Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Analytic Tableaux for Higher-Order Logic with Choice

Julian Backes - Chad E. Brown

Received: 9 June 2011 / Accepted: 15 June 2011

Abstract While many higher-order interactive theorem provers idela choice operator,
higher-order automated theorem provers so far have notder o support automated rea-
soning in the presence of a choice operator, we presentfeegugiround tableau calculus for
Church’s simple type theory with choice. The tableau caisu$ designed with automated
search in mind. In particular, the rules only operate on dpelével structure of formulas.
Additionally, we restrict the instantiation terms for qtiéiers to a universe that depends
on the current branch. At base types the universe of instionts is finite. Both of these
restrictions are intended to minimize the number of rulesreesponding search procedure
is obligated to consider. We prove completeness of the dabdalculus relative to Henkin
models!

Keywords higher-order logic simple type theory tableaux: completenessaxiom of
choice- choice operatorsHenkin models

1 Introduction

Interactive theorem provers based on classical highesrdagjic (e.g., Isabelle-HOL [26],
HOL88 [17], HOL-light [18], ProofPower [22] and HOL4 [28]ulid in the axiom of choice
by including a form of Hilbert'ss binder and appropriate rules. Church’s formulation of the
simple theory of types [15] included a selection operatatléd 1) and an axiom of choice
for this operator at each type. Henkin defined a general maia model of Church’s type
theory with choice and proved completeness [19]. A highhdeoversion of the TPTP has

J. Backes

Saarland University,
Saarbrucken, Germany

E-mail: julianbackes@gmail.com

C. Brown

Saarland University,

Saarbriicken, Germany

E-mail: cebrown@ps.uni-saarland.de

1 Accepted author’s version. The published version is abkglat
http://www.springerlink.com/content/b6445872uwliqnvOr/

2 Julian Backes, Chad E. Brown

been under development the past few years [32]. In 2009 ideegled that Henkin models
with choice would be the default semantics of the higheeofdPTP.

Automated theorem provers for classical higher-ordercldgig., TPS [4] and LEO-
Il [10]) do not currently build in the axiom of choice. Comf@eaess of such calculi is
judged with respect to a variant of Henkin's models witholoice [3,9]. As Miller ar-
gues [23] Skolemization is unsound with respect to Henkirdef® without choice but is
incomplete with respect to Henkin models with choice. Farsgle, Skolemization makes
the formula(vx3dy.rxy) — 3fvx.rx(fx) easy to prove, but Skolemization does not help one
provedcvpx px— p(cp). Miller gives a restriction which makes Skolemization stwvith
respect to Henkin models without choice.

What would be involved in adding support for choice? Assumevalogical constard,
of type(o — 0) — o at each typer is added to the syntax. We need new rules corresponding
to this constant. The fundamental propesgyshould satisfy is expressed by the formula

VPo—oXg-PX— P(EgP) 1

One option is to take a formukawe wish to prove and instead pro{®) — susing a cut-free
proof calculus for higher-order logic without choice (ethe calculi in [11] and [14]). The
first problem with this option is that (1) only expresses thie@ of choice at a single type
0. We could overcome this in principle by systematically ¢desng (14) A---A(1lg,) — S.

for any finite sef oy, ..., 0n} of types. The second problem with this option is more serious
Even adding a single instance of (1) at any tgpallows one to simulate cut in the calculus
(see Example 7.3 of [8]). This naive idea for a cut-free wale is doomed. As argued in [8]

it is a general phenomenon that higher-order hypothesemgesit-freeness of a calculus.
This phenomenon motivates trying to build the assumptiatws the calculus in a cut-free
(but complete) way.

Our purpose in this paper is to give a complete analytic &abtmlculus for higher-order
logic with choice that forms a basis for automated reasointhe logic. Mints [24] has
given a sequent calculus for relational higher-order legitb ane-operator and proves cut-
elimination. Mints’ calculus does not include arbitrarpétion types and the corresponding
simply typedA -terms. We adapt Mints’ rules for a simply typed formulatiarthe style of
Church. We obtain tighter restrictions on when Mints’ maoice rule (thes-rule) needs
to be applied. Furthermore, we show we can omit Migt€xtensionality rule altogether.
These results are important for automated reasoning betaese two rules would be highly
branching in practice. In addition to including cut-fredesufor thee-operator, we give
strong restrictions on the instantiation of universal difi@ns over base types analogous to
those reported in [12].

In Section 2 we give a quick presentation of the syntax andaséios of simple type
theory with choice. In Section 3 we present the tableau @acin Section 4 we define the
notion of an evident set and prove that every evident set den&in model. We define a
notion of abstract consistency in Section 5. In Section 6 weg@completeness as well as
compactness and the existence of countable models. Ir8éttie extend the calculus to
include an if-then-else operator. We discuss related wodkcanclude in Sections 8 and 9.

This article is an expanded version of [6].

2 Preliminaries

We start by giving the syntax for simple type theory with aicecperator in the style of
Church [15]. Typesd, 1, p) are given inductively by the base typdof truth values); (of

Analytic Tableaux for Higher-Order Logic with Choice 3

individuals) ando — T (of functions fromo to t). For brevity, we will omit the arrow and
write o1 for o — 1. Omitted parenthesis in types associate to the righpz meanso (T).
The results in the paper generalize to the case where treeglatrarily many base types of
individuals. We usé8 to range over the base typesind: .

For each types we assume a countably infinite s& of variables of types. For each
type o we have logical constants, of type oo, YV of type (00)o and &5 (the choice
operator) of typg go)o. Furthermore, we have logical constants for disjunctioof type
000, negation— of type oo, false | of type o and for a default individuak of type:. (The
default individual is included only to act as an instantiativhen no other instantiation of
type is allowed by our calculus.) We usey to range over variables arwito range over
logical constants. Aameis either a variable or a logical constant. We ws® range over
names. Variableg and choice operators; are calleddecomposabl@ames. We usw to
range over decomposable names. ¥gtbe the set of decomposable namesf typeo.

The family of sets\s of terms of typeo are inductively defined. I¥ is a name of type
g, thenv € Aq. If t € Agr ands € Ag, then we have an application tetse A;. If x € ¥4
andt € A;, then we have an abstraction teAr.s € Ag;. A formulais aterms € Aq.

Application associates to the left, so tisat means(st)u, with the exception thattu
always means:(tu). We useT as notation for-_L. We use infix notation and write=, t
(ors=t) for =4 st and writes\/t for vst. (Note that ifsandt are different terms of type,
thens=t is a different term that = s.) We writes #,t (or s#1) for =(s=4t). We also
use binder notation to writéx.s for VoA x.sand writeex.sfor egAx.s. We writes — t, SAt
and3x.sas shorthands forsVt, —(—sV —t) and—Vx.—s, respectively.

The set?'t of free variables of s defined as usual. For a set of variablesve write
/\2,< for the set of all term$ € Ay such that?t C X. Also, for a setA of terms, 7 A is
U{79gse A}

To describe our tableau calculus and to reason about it waeeH to be able to refer to
certain shallow occurrences of subterms within terms. kanmgple, the choice rule may be
applicable in the presence of a formlapx #, y (wherep € (), andx,y € 7;) because
the subtermrg;, p occurs as a subterm in a special position. To describe sustiqms, we
define two notions of contexts (terms with holes).

An elimination context(&’) is a term with a hol€], defined inductively as follows
(see [25]).[J¢ is an elimination context of type. If & is an elimination context of type
T ands € A; thené&’sis an elimination context of typg.

Let & be an elimination context of type which has a hole of type. We can apply’
to a termt € A; to get a term of typey: [][t] =t and(& s)[t] = &t] s.

An accessibility contex{#) is a term with a hold], of the formé&, -&, & #, sor
s#, & whereé& is an elimination context. We can apply an accessibilitytexis” with
a hole of typeo to a termt € A, to get a term of type in the obvious way. A terns is
accessiblen a setA of formulas if there is an accessibility contégtsuch thats'[s] € A.

Let A be a set of formulas. A termis discriminatingin A if there is a termt such
thats#,t € Aort #, s€ A. A discriminantA of A is a maximal set of discriminating
terms such that there are Bd € A with s#, t € A. (Discriminants first appeared in [13].)
Discriminating terms will be used to instantiate quantgfiever typer, and discriminants
will be used to interpret the type Note that if there are no discriminating termsAnthen
0 is the unique discriminant &. Note also thas is accessible i\ if and only if there is an
elimination contex¥ such that’[s| € A, =&[s] € Aor &[g] is discriminating inA.

We prove that compatible sets of discriminating terms caodilected into a common
discriminant. This fact will be used more than once. Thihesfirst of several places in the
paper where we use the axiom of choice at the meta-levelidrptrticular case, we could

4 Julian Backes, Chad E. Brown

[prop. [where | holds | forall |

£.(a) ac 9, always

Li(a) | ac % whena=0

£.(n) Nne Y0 whenna=1 ifandonlyif a=0 ac %,
Ly(d) d € Zooo whendab=1 ifandonlyif a=2lorb=1 abe %,
Lvs(P) | PE Zoo)o whenpf=1 ifandonly if Vae %, fa=1| f€ Yoo
L£_.(@) | 9€ Dooo whengab=1 ifandonlyif a=»b a,be Y,
Lo (P) | PE€ Digo)s | Whenf(@f)=1 ifandonlyif Jac Py fa=1]| f€ Dy

Table 1 Properties of values of logical constants

use an enumeration of terms to avoid using the axiom of ctiie® we assumed the sét
of variables is countably infinite.

Proposition 1 Let A be a set of formulas and C be a set of terms that are digtaiing in
A. Suppose €t ¢ A for every st € C. There is some discriminadt of A such that GC A.

Proof Let P be the set of all set® such that

1. CCD,
2. every term irD is discriminating inA, and
3. s#t ¢ Afor everys,t € D.

Note thatP is partially ordered byC. For any totally ordered subs&C P, CU (JQ) is
an upper bound oR in P. By Zorn's Lemma, there is some maximale P. ThisA is a
discriminant ofA such thatC C A. O

We consider a simple example application of Proposition Upp®sexi, Xz, ... and
y1,¥2,... are enumerations of distinct variables of typdet A = {x1 # y1, X2 # y2,...}.
LetC be a subset ofx1, x2,...} U{y1,Y2,...} such that for eacheitherx, ¢ C ory; ¢ C. By
Proposition 1 there is a discriminaftof A extendingC.

Proposition 2 For every set A of formulas, there is a discriminanof A.
Proof We obtainA by applying Proposition 1 wit = 0. ad

We now turn to a brief description of the semantics. Our motban interpretation is
essentially that given by Henkin [19]. fiame & is a typed family of nonempty sets such
that 7, = {0,1} and %, is a set of total functions fror, to Z;. %, is the set of booleans
0 (falsg and 1 frue). An assignmeninto a frame? is a function.# that maps every name
v of type o to an element of7,;. We use.#} to denote the assignment that is like but
maps the variablgto a.

For each logical constawctof type o we define a corresponding propesty(a) of ele-
mentsa € 9, in Table 1. Essentiallg¢(a) holds if and only ifa is an appropriate interpre-
tation ofc. An assignment? into Z is logical if £¢(.#¢) holds for each logical constaot
A logical assignment/ must mapl to 0, — to the negation function, and so on. There is
no restriction on the value o x in 2,. The most interesting case to consider is the choice
operatores. For an assignment to be logicafi,e; must be a functio® in 744 such that
f(®(f)) =1 for everyf € P4, except whenf is the constant 0 function. We call such a
@ achoice functionThere may be many different choice functionséy) .. (Of course,
there may also be no choice function.)

Analytic Tableaux for Higher-Order Logic with Choice 5

We now turn to the interpretation of all typed terms. To de tie use induction on
terms to lift each assignmenf to a partial function# on terms:

FW)=sv) .
F(st):=fa if Fs=fandst=a
F(Axs):=f ifAXSEAgr, f € Dyr andvac 7, FZs= fa

Note that.# (st) is undefined if eithers/s or .#t is undefined. Similarly,# (Ax.s) is unde-
fined if either,Z{sis undefined for soma € %, or if the appropriate functiot : 5, — %
is not in Z,+. If .7 is a total function, then we say is aninterpretation

We record the following useful fact which can be proven by asyenduction on terms.

Proposition 3 Let 2 be a frame and g A be aterm. If.# and ¢ are assignments into
2 such thatsc= _# c for every logical constant c and’x = _#x for every xc 7's, then
either s¢ Dom(.#) and s¢ Dom(_¢) or se Dom(.#), se Dom(_#) and.#s= ¢s.

A (Henkin) model 2, .#) is a frameZ and a logical interpretatiory into 2. We say
that a model 2, .7) satisfiesa formulasif and only if .7 (s) = 1. A formula issatisfiableif
and only if there is a mod€¢l7, .#) such that (s) = 1. We say amod€l?, .#) is countable
if 9, is at most countable for every tyge Note that even i, is finite for everyo, the
union Uy, 2 will be countably infinite. Hencé2, .#) is a countable model if and only if
Uo Zs is countably infinite.

We say(2,.#) is a model ofa set of formulag\ if I s) =1 for everys e A. A setA of
formulas issatisfiableif there is a model oA.

We assume a type preserving and totatmalization operatof-] from terms to terms.
A term isnormal if and only if [§) = s. A set of terms is normal if every element of this
set is normal. Instead of committing to a specific operatehsasf3-normalization or3n-
normalization, we require the following properties:

[[s]] =[]
2 [[sft] = [st]
N3 [vs;...s] = V[s1]...[sn] if vs;...5 € Ag for some base typg andn > 0

N4 .7[g) = .#sfor every model Z,.7)
N5 #[s|C ¥s

Note that by N5 we knovis] € AX whenevers € AX.

A substitutionis a type preserving partial function from variables to tertfi 6 is a
substitutionx is a variable, and is a term that has the same typexasve write 6% for the
substitution that agrees everywhere wétiexcept orx where it yieldss. For each substitu-
tion 8 we assume there is a type preserving total funcdrom terms to terms such that
the following properties hold:

S1 6x= Oxfor everyx € Dom#

S2 B(st) = (6s)(6t)_

S3 ge Ax9))t] = [exs]

S4 [0s| =g if Ox=xfor everyx € Dom&N¥'s
S5 [6[s]] = [6s]

The following two propositions demonstrate that abstrammalization and substitution
satisfy two properties one would expect. The empty setllastibstitution that is undefined
on every variable.

Proposition 4 [[Ax.slt] = [0}

6 Julian Backes, Chad E. Brown

S, S S#, S S sVt —(sVt) VoS
T, — Ty —— T —— Ty — Ty —— Fy — te,
L [- VoSt Vo st Vs S
—VgS . S#pt
T Vs fresh T —— bl 4 X —
T v o X € Vg fres Te Fx—(s%] | (9] €s accessiblex ¢ ¥'s Tae e
% S=o! Ge —STt Gyt Tre ——CL e ysumt
7B st | s, IFE Svxsx=tx] TP yxsx=tx
WS ... Sy, “Why ...t WS ... Sy 7 Wip ... 1 s=t,u# v

St£t || Ssh# St £t | sh#t SEUtAU|[SAV, t#V

Fig. 1 Tableau rules defining the tableau calculids

Proof [[Ax.gt] Z[[B(Ax.9)]t] = [(B(Ax.9)t] < [0Fs]. O

Proposition 5 Let se Agr, X€ Y5 andte Aq. If x ¢ ¥'s and x¢ ¥'[sX, then[sX = [st].

Proof [sx = [[sX] = [0¢[sX] = [B(sx)] Z [BX(S)B(X)] = [BX(S)t] = [[BK(S)]t] = [[]t] = [st-

O

For each seh of formulas and typer we define a nonempty s@t? C A, as follows.

- Let#M={1,T}.

— Let % be the set of discriminating terms Aif there is some discriminating term ik
and{x} otherwise.

— Let%f, = {[g|s€ Aor, ¥'SC YA}

When trying to refute a sei of formulas, all our instantiations of type will come from
theuniverseZ. When the sed is clear in context, we writé/,,.

3 Tableau Calculus

We now introduce a tableau calculus and define a notion ofakeiity. A branchis a finite

set of normal formulas. Atepis ann+ 1-tuple (A, Aq,...,A,) of branches where > 1,

1 ¢ AandA C A for eachi € {1,...,n}. The branciAis theheadof the stepA, Ay, ..., An)

and eachh is analternative A rule is a set of steps, and is usually indicated by a schema.
For example, the schema fdfge given in Figure 1 indicates the set of stef@sAq, Az)
where(s#qt) € A, LA {s,—t} ZA {-st} Z A Ap =AU{s,—t} andA; = AU{-s t}.

We say a ruleapplies toa branchA if some step in the rule ha& as its head. A tableau
calculus is also a set of steps. L#tbe the tableau calculus given as the union of the rules
in Figure 1.

In the rulesZyar (the mating rule) and’ec (the decomposition rule) we assume 1
andw is a decomposable name (a variable or a choice operatohe Irute %, the instanti-
ation termt must belong to the se¥2 whereA is the head of the step. In the rufg,, the
variablex must befreshin the sense that it is not i A whereA is the head of the step. We
restrict theZ_,, to apply only in the case where there is no decomposable nea#,; such
that —[sw| is in the headA. In the context of an automated prover, this restrictionliesp
there is no need to apply th& ; rule to a formula—¥s more than once. For example xf

Analytic Tableaux for Higher-Order Logic with Choice 7

andw are variables of type, then.Z_, does not apply to the brandh-w, ~vx.x}. Without
the restriction, we could continue to apph.y, to add new formulasws,, —ws,

We explain the choice rulg. Whenever we must consides, eithers corresponds to
the empty set and hene®.—(sx) holds, orsrepresents a set containing at least one element
ands(es) holds. Note that we obtain a complete calculus even thouglonieapply the
choice rule whergs occurs on the branch in the for#i[es| for some accessibility context
% . That is, the choice rule only applies usiagwhen the branch contains a formula of the
formest -« -ty, —(est--tn), (€Sti---tn) # UOru#, (est---ty). This is a tighter restriction
than the one given for the choice rule in [24].

The set ofrefutable branches is defined inductively as follows. If € A, thenA is
refutable. If (A, Aq,...,An) is a step in7 and every alternativéy is refutable, therA is
refutable.

Proposition 6 (Soundness)f A is refutable, then A is unsatisfiable.

Proof Itis enough to check for each stéfy, Aq,--- ,An) in 7 that if Ais satisfiable, thed
is satisfiable for somee {1,...,n}. Each case is easy. For the steps involving the normal-
ization operator, property N4 is used. Fgr, use Proposition 3. ad

Example 1Let p € ¥#,. For this example, assungeandA x.—px are normal. We refute the
set{p(ex.—px),~p(ep)} using the ruleshyar, T, % and 7. Note that%; is used with
the instantiation ternax.—pxwhich is a discriminating term whefgx.—px) # epis on the
branch.
p(ex.—px)
—p(ep)
(Ex—pX) # £p
VX pX
- p(eX—pX) p(jp)
1

4 Evident Sets and Model Existence

Let E be a set of normal formulas. We s&yis evidentif it satisfies the conditions in
Figure 2. We call these conditioesidence conditionsThe evidence conditions are similar
to conditions considered by Hintikka [20] in the context oégiicate logic. For this reason,
sets satisfying such conditions are sometimes called ikkatsets” (cf. [9]). Hintikka called
such sets “model sets” in [20] because in predicate logithput equality) each such set
induces a model in a very natural way. In this section we widvp that each evident sEt
induces a Henkin model d&, though the construction in our higher-order setting isenor
involved than in the first-order setting.

Before continuing, we consider an additional property Whan evident set might sat-
isfy. We sayE is completdf for every formulas such that/'sC 7 E eitherse E or -s€ E.
With the exception of the restriction of the free variables to those occurring free ik,
the property was called “saturation” in [9] (cf. Definition2@) and [8]. The terminology
changed to “complete” in [14]. It will turn out that & is complete, then the model we
construct will interpret each type as a set that is at mosttztile.

Most of the evidence conditions in Figure 2 correspond tliy¢o a tableau rule in Fig-
ure 1. On the other hand, the conditiofis, & andé&; are formulated in a slightly different
way than the corresponding tableau rutgs, .7 and.7. The tableau rules are formulated

8 Julian Backes, Chad E. Brown

&\ LisnotinE.

& If =sisinE, thensis notinE.

Ey s#, sis notinE.

& If -—sisinE, thensisinE.

&y If svtisinE, then eithessortisinE.

&y If =(sVt)isinE, then—-sand-t are inE.

&y If Vgsis in E, then[st] is in E for everyt € ZE.

Ey If =Vgsis in E, then—[sw is in E for some decomposable names % .

Suar If wsp...sand—wt; ...t are inE wheren > 1, thens; #t; is in E for somei € {1,...,n}.

Spec Ifwsp...sq # Wiy .. .1y is in E wheren > 1, thens #t; is in E for somei € {1,...,n}.
&con If s=,tandu# vare inE, then eitheis# u andt # u are inE or s# vandt # vare inE.

Sse If s#otisinE, then eitheisand—t are inE or —sandt are inE.

8o If s=qtisinE, then eitheisandt are inE or -sand-t are inE.

Ere If s#4¢ tisinE, then[sw # [tw] is in E for some decomposable names 74 .
brq If s=grtisinE,then[sy = [tu] is in E for everyu € ZE.

& If £5sis accessible ifE, then eithefs(gs)] is in E or —[st] is in E for everyt € ZF.

Fig. 2 Evidence conditions

in a way that makes proof search more practical while theesnd conditions are formu-
lated in a way that will ease the model construction. The pexposition demonstrates that
these three evidence conditions could also be formulatéeteltly. Later we will use the
proposition to help prove certain sets are evident.

Proposition 7 Let E be a set of normal formulas satisfyigand &-,.

1. Forst € Agr and xe ¥ \ (¥'sU 1), if ~[Vx.sx=; tx] isin E, then[sw] # [tw] isin E
for some decomposable namew/;.

2. Forst e Agr and xe %5\ (¥'sU¥t), if [¥x.sx=; tx] isin E, then[su = [tu] is in E for
every uc k.

3. Forse Agr and x€ 75\ 7's, if [Vx.—sX is in E, then—([st] is in E for every tc¢ %E.

Proof We prove only the first fact. The proofs of other two are simiessumes,t € Ay,
X € Y5\ (¥sU¥t) and—[vx.sx=; tx] € E. By N3 and&.y, we know—[[Ax.sx=; tX]w] is
in E for somew € #. By Proposition 4, S1, S2, S4 and N3 we knfjx.sx= tx]w] is the
same agsw =¢ [tw]. Thus[sw #; [tw] is in E as desired. O

Let E be an evident set and I¥tbe the set/'E of free variables irE. In the rest of this
section we will construct a model &:. The construction is similar to the ones in [14] except
for complications that arise from the inclusion of a choipemtor and from instantiation
restrictions.

We next define a binary relatior; between terms e /\3; and values € 5. When the
relations>4 a holds we say can be ar a is a possible value of & relation similar ta> was
defined independently by Takahashi [33] and Prawitz [27]rdeoto prove cut-elimination
for a higher-order calculus. (The phrgsessible valusvas used by Prawitz [27].) Such are-
lation can also be found in [24] and [14]. An important diface between as defined here
and the analogous relations defined in earlier works is tr@aptesent only relates terms
in AX to values. That is, we restrict our attention to terms thataio free variables from

Analytic Tableaux for Higher-Order Logic with Choice 9

the setX, i.e., the variables free iB. This modification is necessary to obtain completeness
in the presence of our restriction on instantiations.
We define>4 by induction on types. For eadh, let 2, be the range afg, i.e., the set
of all a such that there is somsec AX with s>q a.
— spo0ifse Al and[s] ¢ E.
- spolif se AX and—[g] ¢ E.
— s>, Aif se AX, A is a discriminant (oE), and eithefs] is not a discriminating term or
[€A.
— spg fif s€EAXL, T D — P andst>; fawhenevet >q a.
Clearly we have-; C AZ} X 9. Also, by the definition o7 for everya € %, there is some
s€ AX such thaseg a. For any sell € AX we write T >a if s>afor everyse T.
Note that ifs € AX, then([s] € AX by N5. Thus, it makes sense to ask in what circum-
stancegs| >a holds for sucts. The following lemma answers this question.

Lemma 1 For all typeso, terms sc AX and values & %, s>a if and only if[g>a.

Proof This follows by an easy induction on typesusing N1, N2 and N5. The proof is
essentially the same as that of Proposition 3.1 in [14]. ad

The next proposition records a number of useful facts abaud 2. In particular,? is
a frame and for every valugc %, there is some € ?/UE with possible valuea. We need
such a result to prove completeness since instantiatieneatricted to terms i#/F.

Proposition 8
1. 1>0and T 1. In particular, 7, = {0, 1}.

2. For every discriminant), there is a term &£ %,F with possible valuel. In particular,
2, is the set of all discriminants.

3. For all typeso and ac 7, there is a term &£ %F such that t-a.

4. Ifte, b and xe 77\ 71, thenAx.t> Ky where i : 2; — 2, is the constant b function.

5. For all typeso, Z, is nonempty.

6. Zis aframe.

Proof

1. By&, andé&. we know L ¢ E and——1 ¢ E. By N3[L]is L and[-Ll]is—.L. Hence
1>0and-Lp>1.

2. LetA be adiscriminant. If there are no discriminating termsnthés in %,F and+>A.
Suppose there is a discriminating tesmBy & we knows #, sis not in E. Since
0 C {s} andA is maximal, we knowA must not be empty. Ldéte A be given. Clearly
t € %F andtrA.

3. By case analysis oo. The cases for base types follow directly from (1) and (2}.de
betu andf € 7., be given. By definition there is sonsec A;(u such thas f. Since
Xis VE, [s € %,. By Lemma 1[s]>> f and we are done.

4. Assumeix.t ¥ Kp. By Lemma 1[Ax1] i K. We know that there is a tersx AX and
avaluea € Z; such thasra but [Ax.t]st# Kpa. By the definition ofK, and by Lemma
1 [[Axt]s] i b. We B-reduce according to Proposition 4 and use S4 and Lemma 1 to ge
t ¢4 b. This is a contradiction.

5. By induction ono. The case for type follows directly from (1). The case for type
follows from (2) and Proposition 2. Let be Tu. By induction there is some € ;.
By definition there is somee /\ff such that>b. LetKy, : 2; — 2, be the constarih
function and letx be a variable not ir#'t. By (4) Ax.t>Ky. By the definition of> we
knowKy € ;.

10 Julian Backes, Chad E. Brown

6. %, is nonempty for allo by (5). Zo = {0, 1} by (1). Zr, only contains total functions
from 2 to 2, for all u andt by the definition of>. ad

The evident seE insists some terms must be interpreted differently. We hiseirtfor-
mation to define a relatiop Fors,t € AX we saysit holdsif eithers#t ort # sis in E.
We record a simple and useful fact.

Lemma 2 For any variable xc ¥4, [Ax._L]f[Ax._L] does not hold.

Proof AssumeAx.L]§[Ax.L] holds. There is some € #; such thaf(Ax. L)W]§[(AX.L)w]
by &= and N2. We knowj(Ax.L)w] is L by Proposition 4, S4 and N3. Hendei L. This
contradictsége andé&) . O

We now turn to a notion of compatibility of terms.

Definition 1 For each types we define when two termst € AX arecompatible(written
s|| t) by induction on types.

o=o: s||tif {[§,=[t]} £ Eand{-[s], [t]} £ E.
o =1: s| tif [gt[t] does not hold.
o =rty: s||tifforall uveAXu| vimpliessul| tv.

We say a seT C AX is compatibleif s||tforallsteT.

The next lemma provides relationships between compadyilaifiterms and the presence
of disequations irE. Note that part 2 of the lemma implies || &5 for every typeo and
x || x for every variablex € X. The lemma is the same as Lemma 6.5 in [14] except for
the restriction of free variables % and the inclusion o€, in part (2). The free variable
restriction does cause a slight complication in the proofeithe decomposable namven
the conditions:: may be a variable not iK.

Lemma 3 For all typeso we have the following:

1. Forallst e AX,if [gE]t], then sft.
2. Forall ws - -sy,wty,---th € A?,(where n> 0 and w is a decomposable name, either
WS-+ Sy || Wy, - - -ty Or there is some € {1,...,n} such thats]f[ti].

Proof By mutual induction oro. The base cases for (1) follow froffye and the definition
of compatibility. The base cases for (2) follow from N3, and épec Sincew is decom-
posable. The case for (2) whenis 1 easily follows from the inductive hypotheses for (1)
att and for (2) atu.

The only complicated case is proving (1) wheris Tu. Assumes || t and [s]#[t] both
hold. By &re and N2[swif[tw] for some decomposable € #;. If w € X or w is a choice
operator, thenw ||; w by inductive hypothesis (2) and sw/||, tw, contradicting induc-
tive hypothesis (1). Otherwise; € ¥\ X. In particular,w ¢ ¥'sU #tU ¥ [sw U ¥ [tw]. By
Proposition 5 we knovjsw is [s(ew.L)] and[tw] is [t(ew..L)]. By inductive hypothesis (2)
and Lemma 2 we knoww. L || ew. L. Hences(ew. L) || t(ew.L), contradicting the inductive
hypothesis (1). a

The next lemma relates compatibility to This lemma is very similar to Lemma 7.3
in [14]. Fortunately, the restriction of free variablesdtaloes not cause complications in the
proof. The axiom of choice is used twice in this proof: onaedily and once indirectly via
Proposition 1.

Analytic Tableaux for Higher-Order Logic with Choice 11

Lemma 4 For all sets TC AX, T is compatible if and only if there is a valuecaZ, such
that Tra.

Proof The proof is by induction ow. Note that ifT is empty therT >afor all a € 2,. (By
Proposition 8(5) there is songes %;.) In the cases below, we assuihés nonempty.

— 0 =1, =. Let T be compatible. By Proposition 1 there exists a discrimiratitat
extends{ [t] discriminating|t € T }. The claim follows sincd >a.
— 0 =1, <. SupposeTl a andT is not compatible. Then there are terg)s€ T such

that([g]#£[t]) € E. Thus]s] and|t] cannot be both im. This contradicts,t € T >asince
[s] and[t] are discriminating.

— 0 =0, =. By contraposition. Suppose# 0 andT #* 1. Then there are ternsst € T
such thats], —[t] € E. Thuss}ft. HenceT is not compatible.

— 0 =0, <. By contraposition. Supposg,t for s;t € T. Then[s|, —[t] € E without loss
of generality. Hencs ¥ 0 andt 1» 1. ThusT ¥ 0 andT % 1.

— 0=TU, =. LetT be compatible. We defing, ;= {ts|t €T, s>ra} for every value
a € 9; and show thaf, is compatible. Lets,to € T andsy, s, > a. It suffices to show
t151 || t2s2. By the inductive hypothesis; || S;. SinceT is compatiblet; || t2. Hence
t1s1 || t2s2. By the inductive hypothesis we now know that for evarg 2; there is a
b € 2, such thafl,>, b. By the axiom of choice, there is a functidne %, such that
Tapy fafor everyac 2;. ThusT bg f.

- 0=T1U, <. LetToq f ands;t € T. We will proves ||g t. Letu,v € AX be such that
ulr v. It suffices to provesu||, tv. By the inductive hypothesis, vi>; a for some value
a. Hencesutve, fa. Thussul|, tv by the inductive hypothesis. ad

We now turn to the interpretation of the choice operatorsugéea construction similar
to that of Mints [24] adapted to our setting.

Let f € Yoo be a function anav € %40, be a decomposable name. We wiité] ws
(readf chooses wswhense f andw[s| is accessible ifE. Let fV:= {wse AX|f O ws}.
Lemmab5 Forall f € 94, and we %UO)JHAE;O)U, there is some & %, such that 'a.
Proof We show thaff" is compatible. Lemma 4 gives us the claim. kegwt € fV. By the
definition ofJ, s,t> f and sas || t by Lemma 4. By Lemma 3(2) || w and sows|| wt. O

For each types we will now obtain a function®, : Y50 — Yo that will serve as the
interpretation of the choice operatey. For eacho we chooseb, such that
O — someb such thatfb =1 if % is empty and such khexists.
"7 Isomea suchthatféoa.
The existence of aa in the second case follows from Lemma 5. Note that the secase c
includes the case in whichis the constant O function. In particular, fifis the constant O

function andfée is empty, ther®, f can be any € Z,. The next three lemmas verify that
@, can act as the interpretation &f.

Lemma6 Letv be a nameyt; ...t, € AX and ac Z,. If vty.. .ty i @, thenvity]...[tn] is
accessible in E.

Proof We prove this by induction oo.

12 Julian Backes, Chad E. Brown

— 0 =0: Leta=0. By the definition of, and N3,v[t1]...[tn] € E. Leta=1. Then, again
by the definition of>, and N3,—~v[ti]...[tn] € E.

— 0 = 1: By the definition of>, and N3, we know thav[ti]...[t,] is discriminating and
hence accessible.

— 0 = ut: By the definition of>4, we know that there is some terne A;(and some
valueb € 7, such thau>b but vty ...t,u ¢ ab. By the inductive hypothesis, we know
thatv]ti]...[ta][u] is accessible ifE. Hencev]ti]...[tn] is accessible. O

Lemma 7 For any typeo we haveg, > @y

Proof Assumes ¥ @. Then, there ars, f such thas> f butesi® @f. By Lemma 6¢[g] is
accessible ifE. Hencees e fé . There is somasuch that® f = aand fé >a. Thusesr>a,
a contradiction. O

Lemma8 £, (®s) holds. That is@® as given above is a choice function.

Proof Let f € P40 be a function and € 7, be such thatfb = 1. Supposef (@ f) = 0.
Then fé must be nonempty (by the definition 8ff). Choose somes e fé. By &; there
are two possibilities:

1. [s(e9)] € E: In this cases(€s) ¢ 0. On the other handy> f ander @ (by Lemma 7) and
sos(es)> f(@f). This contradicts our assumption thigi® f) = 0.

2. —[st] € E for everyt € %F: By Proposition 8(3) there is some tetfne ZF such that
t'>b. Hence—[st] € E. By the definition of, st' ¢ 1. On the other hand, we know
st' > fb sincess> f andt’> b, contradicting the assumption thé = 1. O

The next lemma will ensure we can correctly interpret edyali
Lemma?9 If spga, tbgb and s=tisin E, then a=b.

Proof By contradiction and induction oa. Assumesp>q a, t>g b, (s=t) € E, anda # b.
Case analysis.

0 = 0. By &5 eithers,t € E or —s,—t € E. Hencea andb are either both 1 or both 0.
Contradiction.

o = 1. Sincea # b, there must be discriminating terms of typeSince the discriminant
ais maximal there is somee a\ b. Sinceb is also maximalbU {u} is not a discriminant.
Hence there is somee b such thaugv. Since(s=t) € E, we know by N3 that andt are
normal. By &con We know eithersfu or tfv. If sfu, thens is discriminating and ss € a,
contradicting that is a discriminant withu € a. Likewise, iftfv, thent € b, contradicting
veb.

o = TU. Sincea # b, there is some € 21 such thatd # bd. By Proposition 8(3) there
is some ternu € %E such thati>; d. Hencesu>ad andturbd. By Lemma 1]suj >, ad and
tu] >y, bd. By érq the equatiorsy = [tu] is in E, contradicting the inductive hypothesis

The next lemma will ensure we can correctly interpret ursgequantifiers.

Lemma 10 Let se /\3,<0 be given. Let € 9,5, be such that f=1forallb € Z,. If s> f,
thenvVgsp> 1.

Proof Assumesi> f andVgsp 1. Hence-[Vq9 € E. By N3, &y and N2 there is some €

#5 such that-[sw is in E. If we X orwis a choice operator, then we obtain a contradiction
using Lemma 3(2) and Lemma 4. Otherwises ¥\ X. In particularw ¢ #'sU ¥ [sw. By
Proposition 5sw] must be the same 4s(ew._L)]. By Lemma 2 and Lemma 3(2) we know
ex.L || ex.L. By Lemma 4 there is sontee %, such thagx. Li>b. Thuss(ex. L) fb=1,
contradicting that-[s(ex.L)]is in E. O

Analytic Tableaux for Higher-Order Logic with Choice 13

We now prove we can interpret every logical constant apatsly.

Proposition 9 For each logical constant c of type there is some & %, such thatg.(a)
and c>a.

Proof If cis a choice operatagy, then we knowes > @5 and L., (®y) by Lemmas 7 and 8.
We know L >0 by Proposition 8(1). I is not discriminating, ther>A for all A € 2.
If % is discriminating, therx>A for someA € 2, wherex € A. Now, letn: 9, — %, be
the negation function and : , — %, — %, be the disjunction function. For eachlet
Po : Y50 — Yo be the function such thad, f = 1 if and only if f is the constant 1 function.
For eacho letqg : 95 — Y5 — 9, be the function such thag;ab= 1 if and only ifa=b.
Each of the following statements is easily verified makingeesive use of Lemma 1.

1. Forallse A3< anda € %,, if s> a, then—srna. (Use N3 ands-.-..)
2. =>n. In particular,n € %00 and sol- (n). (Use definition of> and (1).)
3. Foralls;t € AY anda,b € %, if s>aandt>b, thensvt>-dah (Use N3,&, and&.,.)
4. For allsc A anda € %,, if s>a, then(vs)>da andda € Zy,. (Use (3) and the
definitions of> and Zy.)
. d: Do — Doo. (Use (4).)
. Vi>d. In particulard € Zy00 and soly, (d). (Use (4) and the definitions efand Zq,.)
7. Forallse Aéo andf € gy, if s> f, thenVgse> pg f. (Use Lemma 10 iff is the constant
1 function. Otherwise, use Proposition 8(3) afid)
8. Vg Po- In particular,ps € Zg0)0 and saty, (Po). (Use (7) and the definitions ofand
9(cro)o-)
9. Foralls;t € AX anda,b € %, if s>aandt>b, thens =4 t>qgsab. (Use N3, Lemma 4,
Lemma 3(1) and Lemma 9.)
10. Forallsc AX anda € Zg, if s>a, then(=4 S)>gsa andgga € Zgo. (Use (9) and the
definitions of> and Zg0.)
11. Qo : Y5 — Yoo- (Use (10).)
12. =4 >Qg. In particular,qe € Zogo and sof__(gs). (Use (11) and the definitions of
and Zg¢0.) a

o O

We say an assignmef into & is admissibldf c>.#c for all logical constants.

Lemma 11 Let s be a term@ be a substitution and” be an admis§ible a}ssigrlment into
Suppose for everyx 7's, xe Dom6 and 6x> .#x. Then &£ Dom.# and 6si>.7s.

Proof By induction ons. If sis a variablex, thenx € Dom6 and x> .#x by assumption
and sofs>.7 sby S1. Ifsis a logical constant, thenfs>.# s by admissibility of.#, S4 and
Lemma 1. The case whesds an application term follows from the inductive hypothgse
S2 and the definitions of# and>. Finally, supposes is of the formAxt wherex € 75
andt € A;. Letung a be given. We provéd(Axt))us (.# (Axt))a. Applying the inductive

hypothesis td with 8 and.#, we have that € Dom8 and8}tr> .#t. By S3[(6(Ax.t))u]
is [6%t]. Two applications of Lemma 1 complete the proof. ad

Using the tools above, we can obtain a logical, admissilikrpnetation. We prove this
fact in a slightly more general form than we need here. Theesttength will be useful in
a later section. Recall thatis ¥ E.

Lemma 12 Let 6y be a substitution and’ be an assignment such th@x> .#yx for every
x € Domé. There is a substitutiof and a logical, admissible interpretatiof such that
Osi> s for all se Ay and Ox = Gox and.#x = .#px for every xc Dom®&p.

14 Julian Backes, Chad E. Brown

Proof We define an assignmet as follows. For each logical constantve can choose
#c¢ such thatc . ¢ and £¢(.#¢) by Proposition 9. This ensures we will have a logical,
admissible assignment. For each variabke Dom6y let 6x := Gpx and #x ;= #pX. For
each variable € 75 \ (Dom6yU X) we takefx:= g5y. L € /\)< and.#x:= ®;Kqg whereKg

is the constant 0 function. By Lemma 7 and Proposition 8 wenktiat &Y. L > @Ko and
hencefx:.# x for every variablex. By Lemma 11 we know everyc Dom.# andfs>.7's

for every terms. In particular,.# is an interpretation. O

Now we can prove the model existence theorem for evident sets

Theorem 1 (Model Existence)Every evident set E has a modé#,.#). Furthermore, we
have the following:

1. If E is finite, thenZ; is finite for all typeso.
2. IfE is complete, the(?,.¥) is a countable model.

Proof Let E be an evident set and be 7 E. Taker~ and Z as defined in this section. We
start by defining an assignmewty and a substitutiofy. We definefpx := x for everyx € X.
Note that Donm@y = X. For each variable € X we knowx || x by Lemma 3(2) and so we
can use Lemma 4 to choosgx such that> .#px. For variables e 75 \ X take #ox € Z¢
arbitrarily, using Proposition 8(5). Using Lemma 12 we @hbtasubstitutiort and a logical,
admissible interpretatior? such thatfs> .#sfor all s € Ay and 6x = x for all x € X. For
everys e AX by S4 we know{fs = [and sos»> Jsby Lemma 1. Note that7, .7) is a
model. For anys € E, we knows>, .#sandsi# 0, and sofs=1. Hence(2,.7) is a model
of E.

1. AssumeE is finite. There are only finitely many discriminantsifHenceZ, is finite.
The fact that eacly; is finite follows from an easy induction on types.

2. Since the sef} is countable, it is enough to give a surjective function fragh onto
Yo. We will prove that> is such a surjective function. For evesye AX we know
s>.7s, so thats, is total. To prove is functional, supposee AX,SDaandSDb Note

that[s= g is [s] = [g] by N3 and that/'[s] C ¥ E by N5. Since we already kno& is
satisfiable[s| # [g] is not InE. SinceE is complete|s| = [g] must be inE. Hencea=Db
by Lemmas 1 and 9. Finally, is surjective by the definition a@,. ad

We can now prove that if the tableau calcutdscannot make progress on a branch, then
this branch is satisfiable and in fact has a model with finiteyny individuals.

Corollary 1 Let A be a branch. Suppose ¢ A and A is not the head of any step in the
calculus.Z. Then Ais evident and there is a mo@gl, .#) of A whereZ; is finite for each
typeo.

Proof By Theorem 1, it suffices to prow& is evident. The evidence conditiefi follows
from the assumption that ¢ A. The conditions’, and & follow from L ¢ A and the
assumption that the ruleg’, and 7. do not apply toA. Except foréee, 6xq andé&, the re-
maining evidence conditions follow immediately from the@asption that the correspond-
ing rule does not apply. After we kno#l, and &-y hold for A, we can conclude thaf,
8rq andé&; hold for A using Proposition 7 and the assumption that the correspgrrdie
does not apply. a

Analytic Tableaux for Higher-Order Logic with Choice 15

VoQ.£p # £X.q
EPp# EX.L
EPFAEXT
p#AXL
pPAAXT

VX pX= L
VX px=T
px# L
py#T
px
T (i.e.,,~1)
-py
py XF#Y

—pPX

Fig. 3 A tableau with an evident branch

Example 2Let p € ¥, andq € ¥. For this example assuni@ = sfor all n-normal forms

s. We provev,(.£0p # € 0X.q is satisfiable. Consider the partial tableau shown in Figure
Let A be the branch ending witix.— L. It is easy to check that no more rules applyAtdn
particular, consider the rulg;. There are three accessible terms to consigerex. L and
ex.T. The rule does not apply withp sincep(ep) is on the branch. The rule does not apply
with ex. L sinceVx.—L is on the branch. The rule does not apply wéthT sinceT (the
normal form of(Ax.T)(ex.T)) is on the branch. By Corollary 1 the branghis satisfiable.

5 Abstract Consistency and Completeness

We now lift the model existence theorem for evident sets tamdahexistence theorem for
abstractly consistent sets. This will allow us to prove clatgmess of the tableau calculus
Z . The use of abstract consistency to prove completeness nsaaded by Smullyan [29,
30] and later used by several authors in various higherr@eltings [2,21,9, 14]. To prove
completeness of the tableau calculus, it is enough to cenbi@nches (finite sets of normal
formulas) as in [6]. To obtain a more general result whicH imply compactness and the
existence of countable models, we also consider Aetsnormal formulas which may be
infinite.

A setl of sets of normal formulas is aabstract consistency claskit satisfies the
conditions in Figure 4 for everp € I'. We sayl” is completef for every A€ I" and every
formulas e AJA eitherAU {s} € I or AU{—s} € I". As with evident sets, this property
(without the restriction on free variables §)fwas called “saturation” in earlier work [9, 8].
A strong connection between admissibility of cut in a seqeafculus and the existence of
complete abstract consistency classes was shown in The@drand 3.8 in [8]. Indeed,
Smullyan discusses the property in [30] and calls itdhicondition.

In Lemma 14 we will prove that every member of an abstract istgrscy class can be
extended to an evident set. In order to verify #iecondition we will need the following
lemma relating universes for different sets of formulas.

Lemma 13 Let.e/ be a nonempty set of sets of normal formulas and let E & Suppose
for every finite set B E there is some & &/ such that BC A. Then for every € %UE there
is some Ac &7 such that tc %2

16 Julian Backes, Chad E. Brown

€, L is notinA.
& If =sisin A, thensis notinA.
Cr S# sisnotinA.
¢ If -—sisinA, thenAu{s}isinrl.
G If svtisinA, thenAuU{s} orAU{t}isinrl .
C-v If ~(sVt)isinA thenAU{—s,—t}isinT.
Gy If Vgsisin A, thenAu {[s} isin I for everyt ¢ Z2.
Cv If -Vgsisin A, thenAU{—[sw} isin " for some decomposablec 7.
Guar If ws...spisin Aand-wt; ...t isin A,
thenn>1andAU{s #t;} isinl for somei € {1,...,n}.
Goec ITws...sh# Wiy ...thiSINA,
thenn> 1 andAU{s #t}isinl for somei € {1,...,n}.
bcon If s=,tandu#, vareinA,
then eithelAU{s# u,t #u} orAU{s# Vvt #v}isinl.
Cee If s#otisinA, then eithe’AU {s,—t} orAU{-s,t}isinTl.
G0 If s=otisinA, then eitheAU{s;t} orAU{—s,—t}isinTl.
Cre If s#g¢tisinA thenAU{—[Vx.sx=; tx]} isin " for somex € ¥5 \ (¥'sU¥1).
Gro If s=g¢tisinA, thenAU{[Vx.sx=¢tX]} isin [l for somex € ¥5 \ (¥'sU¥t).
Ce If e5sis accessible i\, then eitherAU {[s(es)]} isin " or

there is some& € 7 \ ¥'ssuch thatAuU {[vx.—sX} isinT.
Fig. 4 Abstract consistency conditions (must hold for evarg ")

Proof Lett € %F be given. Ifa is o, then choosé € 7 and noteZ = { L, -1} = %F.
Supposer is 1. First assum& has no discriminating terms. In this casaust bex. We
chooseA € o7 and note that € %2 sinceA also has no discriminating terms. Next assume

E has discriminating terms. In this casis a discriminating term dE. There is somesuch
thatt #sors#t isin E. There is somé\ € & such that # sors#t is in A. Clearly

t € % as desired.

Finally supposeo is Tu. Let X be #E. We knowt is normal and inAX. For each
x € ¥t, choose soms, € E such thaix € ¥'s,. Since the sefsc|x € ¥t} is finite, there is
someA € &7 such thas, € Afor everyx € #t. Hence¥t C ¥ Aand sa is in %JA. O

We can now prove the desired extension lemma.

Lemma 14 (Extension Lemma)Let/” be an abstract consistency class and A. There
is an evident set E such that@AE. Furthermore, ifl” is complete, then E is complete.

Proof Letu®,ul,... be an enumeration of all normal formulas. We will construséquence
Ag C A1 C Ay C--- of branches such that evey € I'. Let Ag := A. We defineA,, 1 by
cases. If there is nB € I" such that\, U {u,} C B, then letA,.1 := A,. Otherwise, choose
someB € I' such thatA, U {un} C B. We consider six subcases.

1. If uy is of the form—Vs, then choosé\,, 1 to beBU {=[sw} € I for some decompos-
ablew € #;. This is possible sincE satisfies¢”.

2. If u, is of the forms #4¢ t, then choosé\,, 1 to beBU {—[vx.sx=; tx]} € ' for some
X € Y5\ ([sU[t]). This is possible b¥¢.

3. If uy is of the forms =47 t, then choosé\,;; to beBU {[vx.sx=; tX]} € " for some
x€ ¥\ ([sJU[t]). This is possible by .

Analytic Tableaux for Higher-Order Logic with Choice 17

4. Supposel, is of the form&1[eqg #, &2[&it] for elimination contextss; and 8. We

defineAn 1 according to the first of the following possibilities thatdips.

(@) LetAn 1 beBU{[s(es)],[t(et)]}ifitisin I.

(b) LetAniq beBU{[vx.—sX,[t(et)]}ifitisin I.

(c) LetAn 1 beBU{[s(e9)],[vy.—ty]}ifitisin I".

(d) LetAni1 beBU{[vx.—sX, [Vy.—ty]}ifitisin I,

Applying %¢ twice, we know one of the four possibilities above must hold.

5. Suppose, is of the form%’[e;5] where% is an accessibility context, but the previous
case does not apply. (Since the previous case does not typlccessibility contexd’
is uniquely determined.) By eitherBU {[s(es)]} isin T or there is som& e ¥\ ¥'s
such thaBU {[vx.—s¥} isin . If BU{[s(es)]} isinT, then letA, 1 be BU{[s(€s)]}.
Otherwise, choosA 1 to beBU [vx.—sX € I" for somex € ¥5 \ ¥'s.

6. If no previous case applies, thenAgt,1 beB.

LetE = U An. We proveE satisfies the evidence conditions.
neN

& If LisinE, then_L isin A, for somen, contradicting?’, .

&, Assumesand-sare both irE. Letr be such tha{s, —s} C A;. This contradicts”..

& Assumes#; sis in E. There is some such thas # sis in A, contradictings’..

&, Assume-—sisinE. Letnbe such thati, =s. Letr > n be such that—sis in A;. By
€, ArU{s} €. SinceA U {s} C A, U{s}, we havese A1 CE.

&, AssumesVt isin E. Let n,m be such thati, = sanduy, =t. Letr > n,m be such
thatsvtis in A.. By €, A U{s} € I' or A, U{t} € I'. In the first caseA,U {s} C
ArU{s} el,and s Ay1 CE. Inthe second casé,U {t} CA U{t} €I, and so
t € Amr1 C E. Hence eithesortisinE.

& Assume~(sVt)isinE. Letn,mbe such thati, = -sanduy = —t. Letr > n,mbe
such that-(sVvt)isin Ar.. By €.y, ArU{=s,—t} € I and so-sand—t are inE.

& Assumevgsis in E. Lett € %F be a normal term. Let be such thati, = [st. By
Lemma 13 (takingeZ to be {Ar|[r > nandVss € A }) there is some > n such that
t € %2 andVysis in Ar. By %y, A U{[st]} isin I". SinceA,U {u,} € A, U{[sf]}, we
have[stf] = up € An41 CE.

&y Assume-Vgsis in E. Let n be such that, = —Vs. Letr > n be such that-Vsis in
A;. This A; witnesses that there is sorBec I" such thatA, U {u,} C B. By definition
—[sW € Apy1 C E for somew € #5.

Svar ASSUMexs; ...s, and—xt; ...t, are inE wheren > 1. For each € {1,...,n}, letm
be such thati, iss #t;. Letr > my,...,m, be such thaks, ...s, and—xt; ...t, are in
Ar. By Guar thereis somée {1,...,n} such thath, U{s #t;} € I'. SinceAn, U {s #
ti} CA U{s #t}, we have(s #t) € An4+1 CE.

Sbec Similar to &yar -

&con Assumes=, t andu #, vare inE. Letn,m, j,k be such thati, is s# u, uy ist # u,
ujiss#vandugist #v. Letr > n,m, j,k be such thas =, t andu #, v are inA;. By
Gcon eitherA, U{s#ut £ u} or AU{s#Vvt#v}isinl . If AU{s#ut#u}isin
[,thens#uandt £ZuareinE. If A U{s#Vt=#v}isinl,thens#vandt #varein
E.

g Assumes#qtisinE. Letn,m, j,k be such thati, = S, uy =t, u; = ~sanduy = —t.
Letr > n,m, j,kbe such thas %ot is in A;. By %ge eitherA, U{s —t} or A, U{—s,t} is
inl. If A-U{s,—t}isinl, thensand—t are inE. If ArU{=s,t} isin[", then-sandt
are inE.

ésq Similar to &e.

18 Julian Backes, Chad E. Brown

&re Assumes %4 tis in E. Let n be such thati, is s#4¢ t. Letr > n be such thaty is
in Ar. SinceA, U {un} C Ay, by the definition ofA; 1 there is some& € ¥; \ (¥'sU7't)
such thaf—Vx.sx=; tx] is in An+1 and hence irE. By Proposition 7(1) there is some
w € #5 such thafsw] #; [tw] isin E.

Srq Assumes =4 t is in E and letu € %F be given. Letn be such thati, is s =1 t.
Letr > n be such thati, is in A;. This A; witnesses that there is sorBec I such that
AnU{un} C B. By the definition ofA,. 1 we know there is somec ¥4 \ (¥'sU¥t) such
that[vx.sx=¢ tx] is in An1 and hence irE. By Proposition 7(2) we knoysu #; [tu] is
in E.

& Assumeess is accessible irfe. Then there is some accessibility cont&ktsuch that
€ [es9) isin E. Letn be such thati, is €’[es5]. Letr > n be such thati, is in A;. By the
definition of A1 either[s(es)] is in Anp1 or [¥X.—(SX)] is in A1 for somex e ¥\ ¥'s.
In the first case we are done. In the second casedet; \ #'s be such thatvx.—(sx)]
isinE. Lett € %F be given. By Proposition 7(3) we knowst] is in E.

It remains to show the is complete ifl” is complete. Lef” be complete andbe a normal
formula such that’s C ¥ E. Since¥ sis a finite set, there is sonkesuch that/’'sC ¥ (Ay).
Letm, n be such thatiy, = sandu, = —s. Consider > m,n,k. Sincel" is complete A, U{s}
isinl orArU{=s}isinl.If ArU{s}isinl",thense E.If A,U{=s}isinl, then-scE.
O

Using the extension lemma we can lift the model existencerém for evident sets to a
model existence theorem for abstract consistency classes.

Theorem 2 (Model Existence)Let I’ be an abstract consistency class. Everg A is
satisfiable. Il is complete, then every@&rl has a countable model.

Proof LetA eI be given. By Lemma 14 there is an evidentBetuch thatA C E such that
E is complete ifl” is complete. We finish the proof with an appeal to Theorem 1. 0O

6 Completeness, Compactness and Countable Models

We can now prove completeness of the tableau calc#luket I'» be the set of all branches
A which are not refutable. We will first provés is an abstract consistency class and then
use Model Existence to prove completeness.

Lemma 15 5 is an abstract consistency class.

Proof It is easy to check each condition in Figure 4 using the cpoeding tableau rule in
7 . For example, we checkK;. Suppose € I, 5Sis accessible i, AU {[s(€s)]} is not
in 7 andAU {[Vx.—(sX)]} is not inl 5 for everyx € ¥ \ ¥'s. Choose somg € ¥\ ¥'s.
We knowAU {[s(es)]} andAU {[vx.—(sX)]} are refutable. HencA is refutable using,
contradictingA € . ad

Completeness now follows directly from Lemma 15 and Thea2em
Theorem 3 (Completenesslet A be a branch. If A is unsatisfiable, then A is refutable.

We can also apply Theorem 2 to prove a combined form of the aotmpss theorem
and the (downward) Léwenheim-Skolem theorem. Such a aquatibn was proven for first-
order logic in an analogous way in [29].

Analytic Tableaux for Higher-Order Logic with Choice 19

A set A of normal formulas isufficiently puref for each typeo the set¥; \ YAlis
infinite. In other wordsA is sufficiently pure if there are infinitely many variables éach
type) that are not free in (any formula iA)

Let I'c be the set of all sufficiently pure setsof normal formulas such that every finite
subset ofA is satisfiable. The following lemma helps verifyg is an abstract consistency
class (cf. Lemma 10.1 in [14]).

Lemma 16 Let Ac lc. If By,...,Byare branches such thatdB; ¢ Ic foralli € {1,...,n},
then there is some finite A A such that AUB; is unsatisfiable for all £ {1,...,n}.

Proof Consider(C,U ---UCy) NAwhere eacl€; is an unsatisfiable finite subsetAf) B;.
O

Lemma 17 I¢c is a complete abstract consistency class.

Proof Most of the proof is the same as the proof of Lemma 10.2 in [1¥g.show a two
representative cases and leave the rest to the reader.

¢-v Suppose-Vssis in A € Ic. SinceA is sufficiently pure, there is some variables
Y5\ ¥ A. Note thaix is decomposable. Assurde) {—[sX} ¢ [c. By Lemma 16 there is
some finiteA’ C Asuch that' U {—[sX} is unsatisfiable. On the other had { -V s}
has a mode(Z, .#) since itis a finite subset &. By £y, (.7 (¥y)) and£-(.#) there
is somea € Z, such that#sa= 0. We will prove(Z,.7%) is a model ofA’ U {-[sX},
giving a contradiction. By Proposition 3 we knd,.#%) is a model ofA’ and that
7X(s) = .7 (s). Hence.7X(sx) = 0. By N4 andg (.7 —) we are done.

%: Supposeggs is accessible irA € [c. Choose soma € ¥ \ ¥'s. Assume neitheAU
{[s(g9)]} nor AU {[¥x.—(sX)]} is in c. By Lemma 16 there is some finifé such that
A U {[s(eg)]} and A’ U {[vx.—(s¥)]} are unsatisfiable. As a finite subsetAfA’ has
some mode(2,.7). By N4 and&._ (.7 (&5)), we must either haveZ[s(es)] = 1 (con-
tradicting unsatisfiability ofA’ U {[s(es)]}) or for everya € %, such that.ssa= 0.
In the latter case, it is easy to prové[vx.—(sx)] = 1 (contradicting unsatisfiability of
A U{[vx.=(sx)]}) using Ly, (# (Vg)), £-.(.#—) and Proposition 3. O

Theorem 4 (Compactness, Countable Modeld)et A be a set of formulas such that every
finite subset of A is satisfiable. Then A has a countable model.

We delay the proof. Note that A is sufficiently pure, then we know there is a countable
model of A by Lemma 17 and Theorem 2. In the remainder of this section laleoeate
how to reduce the general case to the case in whichsufficiently pure. A simple idea is
to rename the variables free funtil it is sufficiently pure. We can rename the variables
in such a way using an infinite substitution. The followingnlea relates substitutions and
interpretations and will be useful to prove Theorem 4.

Lemma 18 Let 2 be a frame, &€ Ay be aterm be a substitution,# be an interpretation
into ¥ and _# be an assignment int@. Supposes/c = 7 ¢ for every logical constant ¢
and.7 (0x) = _#xfor every xc #'s. Then &£ Dom ¢ and.# (6s) = ¢s.

Proof By induction ons. The base cases follow by assumptiors i tu, then we compute

F(B(tu)) = (S (61)) (5 (Bu)) £ (71)(Fu) = 7 (tu).

20 Julian Backes, Chad E. Brown

Finally, supposeis Ay.u of type Tu. We must proveAy.u) € Domj and.7 (()\yu))A
/()\y u). Letae 2; be given. Lez € ¥; be avariable such thatt 6(Ay.u) andz¢ ¥ (6x)
for eachx € ¥'(u) \ {y}. By Proposition 3 and our choice afve know

FLB(Ay.u)) = .2 (B(Ay.u)) and 74(Ox) = .7 (6x) for all x e 7 (u)\ {y}

We can apply the inductive hypothesis witl, .#Z and 7% since 74(0Yy) =a= gy
and

TH(0%x) = FE4(Bx) = 9 (BX) = Fx= FIx
for eachx € 7u\ {y}. Henceu € Dom;¢\¥1 and

7 (B(Ayu))a= F4(B(Ayu)a= 74(B(Ay.u)2) " FE(6%) L i)
Generalizing ovea, we know(Ay.u) € Domj and.7 (B(Ay.u))a= j()\y.u)a. O

Proof (Theorem 45ince there are infinitely many variables of each type, wefirahan
infinite, injective substitutior® (with Dom8 = ¥) such thatbA is sufficiently pure (where
6A = {Bs|se A}). Sincef is injective, there is a substitutiof such that(6x) = x for
all x € 7. Every finite subset 0BA is of the form6B for some finite subseB of A. Let
such a finite subsdg be given. By assumptioB has a mode{Z, ¢). Let #c:= #cfor
each logical constart and.#x := /(tlrx) for each variablex. By Lemma 18 with thap
as the substitution and with the roles .gf and _# reversed, we can conclude that is
an interpretation. Note that for each variaklere have.# (6x) = 7 ((6x)) = 7x. Let
fs € 6B be given. By Lemma 18 witl§, we knowﬂ(es) /s_ 1. Hence(2,.7) is a
model of6B and sofA s in Ic.

By Theorem 2 there is a countable mo¢él, .7) of A. Let J ¢c:= Fcfor each logical
constantc and_# x := .7 (6x) for each variable. By Lemma 18 we know 7 is an inter-
pretation and for eacke A we know]s 7 (0s) = 1. Therefore(2 , 7) is acountable
model ofA. O

7 Including If-Then-Else

We now extend the calculus to include an if-then-else opei&4 of type oo oo for each
type o. This operator should satisfy the following formula:

VXgYo-(ifa TXY = X) A (ifg LXy =) 2

A simple way to obtain such an if-then-else operator is tos@terif; to be shorthand for
the termA pxy.esz.pAz= XV —pAz=yand then reason using the tableau calculus

An alternative is to consider eadfy as a variable and include formulas of the form (2)
on the branch to refute. The main problem with this approadhat the instantiation rule
Z; applies to such formulas. Suppogds 10 andVx,oY;o-(ifio TXY = X) A (ifioLXy =) is
on the branch we wish to refute. Les be a normal formula only using variables#®A and
choose some< 7, \ 7A. Since[Azg € %5 we can applyZ; twice with [Azg], followed
by 7., and.7Z.-,, to obtainif,, T[AzS|[Az.5] =, [A z.5] on the branch. Choose soe %*.
By Proposition 4 and S4 we knolA z.slt] = s. Applying 7 and then%; with t we have
ifio T[Az5][AZS|t =¢ s on the branch. After applying&e we see that we have reduced the
problem of refutingA to the problem of refuting two branches extendfgne containing

Analytic Tableaux for Higher-Order Logic with Choice 21

s and the other containings. That is, we have used the formula (2) at tyjpeto simulate
application of a cut rule with a formula

There are many examples of higher-order assumptions tlat ahe to simulate cut
(see [8]). In such cases, one must somehow build the assamaptito the calculus itself
in order to remain cut-free. In fact, this was one of the maitons for building the choice
operator into the calculus’.

With the above discussion in mind, we now give a tableau tac@ f extending.7 to
include a rule for an if-then-else operator. We also pravedmpleteness.

7.1 Tableau Calculus and Evidence

For each typer choose a variablé, € ¥5000. Note that there are infinitely many variables
in 75 that are not chosen. From now on, when we speak of a variabig freshwe will
also assume it is not one of the variabigs Let T be the set of formulas of the form of (2)
for each typeo. That is,Tif := {¥X,Yo.(ifo TXy = X) A (ifs LXy = y)|O type}.

A model (2,.7) is aT*modelif it is a model of T*. Supposd 2, .#) is aT-model.
Each.Zif; must be a functioh € Zyg0¢ such that 1biby = by andl0Ob;by = by for every
by, by € Z5. We call such ah anif-then-elsdunction. Note that there is at most one if-then-
else function iYyggo. Conversely, we know a modéel, .¥) is aTf-model if every.Zify
is an if-then-else function.

We define a tableau calculu®' by taking the union of7 and the following rule:

(f[ifostl,ﬂ
T & accessibility context

s, [€1t]] | —s, [¢]u]]

We say a seE is T'-evidentif it is evident and satisfies the following additional evi-
dence condition:

& If F[ifstdisin E and¥ is an accessibility context, therand[#[t]] are inE
or —sand[%¢[u]] are inE.

7.2 Model Existence

We prove that ever¥ f-evident se€ has aTf-model. LetE be Tif-evident andX be ¥E.
Let ||, >, 2 and®, be defined as in Section 4. The construction of a model is airolthe
one in Section 4 except that we must choose the interpregatibthe variable#, to obtain
aT-model. Two lemmas suffice for this purpose.

Lemma 19 For each typeo there is a term s A2 ;. and an if-then-else functiond
Docoo Such that s 1.

Proof By Lemma 12 (with the empty substitution and an arbitrarygasaent) there is a
substitution® and a logical, admissible interpretatiofi such thatds>.#s for all s € A;.
For eachs € AP, [0s = [g by S4 and s&>.#s by Lemma 1. Choose distinct variables
X € %5, Yo,¥1,ZE€ V5. Letse /\gm beAxy1yo.€6ZXAZ=Yy1V—-XAzZ=Yyp and letl be.s.
Clearly,s>1. We need only check thatis an if-then-else function.

22 Julian Backes, Chad E. Brown

Letby, by € 25 be given. It is easy to check that for edah {0,1} andb € 2,

FRI (A zxA 2= Y1V -XAZ=Yo)b=1 if and only ifb = b.

Thuslibibg = ¢>o(fix_’g’11:gg()\ ZXAZ=Y1V-XAZ=Yp)) = by. O

Lemma 20 If if; € X, then there is an if-then-else functiog 1Zy5¢s Such thatif, > 1.

Proof By Lemma 19 there is an if-then-else functibe Zys00. We need only check that
ifo>1. Assume not. There must be tersis,u, vy, - - ,vo € AX and valuesa,b,c,ds, ..., dy
such thatifgstuyi - --vn ¥ g labcd, - - -dy (for a base typeB), s>a, teb, usc, vi>dy, ..,

Vn >0y We also havevy ---vp>g bdy---dy and uvy - vy >g cdy---dn. We can split into
three cases: Either (1 = o andlabcd;---d, =0, or (2) 8 =0 andlabcd,---dy = 1,

or (3) B =1 andlabcd; ---d, is a discriminant not containing the discriminating term
ifo[s][t][u][v1] - - - [vn]. In each case we can appt§ with an appropriately chosen context
% and split into two subcases based on whefgeand ¢’[[[t][v1] - - - [vn]]] @re INE or —[g|
and@[[[u][va] - - -[vn]]] @are inE. In each subcase one can determine whedhsi0 or 1 and
hence whethdabcis b orc. It is straightforward, though tedious, to check that eatitase
yields a contradiction. ad

Theorem 5 (Model Existence forTif) Every T -evident set E has afmodel.

Proof We first define a substitutiofy with Dom6y = X U ¥ T and an assignmengy. For
eachxe X\ 7T, let Bpx := xand.#px be such that> .#x, which is possible by Lemmas 3(2)
and 4. For eaclif; € XN YT, let 6hify := ify and Hifs be the if-then-else functioh e
Posoo Whereifg > 1, which is possible by Lemma 20. For ea¢h € ¥'T \ X, let 6yifs be
se Ao C AL oo and %if, be the if-then-else functioh € Zog0e Wheresr |, which
is possible by Lemma 19. By Lemma 12 there is a substitui@md a logical, admissible
interpretation.# such thatfs> .#s for all s € Ng, Ox = Gox and #x = Hx for all x €
XU¥T. In particular,6x = x for all x € X. The fact tha{ 2, .#) is a model oft follows as
in the proof of Theorem 1. Sinc€if; = %ifs is an if-then-else function for every, we
know (2,.7) is aTf-model. 0

7.3 Completeness

A setl” of sets of normal formulas is -abstract consistency claskit is an abstract
consistency class and satisfies the following condition:

%r If €[ifstyisin Aand? is an accessibility context, thekiu {s, [¢[t]]} isin I
orAU{-s,[#[u]]}isinl.

Lemma 21 (Extension Lemma forT™) Let/” be a T"-abstract consistency class andsA
. There is an T-evident set E such that & E.

Proof Recall the construction d& given in the proof of Lemma 14. We have an enumeration
uw,ul, ... of all normal formulas and define a sequencé\k I such thath = Ay C Ay C

A, C --- and then defin& to be|J, An. We already knovE is evident from Lemma 14. We
need only check thaf: holds. Suppos&’ is an accessibility context ard[ifstu is in E.
Choosen, m, j,k such that, is s, um is =S, uj is [€'[t] anduy is [€[u]]. Letr > n,m, j, k be
such thatg[ifstu is in Ar. By 4 eitherAr U {un,u;} or A U {um,uc} isin . Hence either

Un andu; are inE or uy, andu are inE, as desired. O

Analytic Tableaux for Higher-Order Logic with Choice 23

Theorem 6 (Completeness of7 ™) Let A be a branch. If A is T-unsatisfiable, then A is
T f-refutable.

Proof Let I, be the set of all branches which are 0bt-refutable. As with Lemma 15, it
is easy to check thdl, is aT'f-abstract consistency class. Assufnis not.7 f-refutable.
By Lemma 21 there is @f-evident se€ such thatA C E. By Theorem 5 there is @'f-
model ofE. HenceA is T f-satisfiable. i

8 Related Work

This work is an extension of two lines of research. First, wechextended the tableau cal-
culus of Brown and Smolka [14] to support a choice operatdranif-then-else operator at
every type. Second, we have obtained tighter restrictionthe instantiations of quantifiers
than were available before.

In [12] Brown and Smolka give a complete tableau calculusafirst-order subsystem
(EFO) of higher-order logic. Quantifiers are only allowedyate ! there and the instantia-
tions are restricted to discriminating terms. We have na@med this restriction on instan-
tiations for quantifiers at type In addition we have proven that it is enough to instantiate
guantifiers at typ® with the two termsl and T. As for quantifiers at function types, we
have proven that these instantiations need not considetbles that do not already occur
free on the branch.

Mints gives sequent rules for choice in [24]. The choice given in this paper is similar
to Mints’ e-rule. Our proof of Henkin-completeness was constructeddgpting the rele-
vant parts of Mints’ cut-elimination proof [24] to our settj. We briefly sketch a comparison
between our rules and the rules of Mints.

Translating into our language, Mints*rule could be represented as

(MINTS' €) W gsoccurs on the branch

By &s occurs on the brancive simply mean thats appears as any subterm where none of
the free variables cf are captured by A-binder. Note that this rule could apply more often
than our.Z; rule. Our.7; rule cannot be applied untilsappears on the branch in one of the
formsest - th, ~(est - -tn), (€St -+ tn) #, UOr u# (est---ty). Furthermore, in Mints’
system thes-rule would need to be applied for each new instantiatiomtetn practice this
could lead to the need to refute branches vitlgs)] multiple times. We have avoided this
by using the quantified formul@x.—(sx)] on the left branch.

Mints also includes ag-extensionality rule in [24]. In our context, his rule collé
realized as

(MINTS’ EXT €) SAT | (SS) — (Et) egsandéegt occur on the branch
In words, wheneveg,s andegt both occur on the branch, we must consider the case where
sandt are different, and the case whexgandet are the same. This rule could be highly
branching in practice. Whemdifferent terms of the forngs occur on the branch, then the
rule must be applied‘% times. Furthermore, it has the disadvantage that it addssa po
itive equation to the branch. i is a function type, this will lead to the need to perform
instantiations. We were able to omit such a rule entirelynfrour system and still prove
completeness. It seems that Mints needed such a rule bett@useensionality rule in [24]
is not liberal enough. Translated into our context, themsitaality rule in [24] includes the

24 Julian Backes, Chad E. Brown

rule
£SY...Sy, €St .. .ty

n>1
St#t| [S#h

This corresponds to our mating rule, except that we havediized the rule to include the
case when the corresponding first arguments afe different.

(SPECIAL CASE OFMINTS’ EXTENSIONALITY)

£S1...Sn, €Et1. . .1y
n>1
S1#t | [S #h

Combinations ofA-calculus and if-then-else operators have been considezéate.
Beeson [7] considered the unification problem foicalculus with a (slightly different)
if-then-else operator. Altenkirch and Uustalu [1] studg &imply typedA -calculus with
if-then-else as the elimination construct for the two eletiigpe.

The first author has considered choice operators, desuripperators and if-then-else
operators in his Master’s thesis [5]. Similar rules (usiegtrictions to accessible terms)
can be used to incorporate description operators and aasimibdel construction (using
discriminants and possible values) can be used to proveletengss.

(SPECIAL CASE OF Jyar)

9 Conclusion

We have presented a cut-free tableau calculus for Churtchf@etype theory with a choice
operator. The calculus is designed with automated proatkea mind. In particular, only
accessible terms on the branch need to be considered intordpply a rule. Furthermore,
instantiation terms are restricted according to the typktha formulas on the branch. At
type o only instantiations corresponding to true and false aresicemed. At the base type
1 only discriminating terms on the branch need to be consiiecept when there are no
discriminating terms in which case a default element carseeu Note that this means only
finitely many instantiations at typeneed to be considered at each stage of the search. At
function types, the set of instantiations is infinite, butlvae at least proven that we do not
need to consider instantiations with free variables thahatooccur on the current branch.
We have also given an extension of the calculus to includlecifi-else operators.

The second author has implemented a higher-order autortietecem prover, Satallax,
based on the ground calculus in this paper. Satallax endedd=au steps of the ground
calculus as propositional clauses and uses the SAT-solireEkt [16] to decide if there is a
refutation using the steps considered so far. Satallax etedpn the higher-order division of
the CASC system competition [31]. Out of 200 problems, LE(10] solved 125, Satallax
solved 120, Isabelle [26] solved 101 and TPS [4] solved 80.

References

1. T. Altenkirch and T. Uustalu. Normalization by evaluatitor A 2. In Y. Kameyama and P. J. Stuckey,
editors,Functional and Logic Programming, 7th International Syrsipon, FLOPS 2004, Proceedings
volume 2998 oL NCS pages 260-275. Springer, 2004.

. P.B. Andrews. Resolution in type theodpurnal of Symbolic Logic36:414-432, 1971.

. P.B. Andrews. General models and extensionalityirnal of Symbolic Logic37:395-397, 1972.

. P. B. Andrews and C. E. Brown. TPS: A hybrid automaticratéve system for developing proofs.
Journal of Applied Logic4(4):367-395, 2006.

5. J. Backes. Tableaux for higher-order logic with if-tredse, description and choice. Master’s thesis,

Universitat des Saarlandes, 2010.

A WN

Analytic Tableaux for Higher-Order Logic with Choice 25

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

J. Backes and C. E. Brown. Analytic tableaux for higheteorlogic with choice. In J. Giesl and
R. Hahnle, editorshutomated Reasoning: 5th International Joint Conferent@AR 2010, Proceedings
volume 6173 oL NCS/LNA] pages 76-90. Springer, 2010.

. M. Beeson. Unification in lambda-calculi with if-thersel In C. Kirchner and H. Kirchner, editors,

Proceedings of the 15th International Conference on AutethBeductionvolume 1421 of NAI, pages
103-118, Lindau, Germany, 1998. Springer.

. C.Benzmueller, C. E. Brown, and M. Kohlhase. Cut-simafaand impredicativityLMCS 5(1:6):1-21,

March 2009.

. C. Benzmdlller, C. E. Brown, and M. Kohlhase. Higher-orsiemantics and extensionalityournal of

Symbolic Logig69:1027-1088, 2004.

C. Benzmllller, F. Theiss, L. Paulson, and A. FietzkeOLIE— A cooperative automatic theorem prover
for higher-order logic. In A. Armando, P. Baumgartner, and@wek, editorsfFourth International Joint
Conference on Automated Reasoning, IJCARW@Bume 5195 oL NAI. Springer, 2008.

C. E. Brown.Automated Reasoning in Higher-Order Logic: Set Comprebenand Extensionality in
Church’s Type TheoryCollege Publications, 2007.

C. E. Brown and G. Smolka. Extended first-order logic. IB&rghofer, T. Nipkow, C. Urban, and
M. Wenzel, editorsTheorem Proving in Higher Order Logics, 22nd Internatio@anference, TPHOLS
2009, Proceedings/olume 5674 oL NCS pages 164-179. Springer, Aug 2009.

C. E. Brown and G. Smolka. Terminating tableaux for theid&ragment of simple type theory. In
M. Giese and A. Waaler, editor8utomated reasoning with analytic tableaux and relatechods : 18th
International Conference, TABLEAUX 2009, proceedivgdume 5607 o NCS/LNAJ pages 138-151.
Springer, 2009.

C. E.Brown and G. Smolka. Analytic tableaux for simplegtyheory and its first-order fragmehtMCS
6(2), Jun 2010, pages 1-33.

A. Church. A formulation of the simple theory of typeeurnal of Symbolic Logic5:56—68, 1940.

N. Eén and N. Sorensson. An extensible SAT-solver. .IiGiEnchiglia and A. Tacchella, editors,
Theory and Applications of Satisfiability Testinglume 2919 of NCS pages 333-336. Springer Berlin
/ Heidelberg, 2004.

M. Gordon and T. Melhamintroduction to HOL: A Theorem-Proving Environment for Hag-Order
Logic. Cambridge University Press, 1993.

J. Harrison. HOL light: A tutorial introduction. In M. B8as and A. Camilleri, editorsProceedings of
the First International Conference on Formal Methods in @oner-Aided Design (FMCAD’96yolume
1166 ofLNCS pages 265-269. Springer, 1996.

L. Henkin. Completeness in the theory of typésurnal of Symbolic Logicl5:81-91, 1950.

K. J. J. Hintikka. Form and content in quantification ttyedwo papers on symbolic logic.Acta
Philosophica Fennica8:7-55, 1955.

G. P. Huet. Constrained Resolution: A Complete Method for Higher Ordegic. PhD thesis, Case
Western Reserve University, 1972.

D. J. King and R. D. Arthan. Development of practical fieation tools. ICL Systems Journall1(1),
May 1996.

D. A. Miller. A compact representation of proofStudia Logica46(4):347-370, 1987.

G. Mints. Cut-elimination for simple type theory with akiom of choice.Journal of Symbolic Logic
64(2):479-485, 1999.

J. C. Mitchell, M. Hoang, and B. T. Howard. Labeling teicues and typed fixed-point operators. In
Higher order operational techniques in semantipsges 137-174. Cambridge University Press, New
York, NY, USA, 1998.

T. Nipkow, L. C. Paulson, and M. Wenzédtabelle/HOL — A Proof Assistant for Higher-Order Logic
volume 2283 oL NCS Springer, 2002.

D. Prawitz. Hauptsatz for higher order loglmurnal of Symbolic Logic33:452-457, 1968.

K. Slind and M. Norrish. A brief overview of HOL4. Proceedings of the 21st International Conference
on Theorem Proving in Higher Order Logiceolume 5170 oLLNCS pages 28-32, Berlin, Heidelberg,
2008. Springer.

R. M. Smullyan. A unifying principle in quantificationetry. Proceedings of the National Academy of
Sciences, U.S.A49:828-832, 1963.

R. M. Smullyan.First-Order Logic Springer, 1968.

G. Sutcliffe. The 5th IJCAR Automated Theorem Provingt8sn Competition - CASC-JAI Commu-
nications 24(1):75-89, 2011.

G. Sutcliffe, C. Benzmdiller, C. E. Brown, and F. Thei$2togress in the development of automated
theorem proving for higher-order logic. In R. A. Schmidtjted Automated Deduction - CADE-22,
22nd International Conference on Automated Deduction.c@edings volume 5663 ofLNCS pages
116-130. Springer, 2009.

M. Takahashi. Simple Type Theory of Gentzen Style withltiference of ExtensionalityProceedings
of the Japan Academy4(2):43-45, 1968.

