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constructor trees are often identi�ed with �nite ground terms, and they may comewith additional restrictions: There may be an arity function associating the numberof outgoing edges with the label of a node, or they may be additional sort restrictionswhich are conveniently expressed with tree automata [6].In this paper, we are not only interested in �nite trees but also in rational trees [9],that is in�nite trees with only �nitely many di�erent subtrees. Rational trees repre-sent cyclic data structures (see the last example in Figure 1 where a cyclic graph isused to depict an in�nite rational feature tree). Cyclic graphs could also be used torepresent cyclic data structures, but in this case special care has to be taken to avoidmultiple representations of the same data item, as it is for instance the case withdi�erent �nite automata describing the same regular language. In fact, rational treescould be identi�ed with equivalence classes (modulo renaming of states) of a certainkind of minimal �nite automata. However, generalizing �nite trees to rational treesleads to a simpler model than generalizing �nite trees to arbitrary �nite graphs. Inthe following, \trees" are always rational trees.Furthermore, we are interested in the situation that there is an in�nite supply ofsymbols. An instance of a symbolic computation system (e.g. a program) can useonly a �nite number of symbols as long as there are no operations generating newsymbols (this is the case for the systems considered in this paper, see [23] for anapproach incorporating operations on symbols). Hence, from a �nite program the�nite set of symbols used in this program could always be computed. However, aclosed world assumption (the knowledge about a �nite supply of symbols) is oftennot appropriate for symbolic computation systems since the set of data representedin a system may grow, and since in these systems incremental algorithms whichdeal with incomplete data speci�cations are of great importance. Hence, the formaltheories described below will be based on in�nite supplies of symbols.Feature trees are more convenient to use then constructor trees since they allow tochose symbolic names for discriminating the outgoing edges of a node (i.e., they arenested records). In contrast, constructor trees can be seen as nested arrays , theyrequire the user to keep track of what he had mind with the ith subtree of a tree.This di�erence might appear not very important at a �rst glance, since a compiler caneasily translate a given record scheme into an array scheme. In fact, the real di�erencelies only in the respective description languages associated with the two kinds of trees.In particular, the description languages of feature trees allows to express propertiesof trees without �xing a record scheme. Record descriptions have a long history inknowledge representation and in particular in computational linguistics, see [21] fora survey.The most important description language in the �eld of symbolic computation is �rst-order logic. An important paradigm in the �eld of symbolic computation, popularizedby Constraint Logic Programming [15], is the use of (a restricted sub-language of)�rst-order logic in combination with non-declarative formalisms. In this context, the2



�rst-order formulae are usually called constraints since their role is to restrict thepossible values of variables, which are shared among the constraints and the non-declarative formalism, by imposing some conditions. In this paper we use the termconstraint system as synonym for a �rst-order structure. For the user of a symboliccomputation system the most intuitive way to understand the constraint processingis to have this structure in mind, but for the system itself it is only the theory ofthe structure, that is the set of all its valid sentences, that counts. The constraintprocessing procedures like the tests for entailment and disentailment (see [22]) can beformulated as decision problems for fragments of the theory of a constraint system.In most of the cases it is not necessary to have a decision procedure for the completetheory. Decision procedures for complex formulae are however needed for decidingproperties of constraint systems, see for instance the motivating example of [8].When proving the decidability of the theory of a �rst-order structure one often showsthe completeness of some axiomatization of the theory. A complete axiomatizationof a theory T is a decidable subset of T such that every sentence of T can be derivedfrom it. In almost all of the cases, a complete axiomatization is described by a �niteset of syntactically simple formula schemata. A complete axiomatization T of thetheory of a structure A serves two purposes: First, by using any complete deductionmethod of �rst order logic we obtain a decision method for the theory of A, since forany sentence w, either w or its negation :w is a consequence T which will eventuallybe detected if we run two deduction machines in parallel. Second, T describes allthe structures which are elementarily equivalent to A, that is which have the sametheory, since by the completeness of T a structure B is elementarily equivalent to Ai� it is a model of T .The constraint system RT [5] of rational constructor trees is parameterized by a �-nite or in�nite functional (i.e., containing only function symbols) signature �. Theuniverse consists of all rational constructor trees with labels from �, subject to ar-ity restrictions. A function symbol f of arity n is interpreted as the function thatmaps trees t1; : : : ; tn to the new tree with root labeled f and edges from the rootto t1; : : : ; tn. Besides these functions, RT contains only the equality predicate :=.Complete axiomatizations of RT have been given independently in [7] for the case ofa �nite signature, and in [17] for both the case of a �nite and an in�nite signature.The most basic feature tree constraint system is the system FT [1]. For given in�nitesets of labels and features, its universe consists of the set of all rational feature treeswith node and edge decorations taken from the respective sets. The only predicatesare equality, a unary predicate Ax for every label symbol A, which holds if the rootof x has the label A, and a binary predicate xfy for every feature f , which holds ifthere is an edge decorated with f from the root of x to the root of y. A completeaxiomatization of FT has been given in [4].A comparison of the expressive power of RT and FT makes no sense since theiruniverses are di�erent. We therefore �x (only for the purpose of a comparison of the3



systems) a functional signature � containing in�nitely many functional symbols forevery arity, de�ne the set of labels to be � and choose the set of features to be theset of natural numbers. In this setup, the constructor trees are a proper subset of thefeature trees (the edges of a constructor tree can be seen as consecutively numbered).Finally, we extend RT to a new system RT+ which has as universe the set of allfeature trees, and where the functions are de�ned as in RT but may take arbitraryfeature trees as input.The two constraint systems RT+ and FT are not comparable in power. The FT -constraint Ax, where the arity of A is n, can be expressed in RT+ by 9y1; : : : ; yn x :=A(y1; : : : ; yn). The FT -constraint xny, however, cannot be described in RT+ since itrequires an in�nite disjunction:_arity(A)�n 9y1; : : : ; yarity(A) x := A(y1; : : : ; yn�1; y; yn+1; : : : ; yarity(A))On the other hand, a RT+-constraint like x := f(y1; : : : ; yn) can not be expressed inFT. Note that Ax ^ x1y1 ^ : : :^ xnynis not su�cient since it allows x to have additional features. In fact [2] shows thatthere is no FT constraint denoting exactly one tree.The constraint system CFT [22] extends FT by a unary predicate xff1; : : : ; fng forevery �nite set ff1; : : : ; fng of features. Note that a RT+-constraint x := f(y1; : : : ; yncan now be expressed in CFT byAx ^ x1y1 ^ : : :^ xnyn ^ xf1; : : : ; ngA axiomatization of CFT has been given in [22] and �rst proven complete in [3].A feature constraint system F with �rst-class features, that is allowing quanti�cationover features, has been investigated in [24]. F is a proper extension of CFT buthas an undecidable theory. A proper extension FTX of CFT which permits only alimited quanti�cation over features and which enjoys a decidable theory has howeverbeen presented in [23].The above mentioned completeness results for axiomatizations of feature constraintstructures have been obtained by quanti�er elimination: The proofs for FT [4] andCFT [3] use a similar structure as [17], while similar ideas as in [7] have been used forFTX [23]. In this paper we give an alternative completeness proof for the axiomati-zation of CFT. Our completeness proof uses Fra��ss�e's theorem and its game-theoreticformulation due to Ehrenfeucht. This method employs an argument concerning chainsof relations between elements in a structure. Feature logic is well suited for such anargument, since chains of relations are in a natural way expressed as so-called pathconstraints. Path constraints, like x(f1 � � �fn)y, can be de�ned in FT byx(f1 � � �fn)y , 9x1; : : : ; xn�1 (xf1x1 ^ x1f2x2 ^ : : :^ xn�1fny)4



In the �eld of term rewriting systems (see [10] for a survey), the notion of an occur-rence in a term is well established. In the context of feature logic, there is no need forintroducing such a meta-notation, since we can use the path constraints which are animmediate o�spring of the base language. In the context of �nite constructor trees,Hodges [14] observes that the use of selector functions simpli�es the completenessproof of an axiomatization. His completeness proof for an axiomatization of trees inthe language of RT is by quanti�er elimination.Another well-known model-theoretic method for proving the completeness of a theoryis the method of model completeness, due to Abraham Robinson [20, 16]. Recently,this method has been used to show the completeness of the theory of �nite trees overa �nite constructor signature [25].Both methods for proving the completeness of CFT have their merits. The quanti�erelimination used in [3] serves for a concrete decision algorithm, whereas the proofpresented here is much simpler. Thus, we think our paper describes a method forproving completeness which can be more easily adapted to other variants of featurelogic than the method of quanti�er elimination. We will come back to a comparisonof the di�erent methods in Section 7.After summarizing some background material in the next section, Section 3 brie
yreviews the theory CFT from [22] and some of its basic properties. Section 4 reviewsthe method of Fra��ss�e [12] and Ehrenfeucht [11]. In Section 5, we discuss the pathconstraints we need for the formulation of the strategy. The core of the paper isSection 6, where we prove the completeness of CFT with the method of Section 4.We conclude with a brief comparison to other methods.2 PreliminariesWe assume in�nite sets Lab of label symbols and Fea of feature symbols . From this,we de�ne the following �rst-order signature:� a unary label predicate for every A 2 Lab, written as Ax,� a binary feature predicate for every f 2 Fea, written as xfy,� a unary arity predicate for every �nite set F � Fea, written as xF ,� the equality predicate, written as x := y.A path is a word (i.e., a �nite, possibly empty sequence) over the set of all features.The symbol � denotes the empty path, which satis�es �p = p = p� for every path p.A path p is called a pre�x of a path q if there exists a path p0 such that pp0 = q.We also assume an in�nite alphabet of variables and adopt the convention that x,y, z always denote variables. Under our signature, every term is a variable, and an5



atomic formula is either a feature constraint xfy, a label constraint Ax, an arityconstraint xF or an equation x := y. Compound formulae are obtained as usual. Weuse ~9� [~8�] to denote the existential [universal] closure of a formula �. Moreover,var(�) is taken to denote the set of all variables that occur free in a formula �.Structures and satisfaction of formulae are de�ned as usual. A valuation � into astructure A is a total function from the set of all variables into A. If � is a valuationinto A, x a variable and a 2 A, then �[x 7! a] denotes the valuation which maps xto a and coincides with � for all other variables. We use �A to denote the set of allvaluations � such that A; � j= �. A theory is a set of closed formulae. A model ofa theory is a structure that satis�es every formulae of the theory. A formula � is aconsequence of a theory T (T j= �) if ~8� is valid in every model of T . A formula �entails a formula  in a theory T (� j=T  ) if �A �  A for every model A of T .A theory T is complete if for every closed formula � either � or :� is a consequenceof T . By the well-known completeness theorem of the predicate calculus, the set ofconsequences of a recursively enumerable theory is again recursively enumerable. Astandard argument of recursion theory yields that for any complete and recursivelyenumerable theory T its set of consequences is decidable: To check whether a closedformula � is a consequence of T , enumerate the set of consequences of T . Since Tis complete, either � or :� shows up in the enumeration. In the former case � is aconsequence of T , in the latter case it is not.The theory of a �rst-order structure A is the set of closed �rst-order formulae whichare valid in A. Two �rst-order structures A, B are elementarily equivalent if they havethe same theory. Note that a theory is complete i� all its models are elementarilyequivalent. Furthermore, if T is a complete theory and A is a model of T , then thetheory of A coincides with the set of consequences of T . If in addition T is recursivelyenumerable, then the theory of A is decidable.3 The Theory CFT3.1 ModelsWe consider two structures of the signature introduced in the last section. Theuniverse of the structure I consists of all feature trees. A feature tree is a partialfunction t : Fea? ! Lab whose domain is pre�x-closed , i.e., if pq 2 dom(t), thenp 2 dom(t). The subtree p�1t of a feature tree t at a path p 2 dom(t) is the featuretree de�ned by (in relational notation)p�1t := f(q; A) j (pq; A) 2 tg:A feature tree t is called a subtree of a feature tree r if t is a subtree of r at somepath p 2 dom(r). 6



yval
xval yval2 pointcircle2 7centerradius typenat or0 1sdef1 22 3pointxval yval xval2 redpointname 3 color

Figure 1: Examples of (in fact rational) feature trees.The universe of the structure R consists of all rational feature trees. A feature tree tis called rational if (1) t has only �nitely many subtrees and (2) t is �nitely branching(i.e., for every p 2 dom(t), the set fpf 2 dom(t) j f 2 Feag is �nite).The relational symbols are interpreted in I as follows:� I; � j= Ax i� �(x) has root label A,� I; � j= xfy i� f 2 dom(�(x)) and �(y) = f�1�(x) (i.e., �(y) is the subtree of�(x) at f), and� I; � j= xff1; : : : ; fng if dom(�(x)) \ Fea = ff1; : : : ; fng (i.e., �(x) has exactlythe features f1; : : : ; fn at its root).The interpretation of the relational symbols in R is the restriction of the interpreta-tion in I to the set of rational feature trees.3.2 AxiomsThe theory CFT consists of �ve axiom schemes. The �rst set of axioms expressesthat labels are disjoint, that features are functional and that an arity constraint �xesthe set of features at the root of a feature tree(S) 8x (Ax ^Bx ! ?) A 6= B(F) 8x; y; z (xfy ^ xfz ! y := z)(A1) 8x; y (xF ^ xfy ! ?) f 62 F(A2) 8x (xF ! 9y xfy) x di�erent from y; f 2 F7



For the last axiom scheme (D) we need the following notion:De�nition 1 (Determinant) A simple determinant is a conjunction of formulaeAx ^ xff1; : : : ; fng ^ xf1y1 ^ : : :^ xfnynwhere the variables x; y1; : : : ; yn are not required to be distinct. We de�ne det(d) :=fxg for a simple determinant as above. A determinant � is a conjunction of simpledeterminants d1 ^ : : : ^ dn such that the det(di) \ det(dj) = ; for i 6= j. We de�nedet(�) := det(d1) [ : : :[ det(dn) to be the set of variables determined by �.Using the quanti�er 9!�x 	 with the meaning \there exists exactly one tuple �x suchthat 	", we can formulate the last axiom scheme:(D) 8(var(�)� det(�)) 9!det(�) � � is a determinantAn instance of axiom scheme (D) is8z 9!x; y ( Ax ^ xff; gg ^ xfy ^ xgz^By ^ yff; g; hg ^ yfz ^ ygy ^ yhx)Proposition 1 Both I and R are models of CFT.3.3 Solved FormsDe�nition 2 (Solved form) A subformula of a determinant is called a solved form.A variable x is called constrained in a solved form S if S contains a constraint of theform Ax, xF or xfy. The set of variables constrained by S is denoted as con(S).Hence, for a determinant �, con(�) = det(�). Given a solved form S, we denote withdet(S) the set det(�S), where �S is the largest subset of S that is a determinant. Inthe following, we use the letters R; S; T : : : to denote solved forms. The proof of thefollowing lemma is straightforward (see also [22]):Lemma 2 Let S be an equation-free conjunction of atomic formulae. Then S is asolved form i�1. S is clash-free, that is it contains no subformula of the form Ay ^ By (whereA 6= B), yF ^ yG (where F 6= G) or yF ^ yfz (where f 62 F ) and2. xfy; xfz 2 S implies that y equals z.Proposition 3 For every solved form S we have8(var(S)� con(S)) 9con(S) S8



Note that the existence is no longer unique in case of a solved form.De�nition 3 (Reachability) Given a solved form S, a variable x 2 var(S) and apath p 2 Fea�, we de�ne jxpjS inductively asjx�jS := xjxpf jS := 8<: unde�ned if jxpjS is unde�ned, or if jxpjS = yand S contains no constraint of the form yfzz if jxpjS = y and yfz 2 SA variable y 2 var(S) is reachable from some x 2 var(S) if there is a path p suchthat jxpjS = y.De�nition 4 (Rooted solved form) A rooted solved form Sx is a solved form Swith a distinguished variable x 2 var(S), such that for every y 2 var(S) there is apath p with jxpjS = y. A path p is called acyclic in a rooted solved form Sx if for allpre�xes q1 6= q2 of p we have jxq1jS 6= jxq2jS. For a rooted solved form Sx, the set ofpaths to a variable y 2 var(S) is[y]Sx := fp 2 Fea� j jxpjS = y and p is acyclic in SxgThe length of a minimal path in [y]Sx is called the depth of y in the rooted solvedform Sx.Note that [y]Sx is always non-empty and �nite, and that the length of the paths in[y]Sx is bounded by the number of di�erent variables occurring in S.3.4 Solved Forms and InequationsDe�nition 5 (Clash) An equation y1 := y2 clashes with a solved form S, wherey1; y2 2 var(S), if there is a path p 2 Fea�, jy1pjS = z1, jy2pjS = z2, and� A1z1 ^A2z2 � S with A1 6= A2,� or z1F1 ^ z2F2 � S with F1 6= F2.Proposition 4 If y := y0 clashes with S, then CFT j= S ! y 6 := y0.Lemma 5 Let S be a solved form, y1; y2 2 var(S), and letFr(y1; y2) = f(z1; z2) j ex. p 2 Fea� : ( jy1pjS = z1 ^ jy2pjS = z2^ z1 6= z2 ^ fz1; z2g 6� det(S) )gIf y1 := y2 does not clash with S, thenCFT j= ~8�S ! �y1 6 := y2 $ _(z1;z2)2Fr(y1;y2) z1 6 := z2��9



Proof: This follows immediately from axiom scheme (D). 2In the uni�cation theory for �nite terms, an analogous concept is known. There, asatis�able equation is equivalent to its frontier , that is the conjunction of equationsobtained by maximal decomposition [19].As an example of Lemma 5, considerS := Ax ^ xff; gg ^ xfy ^ xgz ^Bz ^ zfhg ^ yhx^ Ax0 ^ x0ff; gg ^ x0fy0 ^ x0gz0 ^By0 ^ y0fhg ^ y0hz0Note that x := x0 does not clash with S. By Lemma 5,CFT j= ~8�S ! �x 6 := x0 $ (y 6 := y0 _ z 6 := z0 _ x 6 := z0)��As another example, considerS0 = Ax ^ xffg ^ xfx ^Ax0 ^ x0ffg ^ x0fx0Since Fr(x; x0) is empty, we get CFT j= (S 0 ! (x 6 := x0 $ false)). If we replace in S 0however Ax by Bx for some B 6= A, then x := x0 clashes with S 0 and the lemma doesnot apply.4 Ehrenfeucht-Fra��ss�e GamesFra��ss�e [12] gives a de�nition of elementary equivalence in terms of mappings betweenstructures. In this section we just summarize this method, more detailed expositionscan be found e.g. in [13, 18].Any two isomorphic structures are elementarily equivalent, but there are of courseelementarily equivalent structures which are not isomorphic. Hence, to characterizeelementary equivalence algebraically we have to weaken the notion of isomorphism.Let A and B be two structures of a signature � which consists of (possibly in�nitelymany) relation symbols only1, and let � be a subsignature of �. A �nite sequence(ai; bi)1�i�n in (A�B)� is a partial � -isomorphism if for every A-valuation � with�(xi) = ai, every B-valuation � with �(xi) = bi and every atomic � -formula w withvar(w) � fx1; : : : ; xng we have A; � j= w , B; � j= w. Note that, in the contextof predicate logic with equality, w might be an equation. In this case, a partialisomorphism is always injective.Instead of Fra��ss�e's original theorem we use here the game-theoretic reformulationdue to Ehrenfeucht [11]. The game is played on two structures A and B by twoplayers, the Spoiler and the Duplicator. In the beginning, the Spoiler chooses a �nite1We take this assumption just for simplicity, the de�nition extends to arbitrary signatures.10



subsignature2 � � � and the number n of rounds to play. The aim of the Duplicatoris to build a partial � -isomorphism of length n. In round i, the Spoiler chooses one ofthe two structures together with an element ai, resp. bi. Then, the Duplicator choosesan element bi, resp. ai in the other structure. Both players always know the presentstate of the game. The Duplicator wins if at the end the sequence (ai; bi)1�i�n is apartial � -isomorphism, otherwise the Spoiler wins.Theorem 6 ([Ehrenfeucht, 1961]) A and B are elementarily equivalent i� theDuplicator has a winning strategy for the Ehrenfeucht-Fra��ss�e game on A;B.As an example, take the structure I from Section 3 and the structure F, which isthe restriction of I to those feature trees which have a �nite domain. Note that F isnot a model of CFT since axiom scheme (D) is violated. The Spoiler can play theEhrenfeucht-Fra��ss�e game on I;F in such a way that the Duplicator looses. First,she chooses the �nite subsignature consisting of the features f; g only (no label orarity predicates) and �xes the number of rounds to 2. In the �rst round, she choosesthe element a1 from I to be the in�nite tree with domain (fg)� [ (fg)�f whichmaps every node to the label A (note that it does not matter that A is not in the�nite subsignature). No matter what the choice of the Duplicator from F for b1 is, theSpoiler will choose a2 to be the in�nite tree with domain (gf)�[(gf)�g, also mappingevery node to A. Now we have for �(x1) = a1; �(x2) = a2 that I; � j= x1fx2^x2gx1,but there is no B-valuation � with �(x1) = b1, such that F; � j= x1fx2 ^ x2gx1.Hence, the Duplicator is looses.With the structures I and R, on the other hand, the Duplicator has a winningstrategy. This strategy will be subject of the next sections.5 Path Constraints5.1 Motivation and De�nitionFor the rest of the paper, we assume two �xed structures A and B of CFT.How can we �nd a winning strategy for the Duplicator? Suppose, the Spoiler has�xed n and the �nite subsignature. We may assume that the arity predicates ofthe subsignature are exactly the sets of features in the subsignature, that is the�nite subsignature is given as (�; �) � (Lab;Fea). At every stage of the game, thesequence constructed so far must of course be a partial (�; �)-isomorphism (otherwise,the Duplicator looses immediately), but this is not su�cient, since the Duplicator hasto take into account all possible future moves of the Spoiler. A clever move of theSpoiler is to choose an element of a structure which is in relation to many elements2Having the Spoiler choose the �nite subsignature simpli�es the formulation in the case of anin�nite signature. This idea is due to Gert Smolka.11



which are already in the game. Hence, the Duplicator has to watch for chains ofrelations between the chosen elements that may occur in the future moves. She may,however, exploit the knowledge of n and (�; �) to restrict the set of relevant chains.In the context of CFT, there is a special class of chains of relations that are expressedas path constraints [4]. These are existentially quanti�ed solved forms of a restrictedformat. As will be explained later, the existentially quanti�ed variables represent insome sense the possible moves of the spoiler.De�nition 6 (Path Constraints) Path constraints are additional atomic formulaeof the forms xpy, Axp, xpF or xp # xq. Here, x; y are variables, p; q 2 Fea�, A is alabel and F is an arity. The validity of a path constraint � under a valuation � in Ais inductively given by A; � j= x�y , A; � j= x := yA; � j= x(pf)y , A; � j= 9z (xpz ^ zfy)A; � j= Axp , A; � j= 9z (xpz ^ Az)A; � j= xpF , A; � j= 9z (xpz ^ zF )A; � j= xp # yq , A; � j= 9z (xpz ^ yqz)The path constraints of the form xp # yq are called a co-reference constraint. Weidentify xp # yq with yq # xp. A trivial co-reference constraint xp # xp is abbreviatedas xp#, it expresses that x has a path p. By the de�nition of the validity of pathconstraints, the additional syntax introduced with path constraints is just syntacticsugar for speci�c existentially quanti�ed solved forms. In the following, we delib-erately confuse a path constraint � with an arbitrary existentially quanti�ed solvedform that is equivalent to � by De�nition 6.We can also give a direct interpretation for path constraints. The interpretationsfA, gA of two features f , g in a structure A satisfying the axioms CFT are binaryrelations on A. Hence, their composition fA � gA is again a binary relation on Asatisfying a(fA � gA)b () 9c 2 A: afAc ^ cfAbfor all a; b 2 A. Consequently we de�ne the denotation pA of a path p = f1 � � �fn ina structure A as the composition(f1 � � �fn)A := fA1 � � � � � fAn ;where the empty path � is taken to denote the identity relation. If A is a model ofthe theory CFT, then every path denotes a unary partial function on A. Given anelement a 2 A, pA is thus either unde�ned on a or leads from a to exactly one b 2 A.12



Let p, q be paths, x, y be variables, and A be a label. Then the interpretation ofpath constraints is given as follows:A; � j= xp # xq : () 9a 2 A: �(x) pA a ^ �(x) qA aA; � j= Axp : () 9a 2 A: �(x) pA a ^ a 2 AA:A; � j= xpF : () 9a 2 A: �(x) pA a ^ a 2 FA:5.2 True SequencesWe can now de�ne, for any l � 1 and set X of variables, the set of path constraintswithin the subsignature (�; �), where the paths are restricted to length at most l andwhere only the variables from X are used:P�;�l;X := fAxp; xpF; xp # yq j A 2 �; F � �; x; y 2 X; p; q 2 ��lg:Here, ��l is the set of all strings from �� with length at most l. When �, � are knownfrom the context, we will simply write Pl;X instead of P �;�l;X . We also write P �;�l;n forP�;�l;fx1;:::;xng.De�nition 7 A sequence (ai; bi)1�i�n 2 (A � B)� is (�; �)-true up to l if for allw 2 P �;�l;n we have: if �(xi) = ai and �(xi) = bi for all 1 � i � n, thenA; � j= w, B; � j= w :Proposition 7 Every (�; �)-true sequence up to 1 is a partial (�; �)-isomorphism.Proof: This follows from the de�nitions, since CFT j= 8x; y (x := y $ x� # y�),CFT j= 8x (xfy $ xf # y�), CFT j= 8x (Ax $ Ax�) and CFT j= 8x (xF $ x�F ).2Hence, the aim of the Duplicator can be described as constructing a (�; �)-true se-quence up to 1. From the above discussion, it is clear that the Duplicator must alwaysensure that the sequence constructed so far is (�; �)-true up to some su�ciently largebound l =  (m), which depends on the number of rounds m still to play. If  (m)is chosen in the right way, then the Duplicator can extend every (�; �)-true sequenceup to  (m) to a (�; �)-true sequence up to 1 in the remaining m rounds, no matterhow the Spoiler plays. The question is of course how an appropriate bound  (m) canbe determined.A �rst guess could be  (m) := m, since the Spoiler can choose m elements in mrounds. The following example shows that this is not su�cient. Assume that theSpoiler has chosen elements a1 2 A and a2 2 A such thata1(ffff)Aa2;13



that the Duplicator has chosen an element b1 2 B, and that there are still 2 roundsto play. Assume that the Duplicator selects in this round an element b2 2 B suchthat b1(fff)Bb2If we de�ne  (m) := m, then ((a1; b1); (a2; b2)) would be a (�; �)-true sequence up to2. In this case, the Duplicator will loose if the Spoiler selects a3 such that a1(ff)Aa3(i.e., the element \in the middle" of a1 and a2): if the Duplicator chooses b3 suchthat b1(ff)Bb3 does not hold, then the Spoiler chooses as a4 with a1fAa4 and a4fAa3and the Duplicator looses; if the Duplicator selects b3 such that b1(ff)Bb3, then shelooses immediately.Hence, the next guess could be  (m) := 2m, since the Spoiler can with one movechoose an element \in the middle" of a chain of relations between elements whichare already in the sequence. This strategy of the Spoiler would cause the Duplicator,if the number of moves is increased by 1, to duplicate the bound for the �rst move,which results in the recursion equation  (m + 1) = 2 �  (m). In fact, it can beshown [13] that this bound is su�cient for simple theories like the theory of onesuccessor function. In our case, where A and B are models of CFT, this is notsu�cient as can be seen with the following example:Suppose, the sequence constructed so far is (a1; b1); : : : ; (an; bn). The Spoiler choosesan a 2 A in such a way that for the valuation � with �(xi) = ai, �(xn+1) = a wehave A; � j= x1r1 # xn+1p1A; � j= xn+1p1q1 # xn+1p2A; � j= xn+1p2q2 # xn+1p3...A; � j= xn+1pkqk # x2r2 9>>>>>=>>>>>; (1)where all these constraints are in P �;� (m);n+1 (see Figure 2). Hence, the Duplicator hasto �nd an element b 2 B, such that for the variable valuation � with �(xi) = bi and�(xn+1) = b the same formulae hold in B; �. The problem is that the conjunction ofthese constraints implies, in every model of CFT,x1r1q1 � � �qk # x2r2 (2)Hence, in order to satisfy (1) in B; �, (2) has to be satis�ed in B; �. But the lengthof r1q1 � � �qk may be much greater than 2 �  (m). The only thing we can say isthat we don't have to care about \cycles" in (1), that is we may assume that everypiqi 6= pjqj if i 6= j. Since there are less than cardinality(�) (m)+1 many di�erent�-paths of length at most  (m), the length of r1q1 � � �qk is certainly smaller than (m) +  (m) � cardinality(�) (m)+1. Since a co-reference x1r1q1 � � �qk # x2r2 entailsfor every path r 2 Fea� the co-reference x1r1q1 � � �qkr#x2r2r and we want to consider14



p1q1 p2r1 q2 r2x3x1 x2
Figure 2: Example of an induced co-reference constraints for n = 2. The inducedconstraint is x1r1q1q2 # x2r2.extensions r of length less than  (m), we take this recursion equation in order tode�ne  :  (0) := 1 (m+ 1) := 2�  (m) +  (m) � cardinality(�) (m)+1 + 1Hence, we can formulate the following requirement for the Duplicator:If there are still m rounds to play after completion of this move, makesure that the sequence is true up to  (m).Since  (0) = 1, and since a 1-true sequence is a partial isomorphism, this will guar-antee that the Duplicator wins.5.3 Path Constraints and Solved FormsThe following lemma gives the connection between satis�able sets of path constraintsand solved forms.Lemma 8 Let P � P �;�l;fxg be a set of path constraints such that 9x P is satis�able inCFT . Then there is a rooted solved form Sx(x; �y) with1. CFT j= 8x (P $ 9�y S) 15



2. for every y 2 �y there is a p 2 ��l such that jxpjS = y;3. Axp 2 P , xpF 2 P or xp # xq 2 P implies AjxpjS 2 S, jxpjSF 2 S orjxpjS = jxqjS, respectively.Proof: Considering P as a conjunction of existentially quanti�ed solved forms, we�rst move all quanti�er to the outside while renaming variables to avoid capture. Weobtain an equivalent formula Q of the form 9�vM , where M is a conjunction of atomicformulae. Then we rewrite Q with the following rule until we obtain a normal form:9�v; v (yfv ^ yfz ^ w)9�v (yfz ^ w[z=v]) (3)where v 62 �v,and where w[z=v] is the result of replacing every occurrence of v in wby z. The rewriting is obviously terminating since the size of the formula is reducedin every step. Both operations are equivalence transformations in CFT that do notchange the set of free variables.Let N be the normal form of Q, and suppose that N is not a solved form. ByLemma 2, N either contains a clash or a subformula yfz1 ^ yfz2 where z1 6= z2.The existence of a clash contradicts the satis�ability of P . In the second case, sincevar(N) = fxg, at least one of z1 and z2 must be existentially quanti�ed, hence therewriting rule (3) applies and N cannot be in normal form.For the second claim, note that jxpjS = y is equivalent to CFT j= S ! xpy. Hence,we have to show that for every y 2 �y there is a p 2 ��l such that CFT j= S ! xpy.This claim holds trivially for the initial formula M . Since the claim is conservedduring the application of the rewrite rule (3), it holds also for S. 2For example, the set of path constraints fxff # xg; Axggg is equivalent to9y1; y2; y3 (xfy1 ^ xgy2 ^ y1fy2 ^ y2gy3 ^ Ay3)We have y1 = jxf jS , y2 = jxgjS, and y3 = jxggjS.Proposition 9 Let Sx be a rooted solved form, such that all variables in var(Sx) havea depth smaller than l, and let �v = var(S)� fxg. Then there is a set P � Pl+1;fxg,such that CFT j= 8x (9�v S $ P ).Proof: We choose for every y 2 var(Sx) a path py 2 [y]Sx of minimal length, andde�ne P = fxpyf # xpz j yfz 2 Sxg [ fAxpy j Ay 2 Sxg [ fxpyF j yF 2 Sxg 216



6 Completeness of CFTTheorem 10 The theory CFT is complete.To simplify notation, we write � for some valuation in A with �(xi) = ai for 1 � i � nand �(xn+1) = a, and �0 for some valuation in B with �0(xi) = bi. In the following,we take the variable x instead of xn+1. Hence, � and �0 represent the sequenceconstructed so far plus the choice of the Spoiler. It is now the Duplicator's task to�nd a � extending �0 to x.Since (a1; b1); : : : ; (an; bn) is true up to  (m+ 1), we know for any w 2 P (m);n thatA; � j= w i� B; �0 j= w. Hence, in order to �nd an element b 2 B as required, wehave only to care for the constraints which involve x. We distinguish between thosepath constraints which involve x only (the internal constraints), and those which linkx with some other variable xi (the external constraints).I+ := fw(x) 2 P (m);n+1 j A; � j= wgI� := f:w(x) 2 P (m);n+1 j A; � j= :wgE+= := fw(x; xi) 2 P (m);n+1 j A; � j= wgE�= := f:w(x; xi) 2 P (m);n+1 j A; � j= :wgNote that E+= (E�=) consists of (negated) co-reference constraints only, we use thesubscript \=" to emphasize this. We have to �nd some b 2 B such that for � :=�0[x 7! b] we have B; � j= I+ ^ E+= ^ I� ^E�=Theorem 10 is a consequence of the following lemma, which we will prove in the nextsubsection:Lemma 11 Let (a1; b1); : : : ; (an; bn) be (�; �)-true up to  (m+ 1) and a 2 A. Thenthere exists a formula �(x; x1; : : : ; xn), such thatB; �0 j= 9x� (4)B; �0 j= 8x (� ! (I+ ^E+= ^ I� ^E�=)) (5)Proof of Theorem 10: By Lemma 11, the Duplicator has a strategy that guar-antees the constructed sequence to be true up to  (m) if there are still m rounds toplay. This is, by Proposition 7, a winning strategy. 26.1 Proof of Lemma 116.1.1 Induced Co-referencesBy Lemma 8, there is a solved form R(x; �v) with CFT j= I+ $ 9�vR. Note that someof the variables of R are already completely determined by the valuation of the xi's in17



combination with the external co-references in E+= . These variables are at least thosez 2 var(R) with the property that jxpjR = z and xp # xjq 2 E+= for some xj ; q. Asthe discussion on induced co-references in Section 5.2 (see (1) and Figure 2) shows,these are not the only variables uniquely determined by the valuation of the xi's.In this section we therefore de�ne the notion of an induced co-reference, and we showthat the induced co-references can be reduced to co-references in P (m+1);n, whichare satis�ed by A; � and henceforth are also satis�ed by B; �0.De�nition 8 Let I+ and E+= be given as described. A co-reference sequence is asequence of path constraints of the formxir1 # xp1 2 E+=xp1q1 # xp2 2 I+xp2q2 # xp3 2 I+...xpkqk # xr2 2 I+ 9>>>>>=>>>>>; (6)A co-reference sequence is called cycle-free if plql 6= pl0ql0 for every 1 � l < l0 � k.The external co-reference induced by (6) isxir1q1 : : : qk # xr2:Proposition 12 Let xir1s#xr2 be an external co-reference induced by a co-referencesequence. Then there exists an external co-reference xir1s0 # xr2 that is induced by acycle-free co-reference sequence.Proof: LetSeq = (Seq0; : : : ; Seqk) = (xir1 # xp1; xp1q1 # xp2; xp2q2 # xp3; : : : ; xpkqk # xr2)be a co-reference sequence of minimal length that induces xir1s#xr2 for some s, thatis s = q1; : : : ; qk, and assume that Seq is not cycle-free. Hence, there are l < l0 suchthat plql = pl0ql0 . Then eliminating the elements Seql; : : : ; Seql0�1 from Seq resultsin a shorter co-reference sequence that induces xir1q1; : : : ; ql; ql0+1; : : : ; qk # xr2, incontradiction to the minimality of Seq. 2Proposition 13 Let xir1q1 : : : qk #xr2 be an external co-reference induced by a cycle-free co-reference sequence. Then r2 2 �� (m). Furthermore, we have r1q1 : : : qk 2�� (m+1)�( (m)+1).Proof: Let � = xir1q1 : : : qk#xr2 be given as described, and let Seq = (Seq0; : : : ; Seqk)be a cycle-free co-reference sequence that induces �.18



Since the �nal element xpkqk # xr2 of Seq is in I+, we obtain immediately thatr2 2 �� (m).By de�nition of a co-reference sequence, r1 2 �� (m) and ql 2 �� (m) for everyl = 1; : : : ; k. There are less than cardinality(�) (m)+1 many di�erent �-paths oflength at most  (m). Since Seq is cycle-free, this implies that the length k of Seqis smaller than cardinality(�) (m)+1. Hence, the length of r1q1 : : : qk is smaller than (m) +  (m) � (cardinality(�) (m)+1) =  (m+ 1)� ( (m) + 1). 2Now we de�neIC := fxiqi # xp j xiqi # xp is induced by a cycle-free co-reference sequencegC := fxiqi # z� j z = jxpjR and xiqi # xp 2 ICgObviously, all variables in var(C)nfx1; : : : ; xng are variables of R that are uniquelydetermined in 9�v R ^E+= by the valuation of the xi's.Proposition 14 Let xp #xq 2 I+ be a path constraint such that there is some pre�xp0 of p with jxp0jR 2 var(C). Then jxqjR 2 var(C).Proof: Let xp # xq 2 I+ and let p = p0p00 such that jxp0jR 2 var(C). Hence,there are some xi; qi such that xiqi # xp0 is in IC. Let Seq be a co-reference sequencethat induces xiqi # xp0. Then appending xp # xq = xp0p00 # xq to Seq produces aco-reference sequence that induces xiqip00 # xq. Proposition 12 shows that there is anexternal co-reference xiq0 # xq that is induced by an cycle-free co-reference sequence.Hence, jxqjR 2 var(C). 26.1.2 De�nition of �(x) and Proof of Lemma 11 (4)We could now already show a weaker version of Lemma 11, where only I+ ^E+= areconsidered, by de�ning �(x) = 9�v (R ^ C). We will not prove this but move on tothe de�nition of a � which also entails I� ^ E�= .To illustrate the idea, assume that :Axf 2 I�, where jxf jR = y. If R does notcontain a label constraint for y, then we can extend R by a label constraint By whereB 62 �. The fact that we have introduced a new label constraint which (possibly)does not hold in A; � does not hurt at all, since we only care for the labels in the �nitesubset �. The point is that, since by axiom scheme (S) di�erent label constraints arepairwise incompatible, any label constraint Ay with A 2 � is now disentailed. In thisway, we can use positive constraints to enforce some negative constraints.In the �rst step, we extend R to a solved form S such that every variable fromvar(S) � var(C) carries an arity constraint. Let h be some feature not containedin �, and let Y = var(R)� var(C). For every y 2 Y letFy := ff j yfv 2 R for some v 2 var(R)g19



be the set of features de�ned on y in R. Now we de�neYna := fy 2 Y j R contains no arity constraint for ygS := R ^ ^y2Yna y(Fy [ fhg)In the next step, we extend S to S 0 such that for all y 2 Y , if yF 2 S 0, then for everyf 2 F there is a variable z such that yfz 2 S 0, and such that every variable fromvar(S 0)� var(C) carries an arity constraint.M := f(y; f) j y 2 Y; yf: : : ; f; : : :g 2 R and for all v 2 var(R) : yfv 62 SgS0 := S ^ ^(y;f)2M;v new(yfv ^ vfg)Let V = var(S 0) � var(C). In the last step we extend S 0 to a determinant T , suchthat var(T )� var(C) � det(T ). We choose for every variable y 2 V a label Ay 62 �such that for all y 2 V :� Ay 6= Az for all z 2 V � fyg,� for all p 2 (� [ fhg)� (m+1)+1 and 1 � i � n: B; �0 j= :AyxipThis is possible since we assume an in�nite supply of labels and features. We de�neYns := fy 2 V j S 0 contains no label constraint for ygT := S 0 ^ ^y2YnsAyyFinally, we de�ne �y = var(T )� fxg and� := 9�y(T ^ C)Proposition 15 B; �0 j= 9x�.Proof: Let Tdet be the greatest subformula of T with var(Tdet) � var(C), and letTindet be the rest of T . By de�nition of T and by Proposition 14, the formula Tindet isa determinant with con(Tindet) \ var(C ^ Tdet) = ;. By axiom scheme (D), we knowthat CFT j= 9�y (Tdet ^ C) ! 9�y (Tindet ^ Tdet ^ C)We show that B; �0 j= 9�z (C ^ Tdet), where �z = var(Tdet) � �y. Let Cdef be a subsetof C containing for every z 2 �z exactly one constraint z� # xipi. Let �def be themodi�cation of �0 on �z with the property that B; �def j= Cdef .We claim that B; �def j= Tdet ^ C. For the path constraints z� # xiqi 2 C � Cdef,B; �def j= z�#xiqi if and only if B; �0 j= xiqi #xjpj , where z�#xjpj 2 Cdef is the path20



constraint de�ning the valuation of z. Now we know A; � j= xjpj # xiqi, since bothz�#xiqi and z�#xjpj are induced external co-reference constraints. By Proposition 13,we know that xipi # xjqj 2 P (m+1);n, which implies B; �0 j= xipi # xjqj .The proof for the constraints in Tdet is analogous. 26.1.3 Proof of Lemma 11 (5)We split the proof into several propositions, according to the kind of constraintsthat are to be entailed. First we look at the easy ones: positive constraints (Propo-sition 16), negated path constraints where the path itself is not de�ned (Proposi-tion 17), negated path constraints where the path (or both in case of a co-reference)lead to a variable in var(C) (Proposition 18) and negative label and arity constraints(Proposition 19, if none of the two previous propositions applies).The di�cult case is the one of negated co-reference constraints. We �rst show, inLemma 20, that we did not by accident introduce external co-references in the con-struction of T . Using this proposition, we can �nally show that the negated external(Proposition 21) and internal (Proposition 22) are implied.Proposition 16 B; �0 j= 8x (� ! (I+ ^E+=)).Proof: For a constraint xp # xiqi the claim follows since (xp # xiqi) is a cycle-free induced external co-reference sequence, and henceforth contained in IC. For theconstraints in I+ this follows from the de�nition of R and from R � T . 2Proposition 17 Let � 2 I� [ E�= contain xp, where :xp# 2 I�. Then B; �0 j=8x (� ! �).Proof: Let :xp# 2 I�. Let qf be the unique pre�x of p such that xq# 2 I+ (qmight be �), and :x(qf)# 2 I�.If R contains an arity constraint yF for y = jxqjR = jxqjT , then f 62 F since:xqf# 2 I�. Since by construction yF 2 T , this implies CFT j= 8x (� ! :xqf#)and henceforth CFT j= 8x (� ! �).If R contains no arity constraint yF for y = jxqjR = jxqjT , then we have added in Tan arity constraint y(Fy[fhg) with h di�erent from f . Now Fy = fg j 9y0 : ygy0 2 Rgcannot contain f since :xqf# 2 I�. Hence, we have again CFT j= 8x (� ! :xqf#)and therefore CFT j= 8x (� ! �). 2Proposition 18 Let � 2 I� [ E�= such that for every p, if xp occurs in � thenjxpjR 2 var(C). Then B; �0 j= 8x (� ! �).21



Proof: Let � = :xp # xq 2 I� such that such that both jxpjR 2 var(C) andjxqjR 2 var(C). Let xp # xipi 2 IC and xq # xjpj 2 IC be two external co-referencesfor xp and xq, respectively.Since A; � j= :xp # xq and A; � j= IC, we get A; � j= :xipi # xjqj . By Proposition 13,xipi # xjqj 2 P (m+1);n, hence B; �0 j= :xipi # xjqj . Since CFT j= 8x (� ! (xp #xipi ^ xq # xjpj)), we obtain B; �0 j= 8x (� ! :xp # xq).The proof for the other kinds of constraints is analogous. 2Proposition 19 Let � 2 I� be of the form :Axp or :xpF such that xp# 2 I+ andjxpjR 62 var(C). Then B j= 8x (� ! �).Proof: Let :Axp 2 I� such that xp# 2 I+ (the proof for arity constraints isanalogous). Hence, jxpjR is de�ned.Since :Axp 2 I�, we know that R contains no label constraint Ay for y = jxpjR =jxpjT . Hence, either R contains a label-constraint By with B 6= A, which impliesthat T contains By, or we have added a By in T with B 6= A. In any case, thisimplies CFT j= 8x (� ! :Axp). 2Lemma 20 Let y 2 var(T )�var(C). Then for every xiqi #xq 2 IC we have B; �0 j=8var(T ) (T ^ C ! :y� # xiqi):Proof: Note that xiqi#xq 2 IC implies by Proposition 13 that qi 2 �� (m+1)�( (m)+1).Let � be the greatest rooted solved form which is rooted by y and contained in T ,and let jxpjR = y. Furthermore, let for some new variable y0, �y0 := �[y0 7! �(xi)qAi ](hence, A; �y0 j= y0� # xiqi). We have the following cases:1. � 6� R. By the way T was constructed, we cannot have added an arity constraintor a feature constraint in T without adding a label constraint. Hence, � 6� Rimplies that we have added a label constraint Az in T for some z 62 var(C) suchthat for all r0 2 (� [ fhg)� (m+1)+1 : B; �0 j= :Axir0: (7)Now, Az in � implies B; �0 j= 8x (� ! Axpr)for some r 2 (� [ fhg)� (m)+1 with jyrj� = z. Since qir 2 (� [ fhg)� (m+1)+1,(7) implies B; �0 j= :Axiqir;which implies B; �0 j= 8x(� ! :xpr#xiqir), hence B; �0 j= 8x(� ! :xp#xiqi).2. � � R. Let �v = var(�)� fyg. This case is divided into the following cases:22



(a) A; �y0 6j= 9y(y0 := y ^ 9�v�). Since � � R, CFT j= 8x(9�uR$ I+) with �u =var(R)� fxg and I+ � P (m);fxg, there is by Lemma 8 and Proposition 9a �nite set of path constraints P � P (m)+1;fyg such thatCFT j= 8y (9�v � $ P )Since A; �y0 6j= 9y(y0 := y ^ 9�v�), we know that there is a path constraint� 2 P such that A; �y0 6j= 9y(y0 := y ^ �).The �rst case is that � is of the form Ayr. ThenCFT j= 8x (� ! Axpr):Since �y0 was the unique modi�cation of � satisfying A; �y0 j= y0� # xiqi,we get A; � j= :Axiqir:Since qi 2 �� (m+1)�( (m)+1) by Proposition 13 and r 2 �� (m)+1, weknow that Axiqir 2 P (m+1);n. Hence, B; �0 j= :Axiqir, which impliesB; �0 j= 8x(� ! :xpr # xiqir).The proof for the other kinds of path constraints is analogous.(b) A; �y0 j= 9y(y0 := y ^ 9�v�). Let 9�v0�0 be a fresh copy of 9�v� such that y isrenamed to y0. Then y := y0 does not clash with � ^ �0 and A; �y0 j= 9�v0�0.Since y 62 var(C), we have A; � j= :xp # xiqi. Hence, � � R impliesA; � j= 8y; y0 (xp # y� ^ xiqi # y0�! :y := y0 ^ 9�v� ^ 9�v0�0) (8)Now (8) implies by Lemma 5 that there is a path r 2 �� (m) such thatjyrj� 62 det(�) andA; � j= 8y; y0 (xp # y� ^ xiqi # y0�! :yr # y0r);Since z = jyrj� is an undetermined variable in T , and all undeterminedvariables in T are contained in var(C), we know that there is a xjpj # z� 2C. Hence, A; � j= :xjpj # xiqirand CFT j= 8x (� ! (xpr # xiqir$ xjpj # xiqir)):Now Proposition 13 shows pj 2 �� (m+1) and qir 2 �� (m+1). Hence,B; �0 j= :xjpj # xiqir, hence B; �0 j= 8x (� ! :xpr # xqir). 2Proposition 21 Let � 2 E�= be of the form :xp # xiqi. Then B; �0 j= 8x (� ! �).23



Proof: If A; � j= :xiqi#, then the claim follows since (ai; bi)i=1;:::;n is true up to (m+1). Otherwise, let y0 be a new variable, and assume wlog. that A; � j= y0�#xiqi.If A; � j= :xp#, the claim follows by Proposition 17. Otherwise, let y = jxpjT . Ify 2 var(C), then there is a xp#xjq0 2 IC. Hence, A; � j= :xiqi#xjq0, and consequentlyB; �0 j= :xiqi # xjq0. Hence, B; �0 j= 8x (� ! :xiqi # xp). If y 62 var(C), then theproof follows from Lemma 20. 2Proposition 22 Let � 2 I� be of the form :xp # xq. Then B; �0 j= 8x (� ! �).Proof: If :xp# 2 I� or :xq# 2 I�, then the claim follows from Proposition 17.Otherwise, let y = jxpjR and y0 = jxqjR. If y := y0 clashes with R, then the claimfollows immediately from Proposition 4.Otherwise, let R0 be R extended by all feature constraints vfv0 2 T with vfv0 62 R.Note that for every y 2 var(R0), y 62 det(R0) implies that either there is no labelconstraint Ay for y in R0, or there is no arity constraint yF for y in R0. Now y := y0does not clash with R0. Hence, there is by Lemma 5 a path r, z = jyrjR0, z0 = jy0rjR0,z 6= z0, such that one of z and z0 is not in det(R0), and A; � j= 8�y (R0 ! z 6 := z0).Hence, CFT j= 8�y (R0 ^ z 6 := z0 ! :xp # xq).Let p0 2 �� (m)+1 and q0 2 �� (m)+1 be minimal paths with z = jxp0jR0 and z0 =jxq0jR0 , respectively. Note that if z 2 var(R) (resp. z0 2 var(R)),then len(p0) �  (m)(resp. len(q0) �  (m)).We have the following cases:1. z; z0 2 var(C). Then the claim follows from Proposition 182. z 2 var(C), z0 62 var(C). Hence, there is a xiqi#xp0 2 IC, and A; � j= :xiqi#xq0.By Lemma 20, B; �0 j= 8x (� ! :xiqi #xq0), and by construction of � we haveB; �0 j= 8x (� ! xiqi # xp0). Hence, B; �0 j= 8x (� ! :xp # xq).3. z; z0 62 var(C). Let wlog. z 62 det(R0). If R contains no label constraint for z,then we have added a label A for z in T which is di�erent from the label for z0in T . Hence, CFT j= 8x (� ! (Axp0^:Axq0)), which implies B; � j= 8x (� !:xp0 # xq0).A similar analysis applies if R contains no arity constraint for z. 2Now, (4) is Proposition 15, and (5) follows from Proposition 16, 17, 18, 19, 22 and 21.7 ConclusionWe have proven the completeness of the feature theory CFT, which uni�es the com-pleteness results for FT [4] and for rational constructor trees [7, 17]. We feel that24



the use of features and path constraints signi�cantly simpli�es the logic of trees. Thesame proof idea could be applied to FT (where we can always, by lack of arity pred-icates, add predicates which enforce the inequality of all involved variables). We arecon�dent, that also in the case of FT the technique of Ehrenfeucht-Fra��ss�e Gamesyields a simpler proof than the quanti�er elimination given in [4].We conclude with a comparison to other techniques, which have been recently em-ployed for proving the completeness of tree axioms: Model Completeness, for the caseof �nite trees over a �nite constructor signature [25], and quanti�er elimination forCFT [2, 3].The proof technique using model completeness is due to Abraham Robinson [20]. Atheory T is called model complete, if on the class of models of T , the substructurerelation coincides with the elementary substructure relation (which means that theelements of a substructure A of B have in both structures the same �rst-order prop-erties). Model completeness alone is independent of completeness, but if in additionthe theory T has an algebraic prime model, then model completeness implies com-pleteness. For the completeness proof of Clarks Equality Theory, that is the axiomsof �nite trees over a �nite constructor signature, it is fairly obvious that the treestructure itself is algebraically prime. To prove the model completeness of the the-ory, the most convenient way is to show that if A � B are models of the theory, thenany existential sentence in BA is valid in AA (the index A indicates, that we considerall elements of A as additional constants).Hence, there is a similarity to the technique of Ehrenfeucht-Fra��ss�e Games, wherethe additional constants from A, which occur in an existential formula, correspond tothe given sequence (ai; bi)i in the game, and the existential quanti�ers correspond tothe Duplicators quest for an element. Nevertheless, it seems to be more di�cult toprove that arbitrary existential sentences are maintained, since we may have severalexistential quanti�ers, and since we cannot exploit an upper bound on the length of\interesting chains", as we did when playing the game. On the other hand, if we canprove model completeness, we obtain additional insight about the theory.Now let's turn to the comparison of our proof with the quanti�er elimination proofdone in [2, 3], which uses an overall structure similar than [17]. Clearly, we cannotfully eliminate quanti�ers. Hence, this is a quanti�er elimination relative to a set offormulae (called prime formulae), i.e., every CFT-formula � can be transformed intoa Boolean combination of prime formulae.The set of prime formulae consists of all existential quanti�ed solved forms which arerooted (i.e., all variables are reachable from the free variables). For the quanti�erelimination one has to show that the set of prime formulae satis�es certain proper-ties. It must contain all atomic formulae, and must be closed under conjunction andexistential quanti�cation. Furthermore, one has to show that for all prime formulae25



 ;  1; : : : ;  n 9x( ^ n̂i=1: i) j=jCFT n̂i=19x( ^ : i); (9)and that for all prime formulae  ;  0 there exists a Boolean combination of primeformulae � such that 9x( ^ : 0) j=jCFT � (10)(9) and (10) together allow for the elimination of one existential quanti�er. A uni-versal quanti�er is eliminated by transforming 8x� into :9x:�.The most di�cult part is to prove (9), i.e., to show thatn̂i=1 9x( ^ : i) j=CFT 9x( ^ n̂i=1: i): (11)To show this implication, for every �i a �nite set of path constraints �i is calculatedsuch that �i j=jCFT �i. In second step,  is extended to a prime formula  ext suchthat  ext j= n̂i=1:�i:The construction of  ext is similar to the construction of T in the proof of Lemma 11.By and large, we can say that our proof contains the kernel of the quanti�er elimi-nation in [2, 3] (i.e., the construction of  ext for handling negative information), buthas a simpler overall structure since it avoids additional ballast. Examples are theproof of the closure properties of prime formulae under conjunction and existentialquanti�cation (which are not di�cult but somewhat tedious) and the calculation ofa �nite set of path constraints describing negative information (in general, there maybe an in�nite set of path constraints entailed by a prime formula). The use of pathconstraints is a technical tool in [2, 3], whereas their use in the proof described herecorresponds in a natural way to chains of relations. On the other hand, the quanti�erelimination in [2, 3] serves for a concrete decision method.We want to thank Lawrence Moss, who initiated this research by suggesting theuse of Ehrenfeucht-Fra��ss�e Games for proving completeness of the theory FT . Weacknowledge discussions with Hubert Comon, Hans Leiss, Andreas Podelski, and GertSmolka.The �rst author has been supported by the Bundesminister f�ur Bildung, Wissenschaft,Forschung und Technologie (VERBMOBIL, 01 IV 101 K/1). The second author hasbeen supported by the Bundesminister f�ur Bildung, Wissenschaft, Forschung undTechnologie (Hydra, ITW 9105), the Esprit Working Group CCL (EP 6028), and theEsprit Basic Research Project ACCLAIM (EP 6195).26
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