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Abstract While many higher-order interactive theorem provers include a choice operator,
higher-order automated theorem provers so far have not. In order to support automated rea-
soning in the presence of a choice operator, we present a cut-free ground tableau calculus for
Church’s simple type theory with choice. The tableau calculus is designed with automated
search in mind. In particular, the rules only operate on the top level structure of formulas.
Additionally, we restrict the instantiation terms for quantifiers to a universe that depends
on the current branch. At base types the universe of instantiations is finite. Both of these
restrictions are intended to minimize the number of rules a corresponding search procedure
is obligated to consider. We prove completeness of the tableau calculus relative to Henkin
models.1

Keywords higher-order logic· simple type theory· tableaux· completeness· axiom of
choice· choice operators· Henkin models

1 Introduction

Interactive theorem provers based on classical higher-order logic (e.g., Isabelle-HOL [26],
HOL88 [17], HOL-light [18], ProofPower [22] and HOL4 [28]) build in the axiom of choice
by including a form of Hilbert’sε binder and appropriate rules. Church’s formulation of the
simple theory of types [15] included a selection operator (called ι) and an axiom of choice
for this operator at each type. Henkin defined a general notion of a model of Church’s type
theory with choice and proved completeness [19]. A higher-order version of the TPTP has
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been under development the past few years [32]. In 2009 it wasdecided that Henkin models
with choice would be the default semantics of the higher-order TPTP.

Automated theorem provers for classical higher-order logic (e.g., TPS [4] and LEO-
II [10]) do not currently build in the axiom of choice. Completeness of such calculi is
judged with respect to a variant of Henkin’s models without choice [3,9]. As Miller ar-
gues [23] Skolemization is unsound with respect to Henkin models without choice but is
incomplete with respect to Henkin models with choice. For example, Skolemization makes
the formula(∀x∃y.rxy) →∃ f∀x.rx( f x) easy to prove, but Skolemization does not help one
prove∃c∀px.px→ p(cp). Miller gives a restriction which makes Skolemization sound with
respect to Henkin models without choice.

What would be involved in adding support for choice? Assume anew logical constantεσ
of type(σ → o)→σ at each typeσ is added to the syntax. We need new rules corresponding
to this constant. The fundamental propertyεσ should satisfy is expressed by the formula

∀pσ→oxσ .px→ p(εσ p) (1)

One option is to take a formulaswe wish to prove and instead prove(1)→ susing a cut-free
proof calculus for higher-order logic without choice (e.g., the calculi in [11] and [14]). The
first problem with this option is that (1) only expresses the axiom of choice at a single type
σ . We could overcome this in principle by systematically considering(1σ1)∧· · ·∧(1σn)→ s.
for any finite set{σ1, . . . ,σn} of types. The second problem with this option is more serious.
Even adding a single instance of (1) at any typeσ allows one to simulate cut in the calculus
(see Example 7.3 of [8]). This naı̈ve idea for a cut-free calculus is doomed. As argued in [8]
it is a general phenomenon that higher-order hypotheses destroy cut-freeness of a calculus.
This phenomenon motivates trying to build the assumptions into the calculus in a cut-free
(but complete) way.

Our purpose in this paper is to give a complete analytic tableau calculus for higher-order
logic with choice that forms a basis for automated reasoningin the logic. Mints [24] has
given a sequent calculus for relational higher-order logicwith anε-operator and proves cut-
elimination. Mints’ calculus does not include arbitrary function types and the corresponding
simply typedλ -terms. We adapt Mints’ rules for a simply typed formulationin the style of
Church. We obtain tighter restrictions on when Mints’ main choice rule (theε-rule) needs
to be applied. Furthermore, we show we can omit Mints’ε-extensionality rule altogether.
These results are important for automated reasoning because these two rules would be highly
branching in practice. In addition to including cut-free rules for theε-operator, we give
strong restrictions on the instantiation of universal quantifiers over base types analogous to
those reported in [12].

In Section 2 we give a quick presentation of the syntax and semantics of simple type
theory with choice. In Section 3 we present the tableau calculus. In Section 4 we define the
notion of an evident set and prove that every evident set has aHenkin model. We define a
notion of abstract consistency in Section 5. In Section 6 we prove completeness as well as
compactness and the existence of countable models. In Section 7 we extend the calculus to
include an if-then-else operator. We discuss related work and conclude in Sections 8 and 9.

This article is an expanded version of [6].

2 Preliminaries

We start by giving the syntax for simple type theory with a choice operator in the style of
Church [15]. Types (σ , τ , µ) are given inductively by the base typeo (of truth values),ι (of
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individuals) andσ → τ (of functions fromσ to τ). For brevity, we will omit the arrow and
write στ for σ → τ . Omitted parenthesis in types associate to the right:στµ meansσ (τµ).
The results in the paper generalize to the case where there are arbitrarily many base types of
individuals. We useβ to range over the base typeso andι .

For each typeσ we assume a countably infinite setVσ of variables of typeσ . For each
type σ we have logical constants=σ of type σσo, ∀σ of type (σo)o andεσ (the choice
operator) of type(σo)σ . Furthermore, we have logical constants for disjunction∨ of type
ooo, negation¬ of typeoo, false⊥ of typeo and for a default individual∗ of type ι . (The
default individual is included only to act as an instantiation when no other instantiation of
type ι is allowed by our calculus.) We usex,y to range over variables andc to range over
logical constants. Anameis either a variable or a logical constant. We useν to range over
names. Variablesx and choice operatorsεσ are calleddecomposablenames. We usew to
range over decomposable names. LetWσ be the set of decomposable namesw of typeσ .

The family of setsΛσ of terms of typeσ are inductively defined. Ifν is a name of type
σ , thenν ∈ Λσ . If t ∈ Λστ ands∈ Λσ , then we have an application termts∈ Λτ . If x∈ Vσ
andt ∈ Λτ , then we have an abstraction termλx.s∈ Λστ . A formula is a terms∈ Λo.

Application associates to the left, so thatstu means(st)u, with the exception that¬tu
always means¬(tu). We use⊤ as notation for¬⊥. We use infix notation and writes=σ t
(or s= t) for =σ st and writes∨ t for ∨st. (Note that ifsandt are different terms of typeσ ,
thens= t is a different term thant = s.) We writes 6=σ t (or s 6= t) for ¬(s=σ t). We also
use binder notation to write∀x.s for ∀σ λx.sand writeεx.s for εσ λx.s. We writes→ t, s∧ t
and∃x.sas shorthands for¬s∨ t, ¬(¬s∨¬t) and¬∀x.¬s, respectively.

The setV t of free variables of tis defined as usual. For a set of variablesX we write
ΛX

σ for the set of all termst ∈ Λσ such thatV t ⊆ X. Also, for a setA of terms,V A is⋃
{V s|s∈ A}.

To describe our tableau calculus and to reason about it we will need to be able to refer to
certain shallow occurrences of subterms within terms. For example, the choice rule may be
applicable in the presence of a formulaειι px 6=ι y (wherep∈ V(ιι)o andx,y∈ Vι ) because
the subtermειι p occurs as a subterm in a special position. To describe such positions, we
define two notions of contexts (terms with holes).

An elimination context(E ) is a term with a hole[]σ defined inductively as follows
(see [25]).[]σ is an elimination context of typeσ . If E is an elimination context of type
τµ ands∈ Λτ thenE s is an elimination context of typeµ.

Let E be an elimination context of typeσ which has a hole of typeτ . We can applyE
to a termt ∈ Λτ to get a term of typeσ : [ ][t] = t and(E s)[t] = E [t] s.

An accessibility context(C ) is a term with a hole[]σ of the formE , ¬E , E 6=ι s or
s 6=ι E whereE is an elimination context. We can apply an accessibility context C with
a hole of typeσ to a termt ∈ Λσ to get a term of typeo in the obvious way. A terms is
accessiblein a setA of formulas if there is an accessibility contextC such thatC [s] ∈ A.

Let A be a set of formulas. A terms is discriminating in A if there is a termt such
that s 6=ι t ∈ A or t 6=ι s∈ A. A discriminant∆ of A is a maximal set of discriminating
terms such that there are nos, t ∈ ∆ with s 6=ι t ∈ A. (Discriminants first appeared in [13].)
Discriminating terms will be used to instantiate quantifiers over typeι , and discriminants
will be used to interpret the typeι . Note that if there are no discriminating terms inA, then
/0 is the unique discriminant ofA. Note also thats is accessible inA if and only if there is an
elimination contextE such thatE [s] ∈ A, ¬E [s] ∈ A or E [s] is discriminating inA.

We prove that compatible sets of discriminating terms can becollected into a common
discriminant. This fact will be used more than once. This is the first of several places in the
paper where we use the axiom of choice at the meta-level. In this particular case, we could
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prop. where holds for all

L∗(a) a∈ Dι always
L⊥(a) a∈ Do whena = 0
L¬(n) n∈ Doo whenna= 1 if and only if a = 0 a∈ Do

L∨(d) d ∈ Dooo whendab= 1 if and only if a = 1 or b = 1 a,b∈ Do

L∀σ (p) p∈ D(σo)o whenp f = 1 if and only if ∀a∈ Dσ f a = 1 f ∈ Dσo

L=σ (q) q∈ Dσσo whenqab= 1 if and only if a = b a,b∈ Dσ
Lεσ (Φ) Φ ∈ D(σo)σ when f (Φ f ) = 1 if and only if ∃a∈ Dσ f a = 1 f ∈ Dσo

Table 1 Properties of values of logical constants

use an enumeration of terms to avoid using the axiom of choicesince we assumed the setV
of variables is countably infinite.

Proposition 1 Let A be a set of formulas and C be a set of terms that are discriminating in
A. Suppose s6= t /∈ A for every s, t ∈C. There is some discriminant∆ of A such that C⊆ ∆ .

Proof Let P be the set of all setsD such that

1. C⊆ D,
2. every term inD is discriminating inA, and
3. s 6= t /∈ A for everys, t ∈ D.

Note thatP is partially ordered by⊆. For any totally ordered subsetQ ⊆ P, C∪ (
⋃

Q) is
an upper bound ofQ in P. By Zorn’s Lemma, there is some maximal∆ ∈ P. This ∆ is a
discriminant ofA such thatC⊆ ∆ . ⊓⊔

We consider a simple example application of Proposition 1. Supposex1,x2, . . . and
y1,y2, . . . are enumerations of distinct variables of typeι . Let A = {x1 6= y1, x2 6= y2, . . .}.
LetC be a subset of{x1,x2, . . .}∪{y1,y2, . . .} such that for eachi eitherxi /∈C or yi /∈C. By
Proposition 1 there is a discriminant∆ of A extendingC.

Proposition 2 For every set A of formulas, there is a discriminant∆ of A.

Proof We obtain∆ by applying Proposition 1 withC = /0. ⊓⊔

We now turn to a brief description of the semantics. Our notion of an interpretation is
essentially that given by Henkin [19]. AframeD is a typed family of nonempty sets such
thatDo = {0,1} andDστ is a set of total functions fromDσ to Dτ . Do is the set of booleans
0 (false) and 1 (true). An assignmentinto a frameD is a functionI that maps every name
ν of type σ to an element ofDσ . We useI x

a to denote the assignment that is likeI but
maps the variablex to a.

For each logical constantc of typeσ we define a corresponding propertyLc(a) of ele-
mentsa∈ Dσ in Table 1. EssentiallyLc(a) holds if and only ifa is an appropriate interpre-
tation ofc. An assignmentI into D is logical if Lc(I c) holds for each logical constantc.
A logical assignmentI must map⊥ to 0,¬ to the negation function, and so on. There is
no restriction on the value ofI ∗ in Dι . The most interesting case to consider is the choice
operatorεσ . For an assignment to be logical,I εσ must be a functionΦ in D(σo)σ such that
f (Φ( f )) = 1 for every f ∈ Dσo except whenf is the constant 0 function. We call such a
Φ a choice function. There may be many different choice functions inD(σo)σ . (Of course,
there may also be no choice function.)
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We now turn to the interpretation of all typed terms. To do this we use induction on
terms to lift each assignmentI to a partial functionÎ on terms:

Î (ν) := I (ν)

Î (st) := f a if Î s= f andÎ t = a

Î (λx.s) := f if λx.s∈ Λστ , f ∈ Dστ and∀a∈ Dσ : Î x
a s= f a

Note thatÎ (st) is undefined if eitherÎ s or Î t is undefined. Similarly,Î (λx.s) is unde-
fined if eitherÎ x

a s is undefined for somea∈Dσ or if the appropriate functionf : Dσ →Dτ
is not inDστ . If Î is a total function, then we sayI is aninterpretation.

We record the following useful fact which can be proven by an easy induction on terms.

Proposition 3 Let D be a frame and s∈ Λσ be a term. IfI andJ are assignments into
D such thatI c = J c for every logical constant c andI x = J x for every x∈ V s, then
either s/∈ Dom(Î ) and s/∈ Dom(Ĵ ) or s∈ Dom(Î ), s∈ Dom(Ĵ ) andÎ s= Ĵ s.

A (Henkin) model(D ,I ) is a frameD and a logical interpretationI into D . We say
that a model(D ,I ) satisfiesa formulas if and only if Î (s) = 1. A formula issatisfiableif
and only if there is a model(D ,I ) such thatÎ (s) = 1. We say a model(D ,I ) is countable
if Dσ is at most countable for every typeσ . Note that even ifDσ is finite for everyσ , the
union

⋃
σ Dσ will be countably infinite. Hence(D ,I ) is a countable model if and only if⋃

σ Dσ is countably infinite.
We say(D ,I ) is a model ofa set of formulasA if Î (s) = 1 for everys∈ A. A setA of

formulas issatisfiableif there is a model ofA.
We assume a type preserving and totalnormalization operator[·] from terms to terms.

A term is normal if and only if [s] = s. A set of terms is normal if every element of this
set is normal. Instead of committing to a specific operator such asβ -normalization orβη-
normalization, we require the following properties:

N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [νs1 . . .sn] = ν [s1] . . . [sn] if νs1 . . .sn ∈ Λβ for some base typeβ andn≥ 0
N4 Î [s] = Î s for every model(D ,I )
N5 V [s] ⊆ V s

Note that by N5 we know[s] ∈ ΛX
σ whenevers∈ ΛX

σ .
A substitutionis a type preserving partial function from variables to terms. If θ is a

substitution,x is a variable, ands is a term that has the same type asx, we writeθ x
s for the

substitution that agrees everywhere withθ except onx where it yieldss. For each substitu-
tion θ we assume there is a type preserving total functionθ̂ from terms to terms such that
the following properties hold:

S1 θ̂x = θx for everyx∈ Domθ
S2 θ̂(st) = (θ̂s)(θ̂t)
S3 [(θ̂(λx.s))t] = [θ̂ x

t s]
S4 [θ̂s] = [s] if θx = x for everyx∈ Domθ ∩V s
S5 [θ̂ [s]] = [θ̂s]

The following two propositions demonstrate that abstract normalization and substitution
satisfy two properties one would expect. The empty set /0 is the substitution that is undefined
on every variable.

Proposition 4 [[λx.s]t] = [ /̂0x
t s]
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T¬
s, ¬s

⊥
T 6=

s 6=ι s

⊥
T¬¬

¬¬s

s
T∨

s∨ t

s | t
T¬∨

¬(s∨ t)

¬s,¬t
T∀

∀σ s

[st]
t ∈ Uσ

T¬∀
¬∀σ s

¬[sx]
x∈ Vσ fresh Tε

[∀x.¬(sx)] | [s(εs)]
εs accessible,x /∈ V s TBE

s 6=o t

s, ¬t | ¬s, t

TBQ

s=o t

s, t | ¬s, ¬t
TFE

s 6=στ t

¬[∀x.sx= tx]
x /∈ V s∪V t TFQ

s=στ t

[∀x.sx= tx]
x /∈ V s∪V t

TMAT

ws1 . . .sn , ¬wt1 . . . tn
s1 6= t1 | · · · | sn 6= tn

TDEC

ws1 . . .sn 6=ι wt1 . . . tn
s1 6= t1 | · · · | sn 6= tn

TCON

s=ι t , u 6=ι v

s 6= u, t 6= u | s 6= v, t 6= v

Fig. 1 Tableau rules defining the tableau calculusT

Proof [[λx.s]t]
S4
= [[ /̂0(λx.s)]t]

N2
= [( /̂0(λx.s))t]

S3
= [ /̂0x

t s]. ⊓⊔

Proposition 5 Let s∈ Λστ , x∈ Vσ and t∈ Λσ . If x /∈ V s and x/∈ V [sx], then[sx] = [st].

Proof [sx]
N1
= [[sx]]

S4
= [ /̂0x

t [sx]]
S5
= [ /̂0x

t (sx)]
S2
= [ /̂0x

t (s) /̂0x
t (x)]

S1
= [ /̂0x

t (s)t]
N2
= [[ /̂0x

t (s)]t]
S4
= [[s]t]

N2
= [st].

⊓⊔

For each setA of formulas and typeσ we define a nonempty setU A
σ ⊆Λσ as follows.

– Let U A
o = {⊥,⊤}.

– Let U A
ι be the set of discriminating terms inA if there is some discriminating term inA

and{∗} otherwise.
– Let U A

στ = {[s]|s∈ Λστ ,V s⊆ V A}.

When trying to refute a setA of formulas, all our instantiations of typeσ will come from
theuniverseU A

σ . When the setA is clear in context, we writeUσ .

3 Tableau Calculus

We now introduce a tableau calculus and define a notion of refutability. A branchis a finite
set of normal formulas. Astepis ann+ 1-tuple 〈A,A1, . . . ,An〉 of branches wheren ≥ 1,
⊥ /∈A andA⊂ Ai for eachi ∈ {1, . . . ,n}. The branchA is theheadof the step〈A,A1, . . . ,An〉
and eachAi is analternative. A rule is a set of steps, and is usually indicated by a schema.
For example, the schema forTBE given in Figure 1 indicates the set of steps〈A,A1,A2〉
where(s 6=o t) ∈ A, ⊥ /∈ A, {s,¬t} 6⊆ A, {¬s, t} 6⊆ A, A1 = A∪{s,¬t} andA2 = A∪{¬s, t}.
We say a ruleapplies toa branchA if some step in the rule hasA as its head. A tableau
calculus is also a set of steps. LetT be the tableau calculus given as the union of the rules
in Figure 1.

In the rulesTMAT (the mating rule) andTDEC (the decomposition rule) we assumen≥ 1
andw is a decomposable name (a variable or a choice operator). In the ruleT∀ the instanti-
ation termt must belong to the setU A

σ whereA is the head of the step. In the ruleT¬∀ the
variablex must befreshin the sense that it is not inV A whereA is the head of the step. We
restrict theT¬∀ to apply only in the case where there is no decomposable namew∈Wσ such
that¬[sw] is in the headA. In the context of an automated prover, this restriction implies
there is no need to apply theT¬∀ rule to a formula¬∀s more than once. For example, ifx
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andw are variables of typeo, thenT¬∀ does not apply to the branch{¬w, ¬∀x.x}. Without
the restriction, we could continue to applyT¬∀ to add new formulas¬w2, ¬w3, . . ..

We explain the choice ruleTε . Whenever we must considerεs, eithers corresponds to
the empty set and hence∀x.¬(sx) holds, ors represents a set containing at least one element
ands(εs) holds. Note that we obtain a complete calculus even though weonly apply the
choice rule whenεs occurs on the branch in the formC [εs] for some accessibility context
C . That is, the choice rule only applies usingεs when the branch contains a formula of the
form εst1 · · ·tn,¬(εst1 · · ·tn), (εst1 · · ·tn) 6=ι u or u 6=ι (εst1 · · ·tn). This is a tighter restriction
than the one given for the choice rule in [24].

The set ofrefutablebranches is defined inductively as follows. If⊥ ∈ A, then A is
refutable. If〈A,A1, . . . ,An〉 is a step inT and every alternativeAi is refutable, thenA is
refutable.

Proposition 6 (Soundness)If A is refutable, then A is unsatisfiable.

Proof It is enough to check for each step〈A,A1, · · · ,An〉 in T that if A is satisfiable, thenAi

is satisfiable for somei ∈ {1, . . . ,n}. Each case is easy. For the steps involving the normal-
ization operator, property N4 is used. ForT¬∀ use Proposition 3. ⊓⊔

Example 1Let p∈ Vιo. For this example, assumep andλx.¬px are normal. We refute the
set{p(εx.¬px),¬p(ε p)} using the rulesTMAT , Tε , T∀ andT¬. Note thatT∀ is used with
the instantiation termεx.¬pxwhich is a discriminating term when(εx.¬px) 6= ε p is on the
branch.

p(εx.¬px)
¬p(ε p)

(εx.¬px) 6= ε p
∀x.¬px

¬p(εx.¬px)
⊥

p(ε p)
⊥

4 Evident Sets and Model Existence

Let E be a set of normal formulas. We sayE is evident if it satisfies the conditions in
Figure 2. We call these conditionsevidence conditions. The evidence conditions are similar
to conditions considered by Hintikka [20] in the context of predicate logic. For this reason,
sets satisfying such conditions are sometimes called “Hintikka sets” (cf. [9]). Hintikka called
such sets “model sets” in [20] because in predicate logic (without equality) each such set
induces a model in a very natural way. In this section we will prove that each evident setE
induces a Henkin model ofE, though the construction in our higher-order setting is more
involved than in the first-order setting.

Before continuing, we consider an additional property which an evident set might sat-
isfy. We sayE is completeif for every formulassuch thatV s⊆ V E eithers∈ E or¬s∈ E.
With the exception of the restriction of the free variables in s to those occurring free inE,
the property was called “saturation” in [9] (cf. Definition 6.24) and [8]. The terminology
changed to “complete” in [14]. It will turn out that ifE is complete, then the model we
construct will interpret each type as a set that is at most countable.

Most of the evidence conditions in Figure 2 correspond directly to a tableau rule in Fig-
ure 1. On the other hand, the conditionsEFE, EFQ andEε are formulated in a slightly different
way than the corresponding tableau rulesTFE, TFQ andTε . The tableau rules are formulated
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E⊥ ⊥ is not inE.

E¬ If ¬s is in E, thens is not inE.

E6= s 6=ι s is not inE.

E¬¬ If ¬¬s is in E, thens is in E.

E∨ If s∨ t is in E, then eithersor t is in E.

E¬∨ If ¬(s∨ t) is in E, then¬s and¬t are inE.

E∀ If ∀σ s is in E, then[st] is in E for everyt ∈ U E
σ .

E¬∀ If ¬∀σ s is in E, then¬[sw] is in E for some decomposable namew∈ Wσ .

EMAT If ws1 . . .sn and¬wt1 . . . tn are inE wheren≥ 1, thensi 6= ti is in E for somei ∈ {1, . . . ,n}.

EDEC If ws1 . . .sn 6=ι wt1 . . . tn is in E wheren≥ 1, thensi 6= ti is in E for somei ∈ {1, . . . ,n}.

ECON If s=ι t andu 6=ι v are inE, then eithers 6= u andt 6= u are inE or s 6= v andt 6= v are inE.

EBE If s 6=o t is in E, then eithersand¬t are inE or ¬sandt are inE.

EBQ If s=o t is in E, then eithersandt are inE or ¬s and¬t are inE.

EFE If s 6=στ t is in E, then[sw] 6= [tw] is in E for some decomposable namew∈ Wσ .

EFQ If s=στ t is in E, then[su] = [tu] is in E for everyu∈ U E
σ .

Eε If εσ s is accessible inE, then either[s(εs)] is in E or ¬[st] is in E for everyt ∈ U E
σ .

Fig. 2 Evidence conditions

in a way that makes proof search more practical while the evidence conditions are formu-
lated in a way that will ease the model construction. The nextproposition demonstrates that
these three evidence conditions could also be formulated differently. Later we will use the
proposition to help prove certain sets are evident.

Proposition 7 Let E be a set of normal formulas satisfyingE∀ andE¬∀.

1. For s, t ∈ Λστ and x∈ Vσ \ (V s∪V t), if ¬[∀x.sx=τ tx] is in E, then[sw] 6= [tw] is in E
for some decomposable name w∈ Wσ .

2. For s, t ∈Λστ and x∈ Vσ \ (V s∪V t), if [∀x.sx=τ tx] is in E, then[su] = [tu] is in E for
every u∈ U E

σ .
3. For s∈ Λστ and x∈ Vσ \V s, if [∀x.¬sx] is in E, then¬[st] is in E for every t∈ U E

σ .

Proof We prove only the first fact. The proofs of other two are similar. Assumes, t ∈ Λστ ,
x∈ Vσ \ (V s∪V t) and¬[∀x.sx=τ tx] ∈ E. By N3 andE¬∀ we know¬[[λx.sx=τ tx]w] is
in E for somew∈Wσ . By Proposition 4, S1, S2, S4 and N3 we know[[λx.sx=τ tx]w] is the
same as[sw] =τ [tw]. Thus[sw] 6=τ [tw] is in E as desired. ⊓⊔

Let E be an evident set and letX be the setV E of free variables inE. In the rest of this
section we will construct a model ofE. The construction is similar to the ones in [14] except
for complications that arise from the inclusion of a choice operator and from instantiation
restrictions.

We next define a binary relation⊲σ between termss∈ΛX
σ and valuesa∈Dσ . When the

relations⊲σ a holds we says can be aor a is a possible value of s. A relation similar to⊲ was
defined independently by Takahashi [33] and Prawitz [27] in order to prove cut-elimination
for a higher-order calculus. (The phrasepossible valuewas used by Prawitz [27].) Such a re-
lation can also be found in [24] and [14]. An important difference between⊲ as defined here
and the analogous relations defined in earlier works is that the present⊲ only relates terms
in ΛX to values. That is, we restrict our attention to terms that contain free variables from
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the setX, i.e., the variables free inE. This modification is necessary to obtain completeness
in the presence of our restriction on instantiations.

We define⊲σ by induction on types. For eachσ , let Dσ be the range of⊲σ , i.e., the set
of all a such that there is somes∈ ΛX

σ with s⊲σ a.

– s⊲o 0 if s∈ ΛX
o and[s] /∈ E.

– s⊲o 1 if s∈ ΛX
o and¬[s] /∈ E.

– s⊲ι ∆ if s∈ ΛX
ι , ∆ is a discriminant (ofE), and either[s] is not a discriminating term or

[s] ∈ ∆ .
– s⊲στ f if s∈ ΛX

στ , f : Dσ → Dτ andst⊲τ f a whenevert ⊲σ a.

Clearly we have⊲σ ⊆ΛX
σ ×Dσ . Also, by the definition ofD for everya∈Dσ there is some

s∈ ΛX
σ such thats⊲σ a. For any setT ⊆ ΛX

σ we writeT ⊲a if s⊲a for everys∈ T.
Note that ifs∈ ΛX, then[s] ∈ ΛX by N5. Thus, it makes sense to ask in what circum-

stances[s]⊲a holds for suchs. The following lemma answers this question.

Lemma 1 For all typesσ , terms s∈ ΛX
σ and values a∈ Dσ , s⊲a if and only if[s]⊲a.

Proof This follows by an easy induction on typesσ using N1, N2 and N5. The proof is
essentially the same as that of Proposition 3.1 in [14]. ⊓⊔

The next proposition records a number of useful facts about⊲ andD . In particular,D is
a frame and for every valuea∈ Dσ there is somet ∈ U E

σ with possible valuea. We need
such a result to prove completeness since instantiations are restricted to terms inU E

σ .

Proposition 8
1. ⊥⊲0 and⊤⊲1. In particular, Do = {0,1}.
2. For every discriminant∆ , there is a term t∈ U E

ι with possible value∆ . In particular,
Dι is the set of all discriminants.

3. For all typesσ and a∈ Dσ there is a term t∈ U E
σ such that t⊲a.

4. If t ⊲µ b and x∈ Vτ \V t, thenλx.t ⊲Kb where Kb : Dτ → Dµ is the constant b function.
5. For all typesσ , Dσ is nonempty.
6. D is a frame.

Proof
1. ByE⊥ andE¬¬ we know⊥ /∈ E and¬¬⊥ /∈ E. By N3 [⊥] is⊥ and[¬⊥] is¬⊥. Hence

⊥⊲0 and¬⊥⊲1.
2. Let∆ be a discriminant. If there are no discriminating terms, then ∗ is in U E

ι and∗⊲∆ .
Suppose there is a discriminating terms. By E6= we know s 6=ι s is not in E. Since
/0⊂ {s} and∆ is maximal, we know∆ must not be empty. Lett ∈ ∆ be given. Clearly
t ∈ U E

ι andt ⊲∆ .
3. By case analysis onσ . The cases for base types follow directly from (1) and (2). Let σ

beτµ and f ∈ Dτµ be given. By definition there is somes∈ ΛX
τµ such thats⊲ f . Since

X is V E, [s] ∈ U E
τµ . By Lemma 1[s]⊲ f and we are done.

4. Assumeλx.t ⋫ Kb. By Lemma 1[λx.t] ⋫ Kb. We know that there is a terms∈ ΛX
τ and

a valuea∈ Dτ such thats⊲a but [λx.t]s⋫ Kba. By the definition ofKb and by Lemma
1 [[λx.t]s] ⋫ b. Weβ -reduce according to Proposition 4 and use S4 and Lemma 1 to get
t ⋫ b. This is a contradiction.

5. By induction onσ . The case for typeo follows directly from (1). The case for typeι
follows from (2) and Proposition 2. Letσ be τµ. By induction there is someb∈ Dµ .
By definition there is somet ∈ ΛX

µ such thatt ⊲b. Let Kb : Dτ → Dµ be the constantb
function and letx be a variable not inV t. By (4) λx.t ⊲ Kb. By the definition of⊲ we
know Kb ∈ Dσ .
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6. Dσ is nonempty for allσ by (5).Do = {0,1} by (1).Dτµ only contains total functions
from Dτ to Dµ for all µ andτ by the definition of⊲. ⊓⊔

The evident setE insists some terms must be interpreted differently. We use this infor-
mation to define a relation♯. For s, t ∈ ΛX

σ we says♯t holds if either s 6= t or t 6= s is in E.
We record a simple and useful fact.

Lemma 2 For any variable x∈ Vσ , [λx.⊥]♯[λx.⊥] does not hold.

Proof Assume[λx.⊥]♯[λx.⊥] holds. There is somew∈Wτ such that[(λx.⊥)w]♯[(λx.⊥)w]
by EFE and N2. We know[(λx.⊥)w] is ⊥ by Proposition 4, S4 and N3. Hence⊥♯⊥. This
contradictsEBE andE⊥. ⊓⊔

We now turn to a notion of compatibility of terms.

Definition 1 For each typeσ we define when two termss, t ∈ ΛX
σ arecompatible(written

s‖ t) by induction on types.

σ = o: s‖ t if {[s],¬[t]} 6⊆ E and{¬[s], [t]} 6⊆ E.
σ = ι : s‖ t if [s]♯[t] does not hold.
σ = τµ: s‖ t if for all u,v∈ ΛX

τ u ‖ v impliessu‖ tv.

We say a setT ⊆ ΛX
σ is compatibleif s‖ t for all s, t ∈ T.

The next lemma provides relationships between compatibility of terms and the presence
of disequations inE. Note that part 2 of the lemma impliesεσ ‖ εσ for every typeσ and
x ‖ x for every variablex ∈ X. The lemma is the same as Lemma 6.5 in [14] except for
the restriction of free variables toX and the inclusion ofεσ in part (2). The free variable
restriction does cause a slight complication in the proof since the decomposable namew in
the conditionEFE may be a variable not inX.

Lemma 3 For all typesσ we have the following:

1. For all s, t ∈ ΛX
σ , if [s]♯[t], then s∦ t.

2. For all ws1 · · ·sn,wt1, · · ·tn ∈ ΛX
σ where n≥ 0 and w is a decomposable name, either

ws1 · · ·sn ‖ wt1, · · ·tn or there is some i∈ {1, . . . ,n} such that[si ]♯[ti].

Proof By mutual induction onσ . The base cases for (1) follow fromEBE and the definition
of compatibility. The base cases for (2) follow from N3,EMAT andEDEC sincew is decom-
posable. The case for (2) whenσ is τµ easily follows from the inductive hypotheses for (1)
at τ and for (2) atµ.

The only complicated case is proving (1) whenσ is τµ. Assumes‖ t and [s]♯[t] both
hold. By EFE and N2[sw]♯[tw] for some decomposablew ∈ Wτ . If w ∈ X or w is a choice
operator, thenw ‖τ w by inductive hypothesis (2) and sosw‖µ tw, contradicting induc-
tive hypothesis (1). Otherwise,w∈ V \X. In particular,w /∈ V s∪V t ∪V [sw]∪V [tw]. By
Proposition 5 we know[sw] is [s(εw.⊥)] and[tw] is [t(εw.⊥)]. By inductive hypothesis (2)
and Lemma 2 we knowεw.⊥‖ εw.⊥. Hences(εw.⊥) ‖ t(εw.⊥), contradicting the inductive
hypothesis (1). ⊓⊔

The next lemma relates compatibility to⊲. This lemma is very similar to Lemma 7.3
in [14]. Fortunately, the restriction of free variables toX does not cause complications in the
proof. The axiom of choice is used twice in this proof: once directly and once indirectly via
Proposition 1.
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Lemma 4 For all sets T⊆ ΛX
σ , T is compatible if and only if there is a value a∈ Dσ such

that T⊲a.

Proof The proof is by induction onσ . Note that ifT is empty thenT ⊲a for all a∈Dσ . (By
Proposition 8(5) there is somea∈ Dσ .) In the cases below, we assumeT is nonempty.

– σ = ι , ⇒. Let T be compatible. By Proposition 1 there exists a discriminanta that
extends{ [t] discriminating| t ∈ T }. The claim follows sinceT ⊲a.

– σ = ι , ⇐. SupposeT ⊲ a andT is not compatible. Then there are termss, t ∈ T such
that([s] 6=[t]) ∈ E. Thus[s] and[t] cannot be both ina. This contradictss, t ∈ T ⊲a since
[s] and[t] are discriminating.

– σ = o, ⇒. By contraposition. SupposeT ⋫ 0 andT ⋫ 1. Then there are termss, t ∈ T
such that[s],¬[t] ∈ E. Thuss∦ t. HenceT is not compatible.

– σ = o, ⇐. By contraposition. Supposes∦o t for s, t ∈ T. Then[s],¬[t]∈ E without loss
of generality. Hences⋫ 0 andt ⋫ 1. ThusT ⋫ 0 andT ⋫ 1.

– σ = τµ, ⇒. Let T be compatible. We defineTa := {ts | t ∈ T, s⊲τ a} for every value
a∈ Dτ and show thatTa is compatible. Lett1, t2 ∈ T ands1,s2 ⊲τ a. It suffices to show
t1s1 ‖ t2s2. By the inductive hypothesiss1 ‖τ s2. SinceT is compatible,t1 ‖ t2. Hence
t1s1 ‖ t2s2. By the inductive hypothesis we now know that for everya ∈ Dτ there is a
b∈ Dµ such thatTa ⊲µ b. By the axiom of choice, there is a functionf ∈ Dσ such that
Ta ⊲µ f a for everya∈ Dτ . ThusT ⊲σ f .

– σ = τµ, ⇐. Let T ⊲σ f ands, t ∈ T. We will proves‖σ t. Let u,v ∈ ΛX
τ be such that

u ‖τ v. It suffices to provesu‖µ tv. By the inductive hypothesisu,v⊲τ a for some value
a. Hencesu, tv⊲µ f a. Thussu‖µ tv by the inductive hypothesis. ⊓⊔

We now turn to the interpretation of the choice operators. Weuse a construction similar
to that of Mints [24] adapted to our setting.

Let f ∈ Dσo be a function andw∈ W(σo)σ be a decomposable name. We writef ∝ ws
(read f chooses ws) whens⊲ f andw[s] is accessible inE. Let f w := {ws∈ ΛX

σ | f ∝ ws}.

Lemma 5 For all f ∈Dσo and w∈W(σo)σ ∩ΛX
(σo)σ , there is some a∈Dσ such that fw⊲a.

Proof We show thatf w is compatible. Lemma 4 gives us the claim. Letws,wt ∈ f w. By the
definition of∝, s, t ⊲ f and sos‖ t by Lemma 4. By Lemma 3(2)w ‖ w and sows‖ wt. ⊓⊔

For each typeσ we will now obtain a functionΦσ : Dσo → Dσ that will serve as the
interpretation of the choice operatorεσ . For eachσ we chooseΦσ such that

Φσ f =

{
someb such thatf b = 1 if f εσ is empty and such ab exists.

somea such thatf εσ ⊲a.

The existence of ana in the second case follows from Lemma 5. Note that the second case
includes the case in whichf is the constant 0 function. In particular, iff is the constant 0
function andf εσ is empty, thenΦσ f can be anya∈ Dσ . The next three lemmas verify that
Φσ can act as the interpretation ofεσ .

Lemma 6 Let ν be a name,νt1 . . .tn ∈ ΛX
σ and a∈ Dσ . If νt1 . . .tn ⋫ a, thenν [t1] . . . [tn] is

accessible in E.

Proof We prove this by induction onσ .
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– σ = o: Let a= 0. By the definition of⊲o and N3,ν [t1] . . . [tn]∈ E. Let a= 1. Then, again
by the definition of⊲o and N3,¬ν [t1] . . . [tn] ∈ E.

– σ = ι : By the definition of⊲ι and N3, we know thatν [t1] . . . [tn] is discriminating and
hence accessible.

– σ = µτ : By the definition of⊲σ , we know that there is some termu ∈ ΛX
µ and some

valueb∈ Dµ such thatu⊲b but νt1 . . .tnu ⋫ ab. By the inductive hypothesis, we know
thatν [t1] . . . [tn][u] is accessible inE. Hence,ν [t1] . . . [tn] is accessible. ⊓⊔

Lemma 7 For any typeσ we haveεσ ⊲Φσ .

Proof Assumeε ⋫ Φ . Then, there ares, f such thats⊲ f but εs⋫ Φ f . By Lemma 6ε [s] is
accessible inE. Henceεs∈ f εσ . There is somea such thatΦ f = a and f εσ ⊲a. Thusεs⊲a,
a contradiction. ⊓⊔

Lemma 8 Lεσ (Φσ ) holds. That is,Φ as given above is a choice function.

Proof Let f ∈ Dσo be a function andb ∈ Dσ be such thatf b = 1. Supposef (Φ f ) = 0.
Then f εσ must be nonempty (by the definition ofΦ f ). Choose someεs∈ f εσ . By Eε there
are two possibilities:

1. [s(εs)]∈ E: In this cases(εs) ⋫ 0. On the other hand,s⊲ f andε ⊲Φ (by Lemma 7) and
sos(εs)⊲ f (Φ f ). This contradicts our assumption thatf (Φ f ) = 0.

2. ¬[st] ∈ E for everyt ∈ U E
σ : By Proposition 8(3) there is some termt ′ ∈ U E

σ such that
t ′ ⊲ b. Hence¬[st′] ∈ E. By the definition of⊲o, st′ ⋫ 1. On the other hand, we know
st′ ⊲ f b sinces⊲ f andt ′ ⊲b, contradicting the assumption thatf b = 1. ⊓⊔

The next lemma will ensure we can correctly interpret equality.

Lemma 9 If s⊲σ a, t⊲σ b and s= t is in E, then a= b.

Proof By contradiction and induction onσ . Assumes⊲σ a, t ⊲σ b, (s=t) ∈ E, anda 6= b.
Case analysis.

σ = o. By EBQ eithers, t ∈ E or ¬s,¬t ∈ E. Hencea andb are either both 1 or both 0.
Contradiction.

σ = ι . Sincea 6= b, there must be discriminating terms of typeι . Since the discriminant
a is maximal there is someu∈ a\b. Sinceb is also maximal,b∪{u} is not a discriminant.
Hence there is somev∈ b such thatu♯v. Since(s=t) ∈ E, we know by N3 thats andt are
normal. ByECON we know eithers♯u or t♯v. If s♯u, thens is discriminating and sos∈ a,
contradicting thata is a discriminant withu∈ a. Likewise, if t♯v, thent ∈ b, contradicting
v∈ b.

σ = τµ. Sincea 6= b, there is somed∈Dτ such thatad 6= bd. By Proposition 8(3) there
is some termu∈U E

τ such thatu⊲τ d. Hencesu⊲ad andtu⊲bd. By Lemma 1[su]⊲µ ad and
[tu]⊲µ bd. By EFQ the equation[su] = [tu] is in E, contradicting the inductive hypothesis.⊓⊔

The next lemma will ensure we can correctly interpret universal quantifiers.

Lemma 10 Let s∈ ΛX
σo be given. Let f∈ Dσo be such that f b= 1 for all b ∈ Dσ . If s⊲ f ,

then∀σ s⊲1.

Proof Assumes⊲ f and∀σ s⋫ 1. Hence¬[∀σs] ∈ E. By N3,E¬∀ and N2 there is somew∈
Wσ such that¬[sw] is in E. If w∈ X or w is a choice operator, then we obtain a contradiction
using Lemma 3(2) and Lemma 4. Otherwise,w∈ V \X. In particular,w /∈ V s∪V [sw]. By
Proposition 5[sw] must be the same as[s(εw.⊥)]. By Lemma 2 and Lemma 3(2) we know
εx.⊥ ‖ εx.⊥. By Lemma 4 there is someb∈ Dσ such thatεx.⊥⊲b. Thuss(εx.⊥)⊲ f b= 1,
contradicting that¬[s(εx.⊥)] is in E. ⊓⊔
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We now prove we can interpret every logical constant appropriately.

Proposition 9 For each logical constant c of typeσ there is some a∈ Dσ such thatLc(a)
and c⊲a.

Proof If c is a choice operatorεσ , then we knowεσ ⊲Φσ andLεσ (Φσ ) by Lemmas 7 and 8.
We know⊥ ⊲ 0 by Proposition 8(1). If∗ is not discriminating, then∗ ⊲ ∆ for all ∆ ∈ Dι .
If ∗ is discriminating, then∗ ⊲ ∆ for some∆ ∈ Dι where∗ ∈ ∆ . Now, letn : Do → Do be
the negation function andd : Do → Do → Do be the disjunction function. For eachσ let
pσ : Dσo →Do be the function such thatpσ f = 1 if and only if f is the constant 1 function.
For eachσ let qσ : Dσ →Dσ →Do be the function such thatqσ ab= 1 if and only ifa = b.
Each of the following statements is easily verified making extensive use of Lemma 1.

1. For alls∈ ΛX
o anda∈ Do, if s⊲a, then¬s⊲na. (Use N3 andE¬¬.)

2. ¬⊲n. In particular,n∈ Doo and soL¬(n). (Use definition of⊲ and (1).)
3. For alls, t ∈ ΛX

o anda,b∈ Do, if s⊲a andt ⊲b, thens∨ t ⊲dab. (Use N3,E∨ andE¬∨.)
4. For all s∈ ΛX

o and a ∈ Do, if s⊲ a, then (∨s) ⊲ da and da ∈ Doo. (Use (3) and the
definitions of⊲ andDoo.)

5. d : Do → Doo. (Use (4).)
6. ∨⊲d. In particular,d ∈ Dooo and soL∨(d). (Use (4) and the definitions of⊲ andDoo.)
7. For alls∈ΛX

σo and f ∈Dσo, if s⊲ f , then∀σ s⊲ pσ f . (Use Lemma 10 iff is the constant
1 function. Otherwise, use Proposition 8(3) andE∀.)

8. ∀σ ⊲ pσ . In particular,pσ ∈D(σo)o and soL∀σ (pσ ). (Use (7) and the definitions of⊲ and
D(σo)o.)

9. For alls, t ∈ ΛX
σ anda,b∈ Dσ , if s⊲a andt ⊲b, thens=σ t ⊲qσ ab. (Use N3, Lemma 4,

Lemma 3(1) and Lemma 9.)
10. For alls∈ ΛX

σ anda∈ Dσ , if s⊲a, then(=σ s) ⊲qσ a andqσ a∈ Dσo. (Use (9) and the
definitions of⊲ andDσo.)

11. qσ : Dσ → Dσo. (Use (10).)
12. =σ ⊲qσ . In particular,qσ ∈ Dσσo and soL=σ (qσ ). (Use (11) and the definitions of⊲

andDσσo.) ⊓⊔

We say an assignmentI into D is admissibleif c⊲I c for all logical constantsc.

Lemma 11 Let s be a term,θ be a substitution andI be an admissible assignment intoD .
Suppose for every x∈ V s, x∈ Domθ andθx⊲I x. Then s∈ DomÎ and θ̂s⊲ Î s.

Proof By induction ons. If s is a variablex, thenx ∈ Domθ andθx⊲I x by assumption
and soθ̂s⊲Î sby S1. Ifs is a logical constantc, thenθ̂s⊲Î sby admissibility ofI , S4 and
Lemma 1. The case wheres is an application term follows from the inductive hypotheses,
S2 and the definitions ofÎ and ⊲. Finally, supposes is of the formλx.t wherex ∈ Vσ
andt ∈ Λτ . Let u⊲σ a be given. We prove(θ̂(λx.t))u⊲ (Î (λx.t))a. Applying the inductive
hypothesis tot with θ x

u andI x
a , we have thatt ∈ Domθ̂ x

u andθ̂ x
ut ⊲Î x

a t. By S3[(θ̂(λx.t))u]

is [θ̂ x
ut]. Two applications of Lemma 1 complete the proof. ⊓⊔

Using the tools above, we can obtain a logical, admissible interpretation. We prove this
fact in a slightly more general form than we need here. The extra strength will be useful in
a later section. Recall thatX is V E.

Lemma 12 Letθ0 be a substitution andI0 be an assignment such thatθ0x⊲I0x for every
x∈ Domθ0. There is a substitutionθ and a logical, admissible interpretationI such that
θ̂s⊲ Î s for all s∈ Λσ andθx = θ0x andI x = I0x for every x∈ Domθ0.
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Proof We define an assignmentI as follows. For each logical constantc we can choose
I c such thatc⊲ I c andLc(I c) by Proposition 9. This ensures we will have a logical,
admissible assignment. For each variablex ∈ Domθ0 let θx := θ0x andI x := I0x. For
each variablex∈ Vσ \ (Domθ0∪X) we takeθx := εσ y.⊥∈ΛX

σ andI x := Φσ K0 whereK0

is the constant 0 function. By Lemma 7 and Proposition 8 we know thatεσ y.⊥⊲ ΦK0 and
henceθx⊲I x for every variablex. By Lemma 11 we know everys∈ DomÎ andθ̂s⊲ Î s
for every terms. In particular,I is an interpretation. ⊓⊔

Now we can prove the model existence theorem for evident sets.

Theorem 1 (Model Existence)Every evident set E has a model(D ,I ). Furthermore, we
have the following:

1. If E is finite, thenDσ is finite for all typesσ .
2. If E is complete, then(D ,I ) is a countable model.

Proof Let E be an evident set andX beV E. Take⊲ andD as defined in this section. We
start by defining an assignmentI0 and a substitutionθ0. We defineθ0x := x for everyx∈ X.
Note that Domθ0 = X. For each variablex ∈ X we knowx ‖ x by Lemma 3(2) and so we
can use Lemma 4 to chooseI0x such thatx⊲I0x. For variablesx∈ Vσ \X takeI0x∈ Dσ
arbitrarily, using Proposition 8(5). Using Lemma 12 we obtain a substitutionθ and a logical,
admissible interpretationI such thatθ̂s⊲ Î s for all s∈ Λσ andθx = x for all x ∈ X. For
everys∈ ΛX

σ by S4 we know[θ̂s] = [s] and sos⊲ Î s by Lemma 1. Note that(D ,I ) is a
model. For anys∈ E, we knows⊲o Î sands⋫ 0, and soÎ s= 1. Hence(D ,I ) is a model
of E.

1. AssumeE is finite. There are only finitely many discriminants ofE. HenceDι is finite.
The fact that eachDσ is finite follows from an easy induction on types.

2. Since the setΛX
σ is countable, it is enough to give a surjective function fromΛX

σ onto
Dσ . We will prove that⊲σ is such a surjective function. For everys∈ ΛX

σ we know
s⊲Î s, so that⊲σ is total. To prove⊲σ is functional, supposes∈ΛX

σ , s⊲a ands⊲b. Note
that [s= s] is [s] = [s] by N3 and thatV [s] ⊆ V E by N5. Since we already knowE is
satisfiable,[s] 6= [s] is not inE. SinceE is complete,[s] = [s] must be inE. Hencea = b
by Lemmas 1 and 9. Finally,⊲σ is surjective by the definition ofDσ . ⊓⊔

We can now prove that if the tableau calculusT cannot make progress on a branch, then
this branch is satisfiable and in fact has a model with finitelymany individuals.

Corollary 1 Let A be a branch. Suppose⊥ /∈ A and A is not the head of any step in the
calculusT . Then A is evident and there is a model(D ,I ) of A whereDσ is finite for each
typeσ .

Proof By Theorem 1, it suffices to proveA is evident. The evidence conditionE⊥ follows
from the assumption that⊥ /∈ A. The conditionsE¬ andE6= follow from ⊥ /∈ A and the
assumption that the rulesT¬ andT 6= do not apply toA. Except forEFE, EFQ andEε , the re-
maining evidence conditions follow immediately from the assumption that the correspond-
ing rule does not apply. After we knowE∀ andE¬∀ hold for A, we can conclude thatEFE,
EFQ andEε hold for A using Proposition 7 and the assumption that the corresponding rule
does not apply. ⊓⊔
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∀oq.ε p 6= εx.q
ε p 6= εx.⊥
ε p 6= εx.⊤
p 6= λx.⊥
p 6= λx.⊤

¬∀x.px= ⊥
¬∀x.px= ⊤

px 6= ⊥
py 6= ⊤
px

⊤ (i.e.,¬⊥)

py
¬⊤
⊥

¬py
x 6= y

∀x.¬px
...

p(ε p)
ε p 6= y

∀x.¬⊥ ⊥

¬px
⊥

Fig. 3 A tableau with an evident branch

Example 2Let p∈ Vιo andq∈Vo. For this example assume[s] = s for all βη-normal forms
s. We prove∀oq.ειop 6= ειox.q is satisfiable. Consider the partial tableau shown in Figure3.
Let A be the branch ending with∀x.¬⊥. It is easy to check that no more rules apply toA. In
particular, consider the ruleTε . There are three accessible terms to consider:ε p, εx.⊥ and
εx.⊤. The rule does not apply withε p sincep(ε p) is on the branch. The rule does not apply
with εx.⊥ since∀x.¬⊥ is on the branch. The rule does not apply withεx.⊤ since⊤ (the
normal form of(λx.⊤)(εx.⊤)) is on the branch. By Corollary 1 the branchA is satisfiable.

5 Abstract Consistency and Completeness

We now lift the model existence theorem for evident sets to a model existence theorem for
abstractly consistent sets. This will allow us to prove completeness of the tableau calculus
T . The use of abstract consistency to prove completeness was first used by Smullyan [29,
30] and later used by several authors in various higher-order settings [2,21,9,14]. To prove
completeness of the tableau calculus, it is enough to consider branches (finite sets of normal
formulas) as in [6]. To obtain a more general result which will imply compactness and the
existence of countable models, we also consider setsA of normal formulas which may be
infinite.

A set Γ of sets of normal formulas is anabstract consistency classif it satisfies the
conditions in Figure 4 for everyA∈ Γ . We sayΓ is completeif for every A∈ Γ and every
formula s∈ ΛV A

o eitherA∪{s} ∈ Γ or A∪{¬s} ∈ Γ . As with evident sets, this property
(without the restriction on free variables ofs) was called “saturation” in earlier work [9,8].
A strong connection between admissibility of cut in a sequent calculus and the existence of
complete abstract consistency classes was shown in Theorems 3.5 and 3.8 in [8]. Indeed,
Smullyan discusses the property in [30] and calls it thecut condition.

In Lemma 14 we will prove that every member of an abstract consistency class can be
extended to an evident set. In order to verify theE∀ condition we will need the following
lemma relating universes for different sets of formulas.

Lemma 13 LetA be a nonempty set of sets of normal formulas and let E be
⋃

A . Suppose
for every finite set B⊆ E there is some A∈A such that B⊆ A. Then for every t∈U E

σ there
is some A∈ A such that t∈ U A

σ .
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C⊥ ⊥ is not inA.

C¬ If ¬s is in A, thens is not inA.

C6= s 6=ι s is not inA.

C¬¬ If ¬¬s is in A, thenA∪{s} is in Γ .

C∨ If s∨ t is in A, thenA∪{s} or A∪{t} is in Γ .

C¬∨ If ¬(s∨ t) is in A, thenA∪{¬s,¬t} is in Γ .

C∀ If ∀σ s is in A, thenA∪{[st]} is in Γ for everyt ∈ U A
σ .

C¬∀ If ¬∀σ s is in A, thenA∪{¬[sw]} is in Γ for some decomposablew∈ Wσ .

CMAT If ws1 . . .sn is in A and¬wt1 . . . tn is in A,

thenn≥ 1 andA∪{si 6= ti} is in Γ for somei ∈ {1, . . . ,n}.

CDEC If ws1 . . .sn 6=ι wt1 . . . tn is in A,

thenn≥ 1 andA∪{si 6= ti} is in Γ for somei ∈ {1, . . . ,n}.

CCON If s=ι t andu 6=ι v are inA,

then eitherA∪{s 6= u,t 6= u} or A∪{s 6= v,t 6= v} is in Γ .

CBE If s 6=o t is in A, then eitherA∪{s,¬t} or A∪{¬s,t} is in Γ .

CBQ If s=o t is in A, then eitherA∪{s,t} or A∪{¬s,¬t} is in Γ .

CFE If s 6=στ t is in A, thenA∪{¬[∀x.sx=τ tx]} is in Γ for somex∈ Vσ \ (V s∪V t).

CFQ If s=στ t is in A, thenA∪{[∀x.sx=τ tx]} is in Γ for somex∈ Vσ \ (V s∪V t).

Cε If εσ s is accessible inA, then eitherA∪{[s(εs)]} is in Γ or

there is somex∈ Vσ \V ssuch thatA∪{[∀x.¬sx]} is in Γ .
Fig. 4 Abstract consistency conditions (must hold for everyA∈ Γ )

Proof Let t ∈ U E
σ be given. Ifσ is o, then chooseA∈ A and noteU A

o = {⊥,¬⊥} = U E
o .

Supposeσ is ι . First assumeE has no discriminating terms. In this caset must be∗. We
chooseA∈ A and note thatt ∈ U A

σ sinceA also has no discriminating terms. Next assume
E has discriminating terms. In this caset is a discriminating term ofE. There is somessuch
that t 6= s or s 6= t is in E. There is someA ∈ A such thatt 6= s or s 6= t is in A. Clearly
t ∈ U A

ι as desired.
Finally supposeσ is τµ. Let X be V E. We know t is normal and inΛX

σ . For each
x∈ V t, choose somesx ∈ E such thatx∈ V sx. Since the set{sx|x ∈ V t} is finite, there is
someA∈ A such thatsx ∈ A for everyx∈ V t. HenceV t ⊆ V A and sot is in U A

σ . ⊓⊔

We can now prove the desired extension lemma.

Lemma 14 (Extension Lemma)LetΓ be an abstract consistency class and A∈ Γ . There
is an evident set E such that A⊆ E. Furthermore, ifΓ is complete, then E is complete.

Proof Let u0,u1, . . . be an enumeration of all normal formulas. We will construct asequence
A0 ⊆ A1 ⊆ A2 ⊆ ·· · of branches such that everyAn ∈ Γ . Let A0 := A. We defineAn+1 by
cases. If there is noB∈ Γ such thatAn∪{un} ⊆ B, then letAn+1 := An. Otherwise, choose
someB∈ Γ such thatAn∪{un} ⊆ B. We consider six subcases.

1. If un is of the form¬∀σ s, then chooseAn+1 to beB∪{¬[sw]} ∈ Γ for some decompos-
ablew∈ Wσ . This is possible sinceΓ satisfiesC¬∀.

2. If un is of the forms 6=στ t, then chooseAn+1 to beB∪{¬[∀x.sx=τ tx]} ∈ Γ for some
x∈ Vσ \ ([s]∪ [t]). This is possible byCFE.

3. If un is of the forms=στ t, then chooseAn+1 to beB∪{[∀x.sx=τ tx]} ∈ Γ for some
x∈ Vσ \ ([s]∪ [t]). This is possible byCFQ.
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4. Supposeun is of the formE1[εσ s] 6=ι E2[ετt] for elimination contextsE1 andE2. We
defineAn+1 according to the first of the following possibilities that applies.
(a) LetAn+1 beB∪{[s(εs)], [t(εt)]} if it is in Γ .
(b) Let An+1 beB∪{[∀x.¬sx], [t(εt)]} if it is in Γ .
(c) Let An+1 beB∪{[s(εs)], [∀y.¬ty]} if it is in Γ .
(d) Let An+1 beB∪{[∀x.¬sx], [∀y.¬ty]} if it is in Γ .
Applying Cε twice, we know one of the four possibilities above must hold.

5. Supposeun is of the formC [εσ s] whereC is an accessibility context, but the previous
case does not apply. (Since the previous case does not apply,the accessibility contextC
is uniquely determined.) ByCε eitherB∪{[s(εs)]} is in Γ or there is somex∈ Vσ \V s
such thatB∪{[∀x.¬sx]} is in Γ . If B∪{[s(εs)]} is in Γ , then letAn+1 beB∪{[s(εs)]}.
Otherwise, chooseAn+1 to beB∪ [∀x.¬sx] ∈ Γ for somex∈ Vσ \V s.

6. If no previous case applies, then letAn+1 beB.

Let E :=
⋃

n∈N

An. We proveE satisfies the evidence conditions.

E⊥ If ⊥ is in E, then⊥ is in An for somen, contradictingC⊥.
E¬ Assumes and¬sare both inE. Let r be such that{s,¬s} ⊆ Ar . This contradictsC¬.
E6= Assumes 6=ι s is in E. There is somer such thats 6= s is in Ar , contradictingC 6=.
E¬¬ Assume¬¬s is in E. Let n be such thatun = s. Let r ≥ n be such that¬¬s is in Ar . By

C¬¬, Ar ∪{s} ∈ Γ . SinceAn∪{s} ⊆ Ar ∪{s}, we haves∈ An+1 ⊆ E.
E∨ Assumes∨ t is in E. Let n,m be such thatun = s andum = t. Let r ≥ n,m be such

that s∨ t is in Ar . By C∨, Ar ∪{s} ∈ Γ or Ar ∪{t} ∈ Γ . In the first case,An ∪{s} ⊆
Ar ∪{s} ∈ Γ , and sos∈ An+1 ⊆ E. In the second case,Am∪{t} ⊆ Ar ∪{t} ∈ Γ , and so
t ∈ Am+1 ⊆ E. Hence eithersor t is in E.

E¬∨ Assume¬(s∨ t) is in E. Let n,m be such thatun = ¬s andum = ¬t. Let r ≥ n,m be
such that¬(s∨ t) is in Ar . By C¬∨, Ar ∪{¬s,¬t} ∈ Γ and so¬sand¬t are inE.

E∀ Assume∀σ s is in E. Let t ∈ U E
σ be a normal term. Letn be such thatun = [st]. By

Lemma 13 (takingA to be {Ar |r ≥ n and∀σ s∈ Ar}) there is somer ≥ n such that
t ∈ U Ar

σ and∀σ s is in Ar . By C∀, Ar ∪{[st]} is in Γ . SinceAn∪{un} ⊆ Ar ∪{[st]}, we
have[st] = un ∈ An+1 ⊆ E.

E¬∀ Assume¬∀σ s is in E. Let n be such thatun = ¬∀s. Let r ≥ n be such that¬∀s is in
Ar . This Ar witnesses that there is someB ∈ Γ such thatAn∪{un} ⊆ B. By definition
¬[sw] ∈ An+1 ⊆ E for somew∈ Wσ .

EMAT Assumexs1 . . .sn and¬xt1 . . .tn are inE wheren≥ 1. For eachi ∈ {1, . . . ,n}, let mi

be such thatumi is si 6= ti . Let r ≥ m1, . . . ,mn be such thatxs1 . . .sn and¬xt1 . . .tn are in
Ar . By CMAT there is somei ∈ {1, . . . ,n} such thatAr ∪{si 6= ti} ∈ Γ . SinceAmi ∪{si 6=
ti} ⊆ Ar ∪{si 6= ti}, we have(si 6= ti) ∈ Ami+1 ⊆ E.

EDEC Similar toEMAT .
ECON Assumes=ι t andu 6=ι v are inE. Let n,m, j,k be such thatun is s 6= u, um is t 6= u,

u j is s 6= v anduk is t 6= v. Let r ≥ n,m, j,k be such thats=ι t andu 6=ι v are inAr . By
CCON eitherAr ∪{s 6= u, t 6= u} or Ar ∪{s 6= v, t 6= v} is in Γ . If Ar ∪{s 6= u, t 6= u} is in
Γ , thens 6= u andt 6= u are inE. If Ar ∪{s 6= v, t 6= v} is in Γ , thens 6= v andt 6= v are in
E.

EBE Assumes 6=o t is in E. Let n,m, j,k be such thatun = s, um = t, u j = ¬s anduk = ¬t.
Let r ≥ n,m, j,k be such thats 6=o t is in Ar . By CBE eitherAr ∪{s,¬t} or Ar ∪{¬s, t} is
in Γ . If Ar ∪{s,¬t} is in Γ , thens and¬t are inE. If Ar ∪{¬s, t} is in Γ , then¬s andt
are inE.

EBQ Similar toEBE.
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EFE Assumes 6=στ t is in E. Let n be such thatun is s 6=στ t. Let r ≥ n be such thatun is
in Ar . SinceAn∪{un} ⊆ Ar , by the definition ofAn+1 there is somex∈ Vσ \ (V s∪V t)
such that[¬∀x.sx=τ tx] is in An+1 and hence inE. By Proposition 7(1) there is some
w∈ Wσ such that[sw] 6=τ [tw] is in E.

EFQ Assumes =στ t is in E and letu ∈ U E
σ be given. Letn be such thatun is s =στ t.

Let r ≥ n be such thatun is in Ar . This Ar witnesses that there is someB∈ Γ such that
An∪{un}⊆B. By the definition ofAn+1 we know there is somex∈Vσ \(V s∪V t) such
that[∀x.sx=τ tx] is in An+1 and hence inE. By Proposition 7(2) we know[su] 6=τ [tu] is
in E.

Eε Assumeεσ s is accessible inE. Then there is some accessibility contextC such that
C [εσ s] is in E. Let n be such thatun is C [εσ s]. Let r ≥ n be such thatun is in Ar . By the
definition ofAn+1 either[s(εs)] is in An+1 or [∀x.¬(sx)] is in An+1 for somex∈ Vσ \V s.
In the first case we are done. In the second case letx∈ Vσ \V s be such that[∀x.¬(sx)]
is in E. Let t ∈ U E

σ be given. By Proposition 7(3) we know¬[st] is in E.

It remains to show thatE is complete ifΓ is complete. LetΓ be complete andsbe a normal
formula such thatV s⊆ V E. SinceV s is a finite set, there is somek such thatV s⊆ V (Ak).
Let m, n be such thatum = sandun =¬s. Considerr ≥ m,n,k. SinceΓ is complete,Ar ∪{s}
is in Γ or Ar ∪{¬s} is in Γ . If Ar ∪{s} is in Γ , thens∈ E. If Ar ∪{¬s} is in Γ , then¬s∈ E.

⊓⊔

Using the extension lemma we can lift the model existence theorem for evident sets to a
model existence theorem for abstract consistency classes.

Theorem 2 (Model Existence)Let Γ be an abstract consistency class. Every A∈ Γ is
satisfiable. IfΓ is complete, then every A∈ Γ has a countable model.

Proof Let A∈Γ be given. By Lemma 14 there is an evident setE such thatA⊆ E such that
E is complete ifΓ is complete. We finish the proof with an appeal to Theorem 1. ⊓⊔

6 Completeness, Compactness and Countable Models

We can now prove completeness of the tableau calculusT . LetΓT be the set of all branches
A which are not refutable. We will first proveΓT is an abstract consistency class and then
use Model Existence to prove completeness.

Lemma 15 ΓT is an abstract consistency class.

Proof It is easy to check each condition in Figure 4 using the corresponding tableau rule in
T . For example, we checkCε . SupposeA∈ ΓT , εσ s is accessible inA, A∪{[s(εs)]} is not
in ΓT andA∪{[∀x.¬(sx)]} is not inΓT for everyx∈ Vσ \V s. Choose somex ∈ Vσ \V s.
We knowA∪{[s(εs)]} andA∪{[∀x.¬(sx)]} are refutable. HenceA is refutable usingCε ,
contradictingA∈ ΓT . ⊓⊔

Completeness now follows directly from Lemma 15 and Theorem2.

Theorem 3 (Completeness)Let A be a branch. If A is unsatisfiable, then A is refutable.

We can also apply Theorem 2 to prove a combined form of the compactness theorem
and the (downward) Löwenheim-Skolem theorem. Such a combination was proven for first-
order logic in an analogous way in [29].
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A set A of normal formulas issufficiently pureif for each typeσ the setVσ \V A is
infinite. In other words,A is sufficiently pure if there are infinitely many variables (of each
type) that are not free in (any formula in)A.

Let ΓC be the set of all sufficiently pure setsA of normal formulas such that every finite
subset ofA is satisfiable. The following lemma helps verifyΓC is an abstract consistency
class (cf. Lemma 10.1 in [14]).

Lemma 16 Let A∈ΓC. If B1, . . . ,Bn are branches such that A∪Bi /∈ΓC for all i ∈ {1, . . . ,n},
then there is some finite A′ ⊆ A such that A′ ∪Bi is unsatisfiable for all i∈ {1, . . . ,n}.

Proof Consider(C1∪ · · ·∪Cn)∩A where eachCi is an unsatisfiable finite subset ofA∪Bi .
⊓⊔

Lemma 17 ΓC is a complete abstract consistency class.

Proof Most of the proof is the same as the proof of Lemma 10.2 in [14].We show a two
representative cases and leave the rest to the reader.

C¬∀ Suppose¬∀σ s is in A ∈ ΓC. SinceA is sufficiently pure, there is some variablex ∈
Vσ \V A. Note thatx is decomposable. AssumeA∪{¬[sx]} /∈ ΓC. By Lemma 16 there is
some finiteA′ ⊆A such thatA′∪{¬[sx]} is unsatisfiable. On the other hand,A′∪{¬∀σ s}
has a model(D ,I ) since it is a finite subset ofA. By L∀σ (I (∀σ )) andL¬(I¬) there
is somea∈ Dσ such thatÎ sa= 0. We will prove(D ,I x

a) is a model ofA′ ∪{¬[sx]},
giving a contradiction. By Proposition 3 we know(D ,I x

a) is a model ofA′ and that
Î x

a(s) = Î (s). HenceÎ x
a(sx) = 0. By N4 andL¬(I¬) we are done.

Cε Supposeεσ s is accessible inA ∈ ΓC. Choose somex ∈ Vσ \V s. Assume neitherA∪
{[s(εs)]} nor A∪{[∀x.¬(sx)]} is in ΓC. By Lemma 16 there is some finiteA′ such that
A′ ∪ {[s(εs)]} and A′ ∪ {[∀x.¬(sx)]} are unsatisfiable. As a finite subset ofA, A′ has
some model(D ,I ). By N4 andLεσ (I (εσ)), we must either haveÎ [s(εs)] = 1 (con-
tradicting unsatisfiability ofA′ ∪ {[s(εs)]}) or for everya ∈ Dσ such thatÎ sa= 0.
In the latter case, it is easy to provêI [∀x.¬(sx)] = 1 (contradicting unsatisfiability of
A′∪{[∀x.¬(sx)]}) usingL∀σ (I (∀σ )), L¬(I¬) and Proposition 3. ⊓⊔

Theorem 4 (Compactness, Countable Models)Let A be a set of formulas such that every
finite subset of A is satisfiable. Then A has a countable model.

We delay the proof. Note that ifA is sufficiently pure, then we know there is a countable
model of A by Lemma 17 and Theorem 2. In the remainder of this section we elaborate
how to reduce the general case to the case in whichA is sufficiently pure. A simple idea is
to rename the variables free inA until it is sufficiently pure. We can rename the variables
in such a way using an infinite substitution. The following lemma relates substitutions and
interpretations and will be useful to prove Theorem 4.

Lemma 18 LetD be a frame, s∈Λσ be a term,θ be a substitution,I be an interpretation
into D and J be an assignment intoD . SupposeI c = J c for every logical constant c
andÎ (θ̂x) = J x for every x∈ V s. Then s∈ DomĴ andÎ (θ̂s) = Ĵ s.

Proof By induction ons. The base cases follow by assumption. Ifs is tu, then we compute

Î (θ̂(tu))
S2
= (Î (θ̂t))(Î (θ̂u))

IH
= (Ĵ t)(Ĵ u) = Ĵ (tu).
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Finally, supposes is λy.u of typeτµ. We must prove(λy.u) ∈ DomĴ andÎ (θ̂(λy.u)) =
Ĵ (λy.u). Leta∈Dτ be given. Letz∈Vτ be a variable such thatz /∈ θ̂(λy.u) andz /∈V (θ̂x)
for eachx∈ V (u)\{y}. By Proposition 3 and our choice ofzwe know

Î z
a(θ̂(λy.u)) = Î (θ̂(λy.u)) andÎ z

a(θ̂x) = Î (θ̂x) for all x∈ V (u)\{y}

We can apply the inductive hypothesis withθ y
z, I z

a andJ y
a sinceÎ z

a(θ̂ y
zy) = a = J y

ay
and

Î z
a(θ̂ y

zx) = Î z
a(θ̂x) = Î (θ̂x) = J x = J y

ax

for eachx∈ V u\{y}. Henceu∈ DomĴ y
a and

Î (θ̂(λy.u))a = Î z
a(θ̂(λy.u))a = Î z

a(θ̂(λy.u)z)
N4,S3
= Î z

a(θ̂ y
zu)

IH
= Ĵ y

a(u)

Generalizing overa, we know(λy.u) ∈ DomĴ andÎ (θ̂(λy.u))a = Ĵ (λy.u)a. ⊓⊔

Proof (Theorem 4)Since there are infinitely many variables of each type, we canfind an
infinite, injective substitutionθ (with Domθ = V ) such thatθ̂A is sufficiently pure (where
θ̂A := {θ̂s|s∈ A}). Sinceθ is injective, there is a substitutionψ such thatψ(θx) = x for
all x ∈ V . Every finite subset of̂θA is of the formθ̂B for some finite subsetB of A. Let
such a finite subsetB be given. By assumptionB has a model(D ,J ). Let I c := J c for
each logical constantc andI x := Ĵ (ψ̂x) for each variablex. By Lemma 18 with theψ
as the substitution and with the roles ofI andJ reversed, we can conclude thatI is
an interpretation. Note that for each variablex we haveI (θx) = J (ψ(θx)) = J x. Let
θ̂s∈ θ̂B be given. By Lemma 18 withθ , we knowÎ (θ̂s) = Ĵ s= 1. Hence(D ,I ) is a
model ofθ̂B and soθ̂A is in ΓC.

By Theorem 2 there is a countable model(D ,I ) of θ̂A. LetJ c := I c for each logical
constantc andJ x := Î (θ̂x) for each variablex. By Lemma 18 we knowJ is an inter-
pretation and for eachs∈ A we knowĴ s= Î (θ̂s) = 1. Therefore,(D ,J ) is a countable
model ofA. ⊓⊔

7 Including If-Then-Else

We now extend the calculus to include an if-then-else operator ifσ of typeoσσσ for each
typeσ . This operator should satisfy the following formula:

∀xσ yσ .(ifσ⊤xy= x)∧ (ifσ⊥xy= y) (2)

A simple way to obtain such an if-then-else operator is to consider ifσ to be shorthand for
the termλ pxy.εσ z.p∧z= x∨¬p∧z= y and then reason using the tableau calculusT .

An alternative is to consider eachifσ as a variable and include formulas of the form (2)
on the branch to refute. The main problem with this approach is that the instantiation rule
T∀ applies to such formulas. Supposeσ is ιo and∀xιoyιo.(ifιo⊤xy= x)∧ (ifιo⊥xy= y) is
on the branchA we wish to refute. Letsbe a normal formula only using variables inV A and
choose somez∈ Vι \V A. Since[λz.s] ∈ U A

ιo we can applyT∀ twice with [λz.s], followed
by T¬∨ andT¬¬, to obtainifιo⊤[λz.s][λz.s] =ιo [λz.s] on the branch. Choose somet ∈U A

ι .
By Proposition 4 and S4 we know[[λz.s]t] = s. Applying TFQ and thenT∀ with t we have
ifιo⊤[λz.s][λz.s]t =o s on the branch. After applyingTBE we see that we have reduced the
problem of refutingA to the problem of refuting two branches extendingA, one containing
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s and the other containing¬s. That is, we have used the formula (2) at typeιo to simulate
application of a cut rule with a formulas.

There are many examples of higher-order assumptions that allow one to simulate cut
(see [8]). In such cases, one must somehow build the assumptions into the calculus itself
in order to remain cut-free. In fact, this was one of the motivations for building the choice
operator into the calculusT .

With the above discussion in mind, we now give a tableau calculusT if extendingT to
include a rule for an if-then-else operator. We also prove its completeness.

7.1 Tableau Calculus and Evidence

For each typeσ choose a variableifσ ∈ Voσσσ . Note that there are infinitely many variables
in Vσ that are not chosen. From now on, when we speak of a variable being freshwe will
also assume it is not one of the variablesifσ . Let T if be the set of formulas of the form of (2)
for each typeσ . That is,T if := {∀xσ yσ .(ifσ⊤xy= x)∧ (ifσ⊥xy= y)|σ type}.

A model (D ,I ) is aT if-modelif it is a model ofT if. Suppose(D ,I ) is aT if-model.
EachI ifσ must be a functionI ∈ Doσσσ such thatI1b1b0 = b1 andI0b1b0 = b0 for every
b1,b0 ∈Dσ . We call such anI anif-then-elsefunction. Note that there is at most one if-then-
else function inDoσσσ . Conversely, we know a model(D ,I ) is aT if-model if everyI ifσ
is an if-then-else function.

We define a tableau calculusT if by taking the union ofT and the following rule:

TIF

C [ifσ stu]

s, [C [t]] | ¬s, [C [u]]
C accessibility context

We say a setE is T if-evidentif it is evident and satisfies the following additional evi-
dence condition:

EIF If C [ifst u] is in E andC is an accessibility context, thensand[C [t]] are inE
or¬sand[C [u]] are inE.

7.2 Model Existence

We prove that everyT if-evident setE has aT if-model. LetE beT if-evident andX beV E.
Let ‖, ⊲, D andΦσ be defined as in Section 4. The construction of a model is similar to the
one in Section 4 except that we must choose the interpretations of the variablesifσ to obtain
a T if-model. Two lemmas suffice for this purpose.

Lemma 19 For each typeσ there is a term s∈ Λ /0
oσσσ and an if-then-else function I∈

Doσσσ such that s⊲ I.

Proof By Lemma 12 (with the empty substitution and an arbitrary assignment) there is a
substitutionθ and a logical, admissible interpretationI such thatθ̂s⊲ Î s for all s∈ Λτ .
For eachs∈ Λ /0

τ , [θ̂s] = [s] by S4 and sos⊲ Î s by Lemma 1. Choose distinct variables
x∈ Vo, y0,y1,z∈ Vσ . Let s∈Λ /0

oσσσ beλxy1y0.εσ z.x∧z= y1∨¬x∧z= y0 and letI beÎ s.
Clearly,s⊲ I . We need only check thatI is an if-then-else function.
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Let b1,b0 ∈ Dσ be given. It is easy to check that for eachi ∈ {0,1} andb∈ Dσ

Î x,y1,y0
i,b1,b0

(λz.x∧z= y1∨¬x∧z= y0)b = 1 if and only ifb = bi .

ThusIib1b0 = Φσ (Î x,y1,y0
i,b1,b0

(λz.x∧z= y1∨¬x∧z= y0)) = bi . ⊓⊔

Lemma 20 If ifσ ∈ X, then there is an if-then-else function I∈ Doσσσ such thatifσ ⊲ I.

Proof By Lemma 19 there is an if-then-else functionI ∈ Doσσσ . We need only check that
ifσ ⊲ I . Assume not. There must be termss, t,u,v1, · · · ,vn ∈ ΛX and valuesa,b,c,d1, . . . ,dn

such thatifσ stuv1 · · ·vn ⋫β Iabcd1 · · ·dn (for a base typeβ ), s⊲ a, t ⊲ b, u⊲ c, v1 ⊲ d1, . . .,
vn ⊲ dn. We also havetv1 · · ·vn ⊲β bd1 · · ·dn and uv1 · · ·vn ⊲β cd1 · · ·dn. We can split into
three cases: Either (1)β = o and Iabcd1 · · ·dn = 0, or (2) β = o and Iabcd1 · · ·dn = 1,
or (3) β = ι and Iabcd1 · · ·dn is a discriminant not containing the discriminating term
ifσ [s][t][u][v1] · · · [vn]. In each case we can applyEIF with an appropriately chosen context
C and split into two subcases based on whether[s] andC [[[t][v1] · · · [vn]]] are inE or ¬[s]
andC [[[u][v1] · · · [vn]]] are inE. In each subcase one can determine whethera is 0 or 1 and
hence whetherIabc is b or c. It is straightforward, though tedious, to check that each subcase
yields a contradiction. ⊓⊔

Theorem 5 (Model Existence forT if) Every Tif-evident set E has a Tif-model.

Proof We first define a substitutionθ0 with Domθ0 = X ∪V T and an assignmentI0. For
eachx∈X\V T, letθ0x := xandI0x be such thatx⊲I0x, which is possible by Lemmas 3(2)
and 4. For eachifσ ∈ X ∩V T, let θ0ifσ := ifσ andI0ifσ be the if-then-else functionI ∈
Doσσσ whereifσ ⊲ I , which is possible by Lemma 20. For eachifσ ∈ V T \X, let θ0ifσ be
s∈ Λ /0

oσσσ ⊆ ΛX
oσσσ andI0ifσ be the if-then-else functionI ∈ Doσσσ wheres⊲ I , which

is possible by Lemma 19. By Lemma 12 there is a substitutionθ and a logical, admissible
interpretationI such thatθ̂s⊲ Î s for all s∈ Λσ , θx = θ0x andI x = I0x for all x ∈
X∪V T. In particular,θx = x for all x∈ X. The fact that(D ,I ) is a model ofE follows as
in the proof of Theorem 1. SinceI ifσ = I0ifσ is an if-then-else function for everyσ , we
know (D ,I ) is aT if-model. ⊓⊔

7.3 Completeness

A set Γ of sets of normal formulas is aT if-abstract consistency classif it is an abstract
consistency class and satisfies the following condition:

CIF If C [ifst u] is in A andC is an accessibility context, thenA∪{s, [C [t]]} is in Γ
or A∪{¬s, [C [u]]} is in Γ .

Lemma 21 (Extension Lemma forT if) LetΓ be a Tif-abstract consistency class and A∈
Γ . There is an Tif-evident set E such that A⊆ E.

Proof Recall the construction ofE given in the proof of Lemma 14. We have an enumeration
u0,u1, . . . of all normal formulas and define a sequence ofAn ∈ Γ such thatA = A0 ⊆ A1 ⊆
A2 ⊆ ·· · and then defineE to be

⋃
n An. We already knowE is evident from Lemma 14. We

need only check thatEIF holds. SupposeC is an accessibility context andC [ifst u] is in E.
Choosen,m, j,k such thatun is s, um is ¬s, u j is [C [t]] anduk is [C [u]]. Let r ≥ n,m, j,k be
such thatC [ifst u] is in Ar . By CIF eitherAr ∪{un,u j} or Ar ∪{um,uk} is in Γ . Hence either
un andu j are inE or um anduk are inE, as desired. ⊓⊔
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Theorem 6 (Completeness ofT if) Let A be a branch. If A is Tif-unsatisfiable, then A is
T if-refutable.

Proof Let ΓT if be the set of all branches which are notT if-refutable. As with Lemma 15, it
is easy to check thatΓT if is aT if-abstract consistency class. AssumeA is notT if-refutable.
By Lemma 21 there is aT if-evident setE such thatA ⊆ E. By Theorem 5 there is aT if-
model ofE. HenceA is T if-satisfiable. ⊓⊔

8 Related Work

This work is an extension of two lines of research. First, we have extended the tableau cal-
culus of Brown and Smolka [14] to support a choice operator and an if-then-else operator at
every type. Second, we have obtained tighter restrictions on the instantiations of quantifiers
than were available before.

In [12] Brown and Smolka give a complete tableau calculus fora first-order subsystem
(EFO) of higher-order logic. Quantifiers are only allowed attype ι there and the instantia-
tions are restricted to discriminating terms. We have maintained this restriction on instan-
tiations for quantifiers at typeι . In addition we have proven that it is enough to instantiate
quantifiers at typeo with the two terms⊥ and⊤. As for quantifiers at function types, we
have proven that these instantiations need not consider variables that do not already occur
free on the branch.

Mints gives sequent rules for choice in [24]. The choice rulegiven in this paper is similar
to Mints’ ε-rule. Our proof of Henkin-completeness was constructed byadapting the rele-
vant parts of Mints’ cut-elimination proof [24] to our setting. We briefly sketch a comparison
between our rules and the rules of Mints.

Translating into our language, Mints’ε-rule could be represented as

(M INTS’ ε )
[¬(st)] | [s(εs)]

εs occurs on the branch

By εs occurs on the branchwe simply mean thatεs appears as any subterm where none of
the free variables ofsare captured by aλ -binder. Note that this rule could apply more often
than ourTε rule. OurTε rule cannot be applied untilεsappears on the branch in one of the
forms εst1 · · ·tn, ¬(εst1 · · ·tn), (εst1 · · ·tn) 6=ι u or u 6=ι (εst1 · · ·tn). Furthermore, in Mints’
system theε-rule would need to be applied for each new instantiation term t. In practice this
could lead to the need to refute branches with[s(εs)] multiple times. We have avoided this
by using the quantified formula[∀x.¬(sx)] on the left branch.

Mints also includes anε-extensionality rule in [24]. In our context, his rule couldbe
realized as

(M INTS’ EXT ε )
s 6= t | (εs) = (εt)

εσ s andεσ t occur on the branch

In words, wheneverεσ sandεσ t both occur on the branch, we must consider the case where
s andt are different, and the case whereεs andεt are the same. This rule could be highly
branching in practice. Whenn different terms of the formεs occur on the branch, then the
rule must be appliedn

2−n
2 times. Furthermore, it has the disadvantage that it adds a pos-

itive equation to the branch. Ifσ is a function type, this will lead to the need to perform
instantiations. We were able to omit such a rule entirely from our system and still prove
completeness. It seems that Mints needed such a rule becausethe extensionality rule in [24]
is not liberal enough. Translated into our context, the extensionality rule in [24] includes the
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rule

(SPECIAL CASE OFM INTS’ EXTENSIONALITY)
εss1 . . .sn , ¬εst1 . . .tn
s1 6= t1 | · · · | sn 6= tn

n≥ 1

This corresponds to our mating rule, except that we have liberalized the rule to include the
case when the corresponding first arguments ofε are different.

(SPECIAL CASE OFTMAT )
εs1 . . .sn , ¬εt1 . . .tn
s1 6= t1 | · · · | sn 6= tn

n≥ 1

Combinations ofλ -calculus and if-then-else operators have been consideredbefore.
Beeson [7] considered the unification problem forλ -calculus with a (slightly different)
if-then-else operator. Altenkirch and Uustalu [1] study the simply typedλ -calculus with
if-then-else as the elimination construct for the two element type.

The first author has considered choice operators, description operators and if-then-else
operators in his Master’s thesis [5]. Similar rules (using restrictions to accessible terms)
can be used to incorporate description operators and a similar model construction (using
discriminants and possible values) can be used to prove completeness.

9 Conclusion

We have presented a cut-free tableau calculus for Church’s simple type theory with a choice
operator. The calculus is designed with automated proof search in mind. In particular, only
accessible terms on the branch need to be considered in orderto apply a rule. Furthermore,
instantiation terms are restricted according to the type and the formulas on the branch. At
type o only instantiations corresponding to true and false are considered. At the base type
ι only discriminating terms on the branch need to be considered (except when there are no
discriminating terms in which case a default element can be used). Note that this means only
finitely many instantiations at typeι need to be considered at each stage of the search. At
function types, the set of instantiations is infinite, but wehave at least proven that we do not
need to consider instantiations with free variables that donot occur on the current branch.
We have also given an extension of the calculus to include if-then-else operators.

The second author has implemented a higher-order automatedtheorem prover, Satallax,
based on the ground calculus in this paper. Satallax encodestableau steps of the ground
calculus as propositional clauses and uses the SAT-solver MiniSat [16] to decide if there is a
refutation using the steps considered so far. Satallax competed in the higher-order division of
the CASC system competition [31]. Out of 200 problems, LEO-II [10] solved 125, Satallax
solved 120, Isabelle [26] solved 101 and TPS [4] solved 80.
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