of symbols as long as there are no operations generating new
symbols (this is the case for the systems considered in this paper, see [23] for an
approach incorporating operations on symbols). Hence, from a finite program the
finite set of symbols used in this program could always be computed. However, a
closed world assumption (the knowledge about a finite supply of symbols) is often
not appropriate for symbolic computation systems since the set of data represented
in a system may grow, and since in these systems incremental algorithms which
deal with incomplete data specifications are of great importance. Hence, the formal
theories described below will be based on infinite supplies of symbols.

Feature trees are more convenient to use then constructor trees since they allow to
chose symbolic names for discriminating the outgoing edges of a node (i.e., they are
nested records). In contrast, constructor trees can be seen as nested arrays, they
require the user to keep track of what he had mind with the ith subtree of a tree.
This difference might appear not very important at a first glance, since a compiler can
easily translate a given record scheme into an array scheme. In fact, the real difference
lies only in the respective description languages associated with the two kinds of trees.
In particular, the description languages of feature trees allows to express properties
of trees without fixing a record scheme. Record descriptions have a long history in
knowledge representation and in particular in computational linguistics, see [21] for
a survey.

The most important description language in the field of symbolic computation is first-
order logic. An important paradigm in the field of symbolic computation, popularized
by Constraint Logic Programming [15], is the use of (a restricted sub-language of)
first-order logic in combination with non-declarative formalisms. In this context, the



first-order formulae are usually called constraints since their role is to restrict the
possible values of variables, which are shared among the constraints and the non-
declarative formalism, by imposing some conditions. In this paper we use the term
constraint system as synonym for a first-order structure. For the user of a symbolic
computation system the most intuitive way to understand the constraint processing
is to have this structure in mind, but for the system itself it is only the theory of
the structure, that is the set of all its valid sentences, that counts. The constraint
processing procedures like the tests for entailment and disentailment (see [22]) can be
formulated as decision problems for fragments of the theory of a constraint system.
In most of the cases it is not necessary to have a decision procedure for the complete
theory. Decision procedures for complex formulae are however needed for deciding
properties of constraint systems, see for instance the motivating example of [8].

When proving the decidability of the theory of a first-order structure one often shows
the completeness of some aziomatization of the theory. A complete axiomatization
of a theory T is a decidable subset of T such that every sentence of T' can be derived
from it. In almost all of the cases, a complete axiomatization is described by a finite
set of syntactically simple formula schemata. A complete axiomatization T of the
theory of a structure 2 serves two purposes: First, by using any complete deduction
method of first order logic we obtain a decision method for the theory of £, since for
any sentence w, either w or its negation —w is a consequence T" which will eventually
be detected if we run two deduction machines in parallel. Second, T" describes all
the structures which are elementarily equivalent to %I, that is which have the same
theory, since by the completeness of T a structure B is elementarily equivalent to 2l
iff it is a model of T.

The constraint system RT' [5] of rational constructor trees is parameterized by a fi-
nite or infinite functional (i.e., containing only function symbols) signature . The
universe consists of all rational constructor trees with labels from X, subject to ar-
ity restrictions. A function symbol f of arity » is interpreted as the function that
maps trees ty,...,t, to the new tree with root labeled f and edges from the root
to t1,...,t,. Besides these functions, RT contains only the equality predicate =.
Complete axiomatizations of RT have been given independently in [7] for the case of
a finite signature, and in [17] for both the case of a finite and an infinite signature.

The most basic feature tree constraint system is the system F7T [1]. For given infinite
sets of labels and features, its universe consists of the set of all rational feature trees
with node and edge decorations taken from the respective sets. The only predicates
are equality, a unary predicate Az for every label symbol A, which holds if the root
of = has the label A, and a binary predicate x fy for every feature f, which holds if
there is an edge decorated with f from the root of 2 to the root of y. A complete
axiomatization of FT' has been given in [4].

A comparison of the expressive power of RT and F7T makes no sense since their
universes are different. We therefore fix (only for the purpose of a comparison of the



systems) a functional signature 3 containing infinitely many functional symbols for
every arity, define the set of labels to be ¥ and choose the set of features to be the
set of natural numbers. In this setup, the constructor trees are a proper subset of the
feature trees (the edges of a constructor tree can be seen as consecutively numbered).
Finally, we extend RT to a new system R7T" which has as universe the set of all
feature trees, and where the functions are defined as in RT but may take arbitrary
feature trees as input.

The two constraint systems RTT and FT are not comparable in power. The FT-
constraint Az, where the arity of A is n, can be expressed in RTT by Jyy,...,y, ¢ =
A(y1,...,Yyn). The FT-constraint zny, however, cannot be described in RT™ since it
requires an infinite disjunction:

\/ Elyh <oy Yarity(A) £ = A(yh s Yn—1, Y Ynt1y - - -, yarity(A))
artty(A)>n

On the other hand, a RT*-constraint like # = f(y1,...,y,) can not be expressed in
FT. Note that
Ax Nzlyp A .. A\ zny,

is not sufficient since it allows z to have additional features. In fact [2] shows that
there is no FT' constraint denoting exactly one tree.

The constraint system CFT [22] extends FT by a unary predicate z{f,..., f,} for
every finite set {fi,..., f,} of features. Note that a RT"-constraint z = f(y1,...,Yn
can now be expressed in C'FT by

Az Nalyy Ao Aeny, Ax{l,...,n}

A axiomatization of CFT has been given in [22] and first proven complete in [3].

A feature constraint system F' with first-class features, that is allowing quantification
over features, has been investigated in [24]. F is a proper extension of CFT but
has an undecidable theory. A proper extension FTX of C'FT which permits only a
limited quantification over features and which enjoys a decidable theory has however
been presented in [23].

The above mentioned completeness results for axiomatizations of feature constraint
structures have been obtained by quantifier elimination: The proofs for FT' [4] and
CFT [3] use a similar structure as [17], while similar ideas as in [7] have been used for
FTX [23]. In this paper we give an alternative completeness proof for the axiomati-
zation of CFT. Our completeness proof uses Fraissé’s theorem and its game-theoretic
formulation due to Ehrenfeucht. This method employs an argument concerning chains
of relations between elements in a structure. Feature logic is well suited for such an
argument, since chains of relations are in a natural way expressed as so-called path
constraints. Path constraints, like (f1--- f.)y, can be defined in F'T by

e(fi-fye e, xam (Bfize Az fora Ao A a1 [ry)



In the field of term rewriting systems (see [10] for a survey), the notion of an occur-
rence in a term is well established. In the context of feature logic, there is no need for
introducing such a meta-notation, since we can use the path constraints which are an
immediate offspring of the base language. In the context of finite constructor trees,
Hodges [14] observes that the use of selector functions simplifies the completeness
proof of an axiomatization. His completeness proof for an axiomatization of trees in
the language of RT is by quantifier elimination.

Another well-known model-theoretic method for proving the completeness of a theory
is the method of model completeness, due to Abraham Robinson [20, 16]. Recently,
this method has been used to show the completeness of the theory of finite trees over
a finite constructor signature [25].

Both methods for proving the completeness of C'FT have their merits. The quantifier
elimination used in [3] serves for a concrete decision algorithm, whereas the proof
presented here is much simpler. Thus, we think our paper describes a method for
proving completeness which can be more easily adapted to other variants of feature
logic than the method of quantifier elimination. We will come back to a comparison
of the different methods in Section 7.

After summarizing some background material in the next section, Section 3 briefly
reviews the theory CFT from [22] and some of its basic properties. Section 4 reviews
the method of Fraissé [12] and Ehrenfeucht [11]. In Section 5, we discuss the path
constraints we need for the formulation of the strategy. The core of the paper is
Section 6, where we prove the completeness of CFT with the method of Section 4.
We conclude with a brief comparison to other methods.

2 Preliminaries

We assume infinite sets Lab of label symbols and Fea of feature symbols. From this,
we define the following first-order signature:

e a unary label predicate for every A € Lab, written as Az,
e a binary feature predicate for every f € Fea, written as z fy,
e a unary arity predicate for every finite set F' C Fea, written as zF,

e the equality predicate, written as = = y.

A path is a word (i.e., a finite, possibly empty sequence) over the set of all features.
The symbol ¢ denotes the empty path, which satisfies ep = p = pe for every path p.
A path pis called a prefiz of a path ¢ if there exists a path p’ such that pp’ = ¢.

We also assume an infinite alphabet of variables and adopt the convention that z,
y, z always denote variables. Under our signature, every term is a variable, and an



atomic formula is either a feature constraint z fy, a label constraint Az, an arity
constraint F or an equation z = y. Compound formulae are obtained as usual. We
use 3¢ [V¢)] to denote the existential [universal] closure of a formula ¢. Moreover,
var(¢) is taken to denote the set of all variables that occur free in a formula ¢.

Structures and satisfaction of formulae are defined as usual. A valuation « into a
structure 2l is a total function from the set of all variables into . If « is a valuation
into %, z a variable and ¢ € 2, then o[z — a] denotes the valuation which maps «
to @ and coincides with a for all other variables. We use ¢% to denote the set of all
valuations « such that 2, o |= ¢. A theory is a set of closed formulae. A model of
a theory is a structure that satisfies every formulae of the theory. A formula ¢ is a
consequence of a theory T (T | ¢) if V¢ is valid in every model of T. A formula ¢
entails a formula 1 in a theory T (¢ =7 %) if ¢* C ¥ for every model 2 of T.

A theory T is complete if for every closed formula ¢ either ¢ or —¢ is a consequence
of T. By the well-known completeness theorem of the predicate calculus, the set of
consequences of a recursively enumerable theory is again recursively enumerable. A
standard argument of recursion theory yields that for any complete and recursively
enumerable theory T its set of consequences is decidable: To check whether a closed
formula ¢ is a consequence of T, enumerate the set of consequences of T'. Since T
is complete, either ¢ or —¢ shows up in the enumeration. In the former case ¢ is a
consequence of T', in the latter case it is not.

The theory of a first-order structure % is the set of closed first-order formulae which
are valid in . Two first-order structures %, B are elementarily equivalent if they have
the same theory. Note that a theory is complete iff all its models are elementarily
equivalent. Furthermore, if T is a complete theory and 2l is a model of T, then the
theory of 2 coincides with the set of consequences of T. If in addition T is recursively
enumerable, then the theory of U is decidable.

3 The Theory CFT

3.1 Models

We consider two structures of the signature introduced in the last section. The
universe of the structure J consists of all feature trees. A feature tree is a partial
function ¢ : Fea® — Lab whose domain is prefiz-closed, i.e., if pq € dom(t), then
p € dom(t). The subtree p~1t of a feature tree ¢ at a path p € dom(t) is the feature
tree defined by (in relational notation)

p 't = {(q,A) | (pg, A) € t}.

A feature tree ¢ is called a subiree of a feature tree r if ¢ is a subtree of r at some
path p € dom(r).
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Figure 1: Examples of (in fact rational) feature trees.

The universe of the structure SR consists of all rational feature trees. A feature tree ¢
is called rationalif (1) ¢ has only finitely many subtrees and (2) ¢ is finitely branching
(i.e., for every p € dom(t), the set {pf € dom(¢) | f € Fea} is finite).

The relational symbols are interpreted in J as follows:

e J,a = Az iff a(z) has root label A,

e J,a = afyiff f € dom(a(z)) and a(y) = f~la(z) (i.e., a(y) is the subtree of
a(z) at f), and

e J,aE a{f,..., [} if dom(a(z)) N Fea = {f1,..., fn} (i.e., a(x) has exactly
the features fi,..., f, at its root).

The interpretation of the relational symbols in R is the restriction of the interpreta-
tion in J to the set of rational feature trees.

3.2 Axioms

The theory CFT consists of five axiom schemes. The first set of axioms expresses
that labels are disjoint, that features are functional and that an arity constraint fixes
the set of features at the root of a feature tree

(S) Va(AzABzx — 1) A#+B

(F)  Va,y,z(@fyhafz—y=z)

(Al) Va,y(@FAzfy— 1) fer

(A2) Vz (zF — Jyafy) z different from y, f € I



For the last axiom scheme (D) we need the following notion:

Definition 1 (Determinant) A simple determinant is a conjunction of formulae

Ax Na{fi, ...t ANafiru Ao Axfuyn

where the variables x,y1,...,y, are not required to be distinct. We define det(d) :=
{x} for a simple determinant as above. A determinant § is a conjunction of simple

determinants dy A ... A d, such that the det(d;) N det(d;) = 0 for i # j. We define
det(8) := det(dy) U...U det(d,) to be the set of variables determined by 4.

Using the quantifier 3z ¥ with the meaning “there exists exactly one tuple & such
that U7, we can formulate the last axiom scheme:

(D) V(var(é) L det(8)) J'det(6) 6 & is a determinant
An instance of axiom scheme (D) is

VeJla,y( Az ANa{f,gt NafyAzgzA
By Ay{f,9,h} Nyfz A ygy A yha)

Proposition 1 Both T and R are models of CFT.

3.3 Solved Forms

Definition 2 (Solved form) A subformula of a determinant is called a solved form.
A variable x is called constrained in a solved form S if S contains a constraint of the
form Az, xI" or x fy. The set of variables constrained by S is denoted as con(S).

Hence, for a determinant 6, con(d) = det(8). Given a solved form 5, we denote with
det(S) the set det(ds), where g is the largest subset of S that is a determinant. In
the following, we use the letters R, S, T ... to denote solved forms. The proof of the
following lemma is straightforward (see also [22]):

Lemma 2 Let S be an equation-free conjunction of atomic formulae. Then S is a

solved form iff

1. S is clash-free, that is it contains no subformula of the form Ay A By (where
A#B), yF'ANyG (where ' # G) or yF' Ayfz (where f ¢ F) and

2. xfy,xfz € .5 implies that y equals z.

Proposition 3 For every solved form S we have

V(var(S) L con(S))3con(S) S



Note that the existence is no longer unique in case of a solved form.

Definition 3 (Reachability) Given a solved form S, a variable € var(S) and a
path p € Fea®, we define |xp|s inductively as

lze|ls =
undefined if |xp|s is undefined, or if |xpls =y

and S contains no constraint of the form yfz
z if lepls =y and yfz € S

lzpfls

A wvariable y € var(9) is reachable from some x € var(S) if there is a path p such
that |zpls = vy.

Definition 4 (Rooted solved form) A rooted solved form S, is a solved form S
with a distinguished variable x € var(S), such that for every y € var(S) there is a
path p with |xp|s = y. A path p is called acyclic in a rooted solved form S, if for all
prefizes q1 # g2 of p we have |xqi|s # |xqz|s. For a rooted solved form S,, the set of
paths to a variable y € var(9) is

[y]s, = {p € Fea™ | |ap|s =y and p is acyclic in S, }

The length of a minimal path in [y]s, is called the depth of y in the rooted solved

SJorm S,. ’

Note that [y]s, is always non-empty and finite, and that the length of the paths in
[y]s, is bounded by the number of different variables occurring in S.

3.4 Solved Forms and Inequations

Definition 5 (Clash) An equation y; = y, clashes with a solved form S, where
Y1, Y2 € var(S), if there is a path p € Fea™, |y1p|s = z1, |y2p|s = 22, and

L] A121 A AQZQ Q S with Al 7£ AQ,
® oOr ZlFl A ZQFQ Q S with F1 7£ FQ.

Proposition 4 Ify =y clashes with S, then CFTE S — y # v/’

Lemma 5 Let S be a solved form, y1,ys € var(S), and let

Fr(ynu) = {(12) e pe Fea s ( lypls =21 A lyarls = =
A 21 # 29 A Az, 22} € det(S) )}

If y1 = yo does not clash with S, then

CFT):Q(S%(yl%yQH \/ 21%22))

(z1,22)EFr(y1,92)



Proof: This follows immediately from axiom scheme (D). O

In the unification theory for finite terms, an analogous concept is known. There, a
satisfiable equation is equivalent to its frontier, that is the conjunction of equations
obtained by maximal decomposition [19].

As an example of Lemma 5, consider

S = Az Az{f,9} NxfyAagzA Bz A z{h} Ayhx
AN AN fogyna' fy ANa'gd A By Ay {h} A YRS

Note that # = 2’ does not clash with S. By Lemma 5,
CFT):Q(S% (w#x’% (y%y'\/z%z’\/w%z')))
As another example, consider
S'=Ax ANa{f}Nafe ANA N {f} N fa

Since F'r(z,z') is empty, we get CFT |= (S — (2 # ¢/ < false)). If we replace in S’
however Az by Bz for some B # A, then © = 2’ clashes with S and the lemma does
not apply.

4 Ehrenfeucht-Fraissé Games

Fraissé [12] gives a definition of elementary equivalence in terms of mappings between
structures. In this section we just summarize this method, more detailed expositions
can be found e.g. in [13, 18].

Any two isomorphic structures are elementarily equivalent, but there are of course
elementarily equivalent structures which are not isomorphic. Hence, to characterize
elementary equivalence algebraically we have to weaken the notion of isomorphism.
Let 2l and B be two structures of a signature o which consists of (possibly infinitely
many) relation symbols only!, and let 7 be a subsignature of o. A finite sequence
(@i, bi)1<i<n in (A X B)* is a partial T-isomorphism if for every 2-valuation « with
a(x;) = a;, every B-valuation [ with §(z;) = b; and every atomic 7-formula w with
var(w) C {x1,...,2,} we have A, a | w < B, 5 E w. Note that, in the context
of predicate logic with equality, w might be an equation. In this case, a partial
isomorphism is always injective.

Instead of Fraissé’s original theorem we use here the game-theoretic reformulation
due to Ehrenfeucht [11]. The game is played on two structures 2 and B by two
players, the Spoiler and the Duplicator. In the beginning, the Spoiler chooses a finite

'We take this assumption just for simplicity, the definition extends to arbitrary signatures.

10



subsignature? 7 C o and the number n of rounds to play. The aim of the Duplicator
is to build a partial T-isomorphism of length n. In round z, the Spoiler chooses one of
the two structures together with an element a;, resp. b;. Then, the Duplicator chooses
an element b;, resp. a; in the other structure. Both players always know the present
state of the game. The Duplicator wins if at the end the sequence (a;, bi)lgz’gn is a
partial T-isomorphism, otherwise the Spoiler wins.

Theorem 6 ([Ehrenfeucht, 1961]) %A and B are elementarily equivalent iff the
Duplicator has a winning strategy for the Fhrenfeucht-Fraissé game on 24, 8.

As an example, take the structure J from Section 3 and the structure §, which is
the restriction of J to those feature trees which have a finite domain. Note that § is
not a model of CI'T since axiom scheme (D) is violated. The Spoiler can play the
Ehrenfeucht-Fraissé game on J,F in such a way that the Duplicator looses. First,
she chooses the finite subsignature consisting of the features f,¢ only (no label or
arity predicates) and fixes the number of rounds to 2. In the first round, she chooses
the element a; from J to be the infinite tree with domain (fg¢)* U (fg)*f which
maps every node to the label A (note that it does not matter that A is not in the
finite subsignature). No matter what the choice of the Duplicator from § for b is, the
Spoiler will choose a3 to be the infinite tree with domain (¢ f)*U(gf)*g, also mapping
every node to A. Now we have for a(z1) = a1, a(22) = ag that 3, a = 21 fog Azagay,
but there is no B-valuation § with §(x1) = by, such that §,08 | 21 frs A z2921.
Hence, the Duplicator is looses.

With the structures J and R, on the other hand, the Duplicator has a winning
strategy. This strategy will be subject of the next sections.

5 Path Constraints

5.1 Motivation and Definition

For the rest of the paper, we assume two fixed structures 2 and B of CFT.

How can we find a winning strategy for the Duplicator? Suppose, the Spoiler has
fixed n and the finite subsignature. We may assume that the arity predicates of
the subsignature are exactly the sets of features in the subsignature, that is the
finite subsignature is given as (o, ¢) C (Lab, Fea). At every stage of the game, the
sequence constructed so far must of course be a partial (o, ¢)-isomorphism (otherwise,
the Duplicator looses immediately), but this is not sufficient, since the Duplicator has
to take into account all possible future moves of the Spoiler. A clever move of the
Spoiler is to choose an element of a structure which is in relation to many elements

?Having the Spoiler choose the finite subsignature simplifies the formulation in the case of an
infinite signature. This idea is due to Gert Smolka.

11



which are already in the game. Hence, the Duplicator has to watch for chains of
relations between the chosen elements that may occur in the future moves. She may,
however, exploit the knowledge of n and (o, ¢) to restrict the set of relevant chains.

In the context of CF'T, there is a special class of chains of relations that are expressed
as path constraints [4]. These are existentially quantified solved forms of a restricted
format. As will be explained later, the existentially quantified variables represent in
some sense the possible moves of the spoiler.

Definition 6 (Path Constraints) Path constraints are additional atomic formulae
of the forms xpy, Axp, aplF or xpl xq. Here, x,y are variables, p,q € Fea™, A is a
label and F is an arity. The validity of a path constraint @ under a valuation o in 2
is inductively given by

AakErey & AakEz=y
AaoaEelpfly & U akEIz(zpzAzfy)

AaEAzp & A alETz(epz A Az)

A aErpF < A o3Iz (zpzAzF)
AaEeplye & Aol Tz(2pzAygz)

The path constraints of the form zp | yg are called a co-reference constraint. We
identify ap | yg with yq | xp. A trivial co-reference constraint xp| xp is abbreviated
as zpl, it expresses that x has a path p. By the definition of the validity of path
constraints, the additional syntax introduced with path constraints is just syntactic
sugar for specific existentially quantified solved forms. In the following, we delib-
erately confuse a path constraint 7 with an arbitrary existentially quantified solved
form that is equivalent to = by Definition 6.

We can also give a direct interpretation for path constraints. The interpretations
2, ¢% of two features f, g in a structure 2 satisfying the axioms CFT are binary
relations on 2. Hence, their composition f% o g% is again a binary relation on 2
satisfying

a(ffogMb = JeeU: affe A cfP

for all a,b € Y. Consequently we define the denotation p® of a path p= f,--- f, in
a structure 2 as the composition

(fr-f)™ = flo--ofl,

where the empty path € is taken to denote the identity relation. If %l is a model of
the theory CFT, then every path denotes a unary partial function on 2. Given an
element a € A, p* is thus either undefined on a or leads from a to exactly one b € 2.

12



Let p, ¢ be paths, =, y be variables, and A be a label. Then the interpretation of
path constraints is given as follows:

Qal=apleg 1= TacA ax)pPa A alz)d®a
Ao Azp 1< JaeU: a(m)pma A a e A%,

AakapF = TaecU: alz)pa A ac F

5.2 True Sequences

We can now define, for any [ > 1 and set X of variables, the set of path constraints
within the subsignature (o, ¢), where the paths are restricted to length at most [ and
where only the variables from X are used:

Plg)? = {Axp,apF,aplyq| A€o, F C ¢, x,yc X,p,qec ¢},

Here, ¢=!is the set of all strings from ¢* with length at most [. When o, ¢ are known
from the context, we will simply write P x instead of PIU}? We also write Pf;f for

oy
l,{l’l,...,l’n}‘

Definition 7 A sequence (a;,b;)1<i<n € (U X B)* is (0, p)-true up to [ if for all
w e Pf?’;b we have: if a(x;) = a; and B(x;) = b; for all 1 < i < n, then

AaoaEFwe B, fEw.
Proposition 7 Fvery (o, ¢)-true sequence up to 1 is a partial (o, ¢)-isomorphism.

Proof: This follows from the definitions, since CFT E Va,y (¢ = y < xe ] ye),
CFTEVz (zfy & of Lye), CFT E Va (Az < Aze) and CFT = Vo (aF & zel).
O

Hence, the aim of the Duplicator can be described as constructing a (o, ¢)-true se-
quence up to 1. From the above discussion, it is clear that the Duplicator must always
ensure that the sequence constructed so far is (o, ¢)-true up to some sufficiently large
bound [ = #(m), which depends on the number of rounds m still to play. If ¢(m)
is chosen in the right way, then the Duplicator can extend every (o, ¢)-true sequence
up to ¥(m) to a (o, ¢)-true sequence up to 1 in the remaining m rounds, no matter
how the Spoiler plays. The question is of course how an appropriate bound (m) can
be determined.

A first guess could be ¢(m) := m, since the Spoiler can choose m elements in m
rounds. The following example shows that this is not sufficient. Assume that the
Spoiler has chosen elements ay € A and ay € 2 such that

ar(ffff)%a,
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that the Duplicator has chosen an element b; € 9B, and that there are still 2 rounds
to play. Assume that the Duplicator selects in this round an element by € B such
that

bi(f1f)®bs

If we define ¢(m) := m, then ((ay,b1), (ag, b2)) would be a (o, ¢)-true sequence up to
2. In this case, the Duplicator will loose if the Spoiler selects a3 such that a; (ff)%as
(i.e., the element “in the middle” of a; and ag): if the Duplicator chooses b3 such
that bl(ff)%bg does not hold, then the Spoiler chooses as a4 with a; f2as and aqf%as
and the Duplicator looses; if the Duplicator selects b3 such that bl(ff)%b37 then she
looses immediately.

Hence, the next guess could be (m) := 2™, since the Spoiler can with one move
choose an element “in the middle” of a chain of relations between elements which
are already in the sequence. This strategy of the Spoiler would cause the Duplicator,
if the number of moves is increased by 1, to duplicate the bound for the first move,
which results in the recursion equation ¥ (m + 1) = 2 x ¢(m). In fact, it can be
shown [13] that this bound is sufficient for simple theories like the theory of one
successor function. In our case, where 2l and B are models of CFT, this is not
sufficient as can be seen with the following example:

Suppose, the sequence constructed so far is (a1, b1), ..., (@, b,). The Spoiler chooses
an ¢ € A in such a way that for the valuation o with a(z;) = a;, a(z,41) = a we
have

Rl airy L oagpp

Ao FE wpp1piqi 4 Tagape

2[7 o ): Tn+1P292 \l/ Tp4+1P3 (1)

2, o ): Tpp1 PRGE 4 2272

where all these constraints are in Piifn),n-l-l (see Figure 2). Hence, the Duplicator has
to find an element b € B, such that for the variable valuation § with 3(z;) = b; and
B(xn41) = b the same formulae hold in B, 3. The problem is that the conjunction of
these constraints implies, in every model of CFT,

TIriqr o qgE L 2ary (2)

Hence, in order to satisfy (1) in 9B, 3, (2) has to be satisfied in B, 3. But the length
of r1q1---qr may be much greater than 2 * ¢»(m). The only thing we can say is
that we don’t have to care about “cycles” in (1), that is we may assume that every
pi¢; # p;q; it © # j. Since there are less than cardina]ity(qb)l”(m)"'l many different
¢-paths of length at most ¢ (m), the length of riqy ---qx is certainly smaller than
P(m) + P (m) * cardinality(¢)¢(m)+1. Since a co-reference x171qy - - qx | xar9 entails
for every path r € Fea* the co-reference x1r1¢q - - - g1 L x9r2r and we want to consider
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Figure 2: Example of an induced co-reference constraints for n = 2. The induced
constraint is x171¢1g2 | xors.

extensions r of length less than 1 (m), we take this recursion equation in order to

define :

P(0) = 1
W(m+1) = 2x(m)+ ¥(m)* cardinality(¢)?" ! 41

Hence, we can formulate the following requirement for the Duplicator:

If there are still m rounds to play after completion of this move, make
sure that the sequence is true up to ¥ (m).

Since 1(0) = 1, and since a 1-true sequence is a partial isomorphism, this will guar-
antee that the Duplicator wins.

5.3 Path Constraints and Solved Forms

The following lemma gives the connection between satisfiable sets of path constraints
and solved forms.

Lemma 8 Let P C P;rg;} be a set of path constraints such that 3z P is satisfiable in

CFET. Then there is a rooted solved form S,(z,y) with

1. CFTEVa (P 35 5)
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2. for every y € y there is a p € ¢<! such that |zp|s = y;

3. Axp € P, apF € P or xp |l xq € P implies Alxp|ls € S, |zp|sF € S or
|epls = |zq|s, respectively.

Proof: Considering P as a conjunction of existentially quantified solved forms, we
first move all quantifier to the outside while renaming variables to avoid capture. We
obtain an equivalent formula ¢ of the form J3v M, where M is a conjunction of atomic
formulae. Then we rewrite () with the following rule until we obtain a normal form:

v, v (yfoAyfz A w)
v (yfz AN wlz/v])

where v € v,and where w[z/v] is the result of replacing every occurrence of v in w
by z. The rewriting is obviously terminating since the size of the formula is reduced
in every step. Both operations are equivalence transformations in CFT that do not
change the set of free variables.

(3)

Let N be the normal form of ¢, and suppose that N is not a solved form. By
Lemma 2, N either contains a clash or a subformula yfz; A yfzy where 2y # z;.
The existence of a clash contradicts the satisfiability of . In the second case, since
var(N) = {a}, at least one of z; and z; must be existentially quantified, hence the
rewriting rule (3) applies and N cannot be in normal form.

For the second claim, note that |ap|s = y is equivalent to CFT = S — zpy. Hence,
we have to show that for every y € 7 there is a p € ¢=! such that CFT |= S — zpy.
This claim holds trivially for the initial formula M. Since the claim is conserved
during the application of the rewrite rule (3), it holds also for S.

O
For example, the set of path constraints {zff | 2g, Azgg} is equivalent to

Jyi, y2, ys (2 fyr A xgya A yi fya A yagys A Ays)
We have y; = |2 f|s, y2 = |2g|s, and y3 = [2gg|s.

Proposition 9 Let S, be a rooted solved form, such that all variables in var(S;) have
a depth smaller than 1, and let v = var(S) L {z}. Then there is a set P C Priq (11,
such that CFT =V (305 < P).

Proof: We choose for every y € var(S;) a path p, € [y]s, of minimal length, and
define

P=Aapyflap. |yfz € S:tU{Aap, | Ay € Sp} U{ap, F |yl € S;} O
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6 Completeness of CFT

Theorem 10 The theory CFT is complete.

To simplify notation, we write o for some valuation in & with a(z;) = a; for 1 <i <n
and a(z,41) = @, and 3’ for some valuation in B with 5'(z;) = b;. In the following,
we take the variable z instead of x,4;. Hence, o and (' represent the sequence
constructed so far plus the choice of the Spoiler. It is now the Duplicator’s task to
find a  extending 4’ to x.

Since (a1,01), ..., (an,by) is true up to ¢(m + 1), we know for any w € Py, that
Ao | w iff B, # = w. Hence, in order to find an element b € B as required, we
have only to care for the constraints which involve 2. We distinguish between those
path constraints which involve z only (the internal constraints), and those which link
x with some other variable z; (the external constraints).

It = {w(z) € Pypny gt | % o | w)

I= = {~w(@) € Pypnynpr | & o F —w}
Et = {w(@, i) € Pyt | Ao w}
EZ = {~w(z,2) € Pypnyng | Ao —~w}

Note that EX (FZ) consists of (negated) co-reference constraints only, we use the
subscript “=" to emphasize this. We have to find some b € B such that for g :=
G'[x — b] we have

B,BE=ITANEIANT ANEZ

Theorem 10 is a consequence of the following lemma, which we will prove in the next
subsection:

Lemma 11 Let (a1,by), ..., (an,b,) be (o, ¢)-true up to (m+1) and a € A. Then
Zn)

there exists a formula A(z,z1,...,x,), such that
B, £ A (4)
B, E Va (A= (ITANEIAT ANED) (5)

Proof of Theorem 10: By Lemma 11, the Duplicator has a strategy that guar-
antees the constructed sequence to be true up to (m) if there are still m rounds to
play. This is, by Proposition 7, a winning strategy. a
6.1 Proof of Lemma 11

6.1.1 Induced Co-references

By Lemma 8, there is a solved form R(z,v) with CFT |= I't <+ 3v R. Note that some
of the variables of R are already completely determined by the valuation of the z;’s in
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combination with the external co-references in EX. These variables are at least those
z € var(R) with the property that |zp|r = z and zp | z;¢ € EZ for some z;,¢. As
the discussion on induced co-references in Section 5.2 (see (1) and Figure 2) shows,
these are not the only variables uniquely determined by the valuation of the z;’s.

In this section we therefore define the notion of an induced co-reference, and we show
that the induced co-references can be reduced to co-references in Py(,,41),, Which
are satisfied by %I, o and henceforth are also satisfied by B, 3.

Definition 8 Let IT and EX be given as described. A co-reference sequence is a
sequence of path constraints of the form

iy lapr € EX
eprqy Lapy € I
rpaga Laps € 1Y (6)

Tprqr L arg € I

A co-reference sequence is called cycle-free if piqp # ppqp for every 1 <1 < U’ < k.
The external co-reference induced by (6) is

Tiriqy - gk T,

Proposition 12 Let x;r18] xry be an external co-reference induced by a co-reference
sequence. Then there exists an external co-reference z;r1s' | xry that is induced by a
cycle-free co-reference sequence.

Proof: Let

Seq = (Seqg, ..., Seqy) = (z;r1 L xpr, zpigi L xpa, xpaga L aps, .., TPrqr | 2ro)

be a co-reference sequence of minimal length that induces x;r1s| ary for some s, that
is s=q,...,q and assume that Seq is not cycle-free. Hence, there are [ < I’ such
that p;jq; = ppgp. Then eliminating the elements Seqy, ..., Seq;_; from Seq results
in a shorter co-reference sequence that induces z;71¢1,...,q,qr41, .-, qx | zre, in
contradiction to the minimality of Seq. a

Proposition 13 Let a;r1q1 ...qlars be an external co-reference induced by a cycle-

free co-reference sequence. Then ro € ¢SYU™) . Furthermore, we have riqy ...q, €
pSH(m+1)=(d(m)+1)

Proof: Letnw = x;r1q1 ... qrlars be given as described, and let Seq = (Seqq, . . ., Seqy,)
be a cycle-free co-reference sequence that induces .
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Since the final element zprqy | 2ry of Seq is in /1, we obtain immediately that
re € (bﬁlll(m)‘

By definition of a co-reference sequence, r; € ¢<¥(™) and ¢ € ¢<¥(™) for every
[ = 1,...,k. There are less than cardina]ity(qb)l”(m)"'l many different ¢-paths of
length at most ¢ (m). Since Seq is cycle-free, this implies that the length k of Seq
is smaller than cardinality(¢)¢(m)+1. Hence, the length of r1¢; ...qx is smaller than
¥ (m) + v (m) * (cardinality(¢)" ™) = ¢(m 4 1) L (¢ (m) +1). D

Now we define

IC = {ax;q;lzp|x;q; ] xpis induced by a cycle-free co-reference sequence}
C = {xq; ) ze| z=|zp|p and z;q; L xp € IC}
Obviously, all variables in var(C)\{z1,...,2,} are variables of R that are uniquely

determined in v R A EX by the valuation of the x,’s.

Proposition 14 Let xplxq € IT be a path constraint such that there is some prefix
P of p with |xp'|r € var(C). Then |zq|r € var(C).

Proof: Let ap | xq € I and let p = p'p” such that |zp'|p € var(C). Hence,
there are some wx;, ¢; such that z;¢; | #p’ is in IC. Let Seq be a co-reference sequence
that induces x;¢; | xp’. Then appending zp | xqg = xp'p” | 2¢ to Seq produces a
co-reference sequence that induces z;q;p” | xq. Proposition 12 shows that there is an
external co-reference z;¢' | ¢ that is induced by an cycle-free co-reference sequence.
Hence, |2¢|p € var(C). O

6.1.2 Definition of A(z) and Proof of Lemma 11 (4)

We could now already show a weaker version of Lemma 11, where only It A EX are
considered, by defining A(z) = 3v (R A C'). We will not prove this but move on to
the definition of a A which also entails I~ A FZ.

To illustrate the idea, assume that —Axzf € I~, where |z f|gp = y. If R does not
contain a label constraint for y, then we can extend R by a label constraint By where
B ¢ 0. The fact that we have introduced a new label constraint which (possibly)
does not hold in %, o does not hurt at all, since we only care for the labels in the finite
subset o. The point is that, since by axiom scheme (S) different label constraints are
pairwise incompatible, any label constraint Ay with A € ¢ is now disentailed. In this
way, we can use positive constraints to enforce some negative constraints.

In the first step, we extend R to a solved form .S such that every variable from
var(S) L var(C) carries an arity constraint. Let h be some feature not contained
in ¢, and let Y = var(R) L var(C'). For every y € Y let

F, = {f]|yfv € R for some v € var(R)}
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be the set of features defined on y in R. Now we define

Yoa = {y €Y | R contains no arity constraint for y}
S = RA N y(F,U{h})
y€Yna

In the next step, we extend S to S’ such that for all y € YV, if yF € S’, then for every
f € F there is a variable z such that yfz € S’, and such that every variable from
var(S’) L var(C') carries an arity constraint.

M = {(y,/)HlyeY, y{...,f,...} € Rand forall v € var(R) : yfv ¢ S}
S = SA N\ WA

(y,f)EM v new

Let V = var(S’) L var(C). In the last step we extend S’ to a determinant 7', such
that var(T) L var(C') C det(1'). We choose for every variable y € V a label A, € o
such that for all y € V:

o Ay # A, forall zeV L{y},
o forall p € (GU{R)SYHDH and 1 < i < n: B, 5 E -~Ayzip

This is possible since we assume an infinite supply of labels and features. We define

Y,.s = {y €V |S contains no label constraint for y}
T = S'A /\ Ayy
YE€Yns

Finally, we define y = var(T) L {z} and
A:=3y(T'AC)
Proposition 15 9B, 5’ = Jz A.

Proof: Let Ty be the greatest subformula of 7" with var(Tqe;) C var(C'), and let
Tindet be the rest of T'. By definition of T and by Proposition 14, the formula T, qet is
a determinant with con(Tindet) N var(C' A Tger) = §. By axiom scheme (D), we know
that

CFT ): dy (Tdet A C) — dy (Tindet A Tet A C)

We show that B, 5’ = 3z (C'A Tqet), where z = var(Tget) C y. Let Cer be a subset
of €' containing for every z € Z exactly one constraint ze | a;p;. Let [4er be the

modification of 3’ on z with the property that 9B, et |E Coef-

We claim that 9B, Bget = Taet A C. For the path constraints ze | x;q; € C' L Cyet,
B, Baet = z€l x;¢; if and only if B, 5" |= 2;¢; L 2;p;, where ze | 2;p; € Cger is the path
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constraint defining the valuation of z. Now we know &, o = z;p; | z;¢;, since both
zelx;q; and ze| z;p; are induced external co-reference constraints. By Proposition 13,
we know that x;p; | ©;¢; € Py(m41)n, which implies 9B, B E aipidxjg;.

The proof for the constraints in Tyt is analogous. a

6.1.3 Proof of Lemma 11 (5)

We split the proof into several propositions, according to the kind of constraints
that are to be entailed. First we look at the easy ones: positive constraints (Propo-
sition 16), negated path constraints where the path itself is not defined (Proposi-
tion 17), negated path constraints where the path (or both in case of a co-reference)
lead to a variable in var(C') (Proposition 18) and negative label and arity constraints
(Proposition 19, if none of the two previous propositions applies).

The difficult case is the one of negated co-reference constraints. We first show, in
Lemma 20, that we did not by accident introduce external co-references in the con-
struction of T'. Using this proposition, we can finally show that the negated external
(Proposition 21) and internal (Proposition 22) are implied.

Proposition 16 B, 3 EVz (A — (It A EL)).

Proof: For a constraint ap | x;¢; the claim follows since (zp | z;¢;) is a cycle-
free induced external co-reference sequence, and henceforth contained in IC. For the
constraints in I this follows from the definition of R and from R C T. a

Proposition 17 Let # € I~ U FZ contain xp, where —xpl € I~. Then 9B,5" =
Vo (A — 7).

Proof: Let —zpl € 1. Let ¢f be the unique prefix of p such that zql € It (¢
might be €), and =z (qf)} € I~.

If R contains an arity constraint yF for y = |zq|gp = |zq|r, then f ¢ F since
—zqfl € I~. Since by construction yF' € T, this implies CFT = Vz (A — —zqfl)
and henceforth CF'T | Vz (A — 7).

If R contains no arity constraint yF for y = |2q|g = |z¢|r, then we have added in T
an arity constraint y(F,U{h}) with h different from f. Now F, = {¢ | Iy’ : ygy’ € R}
cannot contain f since —aqf] € I~. Hence, we have again CFT E V& (A — —zqf])
and therefore CFT | Vo (A — 7). o

Proposition 18 Let # € I~ U FZ such that for every p, if xp occurs in © then
|zp|r € var(C). Then B, 5 = Vo (A — 7).
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Proof: Let # = —ap | xq € I~ such that such that both |zp|r € var(C) and
|zq|r € var(C'). Let zp | z;p; € IC and zq | z;p; € IC be two external co-references
for zp and zq, respectively.

Since A, o |= —zplzq and A, o = IC, we get A, o = —a;p; | 2;¢;. By Proposition 13,
i L 2G5 € Py(my1)n, hence B, 3" | —ap; | xjq;. Since CFT |= Vo (A — (ap
xipi N xqla;p;)), we obtain B, 5" E Vo (A — —ap | zq).

The proof for the other kinds of constraints is analogous. a

Proposition 19 Let 7 € I~ be of the form —Axp or mxpl such that xpl € IT and
|ep|p & var(C). Then B |=Va (A — 7).

Proof: Let —Axp € I~ such that apl € It (the proof for arity constraints is
analogous). Hence, |zp|pr is defined.

Since —mAxzp € 17, we know that R contains no label constraint Ay for y = |ap|r =
|zp|r. Hence, either R contains a label-constraint By with B # A, which implies
that T contains By, or we have added a By in T with B # A. In any case, this
implies CFT | Vz (A — —Azp). ]

Lemma 20 Lety € var(T) Lvar(C). Then for every z;q; L xq € IC we have B, §' =
Vvar(T) (T'ANC — —ye | z;q;).

Proof: Note that 2;¢;lzq € IC implies by Proposition 13 that ¢; € ¢S¥(mT1)=((m)+1),
Let & be the greatest rooted solved form which is rooted by y and contained in T,
and let |zp|g = y. Furthermore, let for some new variable y', o, = afy’ — a(z;)¢?]
(hence, A, v, = y'e | 2;¢;). We have the following cases:

1. 0 € R. By the way T was constructed, we cannot have added an arity constraint
or a feature constraint in 7" without adding a label constraint. Hence, 6 ¢ R
implies that we have added a label constraint Az in 7" for some z ¢ var(C') such
that

for all r' € (pU {R)S¥(m+D+1 . 9B 5" = ~Awr'. (7)

Now, Az in 6 implies

B, 5 = Ve (A — Azxpr)

for some r € (¢ U {h})SYU)F with |yr|s = 2. Since g1 € (¢ U {h})S¥(m+D+1
(7) implies
%7ﬁ/ ): _‘Aﬂﬁif]irv

which implies 9B, 5’ E Vo (A — —aprla;qr), hence B, 3’ = Va (A — —aplagi).

2. 6§ C R. Let v = var(d) L {y}. This case is divided into the following cases:
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(a) A, o £ y(y' =y AF0é). Since § C R, CFT = Va(JuR + I'T) with u =
var(R) L{z} and IT C Py(m),{x}, there is by Lemma 8 and Proposition 9
a finite set of path constraints P C Py ()41, such that

CFT =Yy (366 & P)

Since A, ayr = Jy(y' = y A Fvd), we know that there is a path constraint
7 € P such that &, a = Jy(y =y A 7).
The first case is that 7 is of the form Ayr. Then

CFT Va2 (A — Azxpr).

Since a,y was the unique modification of « satisfying U, oy | v'e | 2;4;,
we get
A, o = —Axiqir.

Since ¢; € ¢SV HN=((m)+1) by Proposition 13 and r € ¢S¥MH we
know that Aw;qir € Pynq1),.- Hence, B, 3" | =Awx;qr, which implies
B, [ E Ve (A — —apr ] xiqr).
The proof for the other kinds of path constraints is analogous.

(b) A, ey = 3y(y' = y A3vd). Let Fv'8" be a fresh copy of Jvé such that y is
renamed to y'. Then y =y’ does not clash with 6 A §" and 2, oy |= F0'¢.
Since y ¢ var(C'), we have U, a = —ap | z;¢;. Hence, 6 C R implies

o kE=Vy, v (eplye ANvigi L y'e = -y =y’ AFvé AT’ (8)

Now (8) implies by Lemma 5 that there is a path r € ¢<¥(") such that
lyr|s ¢ det(d) and

2[7 « ): vy7 y/ ($p \l/ yeN x:q; \l/ ylé — yr \l/ y/r)v

Since z = |yr|s is an undetermined variable in 7', and all undetermined
variables in 1" are contained in var(C'), we know that there is a z;p; | z€ €
C'. Hence,

A, o = —ajp; L zigr

and
CFTEVz (A — (zprl ziqr < x;p; L ziqr)).

Now Proposition 13 shows p; € pSUH) and ¢r € ¢SYmHD) | Hence,
B, ' = —a;p; L aigir, hence B, f' =V (A — —apr | zgr). O

Proposition 21 Let © € EZ be of the form —ap | x;q;. Then B, 5" = Vo (A = 7).
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Proof: If /A, o | —z¢;), then the claim follows since (a;,b;)i=1,. is true up to
(m+1). Otherwise, let y’ be a new variable, and assume wlog. that 2, « = y'e ] z;¢;.
If A, o = —apl, the claim follows by Proposition 17. Otherwise, let y = |ap|p. If
y € var(C), then thereis a apla;¢’ € IC. Hence, A, a = —2;¢;l2 ¢, and consequently
B, 0" E —xiq; | x;q¢. Hence, B, = Ve (A — —xq; | ap). If y & var(C'), then the

proof follows from Lemma 20. a
Proposition 22 Let 7 € I~ be of the form —ap | xq. Then B,3 = Ve (A = ).

Proof: 1If —zpl € I~ or —aql € I, then the claim follows from Proposition 17.
Otherwise, let y = |zp|p and 3’ = |zq|r. If y = 3’ clashes with R, then the claim
follows immediately from Proposition 4.

Otherwise, let R’ be R extended by all feature constraints vfv’ € T with vfv’ € R.
Note that for every y € var(R'), y ¢ det(R’) implies that either there is no label
constraint Ay for y in R’, or there is no arity constraint yF for y in R’. Now y = ¢/
does not clash with R’. Hence, there is by Lemma 5 a path r, z = |yr|gs, 2" = |¥'r|r,
z # Z', such that one of z and 2’ is not in det(R’), and ™A, a = Yy (R’ — z # 2').
Hence, CFT EVy (R'Az # 2/ — —apl 2q).

Let p' € ¢S¥0MH! and ¢ € ¢<¥™)+! he minimal paths with z = |zp/|p and 2/ =
|2¢'|rr, respectively. Note that if z € var(R) (resp. 2’ € var(R)),then len(p’) < (m)
(resp. len(¢') < ¥(m)).

We have the following cases:

1. z,2" € var(C'). Then the claim follows from Proposition 18

2. z € var(C'), 2/ ¢ var(C). Hence, thereis a z;¢; lap’ € IC, and A, o |E —z;q; L 2q’.
By Lemma 20, 8, 5’ = Vo (A — —z;¢; L 2¢'), and by construction of A we have
B, [ EVe (A — aiq; L ap'). Hence, B, 3 =V (A = —apl aq).

3. z,7 & var(C). Let wlog. z ¢ det(R’). If R contains no label constraint for z,
then we have added a label A for z in T which is different from the label for 2’
in 7. Hence, CFT = Va (A — (Azp’ A—Axq’)), which implies 9B, 5 = Va (A —
—ap' | zq').

A similar analysis applies if R contains no arity constraint for z. a

Now, (4) is Proposition 15, and (5) follows from Proposition 16, 17, 18, 19, 22 and 21.

7 Conclusion

We have proven the completeness of the feature theory CFT, which unifies the com-
pleteness results for ['T" [4] and for rational constructor trees [7, 17]. We feel that
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the use of features and path constraints significantly simplifies the logic of trees. The
same proof idea could be applied to F'T" (where we can always, by lack of arity pred-
icates, add predicates which enforce the inequality of all involved variables). We are
confident, that also in the case of FT' the technique of Ehrenfeucht-Fraissé Games
yields a simpler proof than the quantifier elimination given in [4].

We conclude with a comparison to other techniques, which have been recently em-
ployed for proving the completeness of tree axioms: Model Completeness, for the case
of finite trees over a finite constructor signature [25], and quantifier elimination for
CFT [2, 3].

The proof technique using model completeness is due to Abraham Robinson [20]. A
theory T is called model complete, if on the class of models of T, the substructure
relation coincides with the elementary substructure relation (which means that the
elements of a substructure 2 of B have in both structures the same first-order prop-
erties). Model completeness alone is independent of completeness, but if in addition
the theory T has an algebraic prime model, then model completeness implies com-
pleteness. For the completeness proof of Clarks Equality Theory, that is the axioms
of finite trees over a finite constructor signature, it is fairly obvious that the tree
structure itself is algebraically prime. To prove the model completeness of the the-
ory, the most convenient way is to show that if %l C 9B are models of the theory, then
any existential sentence in By is valid in Ay (the index A indicates, that we consider
all elements of A as additional constants).

Hence, there is a similarity to the technique of Ehrenfeucht-Fraissé Games, where
the additional constants from 2, which occur in an existential formula, correspond to
the given sequence (a;, b;); in the game, and the existential quantifiers correspond to
the Duplicators quest for an element. Nevertheless, it seems to be more difficult to
prove that arbitrary existential sentences are maintained, since we may have several
existential quantifiers, and since we cannot exploit an upper bound on the length of
“interesting chains”, as we did when playing the game. On the other hand, if we can
prove model completeness, we obtain additional insight about the theory.

Now let’s turn to the comparison of our proof with the quantifier elimination proof
done in [2, 3], which uses an overall structure similar than [17]. Clearly, we cannot
fully eliminate quantifiers. Hence, this is a quantifier elimination relative to a set of
formulae (called prime formulae), i.e., every CIF'I-formula ¢ can be transformed into
a Boolean combination of prime formulae.

The set of prime formulae consists of all existential quantified solved forms which are
rooted (i.e., all variables are reachable from the free variables). For the quantifier
elimination one has to show that the set of prime formulae satisfies certain proper-
ties. It must contain all atomic formulae, and must be closed under conjunction and
existential quantification. Furthermore, one has to show that for all prime formulae
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¢7¢17"'7¢n

Fa (A N\ =) Hepr \ F2( A=), 9)

and that for all prime formulae <, 1’ there exists a Boolean combination of prime
formulae & such that

Fz( A=¢) Hepp 0 (10)

(9) and (10) together allow for the elimination of one existential quantifier. A uni-
versal quantifier is eliminated by transforming V¢ into —=dz—¢.

The most difficult part is to prove (9), i.e., to show that

N\ Fe( A=) Eorr Fe(v A N\ ). (11)
To show this implication, for every (; a finite set of path constraints 11; is calculated

such that II; Hopp 8. In second step, ¢ is extended to a prime formula t.,; such
that

¢ext ): /\ _‘Hi-
=1

The construction of @.,; is similar to the construction of 7" in the proof of Lemma 11.

By and large, we can say that our proof contains the kernel of the quantifier elimi-
nation in [2, 3] (i.e., the construction of 1., for handling negative information), but
has a simpler overall structure since it avoids additional ballast. Examples are the
proof of the closure properties of prime formulae under conjunction and existential
quantification (which are not difficult but somewhat tedious) and the calculation of
a finite set of path constraints describing negative information (in general, there may
be an infinite set of path constraints entailed by a prime formula). The use of path
constraints is a technical tool in [2, 3], whereas their use in the proof described here
corresponds in a natural way to chains of relations. On the other hand, the quantifier
elimination in [2, 3] serves for a concrete decision method.
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