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Abstract. While many higher-order interactive theorem provers include
a choice operator, higher-order automated theorem provers currently do
not. As a step towards supporting automated reasoning in the presence
of a choice operator, we present a cut-free ground tableau calculus for
Church’s simple type theory with choice. The tableau calculus is designed
with automated search in mind. In particular, the rules only operate on
the top level structure of formulas. Additionally, we restrict the instan-
tiation terms for quantifiers to a universe that depends on the current
branch. At base types the universe of instantiations is finite. We prove
completeness of the tableau calculus relative to Henkin models.

1 Introduction

Interactive theorem provers based on classical higher-order logic (e.g., Isabelle-
HOL [16], HOL [12] and the successors of the HOL system) build in the axiom of
choice by including a form of Hilbert’s ε binder and appropriate rules. Church’s
formulation of the simple theory of types [11] included a choice operator (called
ι) and an axiom of choice at each type. Henkin defined a general notion of a
model of Church’s type theory with choice and proved completeness [13]. A
higher-order version of the TPTP has been under development the past few
years [18]. In 2009 it was decided that Henkin models with choice would be the
default semantics of the higher-order TPTP.

Automated theorem provers for classical higher-order logic (e.g., TPS [3] and
LEO-II [7]) do not currently build in the axiom of choice. Completeness of such
calculi is judged with respect to a variant of Henkin’s models without choice [2,
6]. What would be involved in adding support for choice? Assume a new logical
constant εσ of type (σ → o) → σ at each type σ is added to the syntax. We need
new rules corresponding to this constant. The fundamental property εσ should
satisfy is expressed by the formula

∀pσ→oxσ.px → p(εσp)

Our purpose in this paper is to give a complete analytic tableau calculus
for higher-order logic with choice that forms a basis for automated reasoning
in the logic. Mints [15] has given a sequent calculus for relational higher-order
logic with an ε-operator and proves completeness. Mints’ calculus does not in-
clude arbitrary function types and the corresponding simply typed λ-terms. We
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adapt Mints’ rules for a simply typed formulation in the style of Church. We
obtain tighter restrictions on when Mints’ main choice rule (the ε-rule) needs
to be applied. Furthermore, we show we can omit Mints’ ε-extensionality rule
altogether. These results are important for automated reasoning because these
two rules would be highly branching in practice. In addition to including cut-
free rules for the ε-operator, we give strong restrictions on the instantiation of
universal quantifiers over base types analogous to those reported in [9].

In Section 2 we give a quick presentation of the syntax and semantics of
simple type theory with choice. In Section 3 we present the tableau calculus. In
Section 4 we define the notion of an evident set and prove that every evident
set has a Henkin model. We define a notion of abstract consistency and use it
to prove completeness of the tableau calculus in Section 5. We discuss related
work and conclude in Sections 6 and 7. For reasons of space several proofs are
omitted. Detailed proofs are available in [5].

2 Preliminaries

We start by giving the syntax for simple type theory with a choice operator in
the style of Church [11]. Types (σ, τ , µ) are given inductively by the base type
o (of truth values), ι (of individuals) and σ → τ (of functions from σ to τ). For
brevity, we will omit the arrow and write στ for σ → τ . Omitted parenthesis in
types associate to the right: στµ means σ(τµ). The results in the paper generalize
to the case where there are arbitrarily many base types of individuals. We use
β to range over the base types o and ι.

For each type σ we assume a countably infinite set Vσ of variables of type σ.
For each type σ we have logical constants =σ of type σσo, ∀σ of type (σo)o and
εσ (the choice operator) of type (σo)σ. Furthermore, we have logical constants
for disjunction ∨ of type ooo, negation ¬ of type oo, false ⊥ of type o and for a
default individual ∗ of type ι. (The default individual is included only to act as
an instantiation when no other instantiation of type ι is allowed by our calculus.)
We use x, y to range over variables and c to range over logical constants. A name
is either a variable or a logical constant. We use ν to range over names. Variables
x and choice operators εσ are called decomposable names. We use δ to range over
decomposable names.

The family of sets Λσ of terms of type σ are inductively defined. If ν is a name
of type σ, then ν ∈ Λσ. If t ∈ Λστ and s ∈ Λσ, then we have an application term
ts ∈ Λτ . If x ∈ Vσ and t ∈ Λτ , then we have an abstraction term λx.s ∈ Λστ . A
formula is a term s ∈ Λo.

Application associates to the left, so that stu means (st)u, with the exception
that ¬tu always means ¬(tu). We use infix notation and write s =σ t (or s = t)
for =σ st and write s ∨ t for ∨st. We write s 6=σ t (or s 6= t) for ¬(s =σ t). We
also use binder notation to write ∀x.s for ∀σλx.s and write εx.s for εσλx.s.

The set Vt of free variables of t is defined as usual. For a set of variables X
we write ΛX

σ for the set of all terms t ∈ Λσ such that Vt ⊆ X .
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An elimination context (E) is a term with a hole []σ defined inductively as
follows. []σ is an elimination context of type σ. If E is an elimination context of
type τµ and s ∈ Λτ then Es is an elimination context of type µ.

Let E be an elimination context of type σ which has a hole of type τ . We can
apply E to a term t ∈ Λτ to get a term of type σ: [ ][t] = t and (E s)[t] = E [t] s.

An accessibility context (C) is a term with a hole []σ of the form E , ¬E , E 6=ι s
or s 6=ι E where E is an elimination context. We can apply an accessibility context
C with a hole of type σ to a term t ∈ Λσ to get a term of type o in the obvious
way. A term s is accessible in a set A of formulas iff there is an accessibility
context C such that C[s] ∈ A.

Let A be a set of formulas. A term s is discriminating in A iff there is a
term t such that s 6=ι t ∈ A or t 6=ι s ∈ A. A discriminant ∆ of A is a maximal
set of discriminating terms such that there is no s, t ∈ ∆ with s 6=ι t ∈ A.
(Discriminants first appeared in [10].)

We now turn to a brief description of the semantics. Our notion of an inter-
pretation is essentially that given by Henkin [13]. A frame D is a typed family
of nonempty sets such that Do = {0, 1} and Dστ is a set of total functions from
Dσ to Dτ . Do is the set of Booleans 0 (false) and 1 (true). An assignment into a
frame D is a function I that maps every name ν of type σ to an element of Dσ.
We denote Ix

a to be the assignment that is like I but maps the variable x to a.

prop. where holds for all

L∗(a) a ∈ Dι always

L⊥(a) a ∈ Do when a = 0

L¬(n) n ∈ Doo when na = 1 iff a = 0 a ∈ Do

L∨(d) d ∈ Dooo when dab = 1 iff a = 1 or b = 1 a, b ∈ Do

L∀σ
(p) p ∈ D(σo)o when pf = 1 iff ∀a ∈ Dσ fa = 1 f ∈ Dσo

L=σ
(q) q ∈ Dσσo when qab = 1 iff a = b a, b ∈ Dσ

Lεσ
(Φ) Φ ∈ D(σo)σ when f(Φf) = 1 iff ∃a ∈ Dσ fa = 1 f ∈ Dσo

Table 1. Properties of values of logical constants

For each logical constant c of type σ we define a corresponding property Lc(a)
of elements a ∈ Dσ in Table 1. Essentially Lc(a) holds iff a is an appropriate
interpretation of c. An assignment I into D is logical if Lc(Ic) holds for each
logical constant c. A logical assignment I must map ⊥ to 0, ¬ to the negation
function, and so on. There is no restriction on the value of I∗ in Dι. The most
interesting case to consider is the choice function εσ. For an assignment to be
logical, Iεσ must be a function in D(σo)σ such that f((Iεσ)f) = 1 for every
f ∈ Dσo except when f is the constant 0 function. There may be many different
elements in D(σo)σ satisfying this condition. (Of course, there may also be no
element satisfying the condition.)

We now turn to the interpretation of all typed terms. To do this we use
induction on terms to lift each assignment I to a partial function Î on terms:
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Î(ν) := I(ν)

Î(st) := fa if Îs = f and Ît = a

Î(λx.s) := f if λx.s ∈ Λστ , f ∈ Dστ and ∀a ∈ Dσ: Îx
a s = fa

If Î is a total function, then we say I is an interpretation.
A model (D, I) is a frame D and a logical interpretation I into D. We say

that a model (D, I) satisfies a formula s iff Î(s) = 1. A formula is satisfiable iff
there is a model (D, I) such that Î(s) = 1. We say (D, I) is a model of a set of
formulas A if Î(s) = 1 for every s ∈ A. A set A of formulas is satisfiable if there
is a model of A.

We assume a type preserving and total normalization operator [·] from terms
to terms. A term is normal iff [s] = s. A set of terms is normal if every element
of this set is normal. Instead of committing to a specific operator such as β-
normalization or βη-normalization, we require the following properties:

N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [νs1 . . . sn] = ν[s1] . . . [sn] if νs1 . . . sn ∈ Λβ for some base type β and n ≥ 0

N4 Î[s] = Îs for every model (D, I).
N5 V [s] ⊆ Vs

Note that by N5 we know [s] ∈ ΛX
σ whenever s ∈ ΛX

σ .
A substitution is a type preserving partial function from variables to terms.

If θ is a substitution, x is a variable, and s is a term that has the same type as x,
we write θx

s for the substitution that agrees everywhere with θ except possibly on
x where it yields s. For each substitution θ we assume there is a type preserving
total function θ̂ from terms to terms such that the following conditions hold:

S1 θ̂x = θx for every x ∈ Dom θ

S2 θ̂(st) = (θ̂s)(θ̂t)

S3 [(θ̂(λx.s))t] = [θ̂x
t s]

S4 [θ̂s] = [s] if θx = x for every x ∈ Dom θ ∩ Vs

S5 [θ̂[s]] = [θ̂s]

The following proposition demonstrates that we can recover a form of β-reduction
relative to abstract normalization and substitution. The empty set ∅ is the sub-
stitution that is undefined on every variable.

Proposition 1. [[λx.s]t] = [∅̂x
t s]

Proof. [[λx.s]t]
S4

= [[∅̂(λx.s)]t]
N2

= [(∅̂(λx.s))t]
S3

= [∅̂x
t s]

For each set A of formulas and each type σ we define a nonempty universe
UA

σ ⊆ Λσ as follows.

– Let UA
o = {⊥,¬⊥}.

– Let UA
ι be the set of discriminating terms in A if there is some discriminating

term in A.
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– Let UA
ι = {∗} if there are no discriminating terms in A.

– Let UA
στ = {[s]|s ∈ Λστ ,Vs ⊆ VA}.

When trying to refute a set A of formulas, all our instantiations of type σ will
come from the set UA

σ . When the set A is clear in context, we write Uσ.

3 Tableau Calculus

A branch is a finite set of normal formulas. A step is an n+1-tuple 〈A, A1, . . . , An〉
of branches where n ≥ 1, ⊥ /∈ A and A ⊂ Ai for each i ∈ {1, . . . , n}. The branch
A is the head of the step 〈A, A1, . . . , An〉 and each Ai is an alternative. A rule

is a set of steps, and is usually indicated by a schema. For example, the schema

Tbe

s 6=o t

s , ¬t | ¬s , t

indicates the set of steps 〈A, A1, A2〉 where s 6=o t is in A, ⊥ /∈ A, {s,¬t} 6⊆ A1,
{¬s, t} 6⊆ A1, A1 = A∪ {s,¬t} and A2 = A ∪ {¬s, t}. We say a rule applies to a
branch A if some step in the rule has A as its head. A tableau calculus is also a
set of steps. Our tableau calculus T is given as the union of the rules in Figure 1.

T¬

s, ¬s

⊥
T6=

s 6=ι s

⊥
T¬¬

¬¬s

s
T∨

s ∨ t

s | t
T¬∨

¬(s ∨ t)

¬s,¬t

T∀

∀σs

[st]
t ∈ Uσ T¬∀

¬∀σs

¬[sx]
x ∈ Vσ fresh

Tmat

δs1 . . . sn , ¬δt1 . . . tn

s1 6= t1 | · · · | sn 6= tn

n ≥ 1 Tdec

δs1 . . . sn 6=ι δt1 . . . tn

s1 6= t1 | · · · | sn 6= tn

n ≥ 1

Tcon

s =ι t , u 6=ι v

s 6= u , t 6= u | s 6= v , t 6= v
Tbe

s 6=o t

s , ¬t | ¬s , t
Tbq

s =o t

s , t | ¬s , ¬t

Tfe

s 6=στ t

¬[∀x.sx = tx]
x /∈ Vs ∪ Vt Tfq

s =στ t

[∀x.sx = tx]
x /∈ Vs ∪ Vt

Tε

[∀x.¬(sx)] | [s(εs)]
εs accessible, x /∈ Vs

Fig. 1. Tableau rules

In the rules Tmat (the mating rule) and Tdec (the decomposition rule) δ ranges
over decomposable names (variables and choice operators). In the rule T∀ the
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instantiation term t must belong to the set UA
σ where A is the head of the step.

In the rule T¬∀ the variable x must be fresh in the sense that it is not in VA
where A is the head of the step. We restrict the T¬∀ to apply only in the case
where there is no variable y ∈ Vσ such that ¬[sy] is in the head A. In the context
of an automated prover, this restriction implies there is no need to apply the
T¬∀ rule to a formula ¬∀s more than once.

We explain the choice rule Tε. Whenever we must consider εs, either s corre-
sponds to the empty set and hence ∀x.¬(sx) holds, or s represents a set contain-
ing at least one element and s(εs) holds. Note that we obtain a complete calculus
even though we only apply the choice rule when εs occurs on the branch in the
form C[εs] for some accessibility context C. That is, the choice rule only applies
using εs when the branch contains a formula of the form εst1 · · · tn, ¬(εst1 · · · tn),
(εst1 · · · tn) 6=ι u or u 6=ι (εst1 · · · tn). This is a tighter restriction than the one
given for the choice rule in [15].

The set of refutable branches is defined inductively as follows. If ⊥ ∈ A,
then A is refutable. If 〈A, A1, . . . , An〉 is a step in T and every alternative Ai is
refutable, then A is refutable.

Proposition 2 (Soundness). If A is refutable, then A is unsatisfiable.

Proof. It is enough to check for each step 〈A, A1, · · · , An〉 in T that if A is
satisfiable, then Ai is satisfiable for some i ∈ {1, . . . , n}. Each case is easy. For
the steps involving the normalization operator, property N4 is used.

Example 1. Let p ∈ Vιo. For this example, assume p and λx.¬px are normal. We
refute the set {p(εx.¬px),¬p(εp)} using the rules Tmat, Tε, T∀ and T¬.

p(εx.¬px)
¬p(εp)

(εx.¬px) 6= εp
∀x.¬px

¬p(εx.¬px)
⊥

p(εp)
⊥

4 Evident Sets and Model Existence

Let E be a set of normal formulas. We say E is evident if it satisfies the conditions
in Figure 2. The conditions Efe, Efq and Eε are formulated in a slightly different
way than the corresponding tableau rules Tfe, Tfq and Tε. The tableau rules are
formulated in a way that makes proof search more practical while the evidence
conditions are formulated in a way that will ease the model construction. The
next proposition demonstrates that these three evidence conditions could also
be formulated differently. Later we will use the proposition to help prove certain
sets are evident. We omit the proof.

Proposition 3. Let E be a set of normal formulas satisfying E∀ and E¬∀.
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E⊥ ⊥ is not in E.
E¬ If ¬s is in E, then s is not in E.
E 6= s 6=ι s is not in E.
E¬¬ If ¬¬s is in E, then s is in E.
E∨ If s ∨ t is in E, then either s or t is in E.
E¬∨ If ¬(s ∨ t) is in E, then ¬s and ¬t are in E.
E∀ If ∀σs is in E, then [st] is in E for every t ∈ UE

σ .
E¬∀ If ¬∀σs is in E, then ¬[sx] is in E for some x ∈ Vσ.
Emat If δs1 . . . sn and ¬δt1 . . . tn are in E where n ≥ 1,

then si 6= ti is in E for some i ∈ {1, . . . , n}.
Edec If δs1 . . . sn 6=ι δt1 . . . tn is in E where n ≥ 1,

then si 6= ti is in E for some i ∈ {1, . . . , n}.
Econ If s =ι t and u 6=ι v are in E,

then either s 6= u and t 6= u are in E or s 6= v and t 6= v are in E.
Ebe If s 6=o t is in E, then either s and ¬t are in E or ¬s and t are in E.
Ebq If s =o t is in E, then either s and t are in E or ¬s and ¬t are in E.
Efe If s 6=στ t is in E, then [sx] 6= [tx] is in E for some x ∈ Vσ.
Efq If s =στ t is in E, then [su] = [tu] is in E for every u ∈ UE

σ .
Eε If εσs is accessible in E, then either [s(εs)] is in E or

¬[st] is in E for every t ∈ UE
σ .

Fig. 2. Evidence conditions

1. For s, t ∈ Λστ and x ∈ Vσ \ (Vs ∪ Vt), if ¬[∀x.sx =τ tx] is in E, then

[sy] 6= [ty] is in E for some y ∈ Vσ.

2. For s, t ∈ Λστ and x ∈ Vσ\(Vs∪Vt), if [∀x.sx =τ tx] is in E, then [su] = [tu]
is in E for every u ∈ UE

σ .

3. For s ∈ Λστ and x ∈ Vσ \ Vs, if [∀x.¬sx] is in E, then ¬[st] is in E for

every t ∈ UE
σ .

Let E be an evident set. In the rest of this section we will construct a model of
E. The construction is similar to the ones in [8, 9] except for some complications
arising from the instantiation restrictions.

Let X be the set VE of free variables in E. We begin by defining a binary
relation ⊲σ by induction on types. For each σ, let Dσ be the range of ⊲σ, i.e., set
of all a such that there is some s ∈ ΛX

σ such that s ⊲σ a.

– s ⊲o 0 if s ∈ ΛX
o and [s] /∈ E.

– s ⊲o 1 if s ∈ ΛX
o and ¬[s] /∈ E.

– s ⊲ι ∆ if s ∈ ΛX
ι , ∆ is a discriminant (of E), and either [s] is not a discrimi-

nating term or [s] ∈ ∆.
– s ⊲στ f if s ∈ ΛX

στ , f : Dσ → Dτ and st ⊲τ fa whenever t ⊲σ a.

Clearly we have ⊲σ ⊆ ΛX
σ ×Dσ. Also, by definition of D we have that for every

a ∈ Dσ there is some s ∈ ΛX
σ such that s ⊲σ a. For any set T ⊆ ΛX

σ we write
T ⊲ a if s ⊲ a for every s ∈ T .

Lemma 1. For all types σ, terms s ∈ ΛX
σ and values a ∈ Dσ, s ⊲ a iff [s] ⊲ a.

Proof. This follows by an easy induction on types σ using N1, N2 and N5. The
proof is essentially the same as that of Lemma 3.3 in [8].
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The next proposition records a number of useful facts about ⊲ and D. In
particular, D is a frame and for every value a ∈ Dσ there is some t ∈ UE

σ such
that t ⊲ a. We omit the proof.

Proposition 4.

1. ⊥ ⊲ 0 and ¬⊥ ⊲ 1. In particular, Do = {0, 1}.
2. For every discriminant ∆, there is a term t ∈ UE

ι such that t ⊲ ∆. In partic-

ular, Dι is the set of all discriminants.

3. For all types σ and a ∈ Dσ there is a term t ∈ UE
σ such that t ⊲ a.

4. If t ⊲µ b and x ∈ Vτ \ Vt, then λx.t ⊲ Kb where Kb : Dτ → Dµ is the constant

b function.

5. For all types σ, Dσ is nonempty.

6. D is a frame.

We now turn to a notion of compatibility of terms. For s, t ∈ ΛX
σ we say s♯t

holds if either s 6= t or t 6= s is in E.

Definition 1. For each type σ we define when two terms s, t ∈ ΛX
σ are compat-

ible (written s ‖ t) by induction on types.

σ = o: s ‖ t if {[s],¬[t]} 6⊆ E and {¬[s], [t]} 6⊆ E.

σ = ι: s ‖ t if [s]♯[t] does not hold.

σ = τµ: s ‖ t if for all u, v ∈ ΛX
τ u ‖ v implies su ‖ tv.

We say a set T ⊆ ΛX
σ is compatible if s ‖ t for all s, t ∈ T .

The next lemma provides relationships between compatibility of terms and
the presence of disequations in E. Note that part (2) of the lemma implies εσ ‖ εσ

for every type σ and x ‖ x for every variable x ∈ X .

Lemma 2. For all types σ we have the following:

1. For all s, t ∈ ΛX
σ , if s ‖ t, then [s]♯[t] does not hold.

2. For all δs1 · · · sn, δt1, · · · tn ∈ ΛX
σ where n ≥ 0 and δ is a decomposable name,

either δs1 · · · sn ‖ δt1, · · · tn or there is some i ∈ {1, . . . , n} such that [si]♯[ti].

Proof. By mutual induction on σ. The only complicated case is proving (1)
when σ is τµ. Assume s ‖ t holds and [s]♯[t] holds. By Efe [[s]x]♯[[t]x] for some
variable x. If x ∈ X , then x ‖τ x by inductive hypothesis (2) and so sx ‖µ tx,
contradicting inductive hypothesis (1) and N2. Assume x /∈ X . In particular,
x /∈ Vs ∪ Vt ∪ V [sx] ∪ V [tx]. In this case we can prove [sx] is [s(εx.⊥)] and [tx]
is [t(εx.⊥)]. Using the inductive hypothesis (2) we can prove εx.⊥ ‖ εx.⊥ and
derive a contradiction.

The next lemma relates compatibility to ⊲ and can be proven by an easy
induction on types.

Lemma 3. For all sets T ⊆ ΛX
σ , T is compatible iff there exists a value a ∈ Dσ

such that T ⊲ a.
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We now turn to the interpretation of the choice operators. We use a con-
struction similar to that of Mints [15] adapted to our setting.

Let f ∈ Dσo be a function and εs be a term in ΛX
σ . We write f ∝ εs (read f

chooses εs) iff s ⊲ f and ε[s] is accessible in E. Let f0 := {εs ∈ ΛX
σ |f ∝ εs}.

Lemma 4. Let E be an evident set and let f ∈ Dσo be a function. Then, there

is some a ∈ Dσ such that f0 ⊲ a.

Proof. We show that f0 is compatible. Lemma 3 gives us the claim. Let εs, εt ∈
f0. By definition of ∝, s, t ⊲ f and hence, by Lemma 3, s ‖ t. By Lemma 2(2)
ε ‖ ε. Thus εs ‖ εt.

For any type σ, we define Φσ ∈ Dσo → Dσ as follows:

Φσf =

{
some b such that fb = 1 if f0 is empty and such a b exists.

some a such that f0 ⊲ a.

The existence of an a in the second case follows from Lemma 4. Note that the
second case includes the case in which f is the constant 0 function. In particular,
if f is the constant 0 function and f0 is empty, then Φσf can be any a ∈ Dσ.

Lemma 5. Let E be an evident branch, ε be a choice operator, εt1 . . . tn ∈ ΛX
σ

and a ∈ Dσ. If εt1 . . . tn ⋫ a, then ε[t1] . . . [tn] is accessible in E.

Proof. The proof is by an easy induction on σ.

Lemma 6. For any type σ we have εσ ⊲ Φσ.

Proof. Assume ε ⋫ Φ. Then, there are s, f such that s ⊲ f but εs ⋫ Φf . By
Lemma 5 ε[s] is accessible in E. Hence εs ∈ f0. There is some a such that
Φf = a and f0 ⊲ a. Thus εs ⊲ a, a contradiction.

Lemma 7. Lεσ
(Φσ) holds. That is, Φ as defined above is a choice function.

Proof. Let f ∈ Dσo be a function and b ∈ Dσ be such that fb = 1. Suppose
f(Φf) = 0. Then f0 must be nonempty (by the definition of Φf). Choose some
εs ∈ f0. We will show a contradiction. By Eε there are two possibilities:

1. [s(εs)] ∈ E: In this case s(εs) ⋫ 0. On the other hand, s ⊲ f and ε ⊲ Φ
(by Lemma 6) and so s(εs) ⊲ f(Φf). This contradicts our assumption that
f(Φf) = 0.

2. ¬[st] ∈ E for every t ∈ UE
σ . By Proposition 4(3) there is some term t ∈ UE

σ

such that t ⊲ b. Hence ¬[st] ∈ E. By definition of ⊲o, st ⋫ 1. On the other
hand, we know st⊲fb since s⊲f and t ⊲ b, contradicting the assumption that
fb = 1.

Lemma 8. If s ⊲σ a, t ⊲σ b and s = t is in E, then a = b.

Lemma 9. For each c ∈ Λσ there is some a ∈ Dσ such that Lc(a) and c ⊲ a.
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Proof. If c is a choice operator εσ, then we know εσ ⊲ Φσ and Lεσ
(Φσ) by Lem-

mas 6 and 7. Checking for the other logical constants is tedious, but not difficult.
Lemma 8 is used in the case where c is =σ.

We say an assignment I into D is admissible if c ⊲Ic for all logical constants
c. The following lemma can be proven by induction on terms.

Lemma 10. Let s be a term, θ be a substitution and I be an admissible assign-

ment into D. Suppose for every x ∈ Vs, x ∈ Dom θ and θx⊲Ix. Then s ∈ Dom Î
and θ̂s ⊲ Îs.

Now we can prove the model existence theorem for evident sets.

Theorem 1 (Model Existence). Every evident set is satisfiable.

Proof. Let E be an evident set. Take ⊲ and D as defined in this section. We
define an assignment I as follows. For each logical constant c we can choose Ic
such that c ⊲ Ic and Lc(Ic) by Lemma 9. This ensures we will have a logical,
admissible assignment. For each variable x ∈ X we know x ‖ x by Lemma 2(2)
and we can choose Ix such that x ⊲ Ix by Lemma 3. For each variable x ∈ Vσ

not in X we take Ix = ΦσK0 where K0 is the constant 0 function. Let θ be the
substitution mapping each x ∈ X to x and each variable x ∈ Vσ not in X to
εσy.⊥ ∈ ΛX

σ . By Lemma 6 and Proposition 4(4) we know that εσy.⊥ ⊲ ΦK0 and
hence θx ⊲Ix for every variable x. By Lemma 10 we know every s ∈ Dom Î and
θ̂s ⊲ Îs for every term s. In particular, I is an interpretation. It remains to prove
Îs = 1 for all s ∈ E. Let s ∈ E be given. By S4 we know [θ̂s] = [s]. Using this
and Lemma 1 we know s ⊲ Îs. Since s ⋫ 0 and s ⊲ Îs, we must have Îs = 1 as
desired.

We can now prove that if the tableau calculus T cannot make progress on a
branch, then this branch is satisfiable and in fact has a model with finitely many
individuals.

Corollary 1. Let A be a branch. Suppose ⊥ /∈ A and A is not the head of any

step in the calculus T . Then A is evident and there is a model (D, I) of A where

Dι is finite.

Proof. Once we know A is evident, we know we have a model (D, I) of A where
Dι is the set of discriminants of A. Since A is finite, there are only finitely many
discriminating terms of A and hence only finitely many discriminants.

The evidence condition E⊥ follows from the assumption that ⊥ /∈ A. The
conditions E¬ and E 6= follows from ⊥ /∈ A and the assumption that the rules T¬
and T6= do not apply to A. Except for Efe, Efq and Eε, the remaining evidence
conditions follow immediately from the assumption that the corresponding rule
does not apply. After we know E∀ and E¬∀ hold for A, we can conclude that
Efe, Efq and Eε hold for A using Proposition 3 and the assumption that the
corresponding rule does not apply.
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C⊥ ⊥ is not in A.
C¬ If ¬s is in A, then s is not in A.
C 6= s 6=ι s is not in A.
C¬¬ If ¬¬s is in A, then A ∪ {s} is in Γ .
C∨ If s ∨ t is in A, then A ∪ {s} or A ∪ {t} is in Γ .
C¬∨ If ¬(s ∨ t) is in A, then A ∪ {¬s,¬t} is in Γ .
C∀ If ∀σs is in A, then A ∪ {[st]} is in Γ for every t ∈ UA

σ .
C¬∀ If ¬∀σs is in A, then A ∪ {¬[sx]} is in Γ for some variable x.
Cmat If xs1 . . . sn is in A and ¬xt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si 6= ti} is in Γ for some i ∈ {1, . . . , n}.
Cdec If xs1 . . . sn 6=ι xt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si 6= ti} is in Γ for some i ∈ {1, . . . , n}.
Ccon If s =ι t and u 6=ι v are in A,

then either A ∪ {s 6= u, t 6= u} or A ∪ {s 6= v, t 6= v} is in Γ .
Cbe If s 6=o t is in A, then either A ∪ {s,¬t} or A ∪ {¬s, t} is in Γ .
Cbq If s =o t is in A, then either A ∪ {s, t} or A ∪ {¬s,¬t} is in Γ .
Cfe If s 6=στ t is in A, then A ∪ {¬[∀x.sx =τ tx]} is in Γ for some x ∈ Vσ \ (Vs ∪ Vt).
Cfq If s =στ t is in A, then A ∪ {[∀x.sx =τ tx]} is in Γ for some x ∈ Vσ \ (Vs ∪ Vt).
Cε If εσs is accessible in A, then either A ∪ {[s(εs)]} is in Γ or

there is some x ∈ Vσ \ Vs such that A ∪ {[∀x.¬(sx)]} is in Γ .

Fig. 3. Abstract consistency conditions (must hold for every A ∈ Γ )

Example 2. Let p ∈ Vιo and q ∈ Vo. For this example assume [s] = s for all
βη-normal forms s. We prove ∀oq.ειop 6= ειox.q is satisfiable. Applying tableau
rules we can construct a branch with the following formulas:

∀oq.εp 6= εx.q, εp 6= εx.⊥, εp 6= εx.¬⊥, p 6= λx.⊥, p 6= λx.¬⊥, ¬∀x.px = ⊥,
¬∀x.px = ¬⊥, px 6= ⊥, py 6= ¬⊥, px, ¬⊥, ¬py,

x 6= y, p(εp), εp 6= y, ∀x.¬⊥

5 Abstract Consistency and Completeness

We now lift the model existence theorem for evident sets to a model existence
theorem for abstractly consistent sets. This will allow us to prove completeness
of the tableau calculus T . The use of abstract consistency to prove completeness
was first used by Smullyan [17] and later used by several authors in various
higher-order settings [1, 14, 6, 8].

A set Γ of branches is an abstract consistency class if it satisfies the conditions
in Figure 3. In Lemma 12 we will prove that every member of an abstract
consistency class can be extended to an evident set. In order to verify the E∀
condition we will need the following lemma relating universes for different sets
of formulas.

Lemma 11. Let A be a nonempty subset of Γ and let E be
⋃
A. Suppose for

every branch B ⊆ E there is a branch A ∈ A such that B ⊆ A. Then for every

t ∈ UE
σ there is some A ∈ A such that t ∈ UA

σ .

We can now prove the desired extension lemma.
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Lemma 12 (Extension Lemma). Let Γ be an abstract consistency class. For

every A ∈ Γ there is an evident set E such that A ⊆ E.

Proof. Let u0, u1, . . . be an enumeration of all normal formulas. We will construct
a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that every An ∈ Γ . Let
A0 := A. We define An+1 by cases. If there is no B ∈ Γ such that An∪{un} ⊆ B,
then let An+1 := An. Otherwise, choose some B ∈ Γ such that An ∪ {un} ⊆ B.
We consider five subcases.

1. If un is of the form ¬∀σs, then choose An+1 to be B ∪ {¬[sx]} ∈ Γ for some
x ∈ Vσ. This is possible since Γ satisfies C¬∀.

2. If un is of the form s 6=στ t, then choose An+1 to be B∪{¬[∀x.sx =τ tx]} ∈ Γ
for some x ∈ Vσ \ ([s] ∪ [t]). This is possible by Cfe.

3. If un is of the form s =στ t, then choose An+1 to be B∪{[∀x.sx =τ tx]} ∈ Γ
for some x ∈ Vσ \ ([s] ∪ [t]). This is possible by Cfq.

4. Suppose un is of the form C[εσs] where C is an accessibility context. (Note
that if un is of this form, then it cannot be of one of the previous forms by
the definition of an accessibility context.) By Cε there either B ∪ {[s(εs)]}
is in Γ or there is some x ∈ Vσ \ Vs such that B ∪ {[∀x.¬(sx)]} is in Γ . If
B∪{[s(εs)]} is in Γ , then let An+1 be B∪{[s(εs)]}. Otherwise, choose An+1

to be B ∪ [∀x.¬(sx)] ∈ Γ for some x ∈ Vσ \ Vs.
5. If no previous case applies, then let An+1 be B.

Let E :=
⋃

n∈N

An. We must prove E satisfies the evidence conditions. We check

only E∀ and Eε in detail, leaving the others to the reader. Proposition 3 is helpful
for verifying Efe and Efq just as it is helpful verifying Eε below.

E∀ Assume ∀σs is in E. Let t ∈ UE
σ be a normal term. Let n be such that

un = [st]. By Lemma 11 (taking A to be {Ar|r ≥ n and ∀σs ∈ Ar}) there is
some r ≥ n such that t ∈ UAr

σ and ∀σs is in Ar. By C∀ Ar ∪ {[st]} is in Γ .
Since An ∪ {un} ⊆ Ar ∪ {[st]}, we have [st] = un ∈ An+1 ⊆ E.

Eε Assume εσs is accessible in E. Then there is some accessibility context C
such that C[εσs] is in E. Let n be such that un is C[εσs]. Let r ≥ n be
such that un is in Ar. By the definition of An+1 either [s(εs)] is in An+1 or
[∀x.¬(sx)] is in An+1 for some x ∈ Vσ \ Vs. In the first case we are done. In
the second case let x ∈ Vσ \ Vs be such that [∀x.¬(sx)] is in E. Let t ∈ UE

σ

be given. By Proposition 3(3) we know ¬[st] is in E.

Using the extension lemma we can lift the model existence theorem for evi-
dent sets to a model existence theorem for abstract consistency classes.

Theorem 2 (Model Existence). Let Γ be an abstract consistency class. Every

A ∈ Γ is satisfiable.

Proof. Let A ∈ Γ be given. By Lemma 12 there is an evident set E such that
A ⊆ E. By Theorem 1 E is satisfiable.
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We can now prove completeness of the tableau calculus T . Let ΓT be the set
of all branches A which are not refutable. We will first prove ΓT is an abstract
consistency class and then use Model Existence to prove completeness.

Lemma 13. ΓT is an abstract consistency class.

Proof. It is easy to check each condition in Figure 3 using the corresponding
tableau rule in T . For example, we check Cε. Suppose εσs is accessible in A,
A∪{[s(εs)]} is not in ΓT and A∪{[∀x.¬(sx)]} is not in ΓT for every x ∈ Vσ \Vs.
Choose some x ∈ Vσ \ Vs. We know A ∪ {[s(εs)]} and A ∪ {[∀x.¬(sx)]} are
refutable. Hence A is refutable using Cε, contradicting A ∈ ΓT .

Completeness now follows directly from Lemma 13 and Theorem 2.

Theorem 3 (Completeness). Let A be a branch. If A is not refutable, then

A is satisfiable.

6 Related Work

This work is an extension of two lines of research. First, we have extended the
tableau calculus of Brown and Smolka [8] to support a choice operator at every
type. We have done this by modifying sequent rules given by Mints [15] to
be tableau rules and adapting the relevant parts of his cut-elimination proof.
Second, we have obtained tighter restrictions on the instantiations of quantifiers
than were available before.

In [9] Brown and Smolka give a complete tableau calculus for a first-order
subsystem (EFO) of higher-order logic. Quantifiers are only allowed at type ι
there and the instantiations are restricted to discriminating terms. We have
maintained this restriction on instantiations for quantifiers at type ι. In addition
we have proven that it is enough to instantiate quantifiers at type o with the
two terms ⊥ and ¬⊥. As for quantifiers at function types, we have proven that
these instantiations need not consider variables that do not already occur free
on the branch.

The choice rule given in this paper is similar to a ε-rule for a sequent calculus
given by Mints [15]. We briefly sketch a comparison between our rules and the
rules of Mints.

Translating into our language, Mints’ rule could be represented as

(Mints’ ε)
[¬(st)] | [s(εs)]

εs occurs on the branch

By εs occurs on the branch we simply mean that εs appears as any subterm
where none of the free variables of s are captured by a λ-binder. Note that this
rule could apply more often than our Tε rule. Our Tε rule cannot be applied
until εs appears on the branch in one of the forms εst1 · · · tn, ¬(εst1 · · · tn),
(εst1 · · · tn) 6=ι u or u 6=ι (εst1 · · · tn). Furthermore, in Mints’ system the ε-rule
would need to be applied for each new instantiation term t. In practice this could
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lead to the need to refute branches with [s(εs)] multiple times. We have avoided
this by using the quantified formula [∀x.¬(sx)] on the left branch.

Mints also includes an ε-extensionality rule in [15]. In our context, his rule
could be realized as

(Mints’ ext ε)
s 6= t | (εs) = (εt)

εσs and εσt occur on the branch

In words, whenever εσs and εσt both occur on the branch, we must consider the
case where s and t are different, and the case where εs and εt are the same. This
rule could be highly branching in practice. When n different terms of the form

εs occur on the branch, then the rule must be applied n2−n
2 times. Furthermore,

it has the disadvantage that it adds a positive equation to the branch. If σ is
a function type, this will lead to the need to perform instantiations. We were
able to omit such a rule entirely from our system and still prove completeness.
It seems that Mints needed such a rule because the extensionality in [15] is not
liberal enough. Translated into our context, the extensionality rule in [15] in-
cludes the rule

(Special Case of Mints’ extensionality)
εss1 . . . sn , ¬εst1 . . . tn

s1 6= t1 | · · · | sn 6= tn
n ≥ 1

This corresponds to our mating rule, except that we have liberalized the rule to
include the case when the corresponding first arguments of ε are different.

(Special Case of Tmat)
εs1 . . . sn , ¬εt1 . . . tn

s1 6= t1 | · · · | sn 6= tn
n ≥ 1

7 Conclusion

We have presented a cut-free tableau calculus for Church’s simple type theory
with a choice operator. The calculus is designed with automated proof search in
mind. In particular, only accessible terms on the branch need to be considered
in order to apply a rule. Furthermore, instantiation terms are restricted accord-
ing to the type and the formulas on the branch. At type o only instantiations
corresponding to true and false are considered. At the base type ι only discrim-
inating terms on the branch need to be considered (except when there are no
discriminating terms in which case a default element can be used). Note that
this means only finitely many instantiations at type ι need to be considered at
each stage of the search. At function types, the set of instantiations is infinite,
but we have at least proven that we do not need to consider instantiations with
free variables that do not occur on the current branch.

The first author has extended this work by also considering description op-
erators and if-then-else operators in addition to choice operators. This work has
been reported in his Master’s thesis [4]. The same style of rules (restricted to ac-
cessible terms) and model construction (using discriminants and possible values)
can be used to incorporate description and if-then-else. Interpreting if-then-else
is straightforward. Interpreting description is analogous to the interpretation of
choice given here.
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The second author has implemented a new higher-order automated theo-
rem prover, Satallax, based on the ground calculus in this paper. Early results
show the implementation to be competitive with the automated theorem provers
TPS [3] and LEO-II [7] as well as the automated features of Isabelle [16].
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