
Expressivity and Decidabilityof First-order Languages overFeature TreesDissertationzur Erlangung des Gradesdes Doktors der Naturwissenschaftender Technischen Fakult�atder Universit�at des SaarlandesvonRolf Backofen
Saarbr�ucken1994

Tag des Kolloquiums: 22. Dezember 1994Vorsitzender: Prof. Dr. Harald GanzingerBerichterstatter: Prof. Dr. Gert SmolkaProf. Dr. Hans Uszkoreit

StatementA completeness proof for a variant of FT0 has been worked out with my advisor GertSmolka and has been published in [BS93a]. A completeness proof of a variant ofCFT0 has been published before in [Bac95a]. Chapter 5 of this thesis is an adaptionand slight extension of [Bac94] to an in�nite signature.AcknowledgementThis research was carried out at the German Research Center for Arti�cial Intelligence(Deutsches Forschungszentrum f�ur K�unstliche Intelligenz GmbH, DFKI), and I wantto thank this institute for its support.I am very grateful to Gert Smolka, who as my main advisor provided the inspiration,stimulating enthusiasm and technical guidance which helped me in writing this thesis.He encouraged me to carry out this research by raising challenging questions, andI appreciate many interesting discussions with him. Furthermore, I want to thankHans Uszkoreit, my second advisor, for providing an excellent research environmentand giving valuable comments on preliminary drafts of this thesis.Additionally, I am grateful to all my colleagues at the Computational LinguisticsDepartment of DFKI, and to all the people who helped me with discussions andcomments, and without whom this thesis would not be what it is: Jochen D�orre,Andreas Podelski, Christian Schulte, Stephen Spackman. Particularly, I am indebtedto Hans-Ulrich Krieger, Joachim Niehren and Ralf Treinen, who I always found willingto listen to my problems.The following people have read draft versions of this thesis: Stephan Busemann, Eliza-beth Hinkelman, Hans-Ulrich Krieger, G�unter Neumann, Joachim Niehren, StephenSpackman, Ralf Treinen.Above all, I am grateful to my wife Doris, who always gave me support, encourage-ment and new energy, although she had a hard time herself.

ZusammenfassungDiese Arbeit untersucht die formalen Grundlagen von Merkmalsbeschreibungen, diepartielle Beschreibungen von abstrakten, record-�ahnlichen Objekten darstellen. DieBeschreibungen verwenden funktionale Attribute genannt Merkmale. Merkmalsbe-schreibungen tauchten erstmals in den sp�aten siebziger Jahren im Zusammenhang mitsogenannten constraint-basierten Grammatikformalismen auf [Kay79, KB82, Shi86].In neuerer Zeit wurde die Verwendung von Merkmalsbeschreibungen in Constraint-Programmiersprachen vorgeschlagen und untersucht [AKN86, AKN89, AKP93, AK-PS94, ST94]. Eine der wesentlichen Operationen auf Merkmalsbeschreibungen ist dieUni�kation, deren Eingabe zwei Merkmalsbeschreibungen sind und die entweder fehl-schl�agt, falls die Merkmalsbeschreibungen inkompatibel sind, oder als Ergebnis eineMerkmalsbeschreibung liefert, die die Information der Eingaben kombiniert.Eine der zentralen Fragestellungen, mit der sich die Literatur �uber Merkmalsbeschrei-bungen besch�aftigt, ist die De�nition einer geeigneten Semantik f�ur Merkmalsbe-schreibungen als auch f�ur die Uni�kationsoperation. Es gab viele und auch sehr diver-gierende Formalisierungen von Merkmalsbeschreibungen. Diese Arbeit vertritt hierzueinen klaren Standpunkt. Aufbauend auf den Arbeiten von Johnson [Joh88] undSmolka [Smo88] betrachten wir Merkmalsbeschreibungen (und deren Erweiterungen)als Formeln in geeigneten Sprachen erster Ordnung. Die Semantik von Merkmals-beschreibungen wird �uber eine Merkmalstheorie (also eine Menge von geschlossenenFormeln (S�atzen)) de�niert. Die Uni�kationsoperation wird als ein Erf�ullbarkeitstestf�ur konjunktiv verkn�upfte Merkmalsbeschreibungen interpretiert.Wir untersuchen in dieser Arbeit verschiedene in der Literatur eingef�uhrte Merk-malsbeschreibungssprachen. F�ur die De�nition der entsprechenden Merkmalstheori-en verwenden wir eine Standardmethode der Logik erster Ordnung, die jedoch erstin j�ungster Zeit auch auf Merkmalsbeschreibungen angewendet wurde [BS93a, AK-PS94, ST94]. Wir de�nieren f�ur eine Merkmalsbeschreibungsprache L eine Standar-dinterpretation TL, deren Wertebereich aus sogenannten Merkmalsb�aumen besteht.Merkmalsb�aume sind B�aume, deren Kanten mit Merkmalen, und deren Bl�atter miti

iiAtomsymbolen beschriftet sind. F�ur die Merkmals- und Atomsymbole verwenden wirein gemeinsames, unendliches Alphabet L. Die Element von L� werden im folgendenPfade genannt. Die Merkmalstheorie f�ur L de�nieren wir nun als die Menge allerS�atze, die in TL g�ultig sind. Diese Vorgehensweise hat den Vorteil, das sie intuitiv istund eine vollst�andige Merkmalstheorie liefert (das hei�t, f�ur jeden L-Satz � enth�altdie Theorie von TL entweder � oder :�.)Unsere Merkmalsbeschreibungssprachen enthalten f�ur jedes Symbol aus L ein ent-sprechendes Konstantensymbol. Die Konstantensymbole werden in den Standardin-terpretationen als atomare Merkmalsb�aume interpretiert (also Merkmalsb�aume, diekeine Merkmale besitzen und mit einen Atomsymbol markiert sind). Im einzelnenwerden wir folgende Sprachen n�aher untersuchen:FT: Die Signatur von FT enth�alt ein un�ares Relationssymbol atom sowie f�ur jedesElement von L ein bin�ares Relationssymbol. Ein Merkmalsconstraint der Formxfy ist in der Standardinterpretation erf�ullt, falls y der Unterbaum von x unterdem Merkmal f ist. FT wurde (in einer leicht modi�zierten Form) in [BS93a,AKPS94] eingef�uhrt. Sie ist eine Basissprache f�ur Merkmalsbeschreibungen inder Hinsicht, da� alle anderen Merkmalssprachen die Ausdrucksmittel von FTzur Verf�ugung stellen.CFT: Neben den Relationssymbolen aus FT enth�alt CFT f�ur jede endliche Teil-menge ff1; : : : ; fng von L ein un�ares Relationssymbol. Ein Arit�atsconstraintxff1; : : : ; fng ist in der Standardinterpretation von CFT erf�ullt, falls x genaudie Merkmale ff1; : : : ; fng besitzt. Diese Sprache wurde (wiederum leicht mo-di�ziert) in [ST94] eingef�uhrt.In der Literatur �uber Merkmalsbescheibungsprachen wurde f�ur die Sprache FT mei-stens eine andere als die von uns verwendete Standardinterpretation betrachtet. DerWertebereich dieser Interpretation besteht aus sogennanten Merkmalsgraphen (dassind Graphen, deren Kanten mit Merkmalen beschriftet sind; siehe [Smo88, Smo92]).Die n�achsten beide Sprachen verallgemeinern die Merkmalsconstraints in FT zu Un-terbaumrelationen auf zwei verschiedene Arten:RFT: : Die Signatur von RFT enth�alt f�ur jeden regul�aren Ausdruck L �uber dem Al-phabeth L ein entsprechendes bin�ares Relationssymbol. Ein regul�arer Pfad-ausruck xLy ist in der Standardinterpretation von RFT erf�ullt, falls y einUnterbaum von x unter einem Pfad p 2 L� ist und p in der durch L beschriebe-nen regul�aren Menge von Pfaden enthalten ist. Regul�are Pfadausdr�ucke wurden

iiiin [KZ88, KM88] unter der Bezeichnung "functional uncertainty\ im Rahmendes Grammatikformalismus LFG [KB82] eingef�uhrt.F: Neben den Konstantensymbolen enth�alt die Signatur von F nur noch ein dreistelli-ges Relationssymbol �[�]�. Ein generalisiertes Merkmalsconstraint x[y]z istin der Standardinterpretation von F erf�ullt, falls y einen atomaren Merkmals-baum denotiert, der mit dem Atomsybol f markiert ist, und z der Unterbaumvon x under dem Merkmal f ist. Constraints �ahnlicher Art wurden in [Joh88,Tre93] betrachtet.Wir untersuchen in dieser Arbeit die Theorien dieser Sprachen unter den folgendenAspekten:Sind Merkmalsb�aume ein ad�aquater Bereich f�ur Merkmalsbeschreibungen?Oder um etwas spezi�scher zu sein, wie verh�alt sich unsere Merkmalstheorie vonFT (der Basissprache) zu der Theorie, die man erh�alt wenn man die Merkmals-grapheninterpretation von FT zugrundelegt?Was ist die Expressivit�at dieser Sprachen?Zum einen wollen wir hier die Sprachen untereinander vergleichen. Zum andere-ren interessieren wir uns auch f�ur die Frage, inwieweit weitere aus der Literaturbekannte Konzepte kodierbar sind.Welche Fragment der Merkmalstheorien sind entscheidbar?Einige Resultate k�onnen der Literatur entnommen werden. So ist zum Beispielbekannt, da� die existentiellen Fragmente von F, FT und CFT entscheidbarsind. Jedoch ist nichts �uber die volle Theorie von FT und CFT bekannt, undes gibt nur partielle Resultate f�ur das existentielle Fragment von RFT.Beitr�age der ArbeitDie Hauptresultate der Arbeit sind folgende:� Wir zeigen, da� die regul�aren Pfadausdr�ucke in der Signatur von RFT in Fde�nierbar sind. Damit k�onnen alle RFT-Formeln in eine �aquivalente F-Formel�ubersetzt werden (f�ur FT und CFT wurden diese Resultate bereits in [Tre93]gezeigt). Desweitern zeigen wir, da� wichtige in der Literatur eingef�uhrte Rela-tionen in F de�nierbar sind.

iv Eine wichtige Klasse von Relationen, die in F kodiert werden k�onnen, sindsolche, die mit Hilfe von de�nite �Aquivalenzen de�nierbar sind. De�nite �Aqui-valenzen wurden in [Smo93] eingef�uhrt. Sie dienen dazu, Relationen in der Artund Weise zu de�nieren, wie es im logischen Programmieren �ublich ist [Cla78,Smo93]. Daneben k�onnen auch die von den constraint-basierten Grammatikfor-malismen her bekannten Typsysteme in de�nite �Aquivalenzen �ubersetzt werden.� Wir stellen eine Axiomatisierung der Merkmalstheorien f�ur FT und CFT auf.Da unsere Theorien vollst�andig sind, folgt daraus die Entscheidbarkeit dieserTheorien. Desweiteren zeigen wir, da� auch die Merkmalsgraphinterpretationvon FT ein Modell der FT-Axiomatisierung ist. Dies bedeutet, das beide Stan-dardinterpretationen genau die gleiche Semantik f�ur FT liefern.� Wir zeigen, da� das Erf�ullbarkeitsproblem f�ur Konjunktionen von regul�arenPfadausdr�ucken entscheidbar ist. Dabei betrachten wir zun�achst eine Formelals erf�ullbar, falls sie in irgendeiner Interpetation von RFT erf�ullbar ist (dienicht notwendigerweise unsere Standardinterpretation sein mu�). Dies wurdein [KM88, BBN+93] als ein o�enes Problem beschrieben. Desweiteren zeigenwir, da� die Standardinterpretation von RFT kanonisch f�ur dieses Problem ist(das hei�t, eine Konjunktion von regul�aren Pfadausdr�ucken ist erf�ullbar, fallssie in der Standardinterpretation von RFT erf�ullbar ist). Damit ist auch gezeigt,da� das positive existentielle Fragment der Theorie der Standardinterpretationvon RFT entscheidbar ist.

Contents1 Introduction 11.1 Contribution of this Thesis : 51.2 Feature Descriptions in Constraint Programming : : : : : : : : : : : 81.3 Feature Descriptions and Constraint-Based Grammars : : : : : : : : 132 First-order Languages over Feature Trees 232.1 Basic De�nitions for Feature Trees : : : : : : : : : : : : : : : : : : : 232.2 The Languages F0, FT0, CFT0, and RFT : : : : : : : : : : : : : : : : 272.2.1 De�nition of the Languages : : : : : : : : : : : : : : : : : : : 272.2.2 Some Properties : 303 Expressivity of F0 353.1 Some F0-de�nable Relations : 353.1.1 Tuples and Sets : 363.1.2 Regular Path Expressions : 413.1.3 Natural Numbers : 453.2 De�nite Constructions : 463.2.1 De�nite Programs : 483.2.2 Fixpoints of Continuous Functions : : : : : : : : : : : : : : : 53v

vi CONTENTS4 Recursive Axiomatisations of FT0 and CFT0 594.1 The Method : 604.1.1 Quanti�er Elimination : 604.1.2 Comparison of the Completeness Proofs for FT0 and CFT0 : : 624.2 Overall Structure of the Completeness Proofs : : : : : : : : : : : : : 634.3 Path Constraints : 654.4 The Theory FT0 : 744.4.1 The Axioms : 744.4.2 Feature Trees and Feature Graphs : : : : : : : : : : : : : : : : 764.4.3 Some Properties of Prime Formulae : : : : : : : : : : : : : : : 784.4.4 Proof of the Main Lemmas : 814.4.5 Applications of the Simpli�cation Algorithm : : : : : : : : : : 874.5 Adding Arity Constraints: CFT0 : 894.5.1 The Axioms : 894.5.2 Solved Formulae, Congruences and Normaliser : : : : : : : : : 924.5.3 Prime Formulae : 954.5.4 Proof of the Main Lemmas : 985 Decidability of the Positive Existential Fragment of RFT 1095.1 The Method : 1105.2 The language RF : 1135.3 Prime, Pre-Solved and Solved Clauses : : : : : : : : : : : : : : : : : : 1165.4 The First Phase : 1205.4.1 A Set of Rules : 1205.4.2 Some Properties of the Rule System : : : : : : : : : : : : : : : 1265.4.3 Soundness and Completeness : : : : : : : : : : : : : : : : : : 1325.4.4 Quasi-Termination : 1405.5 The Second Phase: Satis�ability of Pre-Solved Clauses : : : : : : : : 141

CONTENTS viiA Mathematical Preliminaries 149Bibliography 155Index to Symbols 165List of Theorems, Lemmas etc. 167Subject Index 169

Chapter 1IntroductionThis thesis investigates the formal foundations of feature descriptions, which arepartial descriptions, by means of functional attributes called features, of abstractrecord-like objects. Feature descriptions originated in the late seventies with so-calledconstraint-based grammars [Kay79, KB82, Shi86], a by now popular family of declar-ative grammar formalisms for the description and processing of natural language.More recently, the use of feature descriptions in constraint programming languageshas been advocated and studied [AKN86, AKN89, AKP93, AKPS94, ST94]. Fig-ure 1.1 gives an example of a feature description. One of the main operations de�nedon feature descriptions is uni�cation, which takes two feature descriptions and yieldseither a failure, if the feature descriptions contain con
icting information, or a featuredescription that combines the information from both input descriptions.One of the main problems addressed in the literature is to provide an appropriatesemantics for feature descriptions (and for various extensions of feature descriptions)as well as for the uni�cation operation. There have been many diverging approach-9z 266666666664 sort : personname : " �rstname : Kimlastname : Brown #home address : z = " street : Drexel Ave.city : Chicago #o�ce address : z 377777777775Figure 1.1: An example of a feature description. It can be interpreted as a personwhich works at home. 1

2 CHAPTER 1. INTRODUCTIONes to formalising feature descriptions (see sections 1.2 and 1.3). This thesis takes aclear position: following [Joh88, Smo88], we consider feature descriptions and theirextensions as formulae in speci�c �rst-order languages. The semantics for featuredescriptions is provided by a feature theory, which is a set of closed formulae (sen-tences) having at least one model. Uni�cation is interpreted as an operation testingthe satis�ability of conjunctions of feature descriptions.In this thesis we will investigate several existing feature description languages. Forthe de�nition of the corresponding feature theories we apply a standard �rst-orderlogic method which was used only recently by [BS93a, AKPS94, ST94] in the contextof feature descriptions. Given a feature description language L, we interpret L overthe �xed domain of feature trees resulting in a �rst-order structure TL (henceforthcalled the standard interpretation of L). Then we take the feature theory for L tobe the set of sentences valid in TL (called the theory of TL). This approach has theadvantage that it is fairly intuitive. Furthermore, it yields a complete theory (i.e.,for every L-sentence �, either � or :� is contained in theory of TL).Feature trees are trees where the edges are labelled by features and the leaves arelabelled by atoms. The labelling is functional, that is, the direct subtrees of a featuretree are uniquely determined by the features of the edges leading to them. The namesof features and atoms are taken out of a common in�nite set of labels L. Formally,a feature tree is a pair consisting of a pre�x-closed subset D of L� together with atotal mapping � of the leaves of D (i.e., the set of elements p in D with the propertythat there is no feature f such that pf is in D) into L. Examples of feature trees arelisted in Figure 1.2. The elements of L� are called paths.Our feature description languages are �rst-order languages which do not containproper function symbols, but contain for every symbol of L a corresponding constantsymbol. As described above, every language is associated with a standard inter-pretation whose domain is the set of all feature trees. In this interpretation, theconstant symbols are interpreted as atomic feature trees (i.e., as feature trees hav-ing no subtrees). In particular, we will consider the following languages (and theircorresponding standard interpretations) in this thesis:FT: The signature of FT contains a unary predicate symbol atom, and for everysymbol in L a binary relation symbol. A feature constraint xfy with f 2 Lholds in the standard interpretation of FT i� y is the subtree of x under thefeature f , and atom(x) holds if x denotes an atomic feature tree. This languagewas introduced in [BS93a, AKPS94] with minor di�erences and contains thedescriptional primitives used in every feature description language. Hence, wecall this language the basic feature description language.

3sort name defsort 2ortype nat 01 1sortSyvalxvalsortsort radius centercircle point2 2 3Figure 1.2: Examples of Feature Trees.CFT: The signature of CFT is the signature of FT extended by a unary predicatesymbol for every �nite subset of L. An arity constraint xff1; : : : ; fng is truein the standard interpretation of CFT if x has exactly f1; : : : ; fn as featuresunder its root. This language permits the speci�cation of complete informationfor some variable x by specifying the arity of x and the subtrees of x underthe features listed in the arity of x. As we will show, this is not possible in thelanguage of FT (the feature descriptions in FT are inherently partial). CFT wasintroduced in a slightly di�erent form by [ST94] and combines the expressivepower of FT with Colmerauer's rational tree constraint system RT for Prolog-II.The next two languages generalise the feature constraints in FT to subtree relationsin two di�erent ways, providing additional expressivity:RFT: The signature of RFT contains, for every regular expression L over the alpha-bet L, a binary relation symbol. A regular path expression xLy holds in thestandard interpretation of RFT if y is the subtree of x under some path p, wherep is an element of the regular set of paths denoted by L. Using this language,it is now possible to specify properties of arbitrarily deep subtrees, where thepaths leading to the subtrees can be restricted by a regular expression. Regularpath expressions were introduced as \functional uncertainty" by [KZ88, KM88]for handling long-distance phenomena in the context of the grammar formalismLFG [KB82].

4 CHAPTER 1. INTRODUCTIONF: Beside the constant symbols, the signature of F contains only a ternary relationsymbol �[�]�. A generalised feature constraint x[y]z is true in the standardinterpretation of F if y denotes an atomic feature tree and z is the subtree of xunder the feature f , where f is the label of the atomic feature tree denoted byy. In this language, features are now �rst class objects (i.e., it is now possibleto quantify over features). Feature descriptions with �rst class features havebeen considered in [Joh88, Tre93].Note that for the basic feature description language FT, the literature has mainlyemployed a di�erent standard interpretation (see [Smo88, Smo92]). The domain ofthis standard interpretation consists of feature graphs, which are directed, labelledgraphs with edges labelled by features.To obtain a well-investigated theory for these languages, we address the followingquestions in our thesis:Are feature trees an adequate domain for feature descriptions?More precisely, how does our feature theory for the basic feature descriptionlanguage FT relate to the theory we obtain if we use the feature graph inter-pretation of this language?What is the expressivity of the di�erent languages?Here, it is interesting both to compare the languages each other and to considerwhether the languages are expressive enough to encode additional concepts fromthe literature.Which fragments of the feature theories are decidable?A number of results from the literature apply to this concern. For example, itis known that the existential fragments of FT, CFT and F are decidable, andthat the full theory of F is undecidable. But there is nothing known about thefull theory of FT and CFT, and only partial results have been obtained for theexistential fragment of RFT.Concerning the question of the expressivity of feature description languages, only mi-nor results can be found in the literature, and they are (with a few exceptions) statedonly informally. There does not even exist a �xed de�nition for the expressivity ofa feature description language. Using the domain of feature trees for the interpreta-tion of the feature description languages, however, we obtain a simple de�nition ofexpressivity, using a standard �rst-order technique. The expressivity of a language Lis de�ned as the set of relations on feature trees that are de�nable by L-formulae. An

1.1. CONTRIBUTION OF THIS THESIS 5n-ary relation R over feature trees is said to be de�nable in L if there is an L-formula�(x1; : : : ; xn) with x1; : : : ; xn as free variables such that the set of tuples of featuretrees (�1; : : : ; �n) satisfying � in the standard interpretation TL of L is exactly R.Using this de�nition of expressivity, we follow the work of [Tre93], who showed thatthe languages FT and CFT are less expressive than F. Note we can use such a simplede�nition of expressivity since we interpret all the languages over the same domainof feature trees. This is a strong indication that the approach of de�ning a featuretheory via a standard interpretation is fruitful and should be carried over to otherlanguages.1.1 Contribution of this ThesisThe main results of the thesis are the following:� We show that the descriptive primitives of RFT are de�nable in F. Togetherwith the results of [Tre93], this implies that every FT-, CFT- and RFT-formulacan be translated into an equivalent F-formula. Furthermore, we show thatimportant additional relations considered in the literature are also de�nable inF.A particularly important class of relations are those that can be described us-ing de�nite equivalences over F. De�nite equivalences over arbitrary constraintlanguages are introduced in [Smo93] and provide a machinery for de�ning allrecursive relations. Given a set R of relation symbols that are not part of thesignature of F, an equivalenceR(x1; : : : ; xn)$ D(x1; : : : ; xn)with R 2 R is called de�nite if D has at most x1; : : : ; xn as free variables andD is an element of the class of all formulae generated by the production ruleD;D0 ::= R(t1; : : : ; tn) j D ^D0 j D _D0 j 9xD j �;where � denotes a F-formula. The following de�nition of a feature tree repre-sentation of lists and the corresponding append relation is an example of a setof de�nite equivalences:list(x) $ x := nil_ 9y(xf1; 2g ^ x[2]y ^ list(y))app(x; y; z) $ x := nil ^ y := z

6 CHAPTER 1. INTRODUCTION_ 9u; v; v0(x[1]u ^ z[1]u ^x[2]v ^ z[2]v0 ^ app(v; y; v0));A model of a set of de�nite equivalences is an interpretation of the extendedlanguage which is a conservative extension of the standard interpretation of Fand which satis�es the equivalences. Note that a set of de�nite equivalencesdoes not necessarily de�ne a unique model, but there always exists a least and agreatest model (see [Smo93]). In the above example, the interpretation of listin the least model contains all representations of �nite lists, whereas in thegreatest model the representations of cyclic and in�nite lists are also included.De�nite equivalences are important since they allow to de�ne relations in theway they are de�ned by logic programs. A set of de�nite clauses P can be trans-lated into an equivalent set of de�nite equivalences [Cla78, Smo93], whose leastmodel is the model of P de�ned by the operational semantics of logic program-ming. Furthermore, type systems as used for processing modern constraint-based grammars can be translated into de�nite equivalences [Bac95b]. Here,both the least and the greatest model are viewed as the intended semantics.In general, adding the concept of de�nite equivalences to a given language Lenlarges the expressivity of L. We show in this thesis that F is expressive enougheven to encode relations de�nable by the least model of a set of de�nite equiv-alences, and, under certain conditions, also the ones de�nable by the greatestmodel. Note that no feature description language having this expressivity waspreviously known. Since most of the relations used in applications are de�nablevia de�nite equivalences, this implies that F is a universal feature descriptionlanguage.� We present an axiomatisation of the theories of FT and CFT. Since our featuretheories are complete, this implies that we inherit a decision procedure for validFT- and CFT-formulae from predicate calculus. This is by no means trivial,since until [BS93a], no complete and decidable feature theory was known.Furthermore, we show that the feature graph interpretation of FT is also amodel of the FT-axiomatisation. Since all models of a complete theory areelementarily equivalent, this implies that for the basic feature description lan-guage FT both the feature tree and the feature graph interpretation yield thesame theory. We will show that the theories of the feature tree interpretationand the feature graph interpretation of CFT di�er. As [ST94] stated, one cantranslate every formula � in Colmerauer's rational tree constraint system RTinto a CFT-formula such � is valid in the tree interpretation of RT (the stan-

1.1. CONTRIBUTION OF THIS THESIS 7dard interpretation of RT) i� is valid in feature tree interpretation of CFT.This does not hold for the feature graph interpretation of CFT.Our completeness proofs will exhibit simpli�cation algorithms for the theoriesof FT and CFT that compute for every feature description an equivalent solvedform from which the solutions of the description can be read o� easily. For aclosed feature description the solved form is either > (which means that thedescription is valid) or ? (which means that the description is invalid). For afeature description with free variables the solved form is ? if and only if thedescription is unsatis�able. As a by-product, we can use the existence of thesolved form to investigate the properties of the theories. Thus, we can showthat FT is really less expressive than CFT, which is also a new result.These results are partially published in [BS93a] and [Bac95a].� We show that the satis�ability problem for conjunctions of regular path expres-sions is decidable (where we consider a formula satis�able if it is satis�able insome interpretation of RFT, not necessarily our standard feature tree interpre-tation). This problem has remained open for a long time. Previously, therewere only a partial positive and a negative result for this problem. Kaplanand Maxwell [KM88] showed that this problem is decidable, provided that acertain acyclicity condition is met. Baader et al. [BBN+93] showed that thisproblem becomes undecidable if we add unrestricted negation. It has, however,remained an open problem as to whether satis�ability of conjunctions of regularpath expressions is decidable in the absence of additional conditions (such asacyclicity). We will show that this is indeed decidable, and furthermore, thatthe feature tree model of RFT is canonical for satis�ability (i.e., a conjunctionof regular path expressions is satis�able if it is satis�able in the standard modelof RFT). This implies that the positive existential fragment of the theory ofthe standard interpretation of RFT is decidable.Even for the fragment of non-cyclic formulae, our algorithm is an improvementover the algorithm given in [KM88] since it allows for more
exible control indelaying the evaluation of complex regular path expressions. As [KM88] stated,delaying the evaluation of regular path expressions is an important method ofgaining e�ciency.This result is partially published in [Bac94].

8 CHAPTER 1. INTRODUCTIONOverviewChapter 2 de�nes the domain of feature trees and some basic relations and functionson feature trees. We then de�ne the �rst-order languages F, FT, CFT and RFT,and introduce the standard interpretations of these languages and the correspondingsubstructures consisting only of the rational feature trees. Chapter 3 investigatesthe expressivity of our universal feature description language F. According to ourde�nition of expressivity, we present for every n-ary relation R over feature trees,which is encodable in F, a formula �(x1; : : : ; xn) (called explicit de�nition for R)whose denotation in the standard interpretation is R. Interestingly, we can use thesame de�nitions if we restrict the relations to the set of rational trees and replacethe standard interpretation by its substructure consisting only of the rational featuretrees. Chapter 4 presents axiomatisations of the theories of the standard interpreta-tion of FT and CFT and proves their completeness. We show that the feature graphinterpretation of FT is also a model of the axiomatisation of the theory of FT. Fur-thermore, we show that FT is really less expressive than CFT. Chapter 5 shows thatthe satis�ability problem for conjunction of regular path expressions is decidable.Furthermore, we show that the feature tree interpretation of RFT is canonical forsatis�ability (i.e., a conjunction of regular path expressions of satis�able if and onlyif its is satis�able in the feature tree interpretation). Thus, the positive existentialfragment of the theory of RFT is decidable.1.2 Feature Descriptions in Constraint Program-mingFeature descriptions are used in several constraint programming languages, where themain representatives are the languages LIFE [AKP93, AK93, MAK90], which is a con-straint logic programming language with functions and inheritance, and Oz [HSW93,HSW95, Smo94a, Smo94c, Smo94b, Smo94d], which is a higher-order object-orientedconcurrent constraint programming language. Others languages using feature de-scriptions are Le Fun [AKLN87, AKN89] and Login [AKN86].The logical sublanguages of both LIFE and Oz are strongly in
uenced by the con-straint logic programming scheme of Ja�ar and Lassez [JL87]. In this scheme, Prolog's�rst-order constructor terms are replaced by a constraint system (i.e., a constraintlanguage together with a class of interpretations), and the uni�cation operation ofProlog is replaced by a satis�ability test of conjunctions of formulae in the constraintlanguage. H�ohfeld and Smolka [HS88] generalise the constraint logic programming

1.2. FEATURE DESCRIPTIONS IN CONSTRAINT PROGRAMMING 9scheme to de�nite speci�cations over arbitrary constraint languages. If the constraintlanguage is closed under conjunction and renaming of the variables, then both theoperational and declarative semantics can be de�ned in a uniform way.Oz is also in
uenced by Saraswat's concurrent constraint programming scheme [SR90,Sar91]. To illustrate the principle of this scheme, we de�ne concurrent agents to beexpressions of the form if � then else 0;where �, and 0 are formulae in the constraint language. � is called the guard ofthe agent. The agents live in a context, which itself is just another formula � of theconstraint language. For reducing an agent in some context one has to test whetherthe context entails or disentails the guard in the underlying constraint system. Aformula � entails a formula � if in every interpretation of the constraint system,every valuation satisfying � also satis�es �. If the context � entails the guard � of theabove agent, then is conjoined to the context. If � disentails � (i.e., entails :�),then 0 is conjoined to the context. Otherwise, the agent is suspended. It will bereawoken if the evaluation of other agents changes the context.The main motivation for using feature descriptions in these languages is that theyprovide the notion of a record, familiar from programming languages such as Pas-cal, as a basic datatype, in a natural and
exible way. LIFE uses open records(i.e., records whose arity is not �xed), whereas Oz uses closed records with �xedarity. This is also re
ected by the fact that the basic constraint language of LIFEis similar to FT, whereas Oz uses CFT as basic constraint language. Oz also in-corporates extensions of CFT, but the evaluation of these additional constraints isdelayed until enough information has been gathered to transform these constraintsinto corresponding CFT-constraints. Besides the satis�ability test on conjunctions ofconstraints (which is delayed in the case of Oz for e�ciency reasons), the entailmenttest is another important operation used in these languages.The
exibility of feature descriptions arises from the fact that they allow for partialdescriptions. A good example for this
exibility is the language CFT, which combinesthe expressivity of FT and RT. The following examples are taken from [ST94]. Givenan RT-formula � x = point(y; z);we can translate � into the following equivalent CFT-formula:x sort point ^ xfsort; 1; 2g ^ x 1 y ^ x 2 z:But CFT has more expressive power than RT. It is possible to express within CFT

10 CHAPTER 1. INTRODUCTIONthat a record has some feature without specifying others. A description of the formx colour yjust states that x has a colour feature, but it does not disallow other features such asshape, size or position. If the language has a �nite signature, the description abovecan be de�ned in RT by a disjunction of the formx = circle(: : : ; y; : : :) _ x = triangle(: : : ; y; : : :) _ : : :enumerating all constructors for which a colour feature is appropriate. But thecomputational behaviour of this disjunction is much worse than that of the singleconstraint x colour y. In the case of an in�nite signature (which we consider here),such a single feature constraint is not de�nable in RT (since it would correspond toan in�nite disjunction).Related WorkHistorically, the formal foundation for feature descriptions in constraint programminglanguages started with the work of Hassan A��t-Kaci [AK86], who introduced the -term calculus. -terms are equivalence classes of feature descriptions that are closedunder consistent variable renaming. Later, [Smo92] considered feature descriptions asformulae in a �rst-order language and introduced feature graphs as an interpretationfor feature descriptions which is canonical for satis�ability (i.e., a feature descriptionis satis�able if it is satis�able in the feature graph interpretation). He also provideda translation of A��t-Kaci -terms into his language.The languages FT and CFT were introduced in [AKPS94] and [ST94], respectively.Each de�ned the corresponding feature theory via an axiomatisation which is verysimilar to the axiomatisation of the standard interpretation of the language as pre-sented in this thesis (in fact, the axiomatisation in [AKPS94] was taken from [BS93a]).But they didn't address the problem of proving completeness of their axiomatisations.And each presented a decision procedure for fragments of these theories, namely anincremental algorithm for testing simultaneously entailment and disentailment of pos-sibly existentially quanti�ed conjunctions of constraints. Since the class of interpre-tations of these languages are determined by a theory, we can reformulate the notionof entailment. A formula � entails a formula in some theory T (written � j=T)i� T j= ~8(�!);

1.2. FEATURE DESCRIPTIONS IN CONSTRAINT PROGRAMMING 11and disentails i� T j= ~8(�! :):Furthermore, both prove the independence property. A theory T satis�es the inde-pendence property if for all formulae ; �1; : : : ; �n in the positive existential fragmentof the language of T , j=T �1 _ : : : _ �n () 9i : j=T �i:If a theory T satis�es the independence property, then an algorithm for testing en-tailment and disentailment in T can be used for deciding the existential fragment ofT .Since we can decide the full theories of FT and CFT, it is clear that both the entail-ment and disentailment test can be performed using our simpli�cation algorithms forthese theories. But the ones in [AKPS94] and [ST94] are more e�cient since theyare optimised for this purpose. On the other hand, these algorithm apply only to avery limited fragment. A simple example that is not covered by these algorithms isto test whether xfc1 ^ xgc2is entailed by 9y1; y2(xfy1 ^ xgy2 ^ y1 6= y2):This can be decided using our simpli�cations algorithm.The languages FT and CFT were introduced in [AKPS94] and [ST94] with a slightlydi�erent signature. Their signatures didn't contain the constant symbols and thepredicate symbol atom, but used sort symbols instead. Sorts are unary predicatesymbols which are interpreted as disjoint sets. Both also considered feature trees,which were de�ned slightly di�erently because of the di�erent signature. Their featuretrees had labels at every node (whereas our feature trees bear label only at the leaves).The denotation of a sort symbol A in the feature tree interpretation is exactly theset of all feature trees having the root labelled with A. Their results can easily beadapted for our signature.We changed the signature in order to gain a bit more expressivity. Sorts can beexpressed in our languages by introducing a new feature sort and a new constantsymbol for each sort symbol, and by replacing a sort constraint of the form Ax (inpre�x notation) with the constraint x sort A:

12 CHAPTER 1. INTRODUCTIONIn our signature, we can express the fact that two variables share the same sort,without knowing the sort:x sort xS ^ atom(xS) ^ y sort yS ^ atom(yS):This implies that we have sorts as �rst class values, which is not true of the signaturesused in [AKPS94, ST94].A complete axiomatisation for Colmerauer's rational tree system RT over an in�nitesignature was given in [Mah88]. Our completeness proofs for the languages FT andCFT have the same overall structure used in [Mah88]. However, Maher's proof de-pends heavily on the structure of �rst-order terms, since it uses substitutions. Thisis not appropriate in our case since we are using a relational language. A completeaxiomatisation for RT over a �nite signature is given in [Mah88, CL89].A di�erent completeness proof for CFT is presented in [BT94], where Ehrenfeucht-Fra��ss�e games are used. The method is semantic, in showing that all models ofCFT are elementarily equivalent (i.e., make the same sentences valid), which im-mediately implies that CFT is complete. This yields a trivial decision method forCFT-sentences, by enumerating all consequences of CFT. Given an arbitrary sen-tence �, the enumeration will produce either � or :� since CFT is complete. Onthe other hand, this thesis employs a proof theoretic method in showing explicitlythat for every sentence �, either � or :� is valid in CFT. Both methods have theirmerits. The proof in [BT94] is shorter (though similar problems arise in handlinginequations), while the proof in this thesis presents a decision method for validity.Another closely related work is the one by Treinen [Tre93], who introduced the lan-guages F (again with sort symbols instead of constants) and EF, which is F extendedwith arity constraints as used in CFT. Treinen also de�ned the standard interpreta-tion of feature trees for these languages. Since arity constraints are de�nable in F,the expressivity of F and EF is the same. But this is only true if we consider the full�rst-order theory. For the existential fragment, these theories clearly di�er. Treinenshowed that the existential fragment of the theory of the feature tree interpretation ofEF is decidable. Furthermore, he proved that the full theory of F is undecidable. Incontrast with our work, Treinen was not concerned with showing that F is a universalfeature description language.

1.3. FEATURE DESCRIPTIONS AND CONSTRAINT-BASED GRAMMARS 131.3 Feature Descriptions and Constraint-BasedGrammarsIn the last decade, a family of grammar formalisms has become popular which is sub-sumed under the term constraint-based grammar formalisms. These formalisms havein common that they use feature descriptions for modelling linguistic entities suchas words, phrases and sentences. Some of the most widely used grammar models informal theoretical linguistics such as LFG [KB82], FTAG [VSJ88] and HPSG [PS87]employ constraint-based formalisms. One of the main advantages of such formalismsis that they provide a declarative representation of linguistic knowledge, i.e. the lin-guistic knowledge can be stated independently from the way it is processed. This hasimportant impact on grammar engineering in computational linguistics. For exam-ple, the time for developing a sizeable grammar in these formalisms is usually muchless than in other formalisms. Because of the declarative semantics of the formalism,constraint-based grammars exhibit a higher potential for reusability (see for exam-ple [RJ94]). For this reason, European-Union-funded projects involving grammardevelopment have adopted constraint-based grammar formalisms [Eur94].The motivation for using feature descriptions as representation formalism in constraint-based grammar formalism is stated in [PS87, page 7]:\In all these formalisms and theories, linguistic objects are analysed interms of partial information structures which mutually constrain possiblecollections of phonological structure, syntactic structure, semantic contentand contextual factors in actual linguistic situations. Such objects are inessence data structures which specify values for attributes; their capabilityto bear information of non-trivial complexity arises from their potentialfor recursive embedding : : : and structure-sharing : : : ."To summarise, important attributes of feature descriptions are declarativity, partiali-ty and the capability of describing nested structured objects. They allow for structuresharing via coreferences and a uniform representation of di�erent levels of linguisticknowledge.In the following, we give a detailed example of the use of feature descriptions inconstraint-based grammars. We start with an example of annotated context-freerules (phrase structure rules) as used in the PATR-II [SUP+83, Shi89, Shi92] orLFG [KB82] formalisms. These annotations further restrict the set of derivationsthat are licenced by some grammar rule. Figure 1.3 shows a small grammar for

14 CHAPTER 1. INTRODUCTION(R1) S ! NP VPxNP agr z ^ xVP agr z(R2) VP ! V NPxVP agr z ^ xV agr z(R3) V ! lovesxV agr z ^ z pers sg ^ z num 3rd;(R4) NP ! MaryxNP agr z ^ z pers sg ^ z num 3rd;(R5) NP ! JohnxNP agr z ^ z pers sg ^ z num 3rd;Figure 1.3: A small grammarEnglish. A rule of the formS ! NP VPxNP agr z ^ xVP agr zconsists of the context-free rule S ! NP VP , which is annotated by the featuredescription xNP agr z ^ xVP agr z, where xNP , xVP and z are logical variables.Derivations are described over annotated phrase structures. A phrase structure is alabelled, ordered tree. An annotated phrase structure consists of a phrase structure,a feature description and an association of the non-terminal nodes of the phrasestructure with the free variables in the feature descriptions. We indicate that somenon-terminal node of a phrase structure is associated with the variable x by writing

1.3. FEATURE DESCRIPTIONS AND CONSTRAINT-BASED GRAMMARS 15(! x) to the right of this node. An example of an annotated phrase structure isSNPMary VP John(! xNP)(! xS) (! xVP)NPVloves(! xV) (! x0NP) xVP agr z ^ xV agr z ^ xNP agr z^ z pers sg ^ z num 3rd^ x0NP agr z0^ z0 pers sg ^ z0 num 3rd:Here, Mary, loves and John are the terminal nodes. When a rule is applied to someleaf of an annotated phrase structure, then the phrase structure is expanded accordingto the context-free part of the grammar rule. The variable on the left-hand side ofthe rule is identi�ed with the variable associated with the expanded node, and allother variables of this feature description are consistently renamed to new variables.The resulting feature description is added conjunctively to the feature description ofthe initial annotated phrase structure. Thus, applying the rule (R2) toS VPNP (! xS)(! xNP) (! xVP)John xNP agr z ^ xVP agr z^ z pers sg ^ z num 3rdyields S VPNP (! xS) (! xVP)John(! xNP)VP NP (! x0NP)(! xVP) xNP agr z ^ xVP agr z^ z pers sg ^ z num 3rd^ xVP agr z0 ^ xV agr z0:Note that the feature description associated with the result can be simpli�ed toxNP agr z ^ xVP agr z ^ xV agr z ^ z pers sg ^ z num 3rd. An annotated phrasestructure is licenced by a grammar if it can be generated by applying the grammarrules as described above and if the associated feature description is satis�able.

16 CHAPTER 1. INTRODUCTIONIn some modern grammar formalisms, which are in
uenced by the work on of thegrammar theory HPSG (Pollard and Sag [PS87, PS94]), a more radical approach istaken by uniformly representing all linguistic data (including the phrase structure)within feature descriptions. Since phrase structures are ordered trees, the orderinginformation must be represented explicity using lists of feature descriptions. A listof feature trees (t1; : : : ; tn) can be represented as a feature tree using the features 1and 2 and the atom nil: 1 1 12 2 2nilt2 tnt1 (1.1)The clumsiness of list description using this encoding can easily be avoided usingsome syntactic sugar. Thus, we write y = hx1; : : : ; xni for9y1 : : : yn(y := y1 ^ yn 2 nil ^ n�1̂i=1 yi 1 xi ^ yi 2 yi+1)Using this representation of list, we can encode the information contained in anannotated phrase structure within feature descriptions. Here, we use the feature synto denote the non-terminal symbol associated with the phrase structure, the featurephon to denote the string of terminals covered by the phrase structure, and thefeature dtrs to list the phrase structures which occur directly under the root. Usingthis encoding, the annotated phrase structureVloves(! xV)(! xVP)VP NPJohn(! x0NP) xVP agr z ^ xV agr z^ z pers sg ^ z num 3rd^ x0NP agr z0^ z0 pers sg ^ z0 num 3rd:is translated into the following feature description (where we use matrix notation for

1.3. FEATURE DESCRIPTIONS AND CONSTRAINT-BASED GRAMMARS 17better readability):2666666666666666666664
syn : VPphon : hloves Johniagr : z = 24 pers : sgnum : 3rd 35dtrs : *266664 syn : Vphon : hloves iagr : z 377775 ; 266666664 syn : NPphon : hJohniagr : 24 pers : sgnum : 3rd 35 377777775+

3777777777777777777775After the encoding of annotated phrase structure is established, the question arisesas to how to transform the grammar listed in Figure 1.3. First note that we can reada grammar rule such as (R1) as a recipe for building an annotated phrase structurewith top-symbol VP , given phrase structures for a V and an NP . Conversely, weknow that every phrase structure labelled with VP must have a V followed by anNP since there is only one rule having VP at the lefthand side. This implies thatthe set of feature trees satisfying the feature descriptions of a verb phrase RVP canbe described by the formulaRVP (x) $ x syn VP (1.2)^ 9y; z(9z0(x dtrs z0 ^ z0 = hy; zi) ^RV (y) ^RNP (z) ^ 9u(x agr u ^ y agr u)9u1; u2; u3(x phon u1 ^ y phon u2 ^ z phon u3 ^ app(u2; u3; u1)));where RV and RNP are unary predicates denoting the feature trees representing V sand NPs, respectively; VP is an atom symbol; and app is the append relation on thefeature tree representation of lists as de�ned on page 5. Note that the de�nition forRVP is a de�nite equivalence.Using this formalisation of grammatical rules, parsing (and if we had added seman-tics in our examples also generation) can ideally be described as a pure deductiveprocess [Per83]. A sentence word1 : : :wordn is licenced by the grammar G if9x; y(RS(x) ^ x phon y ^ y = hword1 : : :wordni)is valid in all models of G (or valid in some model of G, depending on the intendedsemantics of grammars).In representations of grammatical rules (and/or grammatical principles; for a de-tailed discussion on the di�erence of grammatical rules and grammatical principles

18 CHAPTER 1. INTRODUCTIONsee [PS87]) like (1.2), the relation symbols representing linguistic entities (such asRVP etc.) are always unary predicates. Now there are quite a number of formal-isations that are concerned with feature description languages that contain unarypredicate symbols in their signatures. In these formalisations, the unary predicatesymbols are called types, and the languages are called typed feature description lan-guages. For example, both FT and CFT were introduced in [AKPS94] and [ST94] astyped feature description languages (where the unary predicate symbols were calledsorts instead of types). But as the discussion in section 1.2 shows, these types can besimulated using constants, and our versions of FT and CFT are even more expressive.Based on typed feature descriptions, the concept of type systems played an importantin the literature on constraint-based grammar formalisms ([AK86, EZ90b, EZ90a,Pol89, PM90, Smo92, AKPG93, Car92, Zaj92, KS94]) since they allow for a directencoding of grammatical principles as de�ned in the grammar theory HPSG [PS87,PS94]. A type system consists of a partial order on the type symbols de�ning typeinheritance and a set of type de�nitions of the formT (x) := �(x);where T is a type symbol and � is a typed feature description. The ordering is inter-preted as the subset relation on the sets denoted by the types, and a type de�nitionT (x) := �(x) restricts the denotation of T to the set of all elements x satisfying�(x). But as [Bac95b] shows, type systems can be translated into de�nite equiva-lences, and the intended interpretation for type systems is the greatest model of theresulting set of de�nite equivalences. Retrospectively, one can say that the reasonfor concentrating on the unary predicate symbols (types) is that the unary predi-cates model classes of linguistic entities (which are the objects of main interest inconstraint-based grammars). This focus might have been the reason that type sys-tems and de�nite equivalences have often been considered as di�erent concepts. Fora detailed discussion of type systems, the interested reader is referred to [Kri95].Many modern implementation of constraint-based grammar formalisms use typesystems. Furthermore, nearly all implementations provide a mechanism whose se-mantics can be described in terms of de�nite equivalences. In the following, weconsider the systems ALE [Car92, Car94], TFS [Zaj92], CUF [DE91, DD93] andTDL/UDiNe [BK93, KS94], which is a representative selection of advanced constraint-based grammar formalisms (descriptions of these and other implemented systems canbe found in [BKSU93]). Both TDL/UDiNe and TFS have type systems that allowfor arbitrary type de�nitions, and grammatical principles can be de�ned via typede�nitions. In TFS, the constraint solver is built in and parsing (or generation) mustbe performed with the deductive system provided with the type system. Since in

1.3. FEATURE DESCRIPTIONS AND CONSTRAINT-BASED GRAMMARS 19TDL/UDiNe the constraint-solver UDiNe is a separate component, it can also be usedfor e�ciency reason together with a separated parser.In ALE and CUF, the type systems allow only a restricted form of type de�nition,which is not su�cient for de�ning grammatical principles directly. Both systems in-stead provide a mechanism called de�nite clauses over feature description languages.The mechanism was introduced in [HS88] and generalises the constraint logic pro-gramming scheme of Ja�ar and Lassez [JL87]. De�nite clauses can be translatedinto a set of de�nite equivalences, where the intended semantics is the least modelof the resulting set of de�nite equivalences [Smo93]. In CUF, these de�nite clausescan be used directly for de�ning grammatical principles, while this is not possible inALE. The operational semantics used for the de�nite clauses in ALE is adapted fromPROLOG, which is not the appropriate one for grammatical principles [Man93a].For this reasons, ALE has a built in parser for annotated context-free rules, in whichgrammatical principles can be speci�ed.Roughly speaking, the feature description languages used in the above-mentioned sys-tems are syntactic variants of FT. Clearly, all systems handle the positive existentialfragment of FT. Furthermore, negated equations are handled by ALE, TDL/UDiNeand CUF. UDiNe is (to our knowledge) the only implemented feature constraint solverwhich also handles negation of feature description as de�ned in [Smo92]. Given a con-junction of constraints � and a distinguished variable x which is free in �, the negationof � with respect to the variable x is de�ned as = :9(X � fxg)�;where X is the set of free variable of �. UDiNe additionally uses a syntactic variantof disjunction which appears in the literature under the name distributed disjunction([Bac89, BEG90, DE89, DE90, MK89]). Distributed disjunction are disjunctionswhich bear an additional tag, a name. An example of a feature description withdistributed disjunctions is � = " l1 : fd1 +;� gl2 : fd1 1; 2 g #This feature description is equivalent to the disjunction of" l1 : +l2 : 1 # and " l1 : �l2 : 2 #Note that the combinations" l1 : +l2 : 2 # and " l1 : �l2 : 1 #

20 CHAPTER 1. INTRODUCTIONare not in the interpretation of �. The advantages of distributed disjunctions are thatthey allow for a very compact encoding of linguistic data and that they often avoidexpansion to disjunctive normal form during uni�cation.Related WorkThere have been many di�erent and diverging formalisations for feature descriptions.Even for the basic feature description language which contains (roughly speaking)the descriptive primitives of FT, there have been many di�erent approaches besidesthe predicate logic ones of [Joh88, Smo92]. Examples include the early work byKasper and Rounds [RK86, KR86, KR90] using a non-standard logic, and the multi-modal logic approaches by [Rea91, BS93b] where every feature corresponds to amodal operator. At least these approaches are comparable to each other. But for theextensions to feature descriptions there are even more divergent approaches. Mostof the formalisations were custom-built, and nearly every time a new extension tofeature descriptions was proposed, a new formalisation was presented.There was only one approach to building a more general feature theory (i.e., encod-ing di�erent extensions in one single feature theory), namely that of Johnson [Joh91,Joh94], who used Sch�on�nkel-Bernays' formulae for the formalisation of feature de-scriptions. Sch�on�nkel-Bernays' formulae are of the form9x1; : : : ; xn8y1; : : : ; ym�where � is a quanti�er-free formula. For this class of formulae, the satis�abilityproblem is known to be decidable. But this approach is restricted to decidable ex-tensions of feature descriptions, while we also want to encode undecidable extensionssuch as de�nite equivalences. Furthermore, regular path expression and subsumptionconstraints are not expressible within the Sch�on�nkel-Bernays' fragment (see [Joh94,page 10]), although they are expressible in the feature description language F. Hence,no other feature description language presented in the literature has an expressivitycomparable to F. For this reason, we call F a universal feature description language.The notion of completeness as de�ned for FT and CFT is di�erent from the no-tion of completeness considered in related work by Kasper and Rounds [KR90] andMoss [Mos92]. These authors study logical equivalence for rooted and quanti�er-freefeature descriptions and give complete equational axiomatisations of the respectivecongruence relations. In contrast, we are concerned with a much larger class of possi-bly quanti�ed feature descriptions. Moreover, exploiting the power of predicate logic,we are not committed to any particular model or any particular deductive system,

1.3. FEATURE DESCRIPTIONS AND CONSTRAINT-BASED GRAMMARS 21but instead prove a result that implies that any complete proof system for PredicateLogic will be complete for proving equivalence of feature descriptions with respect toany model of our feature theories for FT and CFT.The complexity of the simpli�cation algorithms is too high for use in a grammarformalism. But one could use the algorithms to decide general properties of a gram-mar, where the complexity is not relevant. For example, one can check with oursimpli�cation algorithms whether a grammatical rule is super
uous by virtue of be-ing subsumed by another rule. For example, consider the two annotated context-freerules (R1) NT ! NT 1 : : : NT n�1and (R2) NT ! NT 1 : : : NT n�2where NT ;NT 1; : : : ;NT n are non-terminal symbols and �1 and �2 are the anno-tated feature descriptions. If �1 entails �2 (i.e., every valuation of satisfying �1 alsosatis�es �2), then R1 is super
uous and can be removed, since in every derivation theapplication of rule R1 can be replaced by an application of rule R2. We have usedannotated context-free rules in this example for reasons of simplicity, but a similartest can be performed for formalisms where the phrase structure is encoded in featuredescriptions. Now if the feature descriptions make use of negated equations as in theexample given in section 1.2, page 11, the known algorithm for testing entailmentin FT and CFT (see [AKPS94] and [ST94], respectively) cannot be used. The useof such negated equation for constraint-based grammars is, for example, consideredin [Car92].As mentioned, a partial result for the satis�ability problem of conjunction of regularpath constraints was obtained in [KM88]. They showed that the satis�ability prob-lem for conjunctive formulae containing regular path expression is decidable if anacyclicity condition is met. But it cannot be guaranteed that the acyclicity conditionis maintained during the application of their algorithm for testing satis�ability.Solving the satis�ability problem for cyclic descriptions containing regular path ex-pressions requires a non-trivial extension of the algorithm described in [KM88]. Theiralgorithm uses a set of simpli�cation rules that transforms a feature description intoa normal form, from which satis�ability can be read o� trivially. If the acyclicitycondition is met, the rule system is terminating. But in the case of cyclic descrip-tions, termination cannot be guaranteed anymore. This is inherent to the problem.We solved the problem in this thesis by introducing a quasi-terminating rule system

22 CHAPTER 1. INTRODUCTION(see [Der87]). A rule system is quasi-terminating if it is not terminating, but producesonly �nitely many di�erent results. To achieve a quasi-terminating rule system wehad to translate the problem into a new syntax that enabled us to delay subproblemswhose evaluation would cause an in�nite number of results.To see some possible application of regular path expressions, we brie
y recall an ex-ample that is given in Kaplan and Maxwell [KM88, page 1]. Consider the topicalizedsentence Mary, John telephoned yesterday:Using s as a variable denoting the whole sentence, the LFG-like clauses topic x ^ s obj xspeci�es that in s, Mary should be interpreted as the object of the relation telephoned.The sentence could be extended by introducing additional complement predicates, e.g.in sentences like Mary, John claimed that Bill telephoned; Mary, John claimed thatBill said that : : :Henry telephoned yesterday; : : : . For this family of sentences theclauses s topic x ^ s (comp obj) x, s topic x ^ s (comp comp obj) x and so on wouldbe appropriate; specifying all possibilities would yield an in�nite disjunction. Thischanges if we make use of regular path expressions, allowing the above to be speci�edas the single clause s topic x ^ s comp� obj x:

Chapter 2First-order Languages overFeature TreesIn this chapter, we de�ne feature trees and some basic functions and relations onfeature trees. We then introduce various �rst-order languages, consider the corre-sponding feature tree interpretations and their substructures consisting only of therational trees. We close this chapter by discussing some properties of these languages.Furthermore, we summarise the decidability and undecidability results that either canbe taken out of the literature or will be proven in this thesis.2.1 Basic De�nitions for Feature TreesThroughout the thesis we assume a �xed, countable in�nite set L of labels, overwhich the set of feature trees is de�ned.1 The labels are used for labelling both theedges and the leaves of feature trees. A �nite string p 2 L� of labels is called a path,where � denotes the empty path. A tree domain is a nonempty set D � L� of pathsthat is pre�x-closed, i.e., if pq 2 D, then p 2 D. Note that every tree domaincontains the empty path �. Given a tree domain D, we de�ne leaves(D) to be the setof maximal paths of D, i.e.,leaves(D) := fp 2 L� j 8f 2 L : pf 62 DgDe�nition 2.1 (Feature Tree) A feature tree is a pair � = (D;�), where D is atree domain and � is a total function �: leaves(D)! L.1In the rest of the thesis, we assume that L contains the following symbols: 0, 1, 2, nil and �.23

24 CHAPTER 2. FIRST-ORDER LANGUAGES OVER FEATURE TREESThe paths in D represent the nodes of the tree; the empty path represents its root;and � represents the labelling of the leaves of �. The letters � and � will alwaysdenote feature trees. The set of all feature trees is denoted by T . For convenience,we will identify the primitive feature trees of the form (f�g; f(�; a)g) with the symbola itself. These feature trees are called atoms.A feature tree � = (D;�) is called �nite [in�nite] if its domain D is �nite [in�nite].A label f 2 L is called a feature in some feature tree � = (D;�) if it labels someedge of �, i.e., there is some path p 2 L� such that pf 2 D. The set of all features ofa tree � is denoted by features(�).Our de�nition of feature trees di�ers slightly from the de�nition given in [AKPS94,BS93a]. In our case, only the leaves of feature trees are labelled, whereas the featuretrees in [AKPS94, BS93a] have labels at every node (called sorts). This form offeature trees can easily be simulated in our setting using a special feature sort.The subtree p�1� of a feature tree � = (D;�) at a path p 2 D is the feature tree(D0; �0) de�ned byD0 = fq j pq 2 Dg and �0 = f(q; a) j (pq; a) 2 �g:If it is convenient, we will also sometimes write subtreeAt(�; p; �) if p�1� = � . Afeature tree � is called a subtree of a feature tree � (written subtree(�; �)) if � is asubtree of � at some path p 2 D, and a direct subtree if in addition p = f for somefeature f .De�nition 2.2 (Rational Feature Tree) A feature tree � = (D;�) is called ra-tional if1. � has only �nitely many distinct subtrees, and2. � is �nitely branching (i.e., for every p 2 D, the set ff 2 L j pf 2 Dg is�nite).Note that for every rational feature tree � = (D;�) there exist �nitely many featuresf1; : : : ; fn such that D � ff1; : : : ; fng�.A very important notion is the one of the arity of a feature tree, which is the set offeatures that occur directly under the root of a feature tree. We write arity(�) = F ifF � L is the arity of �. Clearly, the arity of a feature tree � is the intersection of thetree domain of � with the set of labels L. All atoms have the arity ;, and conversely,

2.1. BASIC DEFINITIONS FOR FEATURE TREES 25a feature tree with arity ; is an atom. Note that if two feature trees have the samenon-empty arity and the same subtrees at the corresponding features, then they areequal. This does not hold for the empty arity, since all atoms have the arity ;.The following functions and partial orders have been considered in the literature onfeature descriptions. Although we will not make use of them in the rest of this thesis(except that we are showing that these operations can be de�ned in our universalfeature theory), we de�ne them here since they are natural concepts, and since theyhave important applications.The �rst function is adjoinAt. It is used for adjoining a feature tree � to a givenfeature tree � at some feature f . The resulting feature tree �0 = adjoinAt(�; f; �) hasthe feature f de�ned under its root, and the subtree of �0 at f is � . Except f , �0 hasthe same features as �, and the same subtrees at the corresponding features. Thus,adjoinAt(�; f; �) replaces the subtree of � at f by � if f 2 arity(�), and adds thefeature f with � as the corresponding subtree if f 62 arity(�). Note that adjoining afeature to an atom implies that the label of the atom gets lost.This function was introduced in [HSW95, Smo94b] in the context of the Oz-system(for the description of the Oz-language and the underlying concepts see also [HSW93,Smo94a, Smo94c, Smo94d]), where an important application of adjoinAt is inheri-tance of objects. In Oz, the method table of an object is represented as a record(where the method names are the features, and the values are the actual methods).If an object inherits from another object, then the method table of the inheritingobject is derived from the method table of the parent object. If a method name isnew, then this name is added to the table. Otherwise the corresponding method isoverwritten. This behaviour is exactly modelled by the adjoinAt function. Since themethod tables cannot be extracted from the object de�nitions but are computed atruntime, we cannot make any assumptions about the changed record. Again, thisholds for the adjoinAt function.From the de�nition we get immediately that the e�ect of applying adjoinAt severaltimes using the same feature depends only on the last application of adjoinAt, i.e.,adjoinAt(adjoinAt(�; f; �); f; � 0) = adjoinAt(�; f; � 0):On the other hand, if we adjoin under di�erent features f and g, then the applicationof adjoinAt is order independent2, i.e.,adjoinAt(adjoinAt(�; f; �); g; � 0) = adjoinAt(adjoinAt(�; g; � 0); f; �):2This notion was introduced by [NP93], where a ternary relation on so-called multitrees similarto adjoinAt was introduced. Multitrees di�er from feature trees in that a node can have severaloutgoing edges labelled with the same feature.

26 CHAPTER 2. FIRST-ORDER LANGUAGES OVER FEATURE TREESFurthermore, adjoining the same feature tree at the same feature to di�erent atomsa 6= b produces the same result:adjoinAt(a; f; �) = adjoinAt(b; f; �):The next two relations are partial orders on feature tree. These orders have beeninvestigated in detail in [DR89, DR92, D�or93b]. The �rst order simulate is just thesubset relation on feature trees:simulate(�; �) i� D� � D� and �� � ��The second order subsume corresponds directly to tree embedding. For this purpose,we have to de�ne the notion of an endomorphism. An endomorphism on the set ofall feature trees T is partial map
 : T ; T such that the following holds:�
(c) = c for every c 2 L \ dom(
).� for every feature tree � 2 dom(
) and every feature f 2 L, if f�1� is de�ned,then
(f�1�) is de�ned and
(f�1�) = f�1
(�):A feature tree � is said to be subsumed by a feature tree � (written subsume(�; �)if there is an endomorphism on T that maps � to � .There exists an alternative de�nition of the subsume relation, namelysubsume(�; �) i� simulate(�; �) and8 paths p; q 2 D� : (p�1� = q�1�) p�1� = q�1�):This de�nition re
ects more the original motivation for introducing this relation,namely to order feature trees due to their \information content". The notion of\information content" is strongly related to the expressive means of the core lan-guage for feature descriptions, where the existence of speci�c paths, the labellingof some paths as atom and the equality of subtrees can be speci�ed. The relationwas initially introduced by Shieber [Shi89, Shi92]. There, it was shown that thisrelation has an application in computational linguistics in solving the coordinationproblem. Furthermore, Shieber showed that type inference in a programming lan-guage with polymorphic types can be described adequately using the subsumptionrelation. Unfortunately, [DR89, DR92] showed that the satis�ability problem forfeature descriptions that use the subsumption relation as a descriptional primitiveis undecidable. Therefore, D�orre [D�or93b] argued that extending feature descrip-tions with a descriptional primitive expressing the simulate relation su�ces for mostapplications. This extension has a decidable satis�ability problem [D�or93b].

2.2. THE LANGUAGES F0, FT0, CFT0, AND RFT 272.2 The Languages F0, FT0, CFT0, and RFTIn this section, we de�ne various �rst-order languages with equality whose propertieswill be considered in the remaining parts of this thesis. All of these languages arepurely relational, i.e., the signatures do not contain proper function symbols. Weassume an in�nite supply of variables ranging over x; y; z; : : : Since the languages arepurely relational, every term is either a constant or a variable. We use the letterst; t0; : : : to denote terms. For all languages we introduce two interpretations, namelythe feature tree structure, whose domain is the set of all feature trees (de�ned overthe set L of labels), and its restriction to rational feature trees. The languagesF0, FT0 and CFT0 have been introduced in a slightly modi�ed version in [Tre93],[AKPS94] and [ST94]. These papers used unary predicates called sorts and didn'thave constant symbols. To make a clear distinction between our languages and thelanguages de�ned by these papers, we do not use the original names F, FT and CFT.2.2.1 De�nition of the LanguagesThe Language F0The signature of F0 consists of� all elements of L acting as constant symbols, and� a ternary predicate symbol �[�]�We use mix�x notation t[t0]t00 for the so-called generalised feature constraint.The feature tree structure TF0 is the F0-structure de�ned as follows:� the universe U(TF0) of TF0 is the set of all feature trees over L,� cTF0 = (f�g; f(�; c)g) for every constant symbol c 2 L, and� (�1; �2; �3) 2 �[�]�TF0 if and only if there is a constant symbol c such that �2 =cTF0 and c�1�1 = �3.The Language FT0The signature of FT0 consists of

28 CHAPTER 2. FIRST-ORDER LANGUAGES OVER FEATURE TREES� all elements of L, which act both as constant symbols and binary predicatesymbols (called features), and� a unary predicate symbol atom.We use the letters f; g; h; : : : for the feature symbols, and use in�x notation tft0 for theso-called feature constraints. The feature tree structure TFT0 is the followingFT0-structure:� the universe U(TFT0) of TFT0 is the set of all feature trees over L,� cTFT0 = (f�g; f(�; c)g) for every constant symbol c 2 L,� for every feature f 2 L: (�; �) 2 fTFT0 i� f 2 arity(�) and � = f�1�,� � 2 atomTFT0 i� � is an atom.The Language CFT0The signature of CFT0 is the signature of FT0 extended by� a unary predicate symbol for every non-empty, �nite set F � L of features(called arity).We use post�x notation xF for the so-called arity constraints. The feature treestructure TCFT0 is the following CFT0-structure:� the universe of TCFT0 and the interpretations of atom, the constant symbols andthe feature symbols are de�ned as in TFT0, and� � 2 FTCFT0 i� arity(�) = F .Note that the signature of CFT0 contains no arity constraint for the empty arity. Thereason is that the interpretation of the empty arity is the same as the interpretationof atom. We use in atom(x) instead of x; since (1) we want FT0 to be a subsignatureof CFT0, and (2) the behaviour of the empty arity is di�erent from the non-emptyarities; for example, for a non-empty arity F = ff1; : : : ; fng we haveTF0 j= 8y1; : : : ; yn9!x(xF ^ n̂i=1xfnyn);whereas there are in�nitely many elements in U(TF0) with the empty arity.

2.2. THE LANGUAGES F0, FT0, CFT0, AND RFT 29The Language RFTFor the de�nition of this language we need to extend the notion of regular expres-sions over a �nite alphabet to an in�nite alphabet. The formation rule for regularexpressions over the alphabet L is given byL;L1; L2 ::= ; j � j F j F j L1 [L1 j L1�L2 j L�where F � L is a �nite set of labels. This de�nition extends the standard de�nitionof regular expressions by allowing expressions of the form F , which are called co-�nite sets. The regular set [[L]] � L� denoted by a regular expression L is de�nedinductively as[[;]] = ;; [[F]] = F; [[F]] = LnF;[[L1 [L2]] = [[L1]] [[[L2]]; [[L1�L2]] = fpp0 j p 2 [[L1]] ^ p0 2 [[L2]]g;[[L�]] = fp1 : : : pn 2 L� j n � 0; pi 2 [[L]] for i 2 1 : : : ngA set S � L� is called regular if there is some regular expressions L such thatS = [[L]]. Since the denotation of ; is L, we will just use L as syntactic sugar for;. If F = ffg is a set containing only one feature, then we use f as short for ffg.Similarly, we write f1 : : : fn instead of f1� : : : �fn. Furthermore, we abbreviate L�L�by L+.Proposition 2.1 The class of regular sets is closed under union, intersection andcomplement.The signature of RFT consists of� all elements of L acting as constants, and� all regular expressions L with [[L]] � L+, which are taken as binary predicatesymbols.We use in�x notation tLt0 for so-called regular path expressions. We have excludedthe empty path in the regular expressions since xf�gy would be an atomic formulaequivalent to x := y, which we wanted to avoid. The feature tree structure TRFTis the following RFT-structure:� the universe U(TRFT) of TRFT is the set of all feature trees

30 CHAPTER 2. FIRST-ORDER LANGUAGES OVER FEATURE TREES� cTRFT = (f�g; f(�; c)g) for every constant symbol c 2 L.� for every regular expression L we have (�; �) 2 LTRFT i� there is a path p 2 [[L]]such that � = p�1�.For the models TF0 , TFT0 , TCFT0 and TRFT we denote the substructure consisting onlyof the rational trees by RF0 , RFT0 , RCFT0 and RRFT, respectively.2.2.2 Some PropertiesIn this and the next chapter, we concentrate on the theory of the standard interpre-tation of F0 (i.e., Th(TF0)), and we show that the theories of standard interpretationsof the other languages are de�nitionally equivalent to fragments of Th(TF0). Theconstraint �[�]� used in F0 generalises over ordinary feature constraints (as for exampleused in FT0 and CFT0) in that it allows features as �rst class values. Such predicateswere introduced by Johnson [Joh88] and Treinen [Tre93]. But these authors didn'taddress the problem of showing that F0 is a universal feature description language.We encode additional predicates in F0 using a standard �rst-order method by provid-ing explicit de�nitions for them.De�nition 2.3 (Explicit De�nition) Let L be one of the languages F0, FT0, CFT0,or RFT and R � Qni=1 T be some relation over feature trees. An explicit de�nitionfor R in TL in terms of L consists of a L-formula �(x1; : : : ; xn) having x1; : : : ; xn asfree variables such that for all valuations � in TLTL; � j= �(x1; : : : ; xn) i� (�(x1); : : : ; �(xn)) 2 RSimilarly, we say that �(x1; : : : xn) is an explicit de�nition in RL in terms of L forthe restriction R0 of R to the set of rational trees i� for all valuations � in RLRL; � j= �(x1; : : : ; xn) i� (�(x1); : : : ; �(xn)) 2 R0:If L0 is another language de�ned above, we say that Th(TL0) (or Th(RL0)) is de�ni-tionally equivalent to a fragment of Th(TL) (or Th(RL)) if for every relation symbolR in the signature of L0, the relation RTL0 (or RRL0) has an explicit de�nition in TL(or RL) in terms of L, respectively.The de�nitions we will present are the same regardless whether we consider the featuretree interpretation or the rational feature tree interpretation for the corresponding

2.2. THE LANGUAGES F0, FT0, CFT0, AND RFT 31languages (although the theories of TF0 andRF0 for example di�er; see Proposition 3.5,page 39). Hence, we could also have chosen the rational feature tree interpretationsas standard interpretations. For this reason we will just say that �(x1; : : : ; xn) is ade�nition for R within L if � is an explicit de�nition for R in both TL and RL interms of L, and that R can be de�ned within L (or is de�nable within L) if there is ade�nition for R within L. Furthermore, we say that L0 is de�nitionally equivalent to afragment of L if the theories of TL0 and RL0 are de�nitionally equivalent to fragmentsof Th(TL) and Th(RL), respectively.In the following, we state the relations between the di�erent languages and the knowndecidability and undecidability results for the theories of the feature tree interpreta-tions of these languages. Henceforth, we will deliberately confuse the languages F0,FT0, CFT0 and RFT with Th(TF0), Th(TFT0), Th(TCFT0) and Th(TRFT), respectively.For the feature constraints used in FT0 and CFT0, the de�nition for xfy is just x[f]y.For the atom predicate, there are two possible de�nitions, namelyatom(x) := 9u; v(u[x]v)or atom(x) := :9u; v(x[u]v):The existence of this dual characterisation re
ects the fact that the label set L isused for both labelling the edges and the leaves of feature trees. A similarly simplede�nition is given in [Tre93] for the arity relations of CFT0. Given an (non-empty)arity F = ff1; : : : ; fng, the corresponding arity relation is de�ned within F0 asarityff1;:::;fng(x) := 8u(9y x[u]y$ n_i=1u := fi)Henceforth, we use xff1; : : : ; fng as an abbreviation for arityff1;:::;fng(x).The de�nition for the adjoinAt function is again very simple. For this purpose, wehave just to consider adjoinAt as a functional relation. This leads to the followingde�nition:adjoinAt(x; u; v; y) := y[u]v ^ 8z; z0(z 6= u! (x[z]z0$ y[z]z0)The de�nitions for the regular path expressions are somewhat more di�cult and willbe presented in the next sections, where we handle the more complicated examples(see Lemma 3.1, page 41). Overall we get that FT0, CFT0 and RFT are de�nitionallyequivalent to fragments of F0. Clearly, FT0 is a fragment of CFT0 since the signature

32 CHAPTER 2. FIRST-ORDER LANGUAGES OVER FEATURE TREESof FT0 is a subset of the signature of CFT0, but the converse does not hold (see Corol-lary 4.1, page 88). Furthermore, we can show that CFT0 is de�nitionally equivalentto a fragment of RFT by providing the following de�nitions in RFT:atom(x) := :9y(xL+y)featf(x; y) := xfyarityff1;:::;fng(x) := 9y1 : : : yn(xf1y1 ^ : : : ^ xfnyn)^ :9y(xff1; : : : ; fngy)On the other hand, we can show that RFT is undecidable3Theorem 2.1 The theories of TRFT and RRFT are undecidable.Proof. Venkataraman [Ven87] showed that the �rst-order theory of constructor treeswith the subterm relation is undecidable. Since constructor constraints can be de�nedwithin RFT and since the RFT-constraint xL+y is the same as the subterm relation,this result follows by an adaption of the proof in [Ven87]. 2Since we will show that both FT0 and CFT0 are decidable, this implies that RFTcannot be de�nitionally equivalent to a fragment of CFT0. Whether F0 is de�nitionallyequivalent to a fragment of RFT is an open problem.Concerning decidability and undecidability, some results can be taken from the liter-ature. Beside the full theory of the feature tree interpretations of these languages, weconsider the positive existential fragment (�+1 -fragment) and the existential fragment(�1-fragment). Furthermore, we consider the fragment which corresponds to the en-tailment test of existentially quanti�ed conjunctions of atomic constraints, which is asubset of the �2-fragment. A formula � entails a formula in some theory T (written� j=T) if T j= ~8(�!).The decidability of the existential fragment of F0 and FT0 can be proven by an adap-tion of previous work on feature logic by [Smo88] and [Joh88]. Both presented asystem that transforms a quanti�er-free formula into a solved form. The decidabilityof the existential fragment of CFT0 was shown in [ST94].The decidability of the fragment corresponding to the entailment test of possibleexistentially conjunction of atomic constraints was shown for FT0 in [AKPS94], and3The undecidability of this language interpreted over arbitrary �rst-order structures where fea-tures are binary relations was shown in [BBN+93].

2.2. THE LANGUAGES F0, FT0, CFT0, AND RFT 33for CFT0 in [ST94]. For both theories, the so-called independence property wasshown. Given existentially quanti�ed conjunctions of atomic formulae �; 1; : : : ; n,we say that the theory T has the independence property if� j=T n_i=1 i () 9i : � j=T i:Simple �rst-order equivalence transformations show that T satis�es the independenceproperty if and only if the following equivalence is valid in T :~9(� ^ n̂i=1: i) j=jT n̂i=1 ~9(� ^ : i):Clearly, independence allows one to extend the entailment test to formulae containingdisjunction. In the completeness proofs for FT0 and CFT0, we will prove a generalisedindependence property for FT0 and CFT0, namely9X(� ^ n̂i=1: i) j=jT n̂i=19X(� ^ : i);where X is an arbitrary set of variables and T is FT0 or CFT0.The results are summarised in table 2.1. Note that all results also hold for the theoriesof the rational feature tree interpretations of these languages. Since the solved formalgorithm for FT0 in [Smo88] can be easily adapted for F0, and every solved formalgorithm for F0 is also one for FT0, we do not distinguish the existential fragmentof F0 and FT0 in this table. For completeness, we have added the language EF0,which was introduced by Treinen [Tre93]. The signature of EF0 is the signature of F0extended by arity constraints. Since arity constraints are de�nable in F0 this languageis no real extension if we consider the full �rst-order theory. But there is clearly adi�erence when considering restricted fragments of these languages. Treinen showed,that the existential fragment of this theory is decidable, and that the full theory isundecidable.

34CHAPTER2.FIRST-ORDERLANGUAGESOVERFEATURETREES

F0 FT0 CFT0 RFT EF0�+1 -fragment p p p p[Smo88, Joh88] [ST94] Theorem 5.5 [Tre93]�1-fragment p p p[Smo88, Joh88] [ST94] [Tre93]Entailment p p+ 9 quanti�ers [AKPS94] [ST94]+ independenceFull theory
 p p

[Tre93] Theorem 4.4 Theorem 4.6 Theorem 2.1 [Tre93](adaption of [Ven87])Table 2.1: Collection of decidability and undecidability results. p means decidable, and
 means undecidable.

Chapter 3Expressivity of F03.1 Some F0-de�nable RelationsWe present a feature tree encoding for tuples and sets, and show that we can de�ne theusual relations upon these representations. These concepts will play an important rolein de�ning further concepts such as regular path expressions and de�nite equivalences.The chosen representation of sets allows to encode �nite sets in the case of the rationaltree model RF0, and in�nite sets in the case of the feature tree model TF0 . This factis used to show that the theories of TF0 and RF0 are di�erent. Note that thesecardinality restrictions have to be respected when using the set representation forother de�nitions.We proceed showing that, under certain restrictions, the transitive and re
exive clo-sure of de�nable, binary relations is de�nable in F0. This part applies a simple variantof the general technique that we use to simulate computation within F0. The abilityfor de�ning the transitive and re
exive closure of de�nable relations is then used forde�ning regular path expressions, which are the descriptional primitives of the lan-guage RFT. A regular path expression is a subtree relation, where the path to thesubtree is restricted to a regular expression. As in the case of the subtree relation,an implicit existentially quanti�cation over the path to the subtree is used. We cangain additional expressivity if one splits regular path expressions into the subtreeAtrelation and a relation which restricts a variable denoting a path to a given regularexpression. Thus, paths become �rst class values. We will consider this generalisa-tion for three reasons. First, these relations are the descriptional primitives that areused in the Chapter 5 for solving the satis�ability problem for RFT. Second, theserelations can be used for de�ning the simulate and subsume relations. And third, the35

36 CHAPTER 3. EXPRESSIVITY OF F0de�nition for the subtreeAt relation is exactly the kind of formula that is used in thede�nition for relations that are formed by de�nite equivalences.Finally, we will show that we can encode natural numbers in feature trees, and thatwe can de�ne the successor and predecessor relation, and the relation \x represents anatural number". The encoding of natural numbers will also play an important rolewhen considering de�nite equivalences.Note that all de�nitions can be used for both TF0 and RF0. Therefore, we use a meta-variable M ranging over the two feature tree structures TF0 and RF0. This eases thetechnical details of the proofs for the parts which are common for both structures.This makes sense since even the proofs are very similar and must be distinguishedonly at some (rare) occasions.3.1.1 Tuples and SetsWe start with the de�nition of tuples. Although we will later de�ne sets, and astandard technique is to de�ne tuples using sets, we use a more direct and simplerapproach. For the representation of tuples we assume an arbitrary but �xed enumer-ation f1; : : : ; fn; : : : of L. Using this enumeration, a tuple (�1; : : : ; �n) of feature treesis represented by the feature tree f1 fn�n: : :: : :�1Now we de�ne TUPLEn : T n ! Tto be the function that maps a given tuple (�1; : : : ; �n) to the corresponding featuretree representation.Proposition 3.1 The relation \TUPLEn(�1; : : : ; �n) = �" is de�nable within F0.Proof. The de�nition for this relation is yff1; : : : ; fng ^ y[f1]x1 ^ : : : ^ y[fn]xn: 2

3.1. SOME F0-DEFINABLE RELATIONS 37In order to reduce the complexity of formulae, we use the syntactic sugar ht1; : : : ; tnifor tuples of length n. We treat ht1; : : : ; tni as a functional term, i.e., for a formula�(x) with x 2 V(�) we write �(ht1; : : : ; tni) as an abbreviation for9y(�(y) ^ yff1; : : : ; fng ^ y[f1]t1 ^ : : : ^ y[fn]tn):Next we continue with the feature tree representation of sets. We use a techniqueintroduced in [Tre93], where a set f�1; : : : ; �ng of feature trees is represented by afeature tree � which has �1; : : : ; �n as direct subtrees. Thus, the feature tree1f g2is one possible representation of the set f1; 2g. Note that we could have used anypair of distinct features instead of (f; g) for representing the set f1; 2g. The totalfunction SET : T ! }(T)maps every feature tree to the set of its direct subtrees. Note that we do not havea unique representation for a given set of feature trees. For example, all constantsymbols represent the empty set. Furthermore, given a representation of an arbitraryset as a feature tree, we can generate a di�erent feature tree representing the sameset by renaming the features under the root consistently, or by taking additionaloccurrences of subtrees.Proposition 3.2 For every feature tree �, SET(�) is a countable set. If � is arational feature tree, then SET(�) is �nite.We say that a set m of feature trees is representable in M if there is a featuretree � 2 U(M) with SET(�) = m. By the above proposition, the class of setsrepresentable in RF0 is the class of all �nite sets, and the class of sets representablein TF0 is the class of all countable sets.Proposition 3.3 The relations \� 2 SET(�)", \SET(�) � SET(�)", \SET(�) [SET(�0) = SET(�)" and \SET(�) \ SET(�0) = SET(�)" are de�nable within F0.

38 CHAPTER 3. EXPRESSIVITY OF F0Proof. The corresponding de�nitions arein(x; y) := 9u(y[u]x)subset(x; y) := 8u[in(u; x)! in(u; x)]union(x; y; z) := 8u[in(u; z)$ (in(u; x) _ in(u; y))]intersec(x; y; z) := 8u[in(u; z)$ (in(u; x) ^ in(u; y))]: 2Throughout the text the letters M and N are used for �rst-order variables whichare intended to denote sets. Note that we could also use our representation of setsfor encoding the extension of feature descriptions by set descriptions (so-called set-values) as they have been introduced in [Rou88, PM90, MP93, Man93b].In the following, we will often use the feature tree representation of sets for represent-ing n-ary relations, which are encoded as sets of tuples of length n. For simplicityreasons, we do not guarantee that these sets contain only feature trees representingtuples of length n. This implies that for every n 2 N, every feature tree representsan n-ary relation. Thus, we de�ne the functionRELn : T ! }(T n)by RELn(�) = f(�1; : : : ; �n) j TUPLEn(�1; : : : ; �n) 2 SET(�)g:Proposition 3.4 The relation \SET(�) is in�nite" is de�nable in F0.Proof. Recall that SET(�) is in�nite if there is a function f : SET(�) ! SET(�)which is injective but not surjective. Now we can de�ne the relation \REL2(�) is atotal, functional relation over SET(�)" bytotalfun(N;M) := 8x; y[in(hx; yi; N)! (in(x;M) ^ in(y;M))]^ 8x; y; y0[(in(hx; yi; N) ^ in(hx; y0i; N))! y = y0]^ 8x(in(x;M)! 9y in(hx; yi; N))The relations \REL2(�) is injective on SET(�)" and \REL2(�) is surjective on SET(�)"can be de�ned within F0 byinj(N;M) := totalfun(N;M)^ 8x; y; x0[(in(hx; yi; N) ^ in(hx0; yi; N))! x = x0]surj(N;M) := totalfun(N;M) ^ 8x[in(x;M)! 9y(in(hy; xi; N))]Hence, we can de�ne the relation \SET(�) is in�nite" by 9N(inj(N;M)^: surj(N;M)):2

3.1. SOME F0-DEFINABLE RELATIONS 39Proposition 3.5 (Treinen 93) Th(RF0) 6= Th(TF0).Proof. Follows from the fact that the relation \SET(�) is in�nite" is de�nable withinF0, and that by Proposition 3.2 only �nite sets are representable in RF0 , whereas wecan represent also in�nite sets in TF0. 2We have proven this proposition using the de�nition for \SET(�) is in�nite" sincewe wanted to show that the property of being an in�nite set is de�nable in F0.Treinen [Tre93] used a more direct approach to prove Proposition 3.5. He constructeda formula �(x) which expresses that x has an in�nite number of children, whichthemselves have a strictly increasing number of children. Using x/y as an abbreviationfor 9u(x[u]y) (which can be read as \y is a child of x"), this formula is de�ned by�(x) := 9y(x / y) ^ 8y(x / y! 9y0(x / y0 ^ 8z(y / z ! y0 / z) ^9z(y0 / z ^ :y / z)))It is easy to verify that TF0 j= 9x�(x), whereas RF0 j= 8x:�(x).The following proposition gives the de�nition for the subtree relation as presentedin [Tre93].Proposition 3.6 (Treinen 93) The relation \9p : p�1� = �" is de�nable withinF0.Proof. The de�nition for this relation issubtree(x; y) := 8M(in(x;M) ^ subtree clos(x;M)! in(y;M));where subtree clos(x;M) is the formula8y; z(in(y;M) ^ 9u(y[u]z)! in(z;M)):subtree clos(M) is the de�nition for the relation \SET(�) is closed under the directsubtree relation". We have to show that for every valuation � in M,M; � j= subtree(x; y)if and only if �(y) is a subtree of �(x). For every � 2 U(M) let S� be the set of allsubtrees of �.For the \if" direction note that ifM; � j= in(x;M) ^ subtree clos(M);

40 CHAPTER 3. EXPRESSIVITY OF F0then S�(x) � SET(�(M)). Hence, M; � j= in(y;M).For the \only if" direction we have to show that for every feature tree � 2 U(M)the set S� is representable in M. If M = RF0 , then S� is �nite since � is a rationaltree. If M = TF0, then � can have at most as many di�erent subtrees as paths arede�ned on �. This implies that the cardinality of S� is at most jL�j. Since we haveassumed that L is countable, we know that L� is also countable. Hence, the set S�is representable in M by Proposition 3.2. 2The de�nition of subtree uses a general technique for de�ning re
exive and transitiveclosures of binary relations.De�nition 3.1 Given a de�nition �R(x; y) for a binary relation R � U(M)�U(M),we de�ne refl-trans�R(x; y) to be the formularefl-trans�R(x; y) := 8M((in(x;M) ^ closure�R(M))! in(y;M));where closure�R(M) is the formulaclosure�R(M) := 8z; z0((in(z;M) ^ �R(z; z0))! in(z0;M)))Proposition 3.71. For every binary relation R � U(TF0)�U(TF0) which has an explicit de�nition�R(x; y) in TF0 in terms of F0, the formula refl-trans�R(x; y) is an explicitde�nition for the re
exive and transitive closure of R in TF0 in terms of F0 iffor every � 2 U(RF0) the setf� j 9n 2 N : (R � : : : �R| {z }n-times)(�; �)gis countable.2. For a relation R � U(RF0) �U(RF0) which has an explicit de�nition �R(x; y)in RF0 in terms of F0, the formula refl-trans�R(x; y) is an explicit de�nitionfor the re
exive and transitive closure of R in RF0 in terms of F0 if for every� 2 U(RF0) the set f� j 9n 2 N : (R � : : : �R| {z }n-times)(�; �)gis �nite.

3.1. SOME F0-DEFINABLE RELATIONS 41Proof. For every � 2 U(M) let S� be the setS� = f� j 9n 2 N : (R � : : : �R| {z }n-times)(�; �)g:It is easy to check that for every � withM; � j= in(x;M) ^ closure�R(M)the set S�(x) is a subset of SET(�(M)). Hence, it su�ces to show that for every� 2 U(M) the set S� is representable in M. For M = RF0 we have assumed that S�is always �nite, and for M = TF0 we have assumed that S� is always countable. Thisimplies that S� is representable by Proposition 3.2. 23.1.2 Regular Path ExpressionsIn this section, we show that the descriptional primitives of the language RFT arede�nable within F0. Recall that in RFT, a regular expression L is taken as a binaryrelation symbol whose interpretation in TRFT is(�; �) 2 LTRFT i� 9p 2 [[L]] : p�1� = �:Lemma 3.1 For every regular language L over the alphabet L, the relation\9p 2 [[L]] : p�1� = �" is de�nable within F0.Proof. The explicit de�nition regexpL for a some regular language L within F0 isgiven inductively as follows:regexp;(x; y) := ?regexp�(x; y) := x := yregexpF (x; y) := _f2F x[f]yregexpF (x; y) := 9z(x[z]y ^ f̂2F z 6= f)regexpL1[L2(x; y) := regexpL1(x; y) _ regexpL2(x; y)regexpL1�L2(x; y) := 9z(regexpL1(x; z) ^ regexpL2(z; y))regexpL�(x; y) := refl-transregexpL(x; y):We show by induction over the structure of regular expressions thatM; � j= regexpL(x; y)

42 CHAPTER 3. EXPRESSIVITY OF F0if and only if there is a path p 2 [[L]] such that subtreeAt(�(x); p; �(y)) holds.For the base cases L = ;, L = �, L = F or L = F the claim holds trivially. Forthe induction step the claim is easy to show if L is a regular expression of the formL1 [L2 or L1�L2.Otherwise, let L be of the form R�. Let � = �(x) and let S� be the setS� = f� j 9p 2 [[R�]] : subtreeAt(�; p; �)g:By an similar argumentation as in the proof of Proposition 3.6 we get that S� isrepresentable in M. Hence, the claim follows from Proposition 3.7. 2Next we want to generalise regular path expressions. The constraints xLy containsan implicit existential quanti�cation of the path since M; � j= regexpL(x; y) i� 9p :(subtreeAt(�(x); p; �(y)) ^ p 2 [[L]]). We gain additional expressivity if we allowalso universal quanti�cation over the path p, which means that we make paths �rstclass values. For this purpose we have �rst to �nd some feature tree representation ofpaths. Furthermore, we have to de�ne the subtreeAt relation using this representationof paths, and the relation \the path represented by � is in [[L]]". Assuming that thereis a symbol � 2 L, a path f1 : : : fn 2 L� is represented by the feature tree... f1fn�The partial function PATH : T ; L�maps these feature trees to the corresponding paths. For clarity, we use the letter vfor �rst-order variables that are intended to denote paths.Proposition 3.8 The relation \PATH(�) is de�ned" is de�nable within F0.Proof. The de�nition for this relation ispath(v) := 8y(subtree(v; y)! (y = � _ onefeat(y))) ^ subtree(v; �);where onefeat(y) is the formula 9u8u0(9z(y[u0]z)$ u := u0) 2

3.1. SOME F0-DEFINABLE RELATIONS 43Proposition 3.9 The relation \subtreeAt(�;PATH(�); �0)" is de�nable within F0.Proof. The de�nition for this relation issubtreeAt(x; v; y) := 9M(in(hx; v; yi;M) ^8x; v; y(in(hx; v; yi;M)! v = � ^ x := y_ onestep(x; v; y;M)));(3.1)where onestep(x; v; y;M) is de�ned asonestep(x; v; y;M) := path(v) ^9x0; v0; z(v[z]v0 ^ x[z]x0 ^ in(hx0; v0; yi;M)):We have to show thatM; � j= subtreeAt(x; v; y) i� subtreeAt(�(x);PATH(�(v)); �(y)):The \if" direction is left to the reader. For the \only if" it is su�cient to prove thatif M; � j= 8x; v; y(in(hx; v; yi;M)! v = � ^ x := y_ onestep(x; v; y;M)));then every tuple (�1; �; �2) 2 REL3(�(M)) satis�es subtreeAt(�1;PATH(�); �2). Notethat (�1; �; �2) in REL3(�(M)) implies that � is the feature tree representation of apath. Hence, we can use induction over the length of PATH(�).For the induction beginning PATH(�) = � we know for every fx; v; yg-update �0 of �with �0(x) = �1, �0(v) = � and �0(y) = �2 thatM; �0 6j= onestep(x; v; y;M);which implies �1 = �2.For the induction step assume that we have proven the claim for all tuples (�1; �; �2) 2REL3(�(M)) with jPATH(�)j � n. Let (�1; �; �2) be an element of REL3(�(M)) withjPATH(�)j = n + 1, and let �0 be a fx; v; yg-update of � with �0(x) = �1, �0(v) = �and �0(y) = �2. Since � is not the empty path, we know thatM; �0 j= onestep(x; v; y;M):Hence, there are trees �01; � 0 and a feature f such that PATH(�) = fp, PATH(� 0) = pand subtreeAt(�1; f; �01). By induction hypotheses we get subtreeAt(�01; p; �2). Hence,subtreeAt(�1; fp; �2). 2

44 CHAPTER 3. EXPRESSIVITY OF F0subtreeAt(x; v; y) is a good example for the general method of de�ning relations.As we will see in the next chapter, we can at least de�ne all those relations withinF0 which are de�nable by de�nite equivalences. To see this consider the followingalternative de�nition of subtreeAt using de�nite equivalences:1subtreeAt(x; v; y) $ v = � ^ x := y_ (path(v) ^9x0; v0; z(v[z]v0 ^ x[z]x0 ^ subtreeAt(x0; v0; y)))Note the similaritybetween the second clause and the de�nition of onestep(x; v; y;M).In fact, for every valuation �M of the variable M in the de�nition of subtreeAt (see(3.1)) the extension of �M encodes a subset of the subtreeAt relation. If M is therational tree model, then �M encodes a �nite subset of subtreeAt, otherwise it maybe in�nite. Note that a �nite extension is alway su�cient.Proposition 3.10 The relation \PATH(�) 2 [[L]]" is de�nable within F0.We need an additional proposition for the proof.Proposition 3.11 Given two regular expressions L1; L2, then [[L1]] � [[L2]] if andonly if M j= 8x; y(regexpL1(x; y)! regexpL2(x; y)).Proof. The \only if" direction is trivial. For the \if" direction assume that M j=8x; y(regexpL1(x; y) ! regexpL2(x; y)). We have to show that [[L1]] � [[L2]]. Letp 2 [[L1]] be a path, let � be the feature tree(fp0 j p0 � pg; ;):� is rational tree, which implies that � 2 U(M). Clearly, subtreeAt(�; p; �), where �is the feature tree (f�g; ;). Furthermore, p is the only path connecting � with � . Nowwe have assumed that M j= 8x; y(regexpL1(x; y) ! regexpL2(x; y)). This impliesthat a valuation � with �(x) = � and �(y) = � satis�es M; � j= regexpL2(x; y),which shows p 2 [[L2]]. 2Proof of 3.10. By the last proposition, the de�nition for the relation \PATH(�) 2[[L]]" ispathrestrL(v) := path(v) ^ 8x; y(subtreeAt(x; v; y)! regexpL(x; y)): 21Note that this is no explicit de�nition for subtreeAt, since the de�nition itself makes use of thesymbol subtreeAt to be de�ned. De�nitions of this form are sometimes called recursive de�nitions.

3.1. SOME F0-DEFINABLE RELATIONS 45Proposition 3.12 The relations simulate and subsume are de�nable within F0.Proof. The de�nitions aresimulate(x; y) := 8v(9z subtreeAt(x; v; z)! 9z subtreeAt(y; v; z))^ 8v; z(subtreeAt(x; v; z) ^ atom(z)! subtreeAt(y; v; z))subsume(x; y) := 8v; v0[9z(subtreeAt(x; v; z) ^ subtreeAt(x; v0; z))! 9z(subtreeAt(y; v; z)^ subtreeAt(y; v0; z))]: 23.1.3 Natural NumbersIn this section we show that we can encode natural numbers and the operationssuccessor and predecessor. We use the atom 0 2 L to represent zero. Hence, we canrepresent a natural number n by the feature treen-times... predpred0The partial function NUM : T ; Nmaps these feature trees to the corresponding natural number. Note that for everyn 2 N there is exactly one feature tree � with NUM(�) = n.Proposition 3.13 The relations \NUM(�) is de�ned", \NUM(�) is the predecessorof NUM(�)" and \NUM(�) is the successor of NUM(�)" are de�nable within F0.Proof. The corresponding de�nitions arenat(x) := 8y[subtree(x; y)! (y = 0 _ yfpredg)] ^ subtree(x; 0)pred(x; y) := xfpredg ^ x[pred]ysucc(x; y) := pred(y; x)

46 CHAPTER 3. EXPRESSIVITY OF F02In the following, the letter C is used for �rst-order variables which are intended torepresent natural numbers. Since for every feature tree � representing a number thereis a unique � representing the successor of NUM(�), and since for every � representinga number di�erent from 0 there is a unique � representing the predecessor of NUM(�),we write �(C + 1) and �(C � 1) as an abbreviation for 9C 0(succ(C;C 0)^ �(C 0)) and9C 0(C 6= 0 ^ pred(C;C 0) ^ �(C 0)), respectively.3.2 De�nite ConstructionsIn this section, we show that the language F0 is even expressive enough to encode de�-nite constructions, i.e., every relation that can be de�ned using de�nite constructionshas a de�nition in F0. De�nite constructions allow one to extend the signature by aset of new relations symbols R, and to provide de�nitions for these relations in formof so-called de�nite equivalences, which are introduced in [Smo93]. The extendedlanguage R(F0) is called the relational extension of F0. An equivalence de�nition forsome relation R is a formulaR(x1; : : : ; xn) $ D(x1; : : : ; xn);where D is a de�nite formula which has at most x1; : : : ; xn as free variables. The setof de�nite R(F0)-formulae is generated by the production ruleD;D0 ::= R(t1; : : : ; tn) j D ^D0 j D _D0 j 9xD j �;where R 2 R denotes a relation symbol of arity n and � a F0-formula. In the followingwe refer to a set of de�nite equivalences as a de�nite program.[Smo93] associates to every de�nite program P a continuous function TP over the setof R(F0)-interpretations which has the property that every �xpoint of TP is a modelof P . The result of applying TP to some interpretation A of P is an interpretationA0 such that for every equivalence R(x1; : : : ; xn)$ �(x1; : : : ; xn),RA0 = f(�(x1); : : : ; �(xn)) j A; � j= �(x1; : : : ; xn)g:Since TP is continuous, it has a least and a greatest �xpoint, which establishes a leastand greatest model of P .

3.2. DEFINITE CONSTRUCTIONS 47Usually, one is interested in the least model of a de�nite program. But the greatestmodel has also its applications. Recall the de�nition of the feature tree representationof lists that we have used in the introduction:list(x) $ x := nil_ 9y(xf1; 2g ^ x[2]y ^ list(y))Now assume that we have an interpretation A, where listA contains all feature treesrepresenting the empty list and unary lists, i.e., all feature trees of the formt1 21nil nilLet A0 be the result of applying the continuous function TP associated to P on theinterpretation A. Then the denotation of list in A0 is de�ned aslistA0 := f�(x) j A; � j= x := nil _ 9y(xf1; 2g ^ x[2]y ^ list(y))g:This implies that listA0 contains all feature trees of the formt1 t11 2 1 1 2 2t2nil nil nilIt is now easy to check that the least �xpoint of TP contains only the representationof �nite lists, i.e., the feature trees of the form1 1 12 2 2nilt2 tnt1

48 CHAPTER 3. EXPRESSIVITY OF F0But this �xpoint does not contain the representation of cyclic or in�nite lists. Anexample of the representation of an cyclic list is
t11 2

These feature trees can be found in the greatest �xpoint of TP .The distinction between the least and greatest �xpoint of a de�nite program P canalso be characterised in the following way. The computational service provided forde�nite programs usually tests whether a conjunction G of F0-formulae and atomicR(F0)-formulae is satis�able in the least model a de�nite program P . This is the sameas asking whether P entails ~9G. If one is interested in whether P ^ ~9G is consistent,one has to use the greatest model. For this reason, the greatest �xpoint semantics waschosen for some formalisations of type systems, which are a special form of de�niteprograms that use only unary predicates (see [AKPG93, Pol89, PM90, Kri95]2 forexamples of type systems with greatest �xpoint semantics; for formalisations usingthe least �xpoint semantics see [AK86, EZ90b, EZ90a, Smo92, Car92]3).3.2.1 De�nite ProgramsThe de�nitions presented in this section are similar to the one in [Smo93] and havebeen adapted for our purposes. In the following, let R = Sn2N Rn be a set of relationsymbols, where Rn contains exactly those relation symbols in R of arity n. As in thelast section, we use M as a meta-variable ranging over TF0 and RF0.De�nition 3.2 (Relational Extension) The signature of the relational extensionR(F0) of F0 is L [f�[�]�g [R.2[Pol89, PM90] de�ned their semantics by a least �xpoint, but on a partial order that is just theinverse of partial order that is just by the other approaches. Hence, one has to use the dual notionfor the comparison of the di�erent approaches.3In [EZ90a], the denotational semantics was de�ned via the least �xpoint; but the authors presentalso an operational semantics, which interestingly corresponds more to a greatest �xpoint semantics

3.2. DEFINITE CONSTRUCTIONS 49De�nition 3.3 (R(F0)-interpretation) An interpretation A ofR(F0) extending thefeature tree model M is a R(F0)-structure with the following properties:� the universe of A is the universe of M� cA = cM for every c 2 L,� �[�]�A = �[�]�M, and� for every R 2 Rn of arity n, RA is a subset of Qni=1U(M).The set of de�nite R(F0)-formulae is given by the following formation ruleD;D0 ::= R(t1; : : : ; tn) j D ^D0 j D _D0 j 9xD j �;where R 2 R denotes a relation symbol of arity n and � a F0-formula.De�nition 3.4 An equivalenceR(x1; : : : ; xn) $ Dis called de�nite if� R is a relation symbol of arity n,� D is a de�nite formula, and� V(D) � fx1; : : : ; xng.A �nite set P of de�nite equivalences is called de�nite program if P contains forevery R 2 R at most one de�nite equivalence R(x1; : : : ; xn)$ D.Since P is �nite, it is su�cient to consider only those relation symbols that occur inP . For this reasons, we assume henceforth that R is a �nite set of relation symbols,and that fR1; : : : ; Rng is a �xed enumeration of R. Furthermore, we assume that nidenotes the arity of Ri. Since R is �nite, we can encode R(F0) interpretations justas a �nite tuple of sets. This view on interpretation is more appropriate for encodingde�nite programs within F0.

50 CHAPTER 3. EXPRESSIVITY OF F0De�nition 3.5 The interpretation domain intdom(R;M) for R = fR1; : : : ; Rngover M is de�ned as intdom(R;M) = nYi=1}(U(M)ni);where Ri has arity ni for every i 2 1 : : : n. For every element m = (m1; : : : ;mn) 2intdom(R;M) we de�ne the associated interpretation I(m) byRI(m)i = mi:Clearly, there is a one to one mapping of elements of intdom(R;M) to R(F0)-interpretations. We de�ne the continuous function associated to a de�nite programP directly on elements of intdom(R;M) and not on the R(F0)-interpretations. In thefollowing, we use � for the component-wise subset relation, and [for the component-wise union on elements of intdom(R;M).De�nition 3.6 For a de�nite program P the mapping TMP : Qni=1 }(U(M)ni) !Qni=1 }(U(M)ni) is de�ned byTMP : (m1; : : : ;mn) 7! (m01; : : : ;m0n)if and only if for every i 2 1 : : : nm0i = f(�(x1); : : : ; �(xn)) j Ri(x1; : : : ; xni)$ D 2 Pand I((m1; : : : ;mn)); � j= DgProposition 3.14 Let P be a de�nite program and m 2 intdom(R;M). Then I(m)is a model of P if and only if m is a �xpoint of TMP .Proof. Let m = (m1; : : :mn). Now TMP (m) = m i� for all valuations � into I(m)and for every Ri(x1; : : : ; xni)$ D in P(�(x1); : : : ; �(xni)) 2 mi , I(m); � j= D: (3.2)But (3.2) is the same as I(m); � j= Ri(x1; : : : ; xni) $ D. Hence, TMP (m) = m i�I(m) j= P . 2Next we show that TMP is a continuous function for every de�nite program P , whichimplies that TMP has a least and a greatest �xpoint. Therefore, there exist a leastand a greatest model of P extending M. We assume the reader familiar with thebasic lattice theory and the di�erent �xpoint theorems for continuous functions (foran text book on lattice theory, see e.g. [DP90]; a short summary can be found in theappendix). For our purpose, we need one additional proposition.

3.2. DEFINITE CONSTRUCTIONS 51Proposition 3.15 Let TMP : Qni=1 }(U(M)ni)! Qni=1 }(U(M)ni) be some function.Then T is continuous if and only if for every m 2 Qni=1 }(U(M)ni),T (m) = [ff 2 nYi=1}(U(M)ni) j f � m; f �niteg:Proof. Follows from Proposition A.1, where the more general case of algebraiclattices is considered, since intdom(R;M) is an algebraic lattice. 2Proposition 3.16 Let D be a de�nite formula, m an element of intdom(R;M) and� be a valuation into I(m) such that I(m); � j= D. Then m0; � j= D for everym � m0.Proof. By an easy induction proof on the structure of de�nite formulae. 2Corollary 3.1 TMP is monotone for every de�nite program P .Lemma 3.2 Let D be a de�nite formula, m be an element of intdom(R;M) and �be a valuation into I(m) such that I(m); � j= D. Then there is a �nite f � m suchthat I(f); � j= D.Proof. By induction on the structure of de�nite formulae. Let m and � be givenas described. If D = � where � is a F0-formula, then we de�ne f as (;; : : : ; ;). IfD = Ri(t1; : : : ; tni), then we can de�ne f as (f1; : : : ; fn) with fj = ; for j 6= i, andfi = f(�(t1); : : : ; �(tmi))g. For the induction step we have the following cases:� D = D1 ^D2. Then there exist f1 � m and f2 � m �nite withI(f1); � j= D1 and I(f2); � j= D2by induction hypotheses. Let f = f1 [f2. Clearly, f is �nite with f � m.By 3.16, we know that I(f); � j= D1 and I(f); � j= D2 Hence, I(f); � j=D1 ^D2� D = D1 _D2. Similar to the above case.� D = 9xD0. Then there exists a �0 such that � and �0 di�er only on x andI(m); �0 j= D0By induction hypotheses, there is a �nite f � m with I(f); �0 j= D0, whichimplies I(f); � j= 9xD0.

52 CHAPTER 3. EXPRESSIVITY OF F02Lemma 3.3 TMP is a continuous function for every de�nite program P .Proof. By Lemma 3.15, we have to show that for every m 2 intdom(R;M),TMP (m) = [ff 2 nYi=1}(U(M)ni) j f � m; f �nitegThe �-direction follows from the monotonicity of TMP (Corollary 3.1). For the �-direction let TMp (m) = (m01; : : : ;m0n) and let (�1; : : : ; �ni) be an element of m0i. Wehave to show that there is a �nite f � m such that(�1; : : : ; �ni) 2 �i(TMP (f));where �i is the i-th projection. Since P is a de�nite program, we know that there isa unique equivalence Ri(x1; : : : ; xni) $ D in P . By de�nition of TMP , there exists avaluation � into I(m) such that (�1; : : : ; �ni) = (�(x1); : : : ; �(xni)) and I(m); � j= D.By Lemma 3.2, there exists a �nite f � m with I(f); � j= D. Hence, (�1; : : : ; �ni) 2�i(TMP (f)). 2Corollary 3.2 Every de�nite program has a least and a greatest model.Proof. Follows directly from the above lemma. 2A goal G is a possible empty conjunction of F0-constraints and R(F0)-atoms. Consid-ering the least model of a de�nite program P is the same as asking whether P entails~9G. One has to choose the greatest model if one is interested in whether P ^ ~9G isconsistent.Proposition 3.17 Let G be some goal and P be a de�nite program. Then ~9G isvalid in every model of P extending M if and only if it is valid in the least model ofP extending M, and ~9G is satis�able in every model of P extending M if and onlyif it is valid in the greatest model of P extending M.

3.2. DEFINITE CONSTRUCTIONS 533.2.2 Fixpoints of Continuous FunctionsIn this section, we show that for every continuous functionT : nYi=1}(U(M)ni)! nYi=1}(U(M)ni)which is de�nable within F0, the least and (under certain restrictions) the greatest �x-point is de�nable. In the following the letter T denotes always a continuous functionover Qni=1 }(U(M)ni). Since the models of de�nite programs are continuous functionof this type, we can use the encoding also for the least and greatest models of de�niteprograms.De�nition 3.7 Let T : Qni=1 }(U(M)ni) ! Qni=1 }(U(M)ni) be some function. Afamily of F0-formulae (�T;i(M1; : : : ;Mn; x1; : : : ; xni))i=1::nis called de�nition for T in M in terms of F0 i� for every i 2 1 : : : n and everyvaluation � into M,M; � j= �T;i(M1; : : : ;Mn; x1; : : : ; xni) ()(�(x1); : : : ; �(xni)) 2 �i(T (RELn1(�(M1)); : : : ;RELnn(�(Mn))));where �i is the ith projection function.We say that T is de�nable in F0 if there exists a de�nition for T in terms of F0 inboth feature tree models.Lemma 3.4 The function TMP is de�nable in F0 for every de�nite program P .Proof. For a R(F0)-formula , we de�ne the repl to be the F0-formula where everyoccurrence of an atomic formula Ri(t1; : : : ; tn) in is replaced by in(ht1; : : : ; tni;Mi).Let P = fRi(x1; : : : ; xni)$ Di j i 2 1 : : : ng. Then de�ning�T;i(M1; : : : ;Mn; x1; : : : xni) := Drepli ;for every i 2 1 : : : n yields a M-de�nition for T . 2We start with the F0-de�nition for the least �xpoint. The de�nition for the greatest�xpoints will follow as an easy corollary. For the encoding of the least �xpoint, we

54 CHAPTER 3. EXPRESSIVITY OF F0could apply either Tarski's �xpoint theorem or Kleene's �xpoint theorem. The �rststates that the least �xpoint lfp(T) of a continuous function T is the greatest lowerbound of all pre-�xpoints, i.e.,lfp(T) = \fm j T (m) � mg: (3.3)The second �xpoint theorem constructs the �xpoint via an !-iterative application ofT to the least element ?. Since the least element of Qni=1 }(U(M)ni) is (;; : : : ; ;), weget lfp(T) = T " ! = [fT k((;; : : : ; ;)) j k 2 Ng: (3.4)The characterisation of lfp(T) in (3.3) would yield the simplest de�nition for lfp(T)since it uses a direct representation of the least �xpoint. The formulaprefixpT (M1; : : : ;Mn) :=n̂i=1 8x1; : : : ; xni(�T;i(M1; : : : ;Mn; x1; : : : ; xni)! in(hx1; : : : ; xnii;Mi));where (�T;i(M1; : : : ;Mn; x1; : : : ; xni))i21:::n is a de�nition for T within F0, expressesthat the tuple M1; : : : ;Mn represent a pre-�xpoint of T. Since the subset relationis de�nable in F0, we could also de�ne the lower bound o� all pre-�xpoints, andhence the least �xpoint of T . But this de�nition works only if all pre-�xpoints arerepresentable in M, which is not normally not the case.This implies that we must use (3.4) for the de�nition of the least �xpoint. Our aimis to �nd a family of formulae (�lfp(T)i (~xi))i=1::n such that for every valuation �,M; � j= �lfp(T)i (x1; : : : ; xni) () (�(x1); : : : ; �(xni)) 2 �i(T " !):Since the de�nition shall also work for the case M = RF0, we impose the additionalrestriction that is su�cient for the set variables in the formulae �lfp(T)i (x1; : : : ; xni) todenote �nite sets.The restriction to �nite sets is the minor problem. By Proposition 3.15 we know that(�1; : : : ; �ni) 2 �i(T (m)) if there is a �nite f � m with (�1; : : : ; �ni) 2 �i(T (f)). Fur-thermore, (�1; : : : ; �ni) 2 �i(lfp(T)) if there is some k 2 N such that (�1; : : : ; �ni) 2�i(T k((;; : : : ; ;)). Hence, an easy induction shows that (�1; : : : ; �ni) 2 �i(lfp(T)) i�there is a �nite sequence (m01; : : : ;m0ni); : : : ; (mk1; : : : ;mkn)of �nite elements (ml1; : : : ;mln) of Qni=1 }(U(M)ni) such that

3.2. DEFINITE CONSTRUCTIONS 55� (m01; : : : ;m0n) = (;; : : : ; ;),� (mk+11 ; : : : ;mk+1n) � T (mk1; : : : ;mkn) for every l 2 0 : : : k � 1, and� (�1; : : : ; �ni) 2 mki .Note that the restriction to �nite elements is a su�cient but not necessary condition(which is important for the case M = TF0 , since we can represent also in�nite sets inTF0).Since we may only use a �nite number of variables denoting sets, we have to �nd an ap-propriate representation of sequences. Given a sequence (m01; : : : ;m0n); : : : ; (mk1; : : : ;mkn);we can represent this sequence using a single tuple (s1; : : : ; sn) if we extend each ele-ment of mli by the number l:si = f(�1; : : : ; �ni; l) j (�1; : : : ; �ni) 2 mligFor a set s containing tuples of arity ni + 1, we say that a set m 2 }(U(M)ni) is therestriction s to l if m = f(�1 : : : ; �ni) j (�1 : : : ; �ni; l) 2 sg:A tuple (m1; : : : ;mn) is the restriction of (s1; : : : ; sn) to l if every mi is the restrictionof si to l. We say that a sequence (m01; : : : ;m0n); : : : ; (mk1; : : : ;mkn) of elements ofQni=1 }(U(M)ni) is associated to a tuple (s1; : : : ; sn) i� (ml1; : : : ;mln) is the restrictionof (s1; : : : ; sn) to l for every l = 0::k. Note that for every k 2 N there is a sequenceassociated to (s1; : : : ; sn).In the following, we use the variables S1; : : : ; Sn to encode the tuple (s1; : : : ; sn). In-stead of natural numbers we use the feature tree representation of natural numbers asintroduced in Section 3.1.3. Note that there is a one-to-one mapping of natural num-bers to the feature tree representation of natural numbers. Hence, we can representsequences as tuples (s1; : : : ; sn) with(s1; : : : ; sn) 2 nYi=1}(U(M)ni � natM);where natM denotes the set of feature trees representing natural numbers.To show that S1; : : : ; Sn is a correct encoding of an iterative application of T , wemust �nd a formula guaranteeing that every sequence m0; : : : ;mk associated to thedenotation of S1; : : : ; Sn, satis�es ml+1 � T (ml) for every l 2 1 : : : k � 1. For thispurpose we need to express that the sets denoted by the variables M1; : : : ;Mn are

56 CHAPTER 3. EXPRESSIVITY OF F0the restriction of the sets encoded by S1; : : : ; Sn to a given natural number encodedby the variable C:restr(M1; : : : ;Mn; S1; : : : ; Sn; C) :=n̂i=18x1; : : : ; xni(in(hx1; : : : ; xnii;Mi)$ in(hx1; : : : ; xni; Ci; Si)))Proposition 3.18 For every valuation � into M, ifM; � j= restr(M1; : : : ;Mn; S1; : : : ; Sn; C]);then RELni(�(Mi)) is the restriction of RELni+1(�(Si)) to NUM(�(C)).The next formula seqT (S1; : : : ; Sn) guarantees that every sequence m0; : : : ;mk ofelements of Qni=1 }(U(M)ni) associated to the interpretation of S1 : : : ; Sn satis�esml+1 � T (ml)In the following, we assume that the formulae (�T;i(M1; : : : ;Mn; x1; : : : ; xni))i=1::n area de�nition for T within F0.The formula appT (S1; : : : ; Sn; x1; : : : ; xni ; C) de�ned as9M1; : : : ;Mn restr(M1; : : : ;Mn; S1; : : : ; Sn; C) ^�T;i(M1; : : : ;Mn; x1; : : : ; xni) !states that (x1; : : : ; xni) is an element of the application of T to the restriction ofS1; : : : ; Sn to C. Thus, we can write seqT (S1; : : : ; Sn) asn̂i=18x1; : : : ; xni ; C in(hx1; : : : ; xni; Ci; Si) ^ nat(C)!C = 0 _ (C 6= 0 ^ appT (S1; : : : ; Sn; x1; : : : ; xni; C � 1))!Proposition 3.19 If M; � j= seqT (S1; : : : ; Sn), then every sequence m0; : : : ;mk as-sociated to (RELn1+1(�(S1)); : : : ;RELnn+1(�(Sn))) satis�es ml+1 � T (ml) for everyl 2 0 : : : k � 1.Lemma 3.5 Let T : Qni=1 }(U(M)ni) ! Qni=1 }(U(M)ni) be a continuous functionwhich is de�nable in F0. Then there is a family of formulae(i(M1; : : : ;Mn; C; x1; : : : ; xni))i=1::n

3.2. DEFINITE CONSTRUCTIONS 57such that for all valuations � into M,M; � j= i(M1; : : : ;M1; C; x1; : : : ; xni)()(�(x1); : : : ; �(xni)) 2 �i(TNUM(�(C))((m1; : : : ;mn)))where (m1; : : : ;mn) = (RELn1(�(M1)); : : : ;RELnn(�(M1))).Proof. It is easy to check that the family of formulae i := 9S1; : : : ; Sn;0BBBB@ nat(C) ^in(hx1; : : : ; xni; Ci; Si) ^seqT (S1; : : : ; Sn) ^restr(M1; : : : ;Mn; S1; : : : ; Sn; 0) 1CCCCAsatis�es the required properties. 2Using this proposition, we can de�ne the least and (under certain restrictions) thegreatest �xpoint of a continuous function.Theorem 3.1 For any continuous function T : Qni=1 }(U(M)ni)! Qni=1 }(U(M)ni)which is de�nable in F0 there is a family of formulae(�lfp(T)i (x1; : : : ; xni))i=1::nsuch that M; � j= �lfp(T)i (x1; : : : ; xni) i� (�(x1); : : : ; �(xni)) 2 �i(lfp(T)).Proof. By Proposition A.1 we know that lfp(T) = T " !. This implies thatfor every tuple (�1; : : : ; �ni) of feature trees, (�1; : : : ; �ni) 2 �i(lfp(T)) i� there issome k 2 N with (�1; : : : ; �ni) 2 �i(T k(;; : : : ; ;)). By lemma 3.5 there is a formula i(M1; : : : ;Mn; C; x1; : : : ; xni) such that for all valuations � into M,M; � j= i(M1; : : : ;M1; C; x1; : : : ; xni)()(�(x1); : : : ; �(xni)) 2 �i(TNUM(�(C))((RELn1(�(M1)); : : : ;RELnn(�(M1))))):Since for every k there is a feature tree representing k, we can de�ne �lfp(T)i (x1; : : : ; xni)as 9C i(eset; : : : ; eset; C; x1; : : : ; xni), where eset is an arbitrary constant symbol inL. 2

58 CHAPTER 3. EXPRESSIVITY OF F0Theorem 3.2 Let T : Qni=1 }(U(M)ni)! Qni=1 }(U(M)ni) be a continuous functionwhich is de�nable in F0 If gfp(T) = T # !, then there is a family of formulae(�gfp(T)i (x1; : : : ; xni))i=1::nsuch that M; � j= �gfp(T)i (x1; : : : ; xni) i� (�(x1); : : : ; �(xni)) 2 �i(gfp(T)).Proof. By the monotonicity of T we know that (T k(Qni=1U(M)ni))k2N is a decreasingsequence of sets, i.e. T k+1(nYi=1U(M)ni) � T k(nYi=1U(M)ni):Hence,a tuple (�1; : : : ; �ni) of feature trees is an element of �i(T # !) if and only iffor every k 2 N (�1; : : : ; �ni) 2 �i(T k(nYi=1U(M)ni)):This implies by Proposition 3.15 that (�1; : : : ; �ni) 2 �i(T # !) i� for every k 2 Nthere is a �nite m 2 Qni=1U(M)ni with (�1; : : : ; �ni) 2 �i(T k(m)). The restriction to�nite elements of Qni=1U(M)ni is not necessary, but su�cient.Using the formulae i(M1; : : : ;Mn; C; x1; : : : ; xni) of lemma 3.5, we can de�ne therelation (�1; : : : ; �ni) 2 �i(T # !) by the formula�gfp(T)i (x1; : : : ; xni) := 8C9M1; : : : ;Mn(nat(C)! i(M1; : : : ;Mn; C; x1; : : : ; xni)):2Using these theorems, we can show the de�nability of the least and greatest modelof de�nite programs.Theorem 3.3 The relations de�ned by the least model A?P of a de�nite program Pextending M are de�nable in F0 i.e., there are formulae (�Ri(x1; : : : ; xni))21:::n suchthat M; � j= �Ri(x1; : : : ; xni) () (�(x1); : : : ; �(xni)) 2 RA?PiIf the greatest �xpoint of the associated continuous function TMP can be generated in !-many steps (i.e., gfp(TMP) = T # !), then there exist formulae (Ri(x1; : : : ; xni))21:::nsuch that M; � j= Ri(x1; : : : ; xni) () (�(x1); : : : ; �(xni)) 2 RA>PiProof. Follows from Proposition 3.14, Lemmas 3.3 and 3.4, and Theorems 3.1and 3.2. 2

Chapter 4Recursive Axiomatisations of FT0and CFT0There are two complementary ways of specifying a feature theory: either by explicitlyconstructing a standard interpretation and taking all sentences valid in it, or by stat-ing axioms and proving their consistency. Both approaches to �xing a feature theoryhave their advantages. The construction of a standard interpretation provides for aclear intuition and yields a complete theory (i.e., if � is a closed feature description,then either � or :� is a consequence of the theory). The presentation of a recursivelyenumerable axiomatisation has the advantage that we inherit from predicate logic asound and complete deduction system for valid feature descriptions. Note that allmodels of a complete theory are elementarily equivalent. The ideal is to specify afeature theory by both a standard interpretation and a corresponding recursively enu-merable axiomatisation. The existence of such a double characterisation, however, isby no means obvious, since it implies that the theory is decidable.In the �rst two chapters, we have exempli�ed the �rst approach by de�ning thefeature tree interpretation of the language F0 and investigating the theory of thisinterpretation. Since we have shown that this theory is undecidable, it is clear thata recursive enumerable axiomatisation of this theory cannot exists. In this chapter,we present an axiomatisation for the theory of standard interpretations of FT0 andCFT0, which we have de�ned in the �rst chapter. In the following, we deliberatelyconfuse the language FT0 (resp. CFT0) with the axiomatisation of the theory of TFT0(resp. TCFT0).In Section 4.1, we give an informal guide through the completeness proofs and com-pare the proofs for FT0 and CFT0. Section 4.2 formally introduces the method forproving completeness. In Section 4.3, we de�ne the tool of path constraints which59

60 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0helps us to keep the completeness proofs simple. Section 4.4 presents the axiomatisa-tion for FT0 and proves it completeness. Furthermore, we show that the feature graphinterpretation and both the in�nite and rational feature tree interpretation are mod-els of FT0. This implies that all these models are elementarily equivalent with respectto the language of FT0. In this section, we will also show that the arity predicatesof CFT0 are not de�nable in FT0. As an example, we will show how the quanti�erelimination can be used for checking entailment of existentially quanti�ed formulaecontaining negated equations. Section 4.5 �nally introduces the theory CFT0 andproves it completeness. Again we will show that both the rational and in�nite treeinterpretation are models of CFT0. Note that the feature tree graph interpretation isnot a model of CFT0.4.1 The Method4.1.1 Quanti�er EliminationThe completeness proofs use a version of the method of quanti�er elimination usedby [Mah88]. To proof the completeness of a theory T using this method, it is necessaryto �nd a class of formulae (here called prime formulae) satisfying certain properties.For both FT0 and CFT0, the set of prime formulae is the set of existentially quanti�edsolved formulae. A solved formula is a normal form of conjunction of atomic formulaewith some nice properties. In particular, it is always satis�able.The �rst property is that every closed prime formula is valid in T , which will bea trivial consequence of the set of axioms. The second property is that the class ofprime formulae is closed under conjunction and existential quanti�cation. Again, thisis easy to show in our case.The third (and di�cult to prove) property is that the following two equivalences arevalid in T : (1) Given prime formulae �; �1; : : : ; �n, then9X(� ^ n̂i=1:�i) j=j n̂i=19X(� ^ :�i); (4.1)and (2) there exists for all prime formulae �; � 0 a Boolean combination of primeformulae � such that 9X(� ^ :� 0) j=j �; (4.2)where X is a set of variables. These schemes can now be used for a system trans-forming every closed formula in the language of T a Boolean combination of solved

4.1. THE METHOD 61prime formulae. Since every closed prime formula is valid in T , we know that theresult of transforming the sentence reduces either to > or to ?. In the �rst case, �is valid in T . Otherwise, :� is valid in T .The transformation works as follows. An invariant of the transformation is that boththe input and output formulae of a single transformation step are of the formQ1 : : :Qn
where Q1 : : :Qn are quanti�ers and
 is a Boolean combination of prime formulae. Asingle transformation step now eliminates the innermost quanti�er.If the innermost quanti�er Qn is an existential one, then we �rst transform
 into dis-junctive normal form, treating the prime formulae as atoms. Then we can distributethe existential quanti�er over the disjuncts, yielding a disjunction of formulae of theform 9x(n̂i=1�i ^ k̂j=1:� 0j)where all �i and � 0j are prime formulae. Since prime formulae are closed underconjunction, we can assume that the disjuncts are of the form9x(� ^ k̂j=1:� 0j:)Now we can apply scheme 4.1, transforming each disjunct into a conjunction of theform k̂j=19x(� ^ :� 0j);which can be transformed into a Boolean combination of prime formulae � by scheme 4.2.All together, we have eliminated the innermost existential quanti�er.In the second case that the innermost quanti�er is a universal one, we substitute:9x:
 for 8x
. Then we put :
 into its negation normal form
 0, treating the primeformulae as atoms. Applying the elimination method as described for existentialquanti�cation on 9x
 0 yields a Boolean combination of prime formulae �. Now putting:� into negation normal form again (treating prime formulae as atoms) yields aBoolean combination of prime formulae that is equivalent to 8x
.We have described the elimination of a single quanti�er. But as the schemes 4.1and 4.2 use an existential quanti�cation over a whole set of variables X, the elim-ination methods apply also to a whole set of quanti�ers of the same type (i.e., ifwe start with a formula Q1 : : : Qk : : : Qk+n
 where Qk : : :Qk+n are either of the form9xk : : :9xk+n or of the form 8xk : : :8xk+n, then we can eliminate Qk : : :Qk+n in onestep.

62 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT04.1.2 Comparison of the Completeness Proofs for FT0 andCFT0The di�erence between FT0 and CFT0 is that CFT0 additionally has arity constraints.This implies that every FT0 formula is also a CFT0 formula. Hence, the completenessproof for CFT0 is an extension of the completeness proof of FT0. However, we have toextend the completeness proof for FT0 in a non-trivial way, since we have to handleadditional equations imposed by the arity constraints. E.g.xffg ^ xfx ^ yffg ^ yfy j=CFT0 x := yholds in CFT0 stating that there is only one solution for the formula xffg ^ xfx.In FT0 it is not possible to identify one element of the domain by a formula. Thus,CFT0 requires records to be extensional (i.e., two records are identical if they havethe same set of attributes and identical values under the corresponding attributes).Note that this property could not be guaranteed using the language of FT0 (i.e., FT0has non-extensional models).In the following we give a concrete example where the additional problems that arisein the completeness proof for CFT0. Consider the FT0-formula 9x(� ^ :� 0) with� := 9x1; x2(xfx1 ^ xgx2)�0 := 9y(xfy ^ xgy);which is an instance of left hand side of scheme 4.2. In the standard model of FT0(which is the same as for CFT0), there always exists a valuation for x satisfying �such that the values under the features f and g are di�erent. This implies that theequivalence 9x(� ^ :� 0) j=j 9x� (4.3)is valid in FT0. Hence, 9x� is the Boolean combination of prime formulae as requiredby scheme 4.2. Roughly speaking, this equivalence is proven by extending � to aprime formula �ext which makes x1 and x2 di�erent, e.g. the prime formula9x1; x2 � xfx1 ^ xgx2 ^ x1fa ^ x2fa0 �with a; a0 being two di�erent constant symbols. Clearly, 9x�ext is satis�able in FT0.Hence, there exists in every model of FT0 a valuation for x satisfying �ext. Since thisvaluation must also satisfy � and cannot satisfy � 0, this shows the equivalence in 4.3.Therefore, it is necessary in the proof to characterise the variables for which suchadditional constraints must be added. In the case of FT0 this is easy; they are

4.2. OVERALL STRUCTURE OF THE COMPLETENESS PROOFS 63exactly the variables where an additional equation is added when applying the solvedform algorithm on� ^ � 0 = 9x1; x2; y(xfx1 ^ xgx2 ^ xfy ^ xgy):But in the case of CFT0, the situation is more complex, since variables can be de-termined using the arity constraints. Consider the following two formulae �1 and�2: �1 = 9x1; x2; x3; x40BB@ xfx1 ^ xgx2 ^x1ffg ^ x1fx3 ^x2ffg ^ x2fx4 1CCA�2 = 9x1; x20BB@ xfx1 ^ xgx2 ^x1ffg ^ x1fx1 ^x2ffg ^ x2fx2 1CCAWe let � 0 again be 9y(xfy ^ xgy). Although in both cases an additional equationx1 := x2 is added when solving �1^� 0 or �2^� 0, the equivalence 9x(�1^:� 0) j=j 9x�1is valid in CFT0, whereas the equivalence 9x(�2 ^ :� 0) j=j 9x�2 is not.4.2 Overall Structure of the Completeness ProofsThe completeness of FT0 and CFT0 will be shown by exhibiting simpli�cation algo-rithms for both FT0 and CFT0. The following lemma gives the overall structure ofthe algorithms, which is the same as in Maher's [Mah88] completeness proof for thetheory of constructor trees.Lemma 4.1 Let T be a �rst order theory. Suppose there exists a set of prime for-mulae such that:1. for every atomic formula � one can compute a Boolean combination � of primeformulae such that � j=jT � and V(�) � V(�);2. > is a prime formula, and there is no other closed prime formula3. for every two prime formulae � and � 0 one can compute a formula � that iseither prime or ? and satis�es� ^ � 0 j=jT � and V(�) � V(� ^ � 0)

64 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT04. for every prime formula � and every variable x one can compute a prime for-mula � 0 such that 9x� j=jT �0 and V(� 0) � V(9x�)5. if �, �1; : : : ; �n are prime formulae, then9x(� ^ n̂i=1:�i) j=jT n̂i=19x(� ^ :�i)6. for every two prime formulae �, � 0 and every variable x one can compute aBoolean combination � of prime formulae such that9x(� ^ :� 0) j=jT � and V(�) � V(9x(� ^ :� 0)):Then one can compute for every formula � a Boolean combination � of prime formulaesuch that � j=jT � and V(�) � V(�).Proof. Suppose a set of prime formulae exists as required. Let � be a formula. Weshow by induction on the structure of � how to compute a Boolean combination � ofprime formulae such that � j=jT � and V(�) � V(�).If � is an atomic formula, then it can be transformed into an equivalent Booleancombination of prime formulae by assumption (1).If � is : , ^ 0 or _ 0, then the claim follows immediately with the inductionhypothesis.It remains to show the claim for � = 9x . By the induction hypothesis we know thatwe can compute a Boolean combination � of prime formulae such that � j=jT andV(�) � V(). Now � can be transformed to a disjunctive normal form where primeformulae play the role of atomic formulae; that is, � is equivalent to �1 _ : : : _ �n,where every \clause" �i is a conjunction of prime and negated prime formulae. Hence9x j=j 9x(�1 _ : : : _ �n) j=j 9x�1 _ : : : _ 9x�n;where all three formulae have exactly the same free variables. It remains to showthat one can compute for every clause � a Boolean combination � of prime formulaesuch that 9x� j=jT � and V(�) � V(9x�). We distinguish the following cases.(i) � = � for some basic constraint �. Then the claim follows by assumption (4).(ii) � = � ^Vni=1 :�i, n > 0. Then the claim follows with assumptions (5) and (6).

4.3. PATH CONSTRAINTS 65(iii) � = Vni=1 :�i, n > 0. Then � j=jT > ^ Vni=1 :�i and the claim follows with case(ii) since > is a prime formula by assumption (2).(iv) � = �1^: : :^�k^:� 01^: : :^:� 0n, k > 1, n � 0. Then we know by assumption (3)that either �1 ^ : : :^ �k j=jT ? or �1 ^ : : :^ �k j=jT � for some prime formula �.In the former case we choose � = :>, and in the latter case the claim followswith case (i) or (ii). 2Note that, provided a set of prime formulae with the required properties exists forFT0 (resp. CFT0), the preceding lemma yields the completeness of FT0 (resp. CFT0)since every closed formula can be simpli�ed to > or :> (since > is the only closedprime formula).Section 4.4 establishes the set of prime formulae as required for FT0, whereas insection 4.5 we will do the same for CFT0. In the next section we will de�ne the toolof path constraints that will help us to keep the proofs for both FT0 and CFT0 simple.4.3 Path ConstraintsPath constraints are a
exible syntax for atomic formulae closed under conjunctionand existential quanti�cation. We will see that for every prime formula there is anequivalent quanti�er-free formula consisting only of path constraints.The propositions to come will be proven for a common sub-theory of FT0 and CFT0,which expresses exactly the minimal properties of features. This theory is calledFT0. In a slightly modi�ed version, this theory has been introduced in [Smo92].Since CFT0 contains unary predicates in form of arity constraints, FT0 must alsocontain unary predicates. Thus, the signature of the common sub-theory consists ofall elements of L acting both as constants and features, a set of unary predicatesP and a distinguished unary predicate symbol atom. If nothing else is stated, theletter P denotes a unary predicate symbol in P[fatomg. Since CFT0 contains unarypredicates, whereas FT0 does not, we formalise the theory FT0 with di�erent sets ofunary predicates. Thus, we use FTP0 to denote the instance of FT0 whose signaturecontains exactly the unary predicate symbols listed in P. We will see that FTfg0 is asubset of FT0 and that FTfFigi2N0 is a subset of CFT0, where fFigi2N is an enumerationof all arity constraints.

66 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0As mentioned, FTP0 is a minimal theory expressing the properties of features. In themodels of FTP0 , features are interpreted as binary, functional relations. All predicatesin P are free, i.e. they are just interpreted as unary predicates without additionalconditions. Therefore, we have the following axiom schemes for FTP0 stating thatevery feature is functional, that features are not de�ned on constants, that the uniquename assumption holds for the constants, and that the denotation of atom should bethe set of all constants1:(Ax1) ~8(xfy ^ xfz! y := z) for every feature f(Ax2) :(c1 := c2) if c1 and c2 are di�erent constants(Ax3) ~8(cfx!?) for every constant c(Ax4) atom(c) for every constant c(Ax5) ~8(xfy ^ atom(x)! ?) for every feature f .Using FTP0 we are able to de�ne path constraints. We start by recalling the de�nitionof the denotation of a path.The interpretations fA, gA of two features f , g in a structure A are binary relationson the universe U(A) of A; hence their composition fA �gA is again a binary relationon U(A) satisfyinga(fA � gA)b () 9c 2 U(A): afAc ^ cgAbfor all a; b 2 U(A). Consequently we de�ne the denotation pA of a path p =f1 � � � fn in a structure A as the composition(f1 � � � fn)A := fA1 � � � � � fAn ;where the empty path " is taken to denote the identity relation. If A is a model ofthe theory FTP0 , then every path denotes a unary partial function on the universe ofA. Given an element a 2 U(A), pA is thus either unde�ned on a or leads from a toexactly one b 2 U(A).De�nition 4.1 (Path Constraints) Let p, q be paths, x, y be variables, P be aunary predicate symbol, and c be a constant symbol. Then path constraints are de�nedas follows: A; � j= xpc :() �(x) pA cA1Note that this property can only be approximated. For guaranteeing this property, an in�nitedisjunction would be needed.

4.3. PATH CONSTRAINTS 67A; � j= xpy :() �(x) pA �(y)A; � j= xp # yq :() 9a 2 U(A): �(x) pA a ^ �(y) qA aA; � j= P (xp) :() 9a 2 U(A): �(x) pA a ^ a 2 PAA proper path constraint is a path constraint of the form \xpc", \P (xp)" or \xp#yq".Note that path constraints xpy generalise feature constraints xfy. We use xp# as ashortcut for xp # xp. By de�nition, xp# is satis�ed by some valuation � into somestructure A i� the path pA is de�ned on �(x).Every path constraint can be expressed with the already existing formulae, as can beseen from the following equivalences:x"t j=j x := txfpt j=j 9z(xfz ^ zpt) (z 6= x; t)xp # yq j=j 9z(xpz ^ yqz) (z 6= x; y)P (xp) j=j 9y(xpy ^ P (y)) (y 6= x):We are now going to de�ne the closure of quanti�er-free and of existential quanti�edformulae. The closure of a formulae � is a set of all path constraints that is equivalentto �. In general, the closure can be in�nite. But we will show that there is a �nitesubset that is also equivalent to � (which we will call projection).We will de�ne the closure only for special classes of formulae in order to guaranteesome nice properties for the closure. In the case of quanti�er-free formulae, this willbe the class of solved formulae. In the case of existential quanti�ed formulae, thiswill be the class of prime formulae. We will later prove that for the theory FT0 theprime formulae satis�es all condition required by lemma 4.1. For CFT0 we have torede�ne the notions of solved formula in order to handle the arities predicates.The framework of path constraints will later be used for proving claims 5 and 6 ofLemma 4.1. Recall the example of Section 4.1.2, page 62. There we considered theFT0-formulae � = 9x19x2
 := 9x1; x2(xfx1 ^ xgx2)� 0 := 9y(xfy ^ xgy);and argued that the equivalence9x(� ^ :� 0) j=j 9x�

68 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0is valid in FT0. This will be shown in the completeness proof for FT0 by extending �to a formula �ext := 9x1; x2 � xfx1 ^ xgx2 ^ x1fa ^ x2fa0 � :For constructing this formula we introduce the notions of projection, rooted path andvalue of a rooted path in a solved formula.The �rst step in constructing �ext is to generate a projection for � 0, which isxf # xg:xf and xg are called rooted paths. The value jxf j
 and jxgj
 of xf and xg in
 arex1 and x2, respectively. Since xf # xg is not entailed by �, we know that the valuesof xf and xg in
 must be di�erent variables. Hence, we can add consistently theconstraints x1fa and x2fa0 to generate �ext.De�nition 4.2 (Basic Constraint) A basic constraint is either ? or a possiblyempty conjunction of atomic formulae.In the case of FT0, we have t1ft2 and t1 := t2 as atomic formulae. In CFT0, we havethe additional atomic formulae of form tF . Note that > is a basic constraint since >is the empty conjunction. In the following, we will always use the Greek letter � todenote basic constraints.We say that a basic constraint � binds x to y (resp. c) if x := y 2 � (resp.x := c 2 �) and x occurs only once in �. Here it is important to note that we considerequations as directed, that is, assume that x := y is di�erent from y := x if x 6= y. Wesay that � eliminates x if � binds x to some variable y or some constant c.De�nition 4.3 (Solved Formula) A solved formula is a basic constraint
 6= ?such that the following conditions are satis�ed:1. no atomic constraint occurs twice in �;2. an equation x := t appears in
 if and only if
 eliminates x;3. if xft 2 � and xft0 2 �, then t = t0;4. � contains no atomic constraint of the form c := t, cft or atom(c);5. if xft 2 �, then atom(x) 62 �.

4.3. PATH CONSTRAINTS 69(Cong) xft1 ^ xft2 ^ �xft1 ^ t1 := t2 ^ �(Elim) x := t ^ �x := t ^ �[x t] x 2 V(�) and x 6= y(CCl) c1 := c2? c1 6= c1(CFCl1) cft?(CFCl2) atom(x) ^ xft ^ �?(Orient) c := xx := c(Triv) t := t ^ ��(Simpl1) P (x) ^ P (x) ^ �P (x) ^ �(Simpl2) atom(c) ^ ��Figure 4.1: The basic simpli�cation rules.Every solved formula
 has a unique decomposition
 =
N ^
G into a possiblyempty conjunction
N of equations \x := y" and a possibly empty conjunction
G ofconstraints \P (x)" and feature constraints \xfy". We call
N the normaliser and
Gthe graph of
.The letter
 always denotes a solved formula. We will see that every basic constraintis equivalent in FTP0 to either ? or a solved formula.Note that the basic simpli�cation rules (Cong), (CFCl1), (CCl), (Simpl2) and (CFCl2)correspond to the axioms schemes (Ax1), (Ax3), (Ax2), (Ax4) and (Ax5) , respective-ly. Thus, they are equivalence transformation with respect to FTP0 . The remainingsimpli�cation rules are equivalence transformations in general.

70 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Proposition 4.1 The basic simpli�cation rules are terminating and perform equiv-alence transformations with respect to FTP0 . Moreover, a basic constraint � 6= ? issolved if and only if no basic simpli�cation rule applies to it.Proof. To see that the basic simpli�cation rules are terminating, observe that norule adds a new variable and that every rule preserves eliminated variables. Sincerule (Elim) increases the number of eliminated variables, and the remaining rulesobviously terminate, the entire system must terminate. The other claims are easy toverify. 2Proposition 4.2 Let � be a formula built from atomic formulae with conjunction.Then one can compute a formula � that is either solved or ? such that � j=jFTP0 � andV(�) � V(�).Proof. Follows from the preceding proposition and the fact that the basic simpli�-cation rules do not introduce new variables. 2De�nition 4.4 (Closure) The closure [
] of a solved formula
 is the closure of theatomic formulae occurring in
 with respect to the following deduction rules:x"x x := tx"t xpy yftxpft xpt yqtxp # yq P (t) xptP (xp) xpcatom(xp)Recall that we assume that equations x := y are directed, that is, are ordered pairs ofvariables. Hence, x�y 2 [
] and y�x =2 [
] if x := y 2
.Proposition 4.3 Let
 be a solved formula. Then:1. if � 2 [
], then
 j=FTP0 �2. x"t 2 [
] i� x = t or x := t 2
3. xft 2 [
] i� xft 2
 or 9z: x := z 2
 and zft 2
4. xpft 2 [
] i� 9z: xpz 2 [
] and zft 2
5. if p 6= " and xpt; xpt0 2 [
], then t = t06. or all P 2 P, P (xp) 2 [
] i� xpt 2 [
] and P (t) 2
7. atom(xp) 2 [
] i� xpc 2 [
] for some c 2 L or xpy 2 [
] and atom(y) 2
.

4.3. PATH CONSTRAINTS 718. it is decidable whether a path constraint is in [
].Proof. For the �rst claim one veri�es the soundness of the deduction rules for pathconstraints. The veri�cation of the other claims is straightforward. 2Now we extend the notion of path constraints to include also existential quanti�edformulae.De�nition 4.5 (Prime Formula) Let � be a basic constraint. A formula � = 9X�is called prime if it satis�es the following conditions:1. � is solved;2. X has no variable in common with the normaliser of �;3. for every x 2 X there is a variable y 2 V(�) and a path p such that ypx 2 [�].Given a formula � = 9X� where � is a basic constraint, we can simply transform �into an equivalent formula � 0 such that the �rst two conditions are satis�ed. We willlater see that in the case of the complete theories FT0 and CFT0, we can �nd alsoan � 0 that satis�es additionally the third conditions. In the following, the letter �denotes always a prime formula if nothing else is stated.De�nition 4.6 (Closure of Prime Formulae) The closure of a prime formula � =9X
 is de�ned as follows:[�] := f� 2 [
] j � = x"# or � proper path constraint with V(�) \X = ; g:Proposition 4.4 If � is a prime formula and � 2 [�], then � j= � (and hence:� j= :�).Proof. Let � = 9X
 be a prime formula, A; � j= �, and � 2 [�]. Let �0 be anarbitrary X-update of � such that A; �0 j=
. Since [�] � [
], we have � 2 [
] andthus A; �0 j= �. If � has no variable in common with X, then A; � j= �. Otherwise,� has the form \x"#" and hence A; � j= � holds trivially. 2We now know that the closure [�], taken as an in�nite conjunction, is entailed by �.We are going to show that, conversely, � is entailed by certain �nite subsets of itsclosure [�]. For this we need �rst the de�nition of a rooted path.

72 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0De�nition 4.7 (Rooted Path) A rooted path xp consists of a variable x and apath p. The value jxpj
 of a rooted path xp in some solved formula
 is de�ned asfollows: jxpj
 := 8>>>><>>>>: x i� p = " ^ x := t 62
t i� p = " ^ x := t 2
t i� xpt 2 [
]unde�ned else.A rooted path xp is called realized in a solved formula
 i� jxpj
 is de�ned. A rootedpath xp is realized in a prime formula � = 9X
 if either p = " or x 2 V(�) and xpis realized in
.We say that a proper path constraint � contains a rooted path xp if � = xp#,� = xpc, � = xp # yq or � = yq # xpProposition 4.5 j � j
 is a partial function for every solved formula
.Proof. Follows from proposition 4.3 (5). 2Proposition 4.6 Let xp be a rooted path. If xp is realized in some solved formula
, then jxpj
 is either a constant or a variable z with z 2 V(
G).Proposition 4.7 Let � = 9X
 be a prime formula and � = xp # yq be a proper pathconstraint with x; y 62 X. If both xp and yq are realized in �, then9X
 ^ � j=jFTP0 9X(
 ^ jxpj
 := jyqj
):De�nition 4.8 (Access Function) An access function for a prime formula � =9X
 is a function that maps every x 2 V(
) � X to the rooted path x", and everyx 2 X to a rooted path x0p such that x0px 2 [
] and x0 =2 X.Proposition 4.8 For every prime formula � = 9X
 and every access function @ of�, j@xj
 = x:

4.3. PATH CONSTRAINTS 73Thus, j � j
 is the left inverse of @. But the converse is not true. Given the primeformula � = 9z
 with
 = xfz ^ ygzand the access function with @z = xf , we have @jygj
 = xf .Note that every prime formula has at least one access function, and that the ac-cess function of a prime formula 9X
 is injective on V(
) (follows from Proposi-tion 4.3 (5)).De�nition 4.9 (Projection) The projection of a prime formula � = 9X
 withrespect to an access function @ for � is the conjunction of the following proper pathconstraints: fx" # y" j x := y 2
g [fP (x0p) j P (x) 2
; x0p = @xg [fx0pf # y0q j xfy 2
; x0p = @x; y0q = @yg:Obviously, one can compute for every prime formula an access function and hence aprojection. Furthermore, if � is a projection of a prime formula �, then � taken as aset is a �nite subset of the closure [�].Proposition 4.9 Let � be a projection of a prime formula �. Then � � [�] and� j=jFTP0 �.Proof. Let � be the projection of a prime formula � = 9X
 with respect to anaccess function @.Since every path constraint � 2 � is in [�] and thus satis�es � j= �, we have � j= �.To show the other direction, suppose A; � j= �, where A is a model of FTP0 . ThenA; �0 j= x0px for every x 2 X with @x = x0p de�nes a unique X-update �0 of �.From the de�nition of a projection it is clear that A; �0 j=
. Hence A; � j= �. 2As a consequence of this proposition one can compute for every prime formula anequivalent quanti�er-free conjunction of proper path constraints.Proposition 4.10 If � is a prime formula, then � j=jFT0 [�]Proof. By Proposition 4.4 we have � j=FT0 [�], and by Proposition 4.9 we have[�] j=FT0 � since � has a projection � � [�]. 2

74 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT04.4 The Theory FT04.4.1 The AxiomsThe �rst �ve axiom schemes of FT0 are the axiom schemes of FTfg0 :(Ax1) ~8(xfy ^ xfz! y := z) for every feature f .(Ax2) :(c1 := c2) if c1 and c2 are di�erent constants(Ax3) ~8(cfx!?) for all constants c.(Ax4) atom(c) for all constants c(Ax5) 8x; y(xfy ^ atom(x)! ?).The sixth and �nal axiom scheme will say that certain \consistent feature descrip-tions" are satis�able. For its formulation we need the important notion of a solvedclause.An exclusion constraint is an additional atomic formula of the form xf" (\f un-de�ned on x") taken to be equivalent to :9y (xfy) (for some variable y 6= x).De�nition 4.10 (Solved Clause) A solved clause is a possibly empty conjunction� of atomic formulae of the form xft and xf" such that the following conditions aresatis�ed:1. no atomic formula occurs twice in �2. there are no constraints of the form cft, cf" or atom(c) in �3. if xft 2 �, then there exists no t 6= t0 such that xft0 2 �4. if xft 2 �, then xf" =2 �5. if atom(x) 2 �, then neither xfy nor xf" is in �.Proposition 4.11 Given a solved clause �, the subset �0 of � containing all atomicconstraints of the form t1ft2 is a graph. Vice versa, the graph of a solved formulaeis a solved clause.

4.4. THE THEORY FT0 75
g hgf z v f"u gh f x h"

w f" g"1Figure 4.2: A graph representation of a solved clause.Figure 4.2 gives a graph representation of the solved clausexfu ^ xgv ^ xh" ^uhx ^ ug1 ^ ufz ^vgz ^ vhw ^ vf" ^wf" ^ wg":Here, the symbols 1 denotes a constant. A more readable textual representation ofthis solved clause is x : [f :u g: v h"]u : [h:x g: 1 f : z]v : [g: z h:w f"]w : [f" g"]:As in the example, a solved clause can always be seen as a graph whose nodes arethe variables and constants appearing in the clause and whose arcs are given by thefeature constraints xft. The constraints xf" appear as labels of the node x. Thegraphical representation of solved clauses should be very helpful in understanding theproofs to come.A variable x is constrained in a solved clause � if � contains a constraint of theform xft or xf". We use CV(�) to denote the set of all variables that are constrainedin �. The variables in V(�)�CV(�) are called the parameters of a solved clause �.In the graph representation of a solved clause the parameters appear as leaves thatare not not labelled with a feature exclusion. The parameter of the solved clause inFigure 4.2 is y.

76 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0We can now state the �nal axiom scheme. It says that the constrained variables of asolved clause have solutions for all values of the parameters:(Ax6) ~89X� for X = CV(�) and every solved clause � that contains no con-straints of the form atom(x).Proposition 4.12 Let � be a solved clause and X = CV(�). ThenFT0 j= ~89X�:The theory FT0 is the set of all sentences that can be obtained as instances of theaxiom schemes (Ax1), (Ax2), (Ax3), (Ax4), (Ax5) and (Ax6). In the next sectionswe will show that FT0 is a complete theory. By using an adaption of the proof ofTheorem 8.3 in [Smo92] one can show that FT0 is undecidable.4.4.2 Feature Trees and Feature GraphsIn this section we establish three models of FT0 consisting of either feature trees orfeature graphs. Since we will show that FT0 is a complete theory, all three modelsare in fact elementarily equivalent.Theorem 4.1 The feature tree structures TFT0 and RFT0 are models of the theo-ry FT0.Proof. We will �rst show that TFT0 is a model of FT0.The �rst �ve axiom schemes are obviously satis�ed by TFT0 . To see that TFT0 satis�esthe sixth axiom scheme, let � be a solved clause, X be the variables constrained in�, and � be a valuation into TFT0. It su�ces to show that there exists an X-update�0 of � such that TFT0; �0 j= �.For a feature tree � = (D;�) and a path p we de�ne p� to be the feature tree (D0; �0)with D0 = fpq j q 2 Dg and �0 = f(pq; a) j (q; a) 2 �g. Clearly, p�1p� = �, but theconverse may not hold. Now one can verify that8x 2 X �0(x) := (Dx; �x) [[xpy2[�]; y 62X p�(y)with Dx := fp j xp# 2 [�]g�x := f(p; c) j xpc 2 [�]g

4.4. THE THEORY FT0 77de�nes an X-update �0 of � such that TFT0; �0 j= �.The same construction shows that RFT0 is a model of FT0. 2Now we will de�ne the third FT0-model, namely the feature graph model. A featurepregraph is a pair (t;
) consisting of a term t (called the root) and a solved clause
 not containing exclusion constraints and constraints of the form atom(x) such thatthe following conditions are satis�ed:� if t is a constant c, then
 is the empty clause, and� if t is a variable x, then for every variable y occurring in
, there exists a pathp satisfying xpy 2 [
].If one deletes the exclusion constraints in Figure 4.2, one obtains the graphical rep-resentation of a feature pregraph whose root is x.A feature pregraph (t;
) is called a subpregraph of a feature pregraph (t0; �) if
 � �and t = t0 or t0 is a variable x and xpt 2 [�] for some path p. Note that a featurepregraph has only �nitely many subpregraphs.We say that two feature pregraphs are equivalent if they are equal up to consistentvariable renaming. For instance, (x; xfy ^ ygx) and (u; ufx ^ xgu) are equivalentfeature pregraphs.A feature graph is an element of the quotient of the set of all feature pregraphswith respect to equivalence as de�ned above. Put di�erently, a feature graph is anisomorphism class of feature pregraphs. We use (t;
) to denote the feature graphobtained as the equivalence class of the feature pregraph (t;
).The feature graph structure G is the FT0-structure de�ned as follows:� the universe of G is the set of all feature graphs� cG = (c; fg) for every c 2 L.� atomG = fcG j c 2 Lg� ((x;
); �) 2 fG i� there exists a maximal feature subpregraph (t; �) of (x;
)such that xft 2
 and � = (t; �).Theorem 4.2 The feature graph structure G is a model of the theory FT0.

78 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Proof. The �rst �ve axiom schemes are obviously satis�ed by G. To see that Gsatis�es the sixth axiom scheme, let � be a solved clause and � a valuation into TFT0.It su�ces to show that there exists an CV(�)-update �0 of � such that G; �0 j= �.First we choose for the parameters y 2 V(�)�CV(�) variable disjoint feature pregraphs(y;
y) such that �(y) = (y;
y). Moreover, we can assume without loss of generalitythat every pregraph (y;
y) has with � exactly its root variable y in common. Hence�0 := � ^ ^y2V(�)�CV(�)
yis a solved clause. Now, for every constrained variable x 2 CV(�), let �x be themaximal solved clause such that �x � �0 and (x; �x) is a feature pregraph. Then theCV(�)-update �0 of � such that �0(x) = (x; �x) for every x 2 CV(�) satis�es G; �0 j= �.2Let F be the structure whose domain consists of all feature pregraphs and that isotherwise de�ned analogous to G. Note that G is in fact the quotient of F withrespect to equivalence of feature pregraphs.Proposition 4.13 The feature pregraph structure F is a model of FT0 but not ofFT0.Proof. It is easy to see that F satis�es the �rst �ve axiom schemes. To see that Fdoes not satisfy the sixth axiom scheme, consider the solved clause� = xfy ^ xgzand a valuation � into F such that �(y) = (x; xha), �(z) = (x; xhb), where a and bare two di�erent constants. Then there exists no x-update �0 of � satisfying F; �0 j= �since a feature pregraph cannot contain both xha and xhb. 24.4.3 Some Properties of Prime FormulaeWe will now show that the class of prime formulae de�ned in section 4.2 satis�esthe requirements 1{ 4 of Lemma 4.1. Note that all propositions proven for FTfg0 inSection 4.3 can also be used for the theory FT0 as FTfg0 is a sub-theory of FT0.Requirement 2 is trivial. For requirement 1 note that if � is a basic formula tft0 ort := t0 with t 6= t0, then � is equivalent to ?, which is 6= >. If � is a trivial equation

4.4. THE THEORY FT0 79t := t, then � is equivalent to >. All other atomic formulae are prime formulae byde�nition. In this section we are going to prove requirements 3 and 4.For this we de�ne the notion of decided variables of an existential quanti�ed solvedformula 9X
. The decided variables are those variables in V(
) whose valuation isuniquely determined by the valuation of the free variables.De�nition 4.11 (Decided Variables) Let
 be a solved formula and X be a set ofvariables. A variable x 2 V(
) is said to be decided in a formula � = 9X
 if x 2 V(�)or there is a variable y 2 V(�) with y 6= x and a path p such thatypx 2 [
]:For a solved clause � we say that x is decided in � = 9X� if x is decided in 9X
,where
 � � is the solved formula containing all constraints of � that are of the formxfy.We say that a variable is undecided if it is not decided. The set of decided variablesof a formula � will be denoted by Dec(�). Consider the formula� := 9x; x1; x2(xfx1 ^ xgx2 ^ xhy ^ zfx2) (4.4)Then the variables Dec(�) = fy; z; x2g. x and x1 are both undecided in �.In the following we show that every existential quanti�ed solved formula 9X
 isequivalent to 9X
 0, where
 0 is the set of constraints on the decided variables. Thus,we above de�ned formula � is equivalent in FT0 to the formula�0 := 9x2(zfx2):We will use this equivalence to show that we can transform every existential quanti�edsolved formula in a prime formula thus proving requirement 4 of Lemma 4.1. Notethat in a prime formula � = 9X
 every variable in V(
) is decided. Furthermore, thiswill be used in the next section for the proofs of assumptions 5 and 6 of Lemma 4.1.Proposition 4.14 Let Y be a set of variables that are existential quanti�ed anddecided in � = 9X
 and let � be some valuation into a FT0 model A with A; � j= �.Then there exists a unique Y -update �0 of � such thatA; �0 j= 9XnY
:A constraint � is called a constraint for x if � is of the form xft, atom(x) or x := t.

80 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Lemma 4.2 (Garbage Collection) Let �; �0 be solved clauses and let � = 9X�and �0 = 9X 0�0 be formulae with V(�) = V(�0) and Dec(�) = Dec(�0). If � and �0contain exactly the same constraints for the decided variables, then� j=jFT0 �0:Proof. Let �, �0 be given as described and let Z = Dec(�)\X = Dec(�0) \X 0. As �and �0 contain the same constraints for the decided variables, we can write � and �0as � = 9Z9Y (
 ^) and �0 = 9Z9Y 0(
0 ^);where Y = XnZ, Y 0 = X 0nZ and contains all constraints for the variables inZ. Note that all variables of are decided in � and �0. Hence V() \ Y = ; andV() \ Y 0 = ;. This implies that� j=j 9Z(9Y
 ^) and �0 j=j 9Z(9Y 0
0 ^);Now
 and
 0 are solved clauses. The variables which are free in 9Y
 and 9Y 0
0 aredecided in � and �0. Since we have put all constraints for the decided variables into , we know that
 and
 0 contain no constraints for the free variables in 9Y
 and9Y 0
0. This implies that the free variables of 9Y
 (resp. 9Y 0
0) are parameters of
(resp.
 0). Hence FT0 j= ~89Y
 and FT0 j= ~89Y 0
0by Proposition (4.12). This shows � j=j 9Z and �0 j=j 9Z . 2We will say that two formula � = 9X
 and �0 = 9X 0
 0 di�er only on the unde-cided variables if V(�) = V(�0), Dec(�) = Dec(�0), and � and �0 contain exactly thesame constraints for the decided variables.Proposition 4.15 For every prime formula � and every set of variables X one cancompute a prime formula � 0 such that9X� j=jFT0 �0 and V(� 0) � V(9X�):Proof. We will proof that we can compute a formula � 0 as required by the lemmafor the special case X = fxg. For arbitrary sets X we can compute a � 0 by iterativeapplication of the method for this special case.Let � = 9Y
 be a prime formula and x be a variable. We construct a prime formula�0 such that 9x� j=jFT0 � 0 and V(� 0) � V(9x�). We distinguish the following cases.

4.4. THE THEORY FT0 811. x =2 V(�). Then � 0 := � does the job.2.
 = (x := y ^
 0). Then � 0 := 9Y
 0 does the job.3.
 = (y := x^
 0). Then � 0 := 9Y (
 0[x y]) does the job since
 j=j x := y ^
 0[x y].4. x =2 Y and x occurs in the graph but not in the normaliser of
. Then 9x9Y
 j=j
N ^ 9x9Y
G. Let
 0G contain all the constraints for the variable that are decidedin 9x9Y
G. Then 9x9Y
G and 9x9Y
 0G have the same set of decided variables andcontain the same constraints for the decided variables. Since
G and
 0G contain noequations, they are solved clauses. Hence, by proposition 4.29x9Y
G j=jFT0 9x9Y
 0G:This implies that � 0 =
N ^9x9Y
 0G is a prime formulae with � j=jFT0 � 0 and V(� 0) �V(�). 2Proposition 4.16 For every two prime formulae � and � 0 one can compute a for-mula � that is either prime or ? and satis�es� ^ � 0 j=jFT0 � and V(�) � V(� ^ � 0):Proof. Let � = 9X
 and � 0 = 9X 0
0 be prime formulae. Without loss of generalitywe can assume that X and X 0 are disjoint. Hence� ^ � 0 j=j 9X9X 0(
 ^
 0):Since
 ^
 0 is a basic constraint, Proposition 4.2 tells us that we can compute aformula � that is either solved or ? and satis�es
 ^
 0 j=jFT0 � and V(�) � V(
 ^
 0).If � = ?, then � := ? does the job. Otherwise, � is solved. Since� ^ � 0 j=jFT0 9X9X 0�;we know by Proposition 4.15 how to compute a prime formula � 00 such that �^� 0 j=jFT0�00. From the construction of � 00 one veri�es easily that V(� 00) � V(� ^ � 0). 24.4.4 Proof of the Main LemmasIn this section we show that our prime formulae satisfy the requirements (5) and (6)of Lemma 4.1 and thus obtain the completeness of FT0. We start with the de�nitionof the central notion of a joker.

82 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0De�nition 4.12 Let � = 9Y
 be a prime formula and X be a set of variables. Arooted path xp is called decided in � wrt. X if either x 62 X or there is some pre�x p0such that xp0 is realized and jxp0j
 is constant or a variable decided in 9X�.xp is called undecided in � wrt. X is xp is not decided in � wrt. X. Note that in thiscase x must be an element of X. If � and X are clear from the context, we will justsay decided instead of decided in � wrt. X.Proposition 4.17 If � is a proper path constrained such that all rooted paths con-tained in � are decided in � wrt. X, then either A; � j= 8X(� ! �) or A; � j=8X(�! :�).De�nition 4.13 (X-Joker) A proper path constraint � is called an X-joker for aprime formula � if � =2 [�] and one of the following conditions is satis�ed:1. � = xpc and xp is undecided in � wrt. X2. � = atom(xp) and xp is undecided in � wrt. X3. � = xp # yq and xp is undecided in � wrt. X4. � = yp # xq and xq is undecided in � wrt. X.We will now give some examples for X-jokers. The path constraint xf # xg is anfxg-joker for the formulae 9x1; x2(xfx1 ^ xgx2)9x1(xfx1 ^ xgy)9x1(xfx1):On the other hand, xf # xg is no fxg-joker for the formulae�1 := 9x1(xfx1 ^ xgx1)�2 := 9x1(xfy ^ xgx1 ^ zhx1);since xf # xg 2 [�1], and both xf and xg are decided in �2 wrt. fxg.Proposition 4.18 It is decidable whether a rooted path is undecided in a prime for-mula wrt. a set of variables, and whether a path constraint is an X-joker for a primeformula.

4.4. THE THEORY FT0 83Proof. Follows with Proposition 4.3. 2Lemma 4.3 Let � be a prime formula and �1; : : : ; �n be X-jokers for �. Then9X� j=FT0 9X(� ^ n̂i=1:�i):Proof. Let � = 9Y
 be a prime formula, �1; : : : ; �n (n > 0) be X-jokers for �, A besome model of FT0, and � be some valuation into A with A; � j= 9X�. We have toshow that A; � j= 9X(� ^ Vni=1 :�). We will de�ne a prime formula � 0 satisfying thefollowing:� � 0 j= �,� 9X� j=jFT0 9X� 0,� A; � j= 8X(� 0! :�i) for all i = 1::nOnce we have de�ned a � 0 satisfying these conditions, we can prove the claim usingthe following argumentation. Since 9X� j=jFT0 9X� 0 and A; � j= 9X�, there mustbe an X-update �0 of � such that A; �0 j= � 0. But as � 0 j= � and for all i = 1::nA; � j= 8X(� 0 ! :�i), we know that A; �0 j= � ^ Vni=1 :�i. This shows A; � j=9X(� ^ Vni=1 :�i).For the construction of � 0 we de�ne Fused to be the set of all features that occur inthe path constraints �i. In the following, we will just say that a rooted path xp isdecided when meaning that xp is decided in � wrt. X, and we will use undecided ina similar way. Let Z � V(
G) be the set of all variables of the graph of
 that areundecided, and let h be a new feature. Note that if a rooted path xp is undecidedand realized in �, then jxpj
 is a variable z with z 2 Z. Furthermore, let ZC � Z bethe set of variables z 2 Z with atom(z) 2
.By Proposition 4.14 there exists a unique update �0 of � to the variables that aredecided in 9X�. For each z 2 ZC we �x a constant cz that does not appear in
 and�i for i = 1 : : : n such that8x 2 ((X [Y) \ Dec(9X�)) : cAz 6= �0(x):By the construction we know that for every rooted path yq which is contained insome �i and which is both realized and decided the propositionA; � j= 8X(� ! :ypcz)

84 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0holds. Similarly, we �x for every z 2 ZnZC a constant cz that does not appear in
and �i for i = 1 : : : n such that8x 2 ((X [Y) \ Dec(9X�)) : :�0(x)hA cAz :Again we know for every rooted path yq which is contained in some �i and which isboth realized and decided thatA; � j= 8X(� ! :yphcz)is true. It is understood that cz 6= cz0 for z 6= z0 and z; z0 2 Z.Let be obtained from
G be deleting all constraints atom(z) with z 2 ZC , and letz1; : : : ; zm be an enumeration of ZC . The formula � 0 = 9Y (
 0N ^
 0G) is now de�nedby
 0N =
N ^ z1 := cz1 ^ : : : ^ zm := czm
0G = [z1 cz1 ; : : : ; zm czm] ^ ^z2(ZnZC)0@zhcz ^ ^f2Fused; zft62
 zf"1A :We will show that � 0 satis�es the requirements stated above. Clearly, � 0 j=CFT0 �.Next we will show that 9X� j=jFT0 9X� 0.By the de�nition of Z we know that
N contains no constraint of the form z := t withz 2 Z. Since the variables in Z are undecided, we know that z0 := z 2
N and z 2 Zimplies z0 2 X. Since
N eliminates the variables on the left sides of the equation,this implies 9X9Y (
N ^
G) j=j 9X9Y (
 00N ^
G);where
 00N is the biggest subset of
N with V(
 00N) \ Z = ;. Similarly, 9X� 0 =9X9Y (
 0N ^
 0G) j=j 9X9Y (
 00N ^
 0G). Now V(
 00N) \ Z = ; implies9X� j=j 9Z 0(
00N ^ 9Z
G) and 9X� 0 j=j 9Z 0(
 00N ^ 9Z
 0G);where Z 0 = (X [Y)nZ.Since V(9Z
G) � Dec(9X�), we know that every variable in Z is also undecided in9Z
G: if there would be a variable z 2 Z such that there is a p with ypz 2 [
G]and y 2 V(9Z
G), then y 2 Dec(9X�), which implies z 2 Dec(9X�). But this iscontradictory to the de�nition of Z. Hence, 9Z
G and 9Z
 0G are solved clauses thatdi�er only on the undecided variables. Then proposition 4.2 shows that 9Z
G j=jFT09Z
 0G and therefore 9X� j=jFT0 9X� 0.The remaining part is to show that A; � j= 8X(� 0 ! Vni=1 :�i) for all i = 1::n. Wedistinguish the following cases for �i:

4.4. THE THEORY FT0 851. �i contains a rooted path xp that is undecided and not realized in �: Let p0 bethe longest path such that xp0 is realized in � (such a path must exists since atleast x� is realized in �), and let p = p0fq. As xp is undecided, we know thatjxp0j
 is a variable z with z 2 Z. As p0 is the longest subpath of p0 with xp0realized in � we know that zft 62
. If z 2 ZC , then we have substituted z bya constant cz. Otherwise we have added zf" in
 0G since f 2 Fused.2. every undecided rooted path contained in �i is realized in �. Note that in thiscase �i cannot be of the form xp#, since xp realized in � implies that xp# 2 [�].We will split up this case as follows:(a) �i = xpc. Then xp is undecided. Since xp is realized in �, we know thatjxpj
 is a variable z with z 2 Z. If z 2 Zc, then we have substituted z bya constant symbol c0 di�erent from c. Otherwise, we have added at leastone feature constraint zhcz in
 0G, which implies � 0 j= :�i.(b) �i = atom(xp). Then xp is undecided. Since xp is realized in �, weknow that jxpj
 is a variable z with z 2 Z. Now �i 62 [�] implies thatatom(z) 62
G and therefore z 62 ZC . Hence, we have added at least onefeature constraint zhcz in
 0G.(c) �i = xp # yq or �i = yq # xp where xp is undecided but realized in �.Again we get jxpj
 = z 2 Z. There are two cases, namely z 2 ZC andz 2 (ZnZC).If z 2 ZC , then we have substituted z by cz in
 0G. If yq is undecided,we can assume that yq is also realized in � (otherwise case 1 would beapplicable). This implies that we have either added a constraint z0hcz0 in
0G or we have substituted z0 by cz0 in
 0G, where z0 = jyqj
. Since cz andcz0 are di�erent, this shows � 0 j= :�i.If yq is decided, then A; � j= 8X(� ! :yqcz) by the de�nition of cz. As� 0 j= �, we get A; � j= 8X(� 0! :xp # yq).The other case z 2 (ZnZC) is handled analogously. 2Note that the proof uses the axiom scheme (Ax6), the existence of in�nitely manyfeatures, and the existence of in�nitely many constants.Lemma 4.4 Let �, � 0 be prime formulae and � be a valuation into a model A of FTsuch that A; � j= 9X(� ^ � 0) and A; � j= 9X(� ^ :� 0):

86 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Then every projection of � 0 contains an X-joker for �.Proof. Without loss of generality we can assume that A; � j= � ^ � 0. Furthermore,there exists an X-update �0 of � such that A; �0 j= � ^ :� 0. Let � be a projection of�0. Since A; �0 6j= � 0; we know by Proposition 4.9 that A; �0 6j= �. Hence, there existsa proper path constraint � 2 � such that A; �0 6j= �. Since A; � j= � 0, we know byProposition 4.4 that A; � j= �. Hence, we know by Proposition 4.17 that � must bean X-joker for �. 2Lemma 4.5 If �, �1; : : : ; �n are prime formulae, then9X(� ^ n̂i=1:�i) j=jFT0 n̂i=19X(� ^ :�i):Proof. Let �; �1; : : : ; �n be prime formulae. Then 9X(� ^ Vni=1 :�i) j= Vni=1 9X(� ^:�i) is trivial. To see the other direction, suppose that A is a model of FT0 andA; � j= Vni=1 9X(� ^ :�i). We have to exhibit some X-update �0 of � such thatA; �0 j= � and A; �0 j= :�i for i = 1; : : : ; n.Without loss of generality we can assume that A; �0 j= 9X(� ^ �i) for i = 1; : : : ;mand A; �0 j= :9X(� ^ �i) for i = m+ 1; : : : ; n.By Lemma 4.4 there exists, for every i = 1; : : : ;m, an X-joker �i 2 [�i] for �. ByLemma 4.3 we have 9X� j= 9X(� ^ m̂i=1:�i):Since :� j= :�i by Proposition 4.4, we have9X� j= 9X(� ^ m̂i=1:�i):Hence we know that there exists an X-update �0 of � such that A; �0 j= � and A; �0 j=:�i for i = 1; : : : ;m. Since we know that A; � j= :9X(� ^ �i) for i = m+ 1; : : : ; n,we have A; �0 j= :�i for i = m+ 1; : : : ; n. 2Lemma 4.6 For every two prime formulae �, � 0 and every set of variables X onecan compute a Boolean combination � of prime formulae such that9X(� ^ :� 0) j=jFT0 � and V(�) � V(9X(� ^ :� 0)):

4.4. THE THEORY FT0 87Proof. Let �; � 0 be prime formulae, � be a projection of � 0, X be a set of variablesand A be a model of FT0. We distinguish two cases:1. � contains an X-joker � for �. Then we know that 9X� j= 9X(� ^ :�) byLemma 4.3. Since � 0 j=FT0 � j= �, we know that :� j= :� 0 and hence 9X� j=FT09X(� ^ :� 0). Thus 9X(� ^ :� 0) j=jFT0 9X�:Now the claim follows with Proposition 4.15.2. � contains no X-joker � for �. Then we know by Lemma 4.4 that there exists novaluation � into A such thatA; � j= 9X(� ^ � 0) and A; � j= 9X(� ^ :� 0):Hence, 9X(� ^ :� 0) j=jFT0 9X� ^ :9X(� ^ � 0):Now the claim follows with Propositions 4.15, 4.16 and 4.18.The above shows the existence of �. Moreover, � can be computed since we cancompute a projection � of � 0, and since we can decide whether � contains an X-jokerfor � by Proposition 4.18 (� is �nite). 2Theorem 4.3 For every formula � one can compute a Boolean combination � ofprime formulae such that � j=jFT0 � and V(�) � V(�).Proof. Follows from Lemma 4.1, Propositions 4.16 and 4.15, and Lemmas 4.5and 4.6. 2Theorem 4.4 FT0 is a complete and decidable theory.Proof. The completeness of FT0 follows from the preceding theorem and the fact that> is the only closed prime formula. The decidability follows from the completenessand the fact that FT0 is given by a recursive set of sentences. 24.4.5 Applications of the Simpli�cation AlgorithmAs a �rst application, we want to show that CFT0 is less expressive than FT0, whichis established by the existence of a quanti�er elimination for FT0. To show that FT0is less expressive we must show that the arity predicates are not de�nable in FT0.This claim is a trivial consequence of the following lemma.

88 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Lemma 4.7 Let �(x) be a FT0-formula with one free variable x such that FT0 j=9x�(x). If there is some feature g with FT0 j= 9x(9y(xgy) ^ �(x)), then there arein�nitely many features f such that for all constant symbols c,FT0 j= 9x(xfc ^ �(x)):Proof. Let �(x) be a formula with one free variable, and let
(x) be the correspondingBoolean combination of prime formulae equivalent to �(x) which is the result ofquanti�er elimination. Note that x is the only free variable in
(x) by the de�nitionof the quanti�er elimination. Without loss of generality, we can assume that
(x) isin disjunctive normal form. Since prime formulae are closed under conjunction, wecan furthermore assume that every disjunct of
(x) is of the form �(x)^Vkj=1 :�j(x),where �(x); �1(x); : : : �k(x) are prime formulae such that x is the only variable freein �(x); �1(x); : : : �k(x).2 Furthermore, we can assume that every disjunct of
(x) issatis�able in FT0.Now we choose some disjunct � ^ Vkj=1 :�j of
(x). Since FT0 j= 9x(9y(xgy) ^ �)for some feature g, we can assume without loss of generality that � does not containa constraint x := c or atom(x). Let f be an arbitrary feature that is not usedin �; �1; : : : �k, c be some arbitrary constant symbol and � 0 be the prime formulaequivalent to the conjunction of xfc and �. Note that every fxg-joker � for � withthe property that f is not used in � is also an fxg-joker for � 0. For the claim it issu�cient to proof that FT0 j= 9x(� 0 ^ k̂j=1:�j): (4.5)Since � ^ Vkj=1 :�j is satis�able, we know by Lemma 4.4 that for every j 2 1 : : : keither � j=FT0 :�j or there exists a fxg-joker �j 2 [�j] for �, which must also be anfxg-joker for � 0. Since � 0 j= �, a simple argumentation using Lemma 4.3 shows (4.5).2Corollary 4.1 The arity constraints are not de�nable in FT0, i.e., for every �nite setof features F there is no formula �(x) such that �(x)! Vf2F 9y xfy and �(x)! xf"for f 62 F .Proof. Follows directly from the last lemma. 22Recall that every closed prime formula is valid in FT0 and hence equivalent to >. This impliesthat we can assume without loss of generality that �(x); �1(x); : : :�k(x) have x as a free variable.

4.5. ADDING ARITY CONSTRAINTS: CFT0 89Finally, we want to give a concrete example of how the quanti�er elimination works.Suppose we shall prove that if c1 and c2 are two di�erent constant symbols, thenFT0 j= 8x[(xfc1 ^ xgc2)! 9y1; y2(xfy1 ^ xgy2 ^ :(y1 := y2))]: (4.6)This is the same as showing that xfc1^xgc2 entails 9y1; y2(xfy1^xgy2^y1 6= y2). Inthe following, we will abbreviate xfc1 ^ xgc2 by �, and xfy1 ^ xgy2 by � 0. Note thatboth �; � 0 are prime formulae. The �rst step is to eliminate the quanti�ers 9y19y2.A projection for y1 := y2 is y1� # y2�. Since both y1� and y2� are decided in � 0 wrt.fy1; y2g, we know that y1� # y2� is no fy1; y2g-joker for � 0. Hence, we can apply case2 of lemma 4.6: 8x[:� _ 9y1; y2(� 0 ^ :(y1 := y2))]+ case 2 of lemma 4.68x[:� _ (9y1; y2�0 ^ :9y1; y2(� 0 ^ y1 := y2))]:Now 9y1; y2(� 0 ^ y1 := y2) is no prime formula. An equivalent prime formula is�00 = 9y(xfy^xgy). Now we have to eliminate the out-most quanti�er 8x, for whichpurpose we have �rst to apply some �rst-order equivalence transformation:8x[:� _ (9y1; y2�0 ^ :� 00)]:+:9x[� ^ (:9y1; y2� 0 _ � 00)]:+:[9x(� ^ :9y1; y2� 0) _ 9x(� ^ � 00)]:Since c1 6= c2, we get 9x(� ^ � 00) = 9x(� ^ 9y(xfy ^ xgy)) j=jCFT0 ?. Hence, we haveto consider only :9x(� ^ :9y1; y2�0). Now a projection � for 9y1; y2� 0 is fxf#; xg#g.Since � � [�], we can again apply case 2 of lemma 4.6, yielding:[9x� ^ :9x(� ^ 9y1; y2� 0)]:But 9x� j=jCFT0 > and 9x(� ^ 9y1; y2� 0) j=jCFT0 >, which implies that we get :[> ^:>], which is the same as :? or >. This proves (4.6).4.5 Adding Arity Constraints: CFT04.5.1 The AxiomsThe language of CFT0 contains in addition to FT0 for every �nite set of featuresF � L a unary predicate xF (called arity), which is written in post�x notation. Thetheory CFT0 has the following axiom schemes:

90 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0(Ax1) ~8(xfy ^ xfz! y := z) for every feature f .(Ax2) ~8(cfx!?) for all constants c.(Ax3) :(c1 := c2) if c1 and cs are di�erent constants(Ax4) ~8(xF ^ xfy !?) if f 62 F .(Ax5) cF ! ? for every constant c and arity F .(Ax6) ~8(xF ! 9y(xfy)) if f 2 F and x 6= y.The �rst three axiom schemes are the same as in FT0 and FT0. The last threeaxiom schemes handle the arity constraints. They guarantee that if x has arity F ,then exactly the features f 2 F are de�ned on x.In order to achieve a complete theory, we must add an axiom scheme that is similarto the axiom (Ax6) of FT0. In contrast to FT0, it is not enough to guarantee thatsolved forms are consistent in the intended models. Consider the formulaxffg ^ xfx:Then there exists exactly one element of TCFT0 (resp. RCFT0) that satis�es this de-scription. The uniqueness of the solution of such descriptions must also be expressedin the axioms. Note that it was not possible to �x one element of the domain inthe theory FT0 since we cannot restrict the arities of the variables in FT0. The ax-iom scheme that guarantees both the existence and under certain conditions also theuniqueness of solutions of solved forms was �rst introduced by [ST94]. They also in-troduced a complete axiomatisation for CFT in this paper without actually provingcompleteness. Before stating the required axiom scheme, we will recall the importantnotion of a determinant as presented in [ST94].De�nition 4.14 (Determinant) A determinant for x is a formula of the formxff1; : : : ; fng ^ xf1t1 ^ : : : ^ xfntn;where each ti is a variable or constant. We will write the above formula for conve-nience as x := (f1 : t1; : : : ; fn : tn):Given a basic constraint �, we say that x is determined in � if � contains a determi-nant for x. A determinant for pairwise distinct variables x1; : : : ; xn is a conjunctionx1 := D1 ^ : : : ^ xn := Dn;

4.5. ADDING ARITY CONSTRAINTS: CFT0 91where D1; : : : ;Dn are determinants for x1; : : : ; xn. For a basic constraint � we de�neD(�) to be the set of variables that are determined in �.The variables in V(�)nD(�) are called the parameters of �. Now we can de�ne thelast axiom scheme as introduced by [ST94], which states that for every valuation ofthe parameters of a determinant � there is exactly one valuation for the variablesdetermined by �:(Ax7) ~8(9!D(�)�) if � is a determinant.An example of an instance of scheme (Ax7) is8y; z; w9!x; u; v0BB@ x := (f :u g: v)u := (h:x g: y f : z)v := (g: z h:w) 1CCAThe theory CFT0 consists of the axiom schemes (Ax1){(Ax7).Proposition 4.19 The structures TCFT0 and RCFT0 are models of CFT0.Proof. That the �rst six axioms schemes are satis�ed is obvious. To show that TCFT0(resp. RCFT0) satis�es the last axiom scheme, one assumes arbitrary feature trees forthe universally quanti�ed variables and constructs feature trees for the existentiallyquanti�ed variables. 2We can also de�ne a feature graph interpretation GCFT0 of the language CFT0, where� the universe of GCFT0 and the interpretations of atom, the constant symbolsand the feature symbols are de�ned as for the feature graph interpretation Gof FT0 (see Section 4.4.2, page 77), and� (x;
) 2 FGCFT0 i� F = ff j 9t : xft 2
g.Proposition 4.20 The feature graph structure GCFT0 is no model of the theory CFT0.Proof. GCFT0 does not satisfy the axiom scheme (Ax7). Consider the two di�erentfeature graphs� = (x; xfy ^ yh1 ^ xgz ^ zh1) and �0 = (x; xfy ^ yh1 ^ xgy);and let � = (y; yh1). Both � and �0 have the arity ff; gg and � as a subgraph underthe features f and g. Hence, GCFT0 6j= 8y; z9!x(xff; gg ^ xfy ^ xgz). 2

92 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT04.5.2 Solved Formulae, Congruences and NormaliserFor CFT0 we have to rede�ne the notion of a solved form, since the arity constraintsare no free predicates in CFT0.De�nition 4.15 (Solved Formula) A basic constraint
 is a solved formula if1. no atomic constraint occurs twice in �;2. an equation x := t appears in
 if and only if
 eliminates x;3. if xft 2 � and xft0 2 �, then t = t0;4. if xF; xG 2 �, then F = G;5. if xF 2 � and f 62 F , then xfy 62 �;6. � does not contain an atomic formula of the form c := t, cF or cft.Every solved form
 has a unique decomposition
 =
N ^
G into a possibly emptyconjunction
N of equations \x := y" and a possibly empty conjunction
G of con-straints \xF" and feature constraints \xfy". We call
N the normaliser and
G thegraph of
.Proposition 4.21 Let
 be the graph of a solved formula. A variable x is calledconstrained in
 if
 contains a constraint xft or xF . Let CV(
) be the set of allvariables constrained in
. ThenCFT0 j= ~89CV(
)
Proof. We will extend
 to a determinant � with D(�) = CV(
).For every x 2 CV(
) and x 62 D(
) let Fx be a set of features such that Fx containsexactly the features f with xfy 2
 and let � be de�ned as� =
 [fxFx j x 2 CV(
)gBy de�nition, � is a determinant. By axiom (Ax7) we know thatCFT0 j= ~89D(�)�which proves CFT0 j= ~89CV(
)
. 2

4.5. ADDING ARITY CONSTRAINTS: CFT0 93Again, every basic constraint is equivalent in CFT0 to either ? or a solved formula.The basic simpli�cation rules for achieving a solved form are the basic simpli�cationrules of FT0 (see �gure 4.1, page 69) plus the following clash rules:(ArCl) xF ^ xG ^ �? F 6= G(FArCl) xfy ^ xF ^ �? f 62 F(CArCl) cF ^ �?We say that a basic constraint clashes if it can be reduced to ? with one of the clash-rules (i.e., one of the rules (CCl), (CFCl1), (CFCl2), (ArCl), (FArCl), or (CArCl)).We say that a basic constraint is clash-free if it does not clash.Proposition 4.22 The basic simpli�cation rules for CFT0 are terminating and per-form equivalence transformations with respect to CFT0. Moreover, a basic formula� 6= ? is solved if and only if no basic simpli�cation rule applies to it.Proposition 4.23 Let � be a formula built from atomic formulae with conjunction.Then one can compute a formula � that is either solved or ? such that � j=jCFT0 �and V(�) � V(�).Proof. Follows from the preceding proposition and the fact that the basic simpli�-cation rules do not introduce new variables. 2In the completeness proof for FT0 we have de�ned the notion of normaliser, which wasthe set of equations attached to a solved formula. For CFT0 we need a more detailedde�nition of a normaliser. To this end we use the notion of congruence of a basicconstraint. The de�nitions of congruence and normalisers are taken out of [ST94],where they have been de�ned and used for the �rst time.A congruence of a basic constraint � is an equivalence relation � on termssatisfying the following:� t1 := t2 2 � implies t1 � t2� t1ft2; t01ft02 2 � and t1 � t01 implies t1 � t02.

94 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0It is easy to see that the set of congruences of a basic constraint is closed underintersection. Since the equivalence relation identifying all terms is a congruence forevery basic constraint, we know that every basic constraint has a least congruence.It will be convenient to represent congruences as idempotent substitutions. Since ourcongruences also relates constants, we de�ne a substitution to be a function on theset of terms.De�nition 4.16 A normaliser of a congruence � is an idempotent substitution �that satis�es 8t1; t2 : (�(t1) = �(t2), t1 � t2):We say that substitution � is �nite if there are only �nitely many terms t with �(t) 6= t.A �nite substitution can be represented as^ft := �(t) j t 6= �(t)g:For convenience, we will simply use � to denote this formula. Clearly, for every basicconstraint � and every substitution � we have� ^ � j=j � ^ ��:De�nition 4.17 (Normaliser) A normaliser of a basic constraint � is a normaliserof the least congruence of �.We will now recall some properties of normalisers that have been proven in [ST94].A graph constraint is a basic constraint that contains no equations. A graphconstraint is called a graph if it is a solved formula. We say for a substitution �and a graph constraint � that �� clashes if either � clashes or the result of applying� to � clashes. Note that for every normaliser � which is clash-free we can assumewithout loss of generality that �(c) = c for every constant symbol c (which we willdo henceforth).Proposition 4.24 Let A be a model of CFT0, � a basic constraint and � a normaliserof �. Then � is unsatis�able in A if and only if ��G clashes, where �G is a graphconstraint containing all constraints of � of the form tF and tft0.Proposition 4.25 Let
 =
G ^
N be the normal form of a basic constraint � thatis normal with respect to the rules (Triv), (Cong), (Orient) and (Elim). Then � =
Nis a normaliser of � satisfying
G = �
G and V(�) � V(�).

4.5. ADDING ARITY CONSTRAINTS: CFT0 95This proposition allows us to calculate normalisers. Note that this also implies thatfor a solved formula the two notions of normaliser as de�ned in De�nition 4.15 andin De�nition 4.17 agree.De�nition 4.18 (Saturated Formula) A basic constraint � is called saturated iffor every arity constraint xF 2 � and every feature f 2 F there exists a featureconstraint xft 2 �.Lemma 4.8 Let
 be a saturated graph constraint and � be a normaliser of somecongruence of
. If �
 is clash-free and if V(�) � D(
), then
 j=CFT0 �:For our purposes, we need two additional propositions.Proposition 4.26 Let the substitution � be a normaliser of some congruence of agraph constraint � such that �� is clash-free. Then �� is a graph.Proposition 4.27 Let � be the normaliser of some congruence of graph
 and let� = �0 [�00 be a partition of �. If �0 is a normaliser of some congruence of
, then �00is a normaliser of some congruence of �0
.Proof. Let
, �, �0, and �00 be given as described. If �0 is a normaliser of somecongruence of
, we have to show that �00 is a normaliser of some congruence of �0
.Clearly, �00 is an idempotent substitution. The congruence property follows from thefact that �00(�0(x)) = �(x). 24.5.3 Prime FormulaeWe now de�ne a class of prime formula for the theory CFT0 that have the propertiesas required by lemma 4.1.De�nition 4.19 (Prime Formula) Let � be a basic constraint. A formula � =9X� is called prime if it satis�es the following conditions:1. � is solved and saturated;2. X has no variable in common with the normaliser of �;

96 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT03. for every x 2 X there is a variable y 2 V(�) and a path p such that ypx 2 [�].The letter � will always denote a prime formula if nothing else is stated. Again, > isthe only closed prime formula. Note that we can use all de�nitions and propositionsof section 4.3 since a solved formula in CFT0 is also a solved formula as de�ned forFTF1;:::;Fi;:::0 and FTF1 ;:::;Fi;:::0 � CFT0, where F1; : : : ; Fi; : : : is an enumeration of allarity constraints.As in the completeness proof for FT0, we have to de�ne the notion of decided variablesin order to show that every existential quanti�ed basic constraint can be transformedinto a prime formula. Decided variables of an existential quanti�ed formula are thosevariables, which are reachable from a free variable via a feature path. We have shownfor FT0, that every existential quanti�ed solved formula is equivalent to the set ofconstraints on the decided variables. But for CFT0, we will de�ne a more generalnotion of decidedness, which is more appropriate for the proofs to come.De�nition 4.20 (Decided Variables) Let
 be some solved formula, and let =9X
. A variable x 2 V(
) is said to be explicitly decided in if there is a variabley free in and a path p such that ypx 2 [
]:A variable x 2 V(
) is called implicitly decided in if
 contains a determinant Dfor x where each parameter of D is explicitly decided in . We say that x 2 V(
) isdecided in if there is a z with x"z 2 [
] and z is explicitly or implicitly decided in .We say that a variable is undecided if it is not decided. The set of decided variablesof a formula will be denoted by Dec(). The set of explicitly decided variablesis denoted by Dece(). Note that if 9X
 is a prime formula, then every variable inV(
) is explicitly decided. For the formula = 9x; x1; x2(xfy ^ x1ff; gg ^ x1fy ^ x1gx2 ^ zhx2)we get Dece() = fy; z; x2g and Dec() = Dece()[fx1g. The variable x is the onlyone which is undecided in .Note that the explicitly decided variables are the variables we have called decided inthe completeness proof for FT0.

4.5. ADDING ARITY CONSTRAINTS: CFT0 97Proposition 4.28 Let
 be a solved formula, = 9X
, and Y be the subset of Xcontaining all variables that are decided in . Then for every valuation � into a CFT0model A with A; � j= there exists a unique Y -update �0 of � such thatA; �0 j= 9XnY
:Proposition 4.29 Let
 be a solved formula and X be a set of variables. If x isa variable that is decided in 9X
 and
 contains a constraint xfy, then y is alsodecided in 9X
.The following lemmas and propositions will show that we can transform every ex-istential quanti�ed basic constraint into a prime formula. A constraint c is calleda constraint for x if c is of the form xft, xF or x := t. We will say that twoformulae = 9X
 and 0 = 9X 0
0 di�er only on the undecided variables ifV() = V(0), Dece() = Dece(0), and and 0 contain exactly the same con-straints for the explicitly decided variables.Lemma 4.9 (Garbage Collection) Let = 9X
 and 0 = 9X 0
0 be existentiallyquanti�ed solved formulae that di�er only on the undecided variables. Then j=jCFT0 0:Proof. Let Y = Dece() \ X = Dece(0) \ X 0, Z = XnY and Z 0 = X 0nY . Ycontains the existentially quanti�ed, explicitly decided variables, whereas Z (resp.Z 0) contains the variables that are not explicitly decided in (resp. 0). We willshow that there is a possible empty conjunction of equations � such that9X
 j=jCFT0 9Y (� ^ 9Z
G) and 9X
 j=jCFT0 9Y (� ^ 9Z 0
0G): (4.7)Once we have shown this, the lemma can be proven as follows. Since V(9Z
G) �Dece(), we know that every variable explicitly decided in 9Z
G must also be ex-plicitly decided in : A variable x is explicitly decided in 9Z
G if there is a variabley 2 V(9Z
G) with ypx 2 [
G]. Since y 2 Dece(), we know that there is variablez 2 V() with zqy 2 [
] for some path q. Hence, zpqx 2 [
], which implies that z isexplicitly decided in .Similarly we can show that Dece(9Z 0
0G) � Dece(). This implies that (9Z
G) and(9Z 0
0G) are graphs that do not di�er on the decided variables. An adaption of theproof of lemma 4.2 shows that 9Z
G j=jCFT0 9Z 0
0G;

98 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0which proves j=jCFT0 0.For the proof of (4.7) let � be the subset of equations x := t in
N \
 0N with V(x :=t) � Dece(). Then all variables occuring on the left side of an equation in
Nn�(resp.
 0Nn�) cannot be explicitly decided in (resp. 0). Since
 and
 0 eliminatethe variables on the left side of the equations, we get9X
 j=j 9X(� ^
G) and 9X
 0 j=j 9X(� ^
 0G)Now (4.7) follows from the fact that V(�) \ Z = ; and V(�) \ Z 0 = ;. 2Proposition 4.30 For every prime formula � and every set of variables X one cancompute a prime formula � 0 such that9X� j=jCFT0 �0 and V(� 0) � V(9X�):Proof. See proof of proposition 4.15. 2Proposition 4.31 For every two prime formulae � and � 0 one can compute a for-mula � that is either prime or ? and satis�es� ^ � 0 j=jCFT0 � and V(�) � V(� ^ � 0):Proof. See proof of proposition 4.16. 24.5.4 Proof of the Main LemmasIn this section we will show that our prime formulae for CFT0 satisfy requirements (5)and (6) of lemma 4.1. The procedure is similar to the one in the proof for FT0, i.e.we will de�ne the central notion of X-jokers.De�nition 4.21 A rooted path xp is said to be determined in � = 9X
 if jxpj
 isde�ned and jxpj
 2 D(
).Proposition 4.32 Let � = 9X� be some prime formula and x 2 D(
) be an variablethat is undecided in �. Then there is a variable y and path p such that xpy 2 [
],y 62 D(
) and y is undecided in �.

4.5. ADDING ARITY CONSTRAINTS: CFT0 99Proof. Since x is in D(
) and is undecided, every determinant � �
 with x 2 D(�)must contain an undecided parameter. Now let � be the largest determinant suchthat � �
, x 2 D(�) and for every z 2 V(�) there is a path p withxpz 2 [
]:Such a determinant must exists since � is saturated. Now let y be one parameter of �that is undecided. y cannot be determined in
. If
 would contain a determinant Dfor y, then �0 = � ^ y := D would be a determinant that is larger than � and satis�es�0 �
, x 2 D(�0) and 8z 2 V(�0)9p : xpz 2 [
]. Hence, y is the variable we havesearched for. 2De�nition 4.22 Let � = 9Y
 be a prime formula and X be a set of variables. Arooted path xp is said to be decided in � wrt. X if either x 62 X or there is somepre�x p0 such that xp0 is realized and jxp0j
 is constant or a variable that is decidedin 9X�.Note that this de�nition di�ers from the one in 4.12, as the decided variables in FT0are the explicitly decided variables in CFT0.Proposition 4.33 If � is a proper path constraint such that all rooted paths containedin � are decided in � wrt. X, then either A; � j= 8X(�! �) or A; � j= 8X(�! :�).De�nition 4.23 (X-Joker) Let � = 9Y � be a prime formula and X be a set ofvariables. We say that a rooted path xp is free in � wrt. X if xp is neither determinedin � nor decided in � wrt. X. A proper path constraint is called an X-joker for � if� 62 [�] and one of the following conditions is satis�ed:� � = xpc and xp is free in � wrt. X,� � = atom(xp) and xp is free in � wrt. X,� � = xp # yq and xp is free in � wrt. X,� � = yq # xp and xp is free in � wrt. X.This de�nition and the de�nition of X-jokers for FT0 di�er in that an X-joker forCFT0 must contain an undecided rooted path that is additionally undetermined.

100 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Thus, the path constraint � = xf # xg is no fxg-joker for the formulae�1 = 9x1; x2; x3; x40BB@ xfx1 ^ xgx2 ^x1ffg ^ x1fx3 ^x2ffg ^ x2fx4 1CCA�2 = 9x1; x20BB@ xfx1 ^ xgx2 ^x1ffg ^ x1fx1 ^x2ffg ^ x2fx2 1CCABut we can calculate an fxg-joker �0 for �1 with the property �1^� j=CFT0 �0, namelythe constraint xff # xgf . On the other hand, �0 is no fxg-joker for �2, and thereexists no fxg-joker �00 with the property that �2 ^ � j=CFT0 �00. The calculation ofentailed X-jokers is the subject of Lemma 4.10. Note that the di�erences betweenthe X-jokers for FT0 and CFT0 is also re
ected in the following observation. In FT0,given a proper path constraint � such that there is some FT0 model A and a valuation� with A; � j= 9X(� ^ �) and A; � j= 9X(� ^ :�);then � must be an X-joker (see lemma 4.4). For CFT0, this does not hold.Proposition 4.34 It is decidable whether a rooted path is free in a prime formulawrt. a set of variables, and whether a path constraint is an X-joker for a primeformula.Proof. Follows from proposition 4.3. 2Lemma 4.10 Let � = 9Y
 be a prime formula and � be a proper path constraint.Then either we can calculate an X-joker �0 for � with� ^ � j= �0or for every CFT0 model A and every valuation � we haveA; � j= 8X(�! �) or A; � j= 8X(�! :�):Proof. Without loss of generality we can assume that V(�) \ Y = ;. If � is anelement of [�], then � j=CFT0 � by proposition 4.4. If the normal form of � ^ � is ?,then � j= :�. If both fail, then we distinguish the cases listed below. We will saythat a rooted path xp is decided to mean that xp is decided in � wrt. X, and we willuse the term undecided in a similar way. Analogous, we will say that a variable is(un-)decided if it is (un-)decided in 9X�.

4.5. ADDING ARITY CONSTRAINTS: CFT0 1011. all rooted paths contained in � are decided. Then proposition 4.33 shows thatfor every CFT0 model A and every � either A; � j= 8X(� ! �) or A; � j=8X(�! :�):2. � contains a rooted path xp that is undecided and not realized in �. Then xp#is an X-joker since
 is saturated.3. � contains at least one undecided rooted path, and the undecided rooted pathscontained in � are realized in �. We will split up this case as follows:3.a � = xp#. Then � is in [�].3.b � = xpc and xp is undecided but realized in �. By our assumption we canassume that xp is not determined in � since this would imply � ^ � j=jCFT0 ?.Hence, � must be an X-joker.3.c � = xpF . Analogous to case (3.b).3.d � = atom(xp). Analogous to case (3.b).3.e � = xp # yq and xp is decided and yq is undecided. Then yq is realized. If yqis undetermined in �, then � is an X-joker.Otherwise let z = jyqj
 with z 2 D(
). Since z is undecided, proposition 4.32shows that there is a variable u 62 D(
) that is undecided and a path r suchthat zru 2 [
]. Then yqr is a rooted path that is both undecided and notdetermined in �.Now jxprj
 must be either unde�ned or a variable z0 with z0 6= z, since otherwiseu would be a decided variable. Hence, �0 = xpr # yqr is not in [�]. This showsthat �0 is an X-joker with � j=CFT0 �0.3.f � = xp # yq and both xp and yq are undecided. Then xp and yq are realized in�.If jxpj
 (resp. jyqj
) is not an element of V(
G), then xp (resp. yq) is notdetermined in �, which implies that � is an X-joker.Otherwise, let @ be some access function of � and � be a normaliser of
G ^jxpj
 := jyqj
. Note that� ^ � j=jCFT0 9Y (
N ^
G ^ jxpj
 := jyqj
)and
G ^ jxpj
 := jyqj
 j=jCFT0
G ^ �:

102 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Since V(jxpj
 := jyqj
) � V(
G), we can assume by proposition 4.25 that V(�) �V(
G). Since
N eliminates the variable on the left side of the equations, thisimplies
N ^
G ^ jxpj
 := jyqj
 j=jCFT0
N ^
G ^ �:Furthermore, we can assume without loss of generality that � contains no trivialequations of form z := z. Hence, @z1 # @z2 62 [�] for every equation z1 := z2 in�. Since we have assumed � ^ � 6j=CFT0 ?, we know that �
G is clash-free.If � contains an equation z := c where z is undecided, then z 2 V(
G). Now zcannot be determined in
G as �
G is clash-free. Hence, @zc is an X-joker �0with � ^ � j=CFT0 �0.If � contains an equation z1 := z1 or z2 := z1 where z1 is undecided and z2 isdecided, then �0 = @z1 # @z2 is a proper path constraint with � ^ � j= �0.Furthermore, we can apply case (3.e) on �0 yielding an X-joker �00 with �^� j=�00.If � contains an equation z1 := z1 or z2 := z1 where z1 and z2 are undecided andz1 is not determined in
G, then �0 = @z1 #@z2 is an X-joker with � ^ � j= �0.The remaining case is that � contains only equations of the form z := c with zdecided or equations of the form z1 := z2 where either both variables are decidedor both variables are undecided but determined in
G. We will show that inthis case A; � j= 9X(� ^ �) implies A; � j= 8X(�! �).Now assume that A; � j= 9X(� ^ �). We will show that thenA; � j= 8X8Y (
G ! �): (4.8)This implies that A; � j= 8X8Y (
N ^
G ! jxpj
 := jyqj
), which is equivalentto A; � j= 8X(9Y
 ! �).Let �0 be the subset of � containing all equations among decided variables, andlet �00 be the rest of �. �00 contains only equations between variables that aredetermined in
G. It is easy to check that �0 is a normaliser of some congruenceof
G. This implies by proposition 4.26 that �0
G is a solved graph.Let �0 be the unique extension of � to the variables that are decided, and letZ � X [Y be the set of undecided variables. Clearly, A; �0 j= �0. Furthermore,V(�0) \ Z = ;. This impliesA; �0 j= 8Z(
G$ �0
G):Since �00 is a normaliser of some congruence of �0
G by proposition 4.27, �0
G isa solved graph and V(�00) � D(�0
G), we know by lemma 4.8 that�0
G j= �00:

4.5. ADDING ARITY CONSTRAINTS: CFT0 103Hence, A; �0 j= 8Z(
G ! �0 ^ �00), which implies A; �0 j= 8Z(
G ! �). Fromthis follows (4.8) as �0 was the unique update of � to Dec(9X�). 2Corollary 4.2 Let � be a prime formula and � be a proper path constraint. If thereis a CFT0 model A and a valuation � into A withA; � j= 9X(� ^ �) and A; � j= 9X(� ^ :�);then we can calculate an X-joker for � with � ^ � j= �0.Lemma 4.11 Let � = 9Y
 be a prime formula and �1; : : : ; �n be X-jokers for �.Then 9X� j=CFT0 9X(� ^ n̂i=1:�i)Proof. Let � = 9Y
 be a prime formula, �1; : : : ; �n (n > 0) be X-jokers for �, A besome model of CFT0, and � be some valuation into A with A; � j= 9X�. We have toshow that A; � j= 9X(� ^ Vni=1 :�). We will de�ne a prime formula � 0 satisfying thefollowing:� � 0 j= �,� 9X� j=jCFT0 9X� 0,� A; � j= 8X(� 0! :�i) for all i = 1::nOnce we have de�ned a � 0 satisfying these conditions, we can prove the claim usingthe following argumentation. Since 9X� j=jCFT0 9X� 0 and A; � j= 9X�, there mustbe an X-update �0 of � such that A; �0 j= � 0. But as � 0 j= � and for all i = 1::nA; � j= 8X(� 0 ! :�i), we know that A; �0 j= � ^ Vni=1 :�i. This shows A; � j=9X(� ^ Vni=1 :�i).In the following, we will just say that a rooted path xp is decided when meaning thatxp is decided in � wrt. X, and we will use undecided in a similar way. Let Z � V(
G)be the set of all variables of the graph of
 that are undecided and undetermined.Note that if a rooted path xp is undecided, undetermined and realized in �, thenjxpj
 is a variable z with z 2 Z. Furthermore, let ZC � Z be the set of variablesz 2 Z with atom(z) 2
.

104 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0By Proposition 4.28 there exists a the unique update �0 of � to the variables that aredecided in 9X�. For each z 2 ZC we �x a constant cz that does not appear in
 and�i for i = 1 : : : n such that8x 2 ((X [Y) \ Dec(9X�)) : cAz 6= �0(x):By the construction we know that for every rooted path yq which is contained insome �i and which is both realized and decided, that the propositionA; � j= 8X(� ! :ypcz)holds. Similarly, we �x for every z 2 ZnZC an arity Fz = ff j zfy 2
g[fhg, whereh is a new feature such that8x 2 ((X [Y) \ Dec(9X�)) : :�0(x)FAz :Again we know for every rooted path yq which is contained in some �i and which isboth realized and decided, that the propositionA; � j= 8X(�! :ypFz)is true. It is understood that cz 6= cz0 for z 6= z0 and z; z0 2 ZC , and Fz 6= Fz0 forz 6= z0 and z; z0 2 ZnZC .Let be obtained from
G be deleting all constraints atom(z) with z 2 ZC , and letz1; : : : ; zm be an enumeration of ZC . The formula � 0 = 9Y (
 0N ^
 0G) is now de�nedby
0N =
N ^ z1 := cz1 ^ : : : ^ zm := czm
 0G = [z1 cz1; : : : ; zm czm] ^ ^z2(ZnZC) zFzWe will show that � 0 satis�es the requirements stated above. Clearly, � 0 j=CFT0 �.Furthermore, 9X� j=j 9X� 0 by proposition 4.9.The remaining part is to show that A; � j= 8X(� 0 ! Vni=1 :�i) for all i = 1::n. Wedistinguish the following cases for �i:1. �i contains a rooted path xp that is undecided and not realized in �: Let p0 bethe longest path such that xp0 is realized in � (such a path must exists since atleast x� is realized), and let p = p0fq. If xp0 is determined in �, then � j= xp0Fwith f 62 F as � is saturated. Hence, � j= :xp#.If xp0 is undetermined, we know that jxp0j
 is a variable z with z 2 Z since xp isundecided. As p0 is the longest subpath of p0 with xp0 realized in � we know thatzft 62
. If z 2 ZC , then we have substituted z by a constant cz. Otherwise,we have added an arity constraint zFz with f 62 Fz. Hence, � j= :xp#.

4.5. ADDING ARITY CONSTRAINTS: CFT0 1052. every undecided rooted path contained in �i is realized in �. Note that in thiscase �i cannot be of the form xp#, since xp realized implies that xp# 2 [�]. Wesplit up this case as follows:(a) �i = xpc. Then xp must be undecided as �i is an X-joker. Since xpis realized in �, we know that jxpj
 is a variable z with z 2 Z. If z 2Zc, then we have substituted z by a constant symbol c0 di�erent from c.Otherwise, either
 contains an arity constraint zF or we have added anarity constraint zFz in
 0G. In both cases we get � 0 j= :�i.(b) �i = xpF . Analogous to case (2a)(c) �i = atom(xp). Then xp is undecided. Since xp is realized in �, weknow that jxpj
 is a variable z with z 2 Z. Now �i 62 [�] implies thatatom(z) 62
G and therefore z 62 ZC . Hence, we have added a constraintzFz in
 0G.(d) �i = xp # yq or �i = yq # xp where xp is undecided and not determined in�. By the above cases we can assume that xp is realized in �. Again weget jxpj
 = z 2 Z. There are two cases, namely z 2 ZC and z 2 (ZnZC).If z 2 ZC , then we have substituted z by cz in
 0G. If yq is undecided,we know that yq is also realized in �. This implies that we have eitheradded a constraint z0Fz0 in
 0G or we have substituted z0 by cz0 in
 0G, wherez0 = jyqj
. Since cz and cz0 are di�erent, this shows � 0 j= :�i.If yq is decided, then A; � j= 8X(� ! :yqcz) by the de�nition of cz. As� 0 j= �, we get A; � j= 8X(� 0! :xp # yq).The other case z 2 (ZnZC) is handled analogously. 2Lemma 4.12 If �, �1; : : : ; �n are prime formulae, then9X(� ^ n̂i=1:�i) j=jCFT0 n̂i=19X(� ^ :�i):Proof. Let �; �1; : : : ; �n be prime formulae. Then 9X(� ^ Vni=1 :�i) j= Vni=1 9X(� ^:�i) is trivial. To see the other direction, suppose that A is a model of CFT0 andA; � j= Vni=1 9X(�^:�i). We must exhibit someX-update �0 of � such that A; �0 j= �and A; �0 j= :�i for i = 1; : : : ; n.Without loss of generality we can assume that A; �0 j= 9X(� ^ �i) for i = 1; : : : ;mand A; �0 j= :9X(� ^ �i) for i = m + 1; : : : ; n. For every i = 1; : : : ;m let �i be aprojection of �i.

106 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0Since for every i = 1; : : : ;m �i j=jCFT0 �i;we know that there is a proper path constraint � withA; � j= 9X(� ^ �) and A; � j= 9X(� ^ :�);This implies by corollary 4.2 that we can calculate, for every i = 1; : : : ;m, an X-joker�0i for � with � ^ �i j=CFT0 �0i. By Lemma 4.11 we have9X� j= 9X(� ^ m̂i=1:�0i):from which 9X� j= 9X(� ^ m̂i=1:�i):follows.Since :�i j= :�i by Proposition 4.4, we have9X� j= 9X(� ^ m̂i=1:�i):Hence we know that there exists an X-update �0 of � such that A; �0 j= � and A; �0 j=:�i for i = 1; : : : ;m. Since we know that A; � j= :9X(� ^ �i) for i = m+ 1; : : : ; n,we have A; �0 j= :�i for i = m+ 1; : : : ; n. 2Lemma 4.13 For every two prime formulae �; � 0 and every set of variables X onecan compute a Boolean combination � of prime formulae such that9X(� ^ :� 0) j=jCFT0 � and V(�) � V(9X(� ^ :� 0))Proof. Let � be a projection of � 0 and A be model of CFT0. We distinguish thefollowing cases:1. There exists an � 2 � such that we can derive an X-joker �0 with �^� j=CFT0 �0using lemma 4.10. Then 9X� j=CFT0 9X(� ^ :�0) by lemma 4.11. Since� ^ :�0 j=CFT0 :�, we get 9X� j=CFT0 9X(� ^ :�):Since � 0 j=CFT0 � j= �, we know that :� j=CFT0 :�0 and hence 9X� j=CFT09X(� ^ :� 0). Thus 9X(� ^ :� 0) j=jCFT0 9X�The rest follows from proposition 4.30.

4.5. ADDING ARITY CONSTRAINTS: CFT0 1072. For every � 2 � lemma 4.10 does not produce an X-joker �0 with �^� j=CFT0 �0.Then for every valuation � into A and every � 2 � either A; � j= 8X(� ! �)or A; � j= 8X(�! :�). This implies that eitherA; � j= 8X(�! �̂2��)or A; � j= 8X(� ! :(�̂2��)):Since V�2� � j=j � j=jCFT0 �0, this implies that there is no valuation � withA; � j= 9X(� ^ � 0) and A; � j= 9X(� ^ :� 0):Hence 9X(� ^ :� 0) j=jCFT0 9X� ^ :9X(� ^ � 0):The rest follows from propositions 4.30 and 4.31. 2Theorem 4.5 For every formula � one can compute a Boolean combination � ofprime formulae such that � j=jCFT0 � and V(�) � V(�).Proof. Follows from Lemma 4.1, Propositions 4.31 and 4.30, and Lemmas 4.12and 4.13. 2Theorem 4.6 CFT0 is a complete and decidable theory.Proof. The completeness of CFT0 follows from the preceding theorem and the factthat > is the only closed prime formula. The decidability follows from the complete-ness and the fact that CFT0 is given by a recursive set of sentences. 2

108 CHAPTER 4. RECURSIVE AXIOMATISATIONS OF FT0 AND CFT0

Chapter 5Decidability of the PositiveExistential Fragment of RFTIn this chapter, we will show that the positive existential fragment of the languageRFT is decidable. This is done by presenting a quasi-terminating rule system thattransforms each quanti�er-free conjunction of atomic constraints into an equivalentset of solved formulae (seen as a disjunction).Section 5.1 gives an informal description of the method for checking satis�ability.Section 5.2 introduces the two-sorted logic RF, in which a regular path expressionxLy is expressed by two constraints x[�]y and � :2 L. � is a variable that is inter-preted as a feature path. Furthermore, this section presents a validity preservingtranslation of RFT-clauses into RF-clauses. Section 5.3 characterise the clauses thatare obtained by translating clauses of the original syntax into RF and de�nes twonormal forms, namely pre-solved clauses and solved clauses. Pre-solved clauses aresatis�able under the condition that there exists a valuation for the path variables,whereas solved clauses are always satis�able. We show the satis�ability of solvedclauses by constructing a valuation in the feature tree interpretation. Since we willprove in the following sections that we can transform an initial clause into an equiva-lent set of solved clauses, this implies that the feature tree interpretation is canonical.In Section 5.4 we de�ne a set of deterministic and non-deterministic simpli�cationrules that transforms an initial clause into an equivalent set of pre-solved clauses.This intermediate step is necessary since otherwise the algorithm would not termi-nate. Section 5.5 �nally shows how pre-solved clauses can be transformed into solvedclauses. 109

110 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT5.1 The MethodWe will �rst present a slightly modi�ed method for testing satis�ability of quanti�erfree formulae in the FT0-language, and then turn to the systems as extended byregular path expressions. For the sake of convenience, we allow expressions of theform xpy where p is a path. Although these constraints extend the language of FT0,they can easily be de�ned within FT0. Every constraint xf1 : : : fny is equivalent tothe FT0-formula 9x1; : : : xn(xf1x1 ^ x1f2x2 ^ : : : xn�1fnxn ^ xn := y).Now consider a clause � = xp1y1 ^ xp2y2 (in the rest of the chapter we will callformulae like this clauses). Although only subtree relations for x; y1 and x; y2 arecontained in this clause, an additional subtree or equality relation can be implieddepending on the paths p1 and p2. If p1 equals p2, we know that y1 and y2 must beequal, which implies that � is equivalent to xp1y1^ y1 := y2. If p1 is a pre�x of p2 andhence p2 = p1p0, we can transform � into the equivalent formula xp1y1 ^ y1p0y2, thusadditionally stating that y2 is a subtree of y1. The reverse case is handled similarly.If neither pre�x nor equality holds between the paths, there is nothing to do. By andlarge, clauses where the last condition holds for every x and every pair of di�erentconstraints xp1y1 2 � and xp2y2 2 � are the solved graphs as de�ned in the lastchapter, which are satis�able.If we consider a clause of the form � = xL1y1^xL2y2, then we have again to check therelation between y1 and y2. But now there is in general no unique relation determinedby �, since this depends on which paths p1 and p2 are used out of L1 and L2. Hence,we have to select non-deterministically a relation between p1 and p2 before we cancalculate the relation between y1 and y2. In the following, we will often just say\guess" instead of \select non-deterministically".But there is a problem with the original syntax, namely that it does not allow oneto express any relation between the chosen paths1. Therefore, we extend the syntaxby introducing so-called path variables (written �; �; �0; : : :), which are interpreted asfeature paths. We will henceforth refer to the variables of the original syntax as treevariables. If we use in addition the modi�ed subtree relation x[�]y and a restrictionconstraint � :2 L, a path expression xLy can be expressed by the equivalent clausex[�]y ^ � :2L (� new).1Maxwell and Kaplan solved this problem by using operations on regular languages such as inter-section and calculating pre�x languages directly. The use of this method forced them to introducea new variable each time a transformation rule was applied. For a feature description that containsa cycle of the form xL1y1 ^ : : : yn�1Lnx this resulted in the introduction of an in�nite number ofvariables.

5.1. THE METHOD 111Using this extended (two-sorted) syntax we are now able to reason about the relationsbetween di�erent path variables. To do this we introduce additional constraints � := �(equality), � :� � (pre�x) and � :q � (divergence). Divergence holds if neither equalitynor pre�x does. Now we can describe a normal form equivalent to the solved graphsof the last chapter, which we will call pre-solved clauses. A clause � is pre-solvedif for each pair of di�erent constraints x[�]y1 and x[�]y2 in � there is a constraint� :q � in �. Additionally, we require pre-solved clauses to contain at most oneconstraint � :2L for each path variable �. We call these clauses pre-solved, since theseclauses are not necessarily satis�able: it may happen that the divergence constraintstogether with the restrictions of the form � :2L are inconsistent (think of the clause� :2 f+ ^ � :2 ff+ ^ � :q �, e.g.). But pre-solved clauses have the property that if we�nd a valuation for the path variables, then the clause is satis�able.Our algorithm �rst transforms a clause into a set of pre-solved clauses, which is (whenviewed as a disjunction) equivalent to the initial clause. In a second phase the pre-solved clauses are checked for satis�ability with respect to the path variables. In bothphases we use a set of deterministic and non-deterministic transformation rules.Before starting with the technical part we will illustrate the �rst phase, since it is themore di�cult one. For the rest of the chapter we will write clauses as sets of atomicconstraints. Consider the clause
 = fx[�]y; � :2 L1; x[�]z; � :2 L2g. Initially, oneguesses the relation between the path variables � and �. In our example there arefour di�erent possibilities. Therefore,
 can be expressed equivalently by the set ofclauses
1 = f� :q �; x[�]y; � :2L1; x[�]z; � :2L2g
2 = f� := �; x[�]y; � :2L1; x[�]z; � :2L2g
3 = f� :� �; x[�]y; � :2L1; x[�]z; � :2L2g
4 = f� :� �; x[�]y; � :2L1; x[�]z; � :2L2g:The clause
1 is pre-solved. For the others we must evaluate the relation between �and � as follows. In
2 we substitute � for � and y for z, which yieldsfy := z; x[�]y; � :2L1; � :2L2g:We keep only the equality constraint for the tree variables since we are interestedonly in their valuation. Combining f� :2 L1; � :2 L2g into f� :2 (L1 \ L2)g will thengive us an equivalent pre-solved clause. For
3 we know that the variable � can besplit up into two parts, one of them covered by �. We can use concatenation of pathvariables to express this, that means we can replace � by the term ��� 0 with � 0 new.This would lead to the clausef� :� ��� 0; x[�]y; � :2L1; x[��� 0]z; ��� 0 :2L2g:

112 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTBut this could easily be expressed more simply. First, the constraint � :� ��� 0 issuper
uous. Second, the constraint x[��� 0]z in combination with x[�]y can also beexpressed by fx[�]y; y[� 0]zg. We now obtain the clause
03 = fx[�]y; � :2L1; y[� 0]z; ��� 0 :2L2g:This shows that we do not need concatenation of path variables within subtree agree-ments, and we will avoid them for simplicity.The only thing that remains in order to achieve a pre-solved clause is to resolve theconstraint ��� 0 :2 L2. To do this we have to guess a decomposition P; S of L2 withP�S = fps j p 2 P; s 2 Sg � L2 such that � :2P and � 0 :2S holds. In general, therecan be an in�nite number of decompositions (think of the possible decompositions ofthe language f�g). But as we use regular languages, there is a �nite set of regulardecompositions which covers all possibilities. Finally, reducing f� :2 L1; � :2 Pg tof� :2(L1 \ P)g will yield a pre-solved clause.Note that the evaluation of the pre�x relation in
3 has the additional e�ect ofintroducing a new constraint y[� 0]z. In general this implies that after the evaluationof pre�x constraints there may be some path variables whose relation is unknown.Hence, after reducing the terms of form � := � or � :� �, we may have to repeatthe non-deterministic choice of relation between path variables. In the end, the onlyremaining constraints between path variables are of form � :q �.Now let's turn to an additional point we have to consider, namely that the rules wepresent will (naturally) loop in some cases. Roughly speaking, one can say that thisoccurs if a cycle in the graph coincides with a cycle in the regular language. To seethis let us vary the above example and let
 be the clausefx[�]x; � :2f; x[�]z; � :2f�ggThen a possibly looping derivation could bef� :� �; x[�]x; � :2f; x[�]z; � :2f�gg adding relation � :� �fx[�]x; � :2f; x[� 0]z; ��� 0 :2f�gg splitting � into ��� 0fx[�]x; � :2f; x[� 0]z; � :2f�; � 0 :2f�gg decomposing ��� 0 :2f�gfx[�]x; � :2f; x[� 0]z; � 0 :2f�gg joining �-restrictionsBut we will prove that we get a quasi-terminating rule system, which means that therule system may cycle, but produces only �nitely many di�erent clauses (see [Der87]).This is achieved by the following measures: �rst, we will guarantee that the rules do

5.2. THE LANGUAGE RF 113not introduce additional variables; second, we restrict concatenation to length 2; andthird, we will show that the rule system produces only �nitely many regular languages.In order to show that our rewrite system is complete, we must additionally show thatevery solution can be found in a pre-solved clause.Finally, we want to mention a related work in the context of terminological logics,which have their roots in the knowledge representation formalismKL-one (see [BS85];for a comparison of feature logic and terminological logics see [NS91]). Baader [Baa90,Baa91] has considered an extension of the terminological language ALC of [SSS91],which uses regular languages of roles (binary relations) instead of single roles to buildup concept terms. He has shown that testing satis�ability of this extension is decid-able. In contrast with our problem, there are cycles in the regular languages butno cycles in the formulae, since these cycles (i.e., cyclic concept de�nitions) can becompiled out using a technique called \internalisation". As we have pointed out inthe example on page 112, the combination of both types of cycle makes our problemhard. Thus, while Baader can split the problem into independent subproblems, wecannot use a similar technique because of the structure of our problem (to be moreconcrete, the technique of \internalisation" has been used in Baader et al. [BBN+93]to prove undecidability of functional uncertainty with negation).5.2 The language RFBefore de�ning the language RF, we �rst introduce some relation on paths. We saythat a path u is a pre�x of a path v (written u � v) if there is a non-empty pathw such that v = uw. Note that � is neither symmetric nor re
exive. We say thattwo paths u; v diverge (written u q v) if there are features f; g with f 6= g, andpossibly empty paths w;w1; w2, such that u = wfw1 ^ v = wgw2: It is clear that qis a symmetric relation.Proposition 5.1 Given two paths u and v, then exactly one of the relations u = v,u � v, u � v or uq v holds.The language RF has two sorts, tree and path, and an in�nite supply of variables ofboth sorts. The set of tree variables is denoted by X , and the set of path variablesis denoted by P. We use the letters x; y; : : : for tree variables and �; �; : : : for pathvariables. Besides the equality symbol :=, the signature of RF consists of� an in�nite set L of constant symbols of the sort tree,

114 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT� a ternary relation symbol �[�]� of sort tree� path� tree,� a binary function � of sort path� path! path called concatenation,� a binary relation :� of sort path� path,� a binary relation :q of sort path� path, and� an in�nite set of unary predicate symbols of sort path of the form :2L, where Lis a regular expression with [[L]]� L+.We use mix�x notation t[p]t0 for the so-called subtree constraints, in�x notationp :� q and p :q q for the so-called pre�x and divergence constraints, and post�xnotation p :2L for the so-called path restriction constraints. In RF, a tree termis either a constant symbol (denoted by c; c0; : : :), or a tree variable. Tree terms willbe denoted by the letters t; t0; : : :. A path term (denoted by p; q; : : :) is either a pathvariable or the concatenation of to path terms p�q. Given a RF-formula �, we useVX (�) to denote the set of tree variables in �, and VP(�) to denote the set of pathvariables �.In the following, we consider only those interpretations of RF which have L+ as thedomain for the sort path, and which interpret �, :� and :q as concatenation, pre�x anddivergence, respectively. Hence, we assume for simplicity that an RF-interpretationA just consists of a domain Utree(A) for the sort tree. Clearly, an RF-interpretation isuniquely determined by its interpretation of the constants and the predicate symbol�[�]�. A valuation into some RF-interpretation A is a pair (�X ; �P), where �X is avaluation of the tree terms into Utree(A) and �P is a function �P : P ! L+. In thefollowing, we use (�P ; �X) j=A � instead A; (�P; �X) j= � for better readability.The feature tree structure TRF is the following RF-structure:� the universe Utree(TRF) of the sort tree is the set of all feature trees,� cTRF = (f�g; f(�; c)g) for every constant symbol c 2 L,� (�; p; �) 2 �[�]�TRF i� � is the subtree of � at the path p.RRF is the substructure of TRF consisting only of the rational feature trees.As we have argued previously, the language RF is more appropriate for testing sat-is�ability of formulae in the positive existential fragment of RFT. Hence, we have totranslate the �+1 -fragment of RFT into RF such that validity is preserved. Now wecould restrict ourself to the two RFT-interpretations TRFT and RRFT. But we want

5.2. THE LANGUAGE RF 115to solve the more general problem as was stated by [KM88] and [BBN+93], namelywhether satis�ability of conjunction of \functional uncertainty" constraints is decid-able. Roughly speaking, these authors considered a language which is similar to ourlanguage RFT. Furthermore, they considered only those RFT-interpretations whichsatisfy the following system RFT of axioms:(Uniq) :(c1 := c2) if c1 and c2 are di�erent constants(FCCl) ~8(cfx!?) for all constants c and features f(Fea) ~8(xfy ^ xfz! y := z) for every feature f(Conc) ~8(xfpy $ 9z(xfz ^ zpy) for all features f and non-empty paths p.(Reg) xLy$ _p2Lxpy for every regular expression L.Clearly, this is not a �rst-order axiomatisation since it uses a possibly in�nite dis-junction in the axiom scheme (Reg).Proposition 5.2 Both TRFT and RRFT are models of RFT.Now we de�ne a translation of RFT-formulae into RF-formulae, and a correspondingtranslation of RFT-models into RF-interpretations. Given a RFT-formula �, wede�ne � to be the RF-formula where every occurrence xLt in � is replace by x[�]t^� :2L, where � is a new path variable. Given a RFT-model A, we de�ne the associatedRF-interpretation A byUtree(A) := U(A)cA := cA for every c 2 L�[�]�A := f(�; p; �) j (�; �) 2 fpgAgUsing this translation of RFT-models, we get the following system RF of axiomswhich is equivalent to the above stated RFT-axioms:(Uniq) :(c1 := c2) if c1 and c2 are di�erent constants(FCCl') ~8(c[�]x!?) for all constants c(Fea') ~8(x[�]y ^ x[�]z ! y := z)(Conc') ~8(x[���0]y$ 9z(x[�]z ^ z[�0]y)Note that we do not have to translate the last RFT-axiom scheme (Reg), since wehave �xed the interpretation of the sort path in RF.

116 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTProposition 5.3 Both TRF and RRF are models of RF. Furthermore, TRFT = TRFand RRFT = RRF.Proposition 5.4 A is an RF-model for every RFT-model A. Conversely, there existsfor every RF-model B an RFT-model A such that B = A.Proposition 5.5 For every RFT-model A, every valuation �X and every RFT-clause �, A; �X j= � () exists �P : A; (�X ; �P) j= �:5.3 Prime, Pre-Solved and Solved ClausesIn this section, we will de�ne the input and output clauses for both phases of thealgorithm. A clause is either the special symbol ? (\false") or a �nite set of atomicconstraints denoting their conjunction. We will say that a path term ��� is con-tained (or used) in some clause � if � contains either a constraint ��� :2 L or aconstraint ��� :q q.2 Constraints of the form p :2 L, p :q q, � :� � and � := � willbe called path term constraints. Note that the validity of path term constraintsdepend only on the valuation of the path variables. Hence, we write �P j= � if � isa set of path term constraints that are valid under �P.Let � be some clause and x, y be distinct variables. We say that � binds y to x(resp. c) if x := y 2 � (resp. c := y 2 �) and y occurs only once in �. Here it isimportant that we consider equations as directed, that is, we assume that x := y isdi�erent from y := x. Note that we diverge from the standard practise in treatingequality as binding its right argument (as de�ned in Section 4.3, page 68). This isfor uniformity with constraints involving the :� relation, since they will always sharea left argument which we wish to avoid renaming.3 We say that � eliminates y if �binds y to some variable x. A clause is called basic if it is either ? or:1. all path terms in � are either path variables or the concatenation of two pathvariables (i.e., the length of concatenation is restricted to 2),2. concatenation is not used in pre�x or equality constraints in � (i.e., � does notcontain a constraint of the form ���0 := �, ���0 := ��� 0 etc.),2We will not distinguish between p :q q and q :q p.3We �nd the commuted notation with :� in place of the pre�x relation :� even less natural.

5.3. PRIME, PRE-SOLVED AND SOLVED CLAUSES 1173. � does not contain a constraint of the form t := c,4. an equation t := x appears in � if and only if � eliminates x, and5. for every path variable � used in � there is at most one constraint t[�]t0 2 �.A clause � is called prime if it is basic, does not contain a path term of the form��� and does not contain an atomic constraint of form p :q q, � :� � or � := �.The following two clauses are not basic. The �rst clause does not satisfy condition 4,and the second clause does not satisfy condition 5:fy := z; x[�]y; x[�0]z; � :2f; �0 :2(f [g)gf� :q �0; x[�]y; y[�]z; x[�0]z; � :2f; �0 :2(f [g)gOn the other hand, the clausefy := z; � :q �0; x[�]y; x[�0]y0; � :2f; �0 :2(f [g)gis an example of a basic clause which is not prime. The prime clauses are the inputclauses of our algorithm.Proposition 5.6 For every RFT-clause � there is a prime clause such that isequivalent to �. Conversely, for every prime clause � there is a RFT-clause suchthat � is equivalent to .Taking as an example the RFT-formula s topic x ^ s comp� obj x, the equivalentprime clause s[�1]x ^ s[�2]x ^ �1 :2 topic ^ �2 :2 comp� obj:Now we turn to the output clauses of the �rst phase. A basic clause is said to bepre-solved if it is either ? or the following holds:1. � contains no atomic constraint of the form c[�]t,2. � :2L 2 � and � :2L0 2 � implies L = L0,3. � :2; is not in �,4. � contains no term of form ���,5. � contains no constraint of form � := � or � :� �, and

118 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT6. � :q � 2 � if and only if � 6= �, x[�]t 2 � and x[�]t0 2 �.For example the clause(�1 :q �2; �1 :q �3; �2 :q �3; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g))is pre-solved. The following clauses are not pre-solved. The �rst violates condition 4,the second violates condition 5, and the third and fourth do not satisfy condition 6:f�1 :q �2; x[�1]y1; x[�2]y2; �1 :2(f [g); �1��2 :2(f+ [h+)gf�1 :� �2; x[�1]y1; x[�2]y2; �1 :2(f [g); �2 :2(f+ [h+)gfx[�1]y1; x[�2]y2; �1 :2(f [g); �2 :2 (f+ [h+)gf�1 :q �2; x[�1]y1; y1[�2]y2; �1 :2 (f [g); �2 :2(f+ [h+)gLemma 5.1 Let � be a pre-solved clause di�erent from ?. Then � is satis�able inTRF and RRF if there is a path valuation �P with �P j= �p, where �p is the set ofpath term constraints in �.Proof. Let � be a pre-solved clause, and let �P be a path valuation such that�P j= �. Let be the following RFT-clause:fx�P(�)t j x[�]t 2 �g:It is easy to check that for every tree valuation �X , TRFT; �X j= if and only ifTRF; (�X ; �P) j= �. The same holds for RRF and RRFT.That is satis�able in TRFT and RRFT can easily be shown using a similar techniqueas applied in Theorem 4.1, where we have shown that the solved FT0-clauses aresatis�able in TFT0 and RFT0. 2Since in the �rst phase we transform each prime clause into an equivalent set of pre-solved clauses, this implies that the structure TRF (resp. RRF) is canonical for primeclauses; i.e., a prime clause is satis�able if it is satis�able in TRF (resp. RRF).In the second phase we will check satis�ability of a pre-solved clause by transformingit into an equivalent set of solved clauses. A clause � is called solved if it is either? or

5.3. PRIME, PRE-SOLVED AND SOLVED CLAUSES 1191. � contains no atomic constraint of the form c[�]t,2. � :2L 2 � and � :2L0 2 � implies L = L0,3. � :2; is not in �,4. � contains no term of form ���,5. � contains no constraint of form � := �, � :� � or � :q �, and6. for every pair of variables �; � such that � 6= �, x[�]t 2 � and x[�]t0 2 �, wehave � j= � :q �.Here � j=
 means that for every A and every (�X ; �P) in A, (�X ; �P) j=A � implies(�X ; �P) j=A
. Note that the de�nitions of pre-solvedness and solvedness di�er inthe last two conditions and that every solved clause is also a prime clause. The clausefx[�]y; x[�0]z; � :2(f [g); �0 :2hgis a solved clause, whereas� = fx[�]y; x[�0]z; � :2(f [g); �0 :2ghgis not solved since � 6j= � :q �0.Lemma 5.2 Every solved clause di�erent from ? is satis�able in TRF and RRFProof. For every solved clause � there is a X [P-equivalent clause
 such that
 ispre-solved, namely
 = f� :q � j � 6= � ^ x[�]y 2 � ^ x[�]z 2 �g [�:Thus, a solved clause � is (by lemma 5.1) satis�able in TRF and RRF if there is apath valuation �P with �P j= �. Now conditions 2{5 in the de�nition of solvednessguarantee that � contains only path term constraints of the form � :2L� with L� 6= ;(but no path term constraints of the form ���0 :2L, � := �0, � :� �0 or p :q q). Hence,every path valuation �P with �P(�) 2 L� for every � 2 VP(�) satis�es �P j= �. SinceL� 6= ; for every � 2 VP(�), we know that there is at least one path valuation �Pwith �P j= �. 2

120 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT5.4 The First Phase5.4.1 A Set of RulesFor checking satis�ability of prime clauses we will use a set of deterministic and non-deterministic transformation rules. Which set of rules is used will depend on theinitial clause.The �rst rule is the non-deterministic addition of relational constraints between pathvariables. In one step we will add the relations between one �xed variable � and allother path variables � which are used under the same node x as �. We will consideronly the constraints � := �, � :q � and � :� � but not � :� �. Thus the rule can bedescribed by the following pseudo code:Choose x 2 VX (�) (don't care)Choose x[�]t 2 � (don't know)For each x[�]t0 2 � with � di�erent from � and � :q � 62 �add � :�� � with :�� 2 f :=; :�; :qg (don't know)Formally, this rule is written as(PathRel) fx[�]tg [f� :�� � j x[�]t0 2 ^ � 6= � ^ � :q � 62 g [fx[�]tg [where :�� 2 f :=; :�; :qg.This rule will only be applied if� contains no pre�x and path equality constraint,� contains no path concatenation, and� the rule adds at least one constraint.Although we have restricted the relations :�� to f :=; :�; :qg, this rule is globally pre-serving since we have non-deterministically chosen x[�]y. To see this let � be a clause,A be an interpretation and (�X ; �P) be a valuation in A with (�X ; �P) j=A �. To �ndan instance of (PathRel) such that (�X ; �P) j=A
 where
 is the result of applyingthis instance, we choose x[�]y 2 � with �P(�) �-minimal inf�P(�) j x[�]z 2 �g:

5.4. THE FIRST PHASE 121Then for each x[�]z 2 � with � 6= � and � :q � 62 � we add � :�� � where �P(�) ���P(�) holds. Note that :�� equals :� will not occur since we have chosen a path variable� the interpretation of which is �-minimal. Therefore, the restriction :�� 2 f :=; :�; :qgis satis�ed.The de�nition of (PathRel) is more complex than the naive one in the introduction.The reason for this is that only by using this special de�nition can we maintain thecondition that concatenation of path variables is restricted to binary concatenation.To see this suppose that we had added both �1 :� � and � :� �2 to a clause
.Then �rst splitting up the variable �2 into ��� 02 and then � into �1��0 will result in asubstitution of �2 in
 by �1��0�� 02. By the de�nition of (PathRel) we have ensuredthat this does not happen.The second non-deterministic rule is used in the decomposition of regular languages.For decomposition we have the following rules:(DecClash) f��� :2Lg [? if fw 2 L j jwj > 1g = ;(LangDec�) f��� :2Lg [f� :2Pg [f� :2Sg [P�S � Lwhere L;P; S � F+, L;P; S 2 �, and L contains a path w withjwj > 1.For a speci�c instance of the rule family LangDec�, � must be a �nite set of regularlanguages. The clash rule is needed since we require that regular languages do notcontain the empty path.We use � in (LangDec�) as a global restriction, which means that for every � weget a di�erent rule (LangDec�) (and hence a di�erent rule system R�). This is doneas the rule system is quasi-terminating. By restricting (LangDec�) we can guaranteethat only �nitely many regular languages are produced.For (LangDec�) to be globally preserving we need to �nd, for every possible valuationof � and �, a suitable pair P; S in �. Therefore, we require � to satisfy8L 2 �; 8w1; w2 6= � :[w1w2 2 L) 9P; S 2 � : (P�S � L ^ w1 2 P ^ w2 2 S)]:We will call � closed under decomposition if it satis�es this condition. Addition-ally, we have to ensure that L 2 � for every L that is contained in some clause �.We will call such a set � �-closed.

122 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT(Eq1) f� := �; x[�]t; x[�]yg [ft := y; x[�]tg [[� �; y t] (Eq2) f� := �; x[�]c; x[�]cg [fx[�]cg [[� �](EqClash) f� := �; x[�]c; x[�]c0g [? c 6= c0 (CClash) fc[�]tg [?(Join) f� :2L; � :2L0g [f� :2(L \ L0)g [L 6= L0 (Empty) f� :2;g [?(Div1) f� :q � 0g [f��� :q � 0g [f� :q � 0g [(Div2) f��� :q ��� 0g [f� :q � 0g [(DClash1) f��� :q �g [? (DClash2) f� :q �g [?(Pre) f� :� �; x[�]t; x[�]t0g [fx[�]t; t[�]t0g [[� ���] � 6= �Figure 5.1: Simpli�cation rulesThe remaining rules are listed in �gure 5.1.The (Pre) rule needs some additional explanation. One might expect (Pre) to be ofthe form(Pre') f� :� �; x[�]t; x[�]t0g [fx[�]t; t[� 0]t0g [[� ��� 0] � 0 new.But as we have mentioned, we have to de�ne our rules in a way such that no additionalvariables are introduced. This is not satis�ed by the rule (Pre'). For solving thisproblem note that � is not used in the result of applying (Pre'). Hence, we cansubstitute � 0 by �, which has the e�ect that no new variable is needed. This leads tothe de�nition of (Pre) as presented in �gure 5.1.The following proposition and lemma will show that the de�nition of (LangDec�) is

5.4. THE FIRST PHASE 123meaningful.Proposition 5.7 If � is �-closed and closed under intersection, then � is
-closedfor all R�-derivatives
 of �.Proof. We will prove this lemma by induction over the length of derivations. Weuse the term reg(
) to denote the set of regular languages used in
. Then R� is
-closed if reg(
) � �.Let
 be some R�-derivative of �. For the base step
 = � the lemma holds trivially.For the induction step let
 satisfy the induction hypotheses reg(
) � � and letr 2 R� be a rule such that
 !r
0.If r is some clash rule, then reg(
 0) = ;.If r is not a clash rule and not in (LangDec�) or (Join), then reg(
 0) = reg(
) andtherefore reg(
 0) � � by induction hypotheses. If r 2 (LangDec�), then r adds onlyregular languages P; S 2 �.Now let r0 = f� :2L; � :2L0g [f� :2(L \ L0)g [2 (Join):By induction hypotheses we know that L;L0 2 �. But then (L \ L0) 2 � since � isclosed under intersection. 2We de�ne a �nite non-deterministic automaton A over the in�nite set L to bea tuple (QA; iA; �A;FinA), where1. QA is a �nite set of states,2. iA 2 QA is the initial state,3. �A : QA � L ! }(QA) is a transition function such that8p 2 QA; Q � QA : ff 2 L j �A(p; f) = Qg is �nite or co�nite; (5.1)4. and FinA � QA are the �nal states.With ��A we mean the unique extension of �A to L�. The regular language that isaccepted by an automaton A is de�ned asL(A) = fw j ��A(iA; w) \ FinA 6= ;g:

124 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTA �nite deterministic automaton is a tuple (QA; iA; �A;FinA) where QA; iA and FinAhave the same meaning as in the non-deterministic case, and �A is a functionQA�L !QA with the property that for all states p; q the set ff 2 L j �A(p; f) = qg is �niteor co�nite. ��A and L(A) are de�ned analogous.Note that although the standard constructions for transforming regular expressioninto a �nite deterministic automaton and vice versa assume a �nite alphabet, theproofs do not use this assumption at all. Hence, the constructions can be generalisedto the in�nite case.4 A survey of the standard constructions can, e.g., be foundin [HU79]. As an example, we show how to extend the construction of a deterministicautomaton from a non-deterministic one. This construction is used in [HU79] in theproof of the equivalence of regular expressions and �nite deterministic automatons.Proposition 5.8 For every non-deterministic automaton A there is a deterministicautomaton A0 with L(A) = L(A0).Proof. Let A = (QA; iA; �A;FinA) be a non-deterministic automaton. The standardconstruction yields a deterministic automaton A0 = (}(QA); fiQAg; �A0;FinA0) with�A0(fp1; : : : ; png; f) := [i=1:::n �A(pi; f)FinA0 := fQ � QA j Q \ FinA 6= ;gIn order to show that A0 is a �nite deterministic automaton we have to show that forall P = fp1; : : : ; png and Q = fq1; : : : ; qmg in QA0 = }(QA) the setFQP = ff 2 L j �A0(P; f) = Qgis either �nite or co�nite. Now we can de�ne FQP also inductively asF ;fp1;:::;png := [i=1:::nff j �A(pi; f) = ;gFQ[fqgfp1;:::;png := [i=1:::nff j �A(pi; f) � (Q [fqg)g \ \Q0�QFQ0fp1;:::;pngUnder the assumption that �A satis�es 5.1, an easy induction over the cardinality ofthe sets shows that FQP is �nite or co�nite. 2The other constructions can be extended similar. Thus we get the following proposi-tion.4The same observation for tree automata was made in [Pod92].

5.4. THE FIRST PHASE 125Proposition 5.9 For every regular expression L there is a �nite deterministic au-tomaton A with L = L(A) and vice versa.Lemma 5.3 For every prime clause � there is a �nite � such that � is �-closed,closed under intersection and decomposition.Proof. Let reg(�) = fL1; : : : ; Lng � P (L+) be the set of regular languages used in� and let Ai = (QAi; iAi; �Ai;FinAi) be �nite, deterministic automatons such that Aiaccepts Li. For each Ai we de�ne dec(Ai) to be the setdec(Ai) = fcLqp j p; q 2 QAig;where cLqp = fw 2 L+ j ��Ai(p;w) = qg.Of course, each dec(Ai) is �nite and contains Li. Furthermore, it is also closed underdecomposition. The complete set of decompositions for a language cLqp 2 dec(Ai)consists of the languages P = cLsp and S = cLqs for s 2 QAi:We de�ne �0 to be Sni=1 dec(Ai). �0 contains each Li 2 reg(�) and is closed underdecomposition. Now let � = fi (�0)be the least set that contains �0 and is closed under intersection. Then � is �niteand �-closed, since it contains each Li 2 reg(�).We will prove that � is also closed under decomposition. Given some L 2 � and apath w = w1w2 2 L, we have to �nd an appropriate decomposition P; S in �. Sinceeach L in � can be written as a �nite intersectionL = m\k=1Lkwith Lk in �0, we know that w = w1w2 is in Lk for 1::m. As �0 is closed underdecomposition, there are languages Pk and Sk for k = 1::m with w1 2 Pk, w2 2 Skand Pk�Sk � Lk. Let P = Tmk=1 Pk and S = Tmk=1 Sk. Clearly, w1 2 P , w2 2 S andP�S � L. Furthermore, P; S 2 � as � is closed under intersection. This implies thatP; S is an appropriate decomposition for w1w2. 2Before proceeding to some properties of the rule system, we present some samplederivations. We will start with the prime clause� = fx[�1]y1; x[�2]y2; x[�3]y3; �1 :2(f [g); �2 :2(f� [h�); �3 :2h(f [g)g :

126 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTTo �nd an appropriate set of rules R�, we must generate a �-closed set of languages�, which is closed under decomposition. By the construction used in the proof of thelast lemma we obtain the following set of languages:� = f(f [g); (f+ [h+); h(f [g); hg:For the sake of clarity, we will say that we apply (PathRel) on some variable � if weapply an instance of (PathRel) of the formfx[�]yg [f: : :g :Figure 5.2 is an example of an R�-derivation which transforms � into a pre-solvedclause. We use the frames to highlight the corresponding parts of a clause which havebeen modi�ed by the last rule application. The empty frame denotes the deletionof a constraint. Note that we have removed the constraint �2 :� �3 in the fourthclause using the (Pre) rule, �1 :q �2��3 in the �fth clause using the (Div1) rule, andthe constraint �2 :2(f+ [h+) in the last clause.Next we want to examine two clashing R�-derivations. The �rst one (see �gure 5.3)shows that �2 :� �1 cannot hold. The second clashing derivation (see �gure 5.4)shows that �3 cannot be the pre�x of �2.Finally, here is the complete list of pre-solved clauses di�erent from ? that are deriv-able from � using R�:(�1 :q �2; �1 :q �3; �2 :q �3; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g))n �1 :q �2; x[�1]y1; x[�2]y2; y2[�3]y3; �1 :2(f [g); �2 :2h; �3 :2(f [g) on �1 :q �3; x[�1]y1; y1[�2]y2; x[�3]y3; �1 :2f; �2 :2(f+ [h+); �3 :2(f [g) on �1 :q �3; y1 := y2; x[�1]y1; x[�3]y3; �1 :2f; �3 :2(f [g) o5.4.2 Some Properties of the Rule SystemFor the rest of the paper we will call clauses that are derivable from prime clausesadmissible.Lemma 5.41. Every admissible clause is basic.

5.4. THE FIRST PHASE 127
fx[�1]y1; x[�2]y2; x[�3]y3; �1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g)g# (PathRel) on �18<: �1 :q �2; �1 :q �3 ; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g) 9=;# (PathRel) on �28<: �2 :� �3 ; �1 :q �2; �1 :q �3; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g) 9=;# (Pre)8>><>>: ; �1 :q �2; �1 :q �2��3 ; x[�1]y1; x[�2]y2; y2[�3]y3 ;�1 :2(f [g); �2 :2(f+ [h+); �2��3 :2h(f [g) 9>>=>>;# (Div1)8<: �1 :q �2; ; x[�1]y1; x[�2]y2; y2[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �2��3 :2h(f [g) 9=;# (LangDec�)8<: �1 :q �2; x[�1]y1; x[�2]y2; y2[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �2 :2h; �3 :2(f [g) 9=;# (Join)f�1 :q �2; x[�1]y1; x[�2]y2; y2[�3]y3; �1 :2(f [g); ; �2 :2h; �3 :2(f [g)gFigure 5.2: A successful R�-derivation

128 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTfx[�1]y1; x[�2]y2; x[�3]y3; �1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g)g# (PathRel) on �28<: �2 :� �1; �2 :q �3 ; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g) 9=;# (Pre)8<: ; �2 :q �3; y2[�1]y1 ; x[�2]y2; x[�3]y3;�2��1 :2(f [g) ; �2 :2(f+ [h+); �3 :2h(f [g) 9=;# (DecClash)?Figure 5.3: A clashing R�-derivation2. If � :� �, � := � or � :q � is contained in some admissible clause �, then thereis a term t such that t[�]t0 and t[�]t00 is in �.Proof. The proof of the �rst claim is left to the reader. The second claim will beproved by induction over the length of derivations. For prime clauses the claim holdstrivially. For the induction hypotheses assume that we have proven the claim forevery admissible clause � that is derivable from a prime clause in n steps and let� !r �0. If r is di�erent from (Pre), (PathRel), (Eq1,2) or (Div2), there is nothingto prove. Thus we have the following cases:r 2 (PathRel): the claim holds by de�nition of (PathRel).r 2 (Eq1,2): the claim is invariant under substitution of one variable � by anothervariable � if both t[�]t0 and t[�]t00 are contained in �.r 2 (Pre): then � = f� :� �; x[�]t; x[�]t0g [and �0 = fx[�]t; t[�]t0g [[� ���].The only subtree constraint that is changed is x[�]t0. But as � is substitutedby ���, �0 does not contain any path equality or pre�x constraints involving �.r 2 (Div2): then � = f��� :q ��� 0g [and �0 = f� :q � 0g [. We will provebelow that if ��� is contained in some admissible clause
, then there are termst; t0; t00 such that t[�]t0 and t0[�]t00 are contained in
. This will complete the

5.4. THE FIRST PHASE 129
fx[�1]y1; x[�2]y2; x[�3]y3; �1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g)g# (PathRel) on �38<: �3 :q �1; �3 :� �2 ; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g) 9=;# (Pre)8>><>>: �3 :q �1; ; x[�1]y1; y3[�2]y2 ; x[�3]y3;�1 :2(f [g); �3��2 :2(f+ [h+) ; �3 :2h(f [g) 9>>=>>;# (LangDec�)8<: �3 :q �1; x[�1]y1; y3[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2(f+ [h+) ; �3 :2h(f [g) 9=;# (Join)8<: �3 :q �1; x[�1]y1; y3[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2; 9=;# (Empty)?Figure 5.4: Another clashing R�-derivation

130 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTproof, since then ��� :q ��� 0 in � implies that there are terms t1; t2; t3 andt01; t02; t03 with ft1[�]t2; t2[�]t3; t01[�]t02; t02[� 0]t03g � �. But as � is admissible, itis also basic by the �rst claim. Hence, t1 equals t01 and t2 equals t02. Therefore,both t2[�]t3 and t2[� 0]t03 are in � and in �0.Thus it remains to show that if ��� is used in some admissible clause
, then there areterms t; t0; t00 such that t[�]t0 and t0[�]t00 are contained in
. Let � be an admissibleclause for which this holds, and let
 !r
0. The only rules we have to considerare (Eq1,2) and (Pre). For (Eq1,2) note that the claim is invariant under consistentvariable renaming. If r 2 (Pre), then we have to check the path term ��� that isintroduced by r. But by de�nition of (Pre) the clause
 0 must contain both x[�]t andt[�]t0. 2This lemma implies that one of (Eq1,2), (EqClash) or (CClash) can always be appliedif a constraint � := � is contained in some admissible clause. The next lemma willshow that di�erent applications of (Pre) or (Eq1,2) will not interact. This means theapplication of one of these rules to some pre�x or path equality constraint will notchange any other pre�x or path equality constraint contained in the same clause.Lemma 5.5 Given some prime clause � and a derivation� = �0 !r0 �1 � � ��n�1 !rn�1 �n =
that contains an application of (PathRel). Then � := � 2
 (resp. � :� � 2
) implies� := � 2 �i (resp. � :� � 2 �i) for i > k, where k is the number of the last applicationof (PathRel). Furthermore, if ��� is contained in
, then either ��� or � :� � iscontained in �i for i > k.Proof. We will use induction over length of derivations. Assume that we have proventhe lemma for admissible clauses
 that are derivable in n steps and let
 !r
0 withr 62 (PathRel). If r is di�erent from (Eq1,2) or (Pre), then there is nothing to prove.If r 2 (Eq1,2), then a constraint � :� � or � := � in
 0 can be missing in
 if and onlyif
 contains a constraint � := � 0 or � :� � 0 (resp. � 0 := � or � 0 :� �) and r is of theform f� :=� 0; : : :g [: : : with � 0 6= � (resp. f� :=� 0; : : :g [: : : with � 0 6= �):Hence,
 must contain at least two pre�x or path equality constraints, the left sides ofwhich are di�erent. By induction hypotheses these path equality or pre�x constraints

5.4. THE FIRST PHASE 131must have been introduced by the last application of (PathRel). But this contradictsto the de�nition of (PathRel). A similar argument can be given for the part of thelemma concerning path terms of form ���.If r is in (Pre), then we have to check only the second claim of the lemma, namelythat ��� contained in
 0 implies that either � :� � is in
 or ��� is used in
.For all path terms in
 0 that are not introduced by this application of (Pre) thisholds trivially. For the path term ��� that is introduced, this is guaranteed by theapplication condition of (Pre), namely that
 must contain � :� �. 2We can derive from this lemma certain syntactic properties of admissible clauseswhich are needed for proving completeness and quasi-termination.Corollary 5.1 If � :� � is contained in an admissible clause �, then � is di�erentfrom �. Furthermore, there is no other pre�x or equality constraint in � involving �and neither ��� 0 nor � 0�� is in �.Note that by lemma 5.4 together with this corollary, either (CClash) or (Pre) isapplicable if a constraint � :� � is contained in an admissible clause. Furthermore, anapplication of (Pre) causes no violation of the restrictions that we have imposed onthe syntax. This means that concatenation does not occur in pre�x or path equalityconstraints; and concatenation of path variables is restricted to binary concatenation.Lemma 5.6 If ��� :q � 0 is contained in an admissible clause � with � di�erent from�0, then � contains a constraint of form � :q � 0, � := � 0 or � :� � 0.Proof. We will prove a stronger result, namely that if f� :� �; � :q � 0g � � orf��� :q � 0g � �, then � contains a constraint of form � :q � 0, � := � 0 or � :� � 0. Wewill prove this by induction over length of derivations. Assume that we have proventhe claim for every admissible clause � that is derivable in n steps from a prime clauseand let �!r �0. Again we have to check only the rules (Pre), (PathRel), (Eq1,2) or(Div2):r 2 (PathRel): we have to check only constraints � :q � 0 that are already in �. Bylemma 5.4 we know that if � :q � 0 is in �, then there is a variable x with bothx[�]y and x[� 0]z in �. Hence, if (PathRel) adds the constraint � :� �, it mustby de�nition also add a constraint � :q � 0, � := � 0 or � :� � 0.r 2 (Eq1,2): the claim is invariant under consistent variable renaming.

132 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTr 2 (Pre): then � = f� :� �; x[�]t; x[�]t0g [and �0 = fx[�]t; t[�]t0g [[� ���].The only case that we have to check is that � contains a constraint � :q � 0. Then�0 contains ��� :q � 0. By induction hypotheses � must contain a constraint cof form � :q � 0, � := � 0 or � :� � 0. Since (Pre) does not change c, this must holdalso for �0.r 2 (Div2): then � = f��� :q ��� 0g [and �0 = f� :q � 0g [. The only newdivergence constraint that comes in is � :q � 0. But as � contains both ��� and��� 0, it may not contain � :� � or � :� � 0 by corollary 5.1. Hence, �0 does notcontain such a constraint. 2This lemma ensures that a constraint ��� :q � 0 is always reducible. If � 0 equals �,then we can apply (DClash1). If � :q � 0 is in �, we can apply (Div1). If � := � 0 is in� we can either apply (CClash) or (EqClash), or we can apply (Eq1,2) followed by(DClash1). If � = f� :� � 0; ��� :q � 0g [, then we can either apply (CClash) or wecan apply (Pre) yielding f��� :q ��� 0g [0, where we can apply (Div2).5.4.3 Soundness and CompletenessSince we have a two-sorted logic, we have to rede�ne the notions of soundness andpreservingness. For a set � � X we de�ne =� to be the following relation on valuationsof tree variables:�X =� �0X i� for all x 2 � the equation �X (x) = �0X (x) holds:Similarly, we de�ne =� with � � P for path valuations. Let # � X [P be a setof variables. For a given interpretation A we say that a valuation (�X ; �P) is a#-solution of a clause � in A if there is a valuation (�0X ; �0P) in A such that�X =X\# �0X ; �P =P\# �0P and (�0X ; �0P) j=A �:The set of all #-solutions of � in A is denoted by [[�]]A# . We call X -solutions justsolutions and write [[�]]A instead of [[�]]AX.5 A clause � is #-equivalent to a clause5By calling X -solutions just solutions we intend to suggest that X -solutions are the interestingone. The are two reasons for concentrating on X -solutions rather than X [P-solutions. First, thereare only tree variables in the original Kaplan/Maxwell syntax, and we have added path variablesas an additional data structure. Our X -solutions will be solutions for the corresponding clauses inthe original syntax. And second, all of the rules we will present will preserve the solutions (i.e.,X -solutions) of a clause, but not necessarily the X [P-solutions.

5.4. THE FIRST PHASE 133
 (resp. a set of clauses �) if for every interpretation A, [[�]]A# = [[
]]A# (resp. [[�]]A# =S
2�[[
]]A#). Again we use equivalent as short for X -equivalent.A rule R is #-sound if �!R
 implies [[�]]A# � [[
]]A# for every interpretation A. R iscalled #-preserving if �!R
 implies [[�]]A# � [[
]]A# for every A. And R is globally#-preserving if 8A : [[�]]A# � [�!R
[[
]]A# :Proposition 5.10 The rules (Eq1,2), (EqClash), (Div1,2), (CClash), (Join), (Emp-ty) and (DClash1,2) are X [P-sound and X [P-preserving.Proposition 5.11 The rule (Pre) is X -sound and X -preserving.For (Pre) we can even characterise pairs of path valuations which preserve the X -solutions.Proposition 5.12 Let � = f� :� �; x[�]t; x[�]t0g [and
 be the result of applying(Pre) to �. Given a pair of path valuations �P ; �0P with�P =P�f�g �0P and �P(�) = �P(�)�0P(�) = �0P(�)�0P(�);then for each interpretation A and for each �rst order valuation �X(�X ; �P) j=A �$ (�X ; �0P) j=A
:Proposition 5.13 If � is closed under decomposition, then (LangDec�) is X [P-sound and globally X [P-preserving. Furthermore, (PathRel) is X [P-sound andglobally X [P-preserving.Finally, we have to prove that the rules are complete. This means that given aninput clause �, for every solution �X of � in some interpretation A there is a pre-solved clause
 derivable from � such that �X is a solution of
. If the rule system isterminating, then for completeness one has to prove that the pre-solved clauses arejust the irreducible clauses.In our case this is not enough since the rule system can loop. Therefore, we have toprove explicitly that each solution of a given prime clause � can be found in somepre-solved �-derivative. We de�ne Irred(�;R�) to be the set all R�-derivatives of� which are R�-irreducible, and Pre-Solved(�;R�) to be the set of all pre-solvedclauses which are derivable from �. A set of rules R� is said to be �-complete wrt.to a set of variables # if

134 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT1. Irred(�;R�) = Pre-Solved(�;R�),2. for every interpretation A[[�]]A# � [
2Pre-Solved(�;R�)[[
]]A# :We will show that for every prime clause � there is a set of regular languages � suchthat R� is �-complete wrt. the tree variables X .Theorem 5.1 (Completeness I) Given a prime clause �. If � is a set of regularlanguages that is �-closed, closed under intersection and closed under decomposition,then every R�-derivative
 of � that is not pre-solved is R�-reducible.Proof. Let
 be a R�-derivative of � that is not pre-solved. We will check allconditions that are stated in the de�nition on page 117.If one of the conditions 1{3 is not satis�ed by
, then one of the rules (CClash),(Join) or (Empty) will apply.Now let's check the conditions 4 and 5:
 contains a constraint ��� :2L. As � is �-closed, we know that � is also
-closedby lemma 5.7. Therefore we can apply (LangDec�) or (DecClash).
 contains a constraint ��� :q �0�� 0. By lemma 5.5 we know that in every R�-derivation for
 the last application of (PathRel) must have introduced theconstraints � :� � and �0 :� � 0. By the de�nition of (PathRel) this implies that� equals �0. Hence, we can apply (Div2).
 contains a constraint ��� :q � 0. If � 0 equals �, then we can directly apply (DClash1).Otherwise, there is by lemma 5.6 a constraint � := � 0, � :� � 0 or � :q � 0 in
.If � := � 0 is in
, we can apply one of (CClash), (EqClash) or (Eq1,2) by lem-ma 5.4. Applying (Eq1,2) results in the substitution of � 0 by �. The remainingconstraint ��� :q � can be reduced using (DClash1). If � :� � 0 is in
, then wecan apply either (CClash) or (Pre) by lemma 5.4 and corollary 5.1. In the latercase we obtain the constraint ��� :q ��� 0, which can be reduced using (Div2).The last case is that � :q � 0 is in
, where we can apply (Div1).
 contains a constraint � := �. Then one of (CClash), (EqClash) or (Eq1,2) is ap-plicable by lemma 5.4.

5.4. THE FIRST PHASE 135
 contains a constraint � :� �. Then either (CClash) or (Pre) is applicable bylemma 5.4 and corollary 5.1.The remaining case is that
 does not satisfy the last condition of a pre-solved clause,namely that � :q � with � 6= � in
 if and only if x[�]t and x[�]t0 in
. Given theabove, we can now assume that
 does not contain a path concatenation or a pre�xor path equality constraint.There are three possibilities for
 to violate the last condition. The �rst is that
contains a constraint of the form � :q �. Then (DClash2) is applicable. The second isthat there is a constraint � :q � with x[�]t 2
 and x0[�]t0 2
 such that x is di�erentfrom x0. But this is excluded by lemma 5.4.The last case is that there are di�erent path variables � and � such that x[�]t andx[�]t0 are in
 but � :q � is not. As
 contains no concatenation and no path equalityor pre�x constraints, the rule (PathRel) is applicable. 2Next we have to establish the second condition for �-completeness, namely that forevery interpretation A and for every solution �X of � there is a pre-solved �-derivative
 with �X 2 [[
]]A. This property is needed since our rule system can loop. Let usrecall an example of a looping derivation in order to explain the main idea involvedin the second part of the completeness proof. In contrast with our �rst example of alooping derivation (see page 112), we will omit the path restrictions, since they arenot needed for what we want to demonstrate. Let � be the clause� = fx[�]x; x[�]yg:A looping derivation can consist of an application of (PathRel) yielding the clause�1 = f� :��; x[�]x; x[�]yg, followed by an application of (Pre) on
 yielding �2 = �.6Clearly, the cause of the looping derivation is the rule (Pre). We will later prove that,indeed, every in�nite derivation must use the (Pre) rule in�nitely often.To prove the second completeness condition we restrict the set of allowed derivationsof a prime clause � to those depending on some arbitrary but �xed valuation (�X ; �P)with (�X ; �P) j=A �. This control will guarantee that1. �X is a solution of every clause in the derivation,2. under this control, all derivations are �nite.6The �rst example of a looping derivation on page 112 shows that the situation is no di�erent ifwe add path restrictions.

136 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTWe will additionally show that even under this control the irreducible clauses are justthe pre-solved clauses. Hence this control will give us, for every clause � and everyinitial solution �X , a pre-solved �-derivative that has �X as an solution.We will add this further control only on the non-deterministic rules (PathRel) and(LangDec�), thus restricting the set of instances of these rules that may be applied.We allow only those instances which preserve the valuation (�X ; �P). Using our aboveexample, if �P satis�es �P(�) = f and �P(�) = gwe may apply only that instance of (PathRel) which transforms � into �1 = f� :q�; x[�]x; x[�]yg. Since the choice of the instances depends only on the path valuation,we will call such restricted derivations �P -strict.It is easy to see that the above restriction will always enforce �niteness of derivationsif the initial path valuation �P satis�es�P(�) 6� �P(�) where � 6= � ^ x[�]y 2 � ^ x[�]z 2 �:One might say that in this case �P is pre�x-free with respect to �.For initial path valuations which are not pre�x-free we must have a closer look atthe (Pre) rule, since this rule is the cause of looping derivations. Since the (Pre) ruleis not P-preserving, it may happen that the clause
 resulting of an application of(Pre) is not valid under the initial valuation (�X ; �P). But as (Pre) is X -preserving,we know that there is a �0P such that (�X ; �0P) j=A
.Hence, in a �P-strict derivation we can keep the initial valuation �X of the treevariables, but we must change the path valuation every time the (Pre) rule is applied.Since application of (Pre) is the cause of looping derivations, this implies that we canobtain �niteness of �P -strict derivations if we guarantee that after a �nite number of(Pre) applications the initial path valuation has been transformed into a pre�x-freepath valuation.We will again turn to our example to clarify this. If the initial path valuation �P for� is of the form �P(�) = f and �P(�) = fffg;the �rst rule in a �P -strict �-derivation could be an application of (PathRel) trans-forming � = �0 into �1 = f� :� �; x[�]x; x[�]yg. Now we are able to apply (Pre),which implies that we have to change �P. Using proposition 5.12 we can use thefollowing �0P: �0P(�) = f and �0P(�) = ffg:

5.4. THE FIRST PHASE 137Proposition 5.12 guarantees that this can be done without loosing X -preservingness.Note that we have shortened �P(�) by f . Now we could iterate this twice more beforeending up with a pre�x-free path valuation.After these remarks we can turn to the technical part.Theorem 5.2 (Completeness-II) Let � be a prime clause, let � be a set of regularlanguages which is �-closed, closed under intersection and decomposition. Then R�is �-complete wrt. the tree variables X .First we need an additional lemma.Lemma 5.7 There are no in�nite derivations using only �nitely many instances of(Pre).Proof. Assume there is such a derivation. Then there exists an in�nite sub-derivationnot using any instance of (Pre). Let � be the starting point of such a derivation. Let
 be some clause. Then we de�ne the following functions on
:�1(
) = number of concatenations in
�2(
) = number of di�erent path variables in
��(
) = number of constraints � :� � with :� 2 f :=; :�; :qg,�; � 2 VP(�) and � :� � not in
�(
) = total number of constraints in
We de�ne �(
) to be the tuple h�1(
);�2(
)i. Using the functions �, �� and � wecan construct a partial order on clauses by de�ning
 <�
0 i�(�(
) < �(
 0))or (�(
) = �(
 0)) ^ (��(
) < ��(
0))or (�(
) = �(
 0)) ^ (��(
) = ��(
 0)) ^ (�(
) = �(
 0)):Here < is the lexicographic ordering on tuples for �(
) and elsewhere the usualnumeric comparison. It is easy to check, that <� de�nes a well-founded, partialordering on clauses.

138 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT�1 �2 �� �(PathRel) = = <(Eq1,2) = <(LangDec�) < =(Join) = = = <(Div1) < =(Div2) < =Table 5.1: Monotonicity of the rules wrt. the measure functions.Let
 be some derivation of �. Now VP(
) � VP(�) holds, which is important forthe value of ��. In table 5.1 we have summarised for every non-clash rule other than(Pre) the variation of �(
), ��(
) and �(
)7. The clash rules are not consideredbecause they automaticly terminate every derivation. The table shows that for everyrule r
 !r
0 implies
 0 <�
. Because <� is a well-founded ordering and thereforecannot have in�nite descending chains, this contradicts our assumption that there isa in�nite derivation not using (Pre). 2Corollary 5.2 There are no in�nite derivations using only �nitely many instancesof (PathRel).Proof. By the above lemma we know that there are no in�nite derivations withoutin�nite use of (Pre). But (Pre) removes the constraints � :� �, the existence of whichis an application condition for (Pre). But additional constraints of form � :� � areonly introduced by (PathRel). 2Proof of theorem 5.2 (Completeness II). The �rst condition for �-completenesswas proved in theorem 5.1 (Completeness I). For the second, let A be some inter-pretation and (�X ; �P) be a valuation with (�X ; �P) j=A �. We have to show thatthere is a R�-derivative
 of � which is pre-solved and satis�es 9�0P : (�X ; �0P) j=A
.This will be done by de�ning �P-strict derivations, which will always end up in apre-solved clause. As we have mentioned, we have to rede�ne the path valuationevery time (Pre) is applied. This leads to the following de�nition: a derivation� = �0!r0 �1 � � ��n !rn �n+1 � � �7If a rule decreases the �-value, the clause resulting from applying this rule is smaller than theinput clause wrt. <� independently of the e�ects of the rule on the ��-part. Therefore, we omitthe corresponding ��-entries in this case; and similarly for the �-part.

5.4. THE FIRST PHASE 139is called �P-strict if there is a family of path valuations (�iP) such that1. �0P = �P;2. for each i the proposition (�X ; �iP) j=A �i holds; and3. for each i� ri 62 (Pre) implies �iP = �i+1P and� ri = f� :��; ��� g [��� 2 (Pre) implies�iP =P�f�g �i+1P and �iP(�) = �i+1P (�)�i+1P (�):Now for every �P -strict (�;R�)-derivation� = �0 !r0 �1 � � ��n�1 !rn�1 �nwhere �n is not pre-solved, there is a �P -strict continuation, as the following argu-mentation shows. If �n is not pre-solved, then there is (by theorem 5.1) a rule whichis applicable. We have to show that there is an applicable rule instance such that acorresponding �n+1P can be found.If the applicable rule is di�erent from (Pre), then we know that there is an appropriatepath valuation �n+1P , as all rules di�erent from (Pre) are either X [P-preserving orglobally X [P-preserving. If (Pre) is applicable, then proposition 5.12 shows thatwe can �nd an appropriate �n+1P .Next we must show that there is no in�nite �P -strict (�;R�)-derivation, which �nallyproves the lemma. This is done by introducing a norm on path valuations. For apath valuation �P we de�ne j�Pj� to be:j�Pj� = X�2VP(�) j�P(�)j:Now let �i !ri �i+1be a step in some �P-strict (�;R�)-derivation and let �iP ; �i+1P be the correspondingpath valuations. If ri 62 (Pre) we know that �iP = �i+1P and hence j�iPj� = j�i+1P j�.If ri 2 (Pre) we know by the third condition of �P -strictness that there are � and �such that �iP =P�f�g �i+1P and �iP(�) = �i+1P (�)�i+1P (�):As VP(�i+1) � VP(�i) � VP(�) this implies j�i+1P j� < j�iP j�.As there are no in�nite derivations without in�nite use of (Pre) this proves that thereare no in�nite �P -strict derivations. 2

140 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT5.4.4 Quasi-TerminationLemma 5.8 Let � be a prime clause and � be a �nite �-closed set of regular lan-guages. Then the set of all R�-derivatives of � is �nite.Proof. We will �rst consider the sets C which contains every atomic constraint thatoccur in at least one R�-derivative of �. C could be seen as the union of all R�-derivatives of �. We will show that C is �nite. As everyR�-derivative of � is a subsetof C this will prove the lemma.First we know that no rule adds new variables. This implies that there are at mostn1 = jVP(�)j + jVP(�)j2 many di�erent path terms. By lemma 5.7 we know that �is
-closed for every R�-derivative
 of �, which implies that at most j�j di�erentregular languages are used in the R�-derivatives of �.Let ncon be the number of constants used in �. Note that no rule adds new constants.Therefore C contains at most jncon + VX (�)j2 equality constraints, jncon + VX (�)j �jVP(�)j � jncon + VX (�)j subtree constraints, n21 path divergence constraints, jVP(�)j2pre�x and path equality constraints and n1 � j�j path restriction constraints. 2Theorem 5.3 For every prime clause � there exists a set of regular languages � suchthat R� is �-complete wrt. X and the set Pre-Solved(�;R�) is �nite and computable.Proof. Let reg(�) be the set of regular languages used in �. By lemma 5.3 there mustbe a �nite � such that � is �-closed, closed under intersection and decomposition.Note that the construction of the set � given in lemma 5.3 is e�ective. Then R� is �-complete wrt. X by theorem 5.2. By lemma 5.8 we know that Pre-Solved(�;R�) mustbe �nite. Hence, it su�ces to prove that the set Pre-Solved(�;R�) is computable.To do this we will consider loop-free derivations. A derivation is called loop-free if itis not of the form �0 !r1 : : :!ri �i : : :!rk �k : : : ;where �i = �k. In order to generate the set of derivatives (or a subset of them)it is enough to consider loop-free derivations. This is because for every pair
;
 0every
-derivation which yields
 0 and is not loop-free can be replaced with a shorterderivation by removing some loop. Iterating this step �nally yields a loop-free
-derivation for
 0.Furthermore, the set of all loop-free (�;R�)-derivations must be �nite since R� canonly generate �nitely many R�-derivatives of � by lemma 5.8, and there are on-ly �nitely many rules of R� applicable on every R�-derivative of �. But as we

5.5. THE SECOND PHASE 141have mentioned we need to consider only the loop-free derivations, which shows thatPre-Solved(�;R�) is computable. 2Corollary 5.3 For every prime clause � there exists a �nite and computable set ofpre-solved clauses � such that � is equivalent to �.Proof. Follows from the last theorem and the fact, that every rule is at least �X -sound. 25.5 The Second Phase: Satis�ability of Pre-SolvedClausesIn this section we present a rule system that transforms each pre-solved clause into anequivalent set of solved clauses (interpreted as a disjunction), each of which is di�erentfrom ? and is thus satis�able by lemma 5.2. A pre-solved clause is satis�able if andonly if the corresponding set is non-empty.We will �rst make a minor rede�nition of divergence. We say that two paths u; v aredirectly diverging (written u q0 v) if there are features f 6= g such that u 2 fL�and v 2 gL�. Then uq v holds if there are a possible empty pre�x w and paths u0; v0such that u = wu0 and v = wv0 and u0 q0 v0. Using this de�nition of divergence andthe additional atomic constraint� :q0 � direct divergence;we can (non-deterministically) transform a clause � = f�1 :q �2g [into eitherf�1 :q0 �2g [or f�1 := ���01; �2 := ���02; �01 :q0 �02g [:8 By the de�nitionof q0 we can reduce (non-deterministically) the constraints of form �1 :q0 �2 intof�1 :2fL�; �2 :2gL�g with f 6= g. The aim is to process all divergence constraints thisway in order to achieve a solved clause.Before we can present the rule system for solving clause, we have to do two things.First, we have to rede�ne the notion of a solved clause, since we have extended thesyntax by the constraint :q0. Without loss of generality we can in the following assumethat every clause � contains for every path variable � 2 VP(�) a path restriction � :2L.We say that a clause over the extended syntax is solved if it is either ? or satis�esthe conditions of a solved clause as stated in Section 5.3, page 118 plus additionally8The �rst case is needed because we do not allow values of path variables to be empty paths.

142 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT7. for every pair of variables �; � such that � 6= �, � :q0 � 2 � if and only if �contains a path restriction � :2L or � :2L with L = F�L0 and F � L is co-�nite.Proposition 5.14 Every solved clause di�erent from ? is satis�able.And second, we have to reformulate the reduction of divergence constraints. Thereason is that we have to evaluate constraints of the form �1 := ���01. This canproduce constraints of the forms ��� :2L and ��� :q � 0. The second is problematicas we must guess the relation between � and � 0. This complicates the terminationproof.We will avoid this problem by using a special property of pre-solved clauses, namelythat � :q � is in a pre-solved clause � i� x[�]y and x[�]z are in �. Hence, if � :q �and � :q � 0 are in �, then � :q � 0 is also in �. This implies that we can write � as:q (A1)] : : :] :q (An)] , where :q (A) abbreviatesf� :q �0 j � 6= �0 ^ �; �0 2 Ag;A1; : : : ; An are disjoint sets of path variables and contains no divergence constraints.Now given such a constraint :q (A), and some valuation �P with �P j= :q (A), supposethat a whole set of path variables A1 � A diverge under �P with the same pre�x,i.e., there is a path p such that8� 2 A1 : �P(�) = pp� and 8�; �0 2 A1 : � 6= �0 ! p� q0 p�0 :Then we can replace the constraints set :q (A1) � :q (A) byA1 := ��A01 [:q 0(A01)under this valuation, since every valuation �0P with �0P j= (A1 := ��A01 [:q 0(A01))satis�es �P =A1 �0P. Here � is new, A01 = f�01; : : : ; �0ng is a fresh copy of A1 =f�1; : : : ; �ng and A := ��A01 abbreviates the clause f�1 := ���01; : : : ; �n := ���0ng.:q 0(A) is de�ned similarly to :q (A). If �P additionally satis�es8� 2 (A�A1) : p q �P(�);then we can replace the set of constraints :q (A) by:q(f�g [(A�A1)) [A1 := ��A01 [:q 0(A01)under the valuation �P.

5.5. THE SECOND PHASE 143Now for every path valuation �P with �P j= :q (A) there must be a set A1 with theproperties stated above. We can �nd an appropriate A1 by taking a path p which ismaximal in fp j 9�; �0 2 A : � 6= �0 ^ p � �P(�) ^ p � �P(�0)g;and de�ning A1 as f� 2 A j p � �P(�)g.This �nally leads to the following non-deterministic rule, where we also consider thee�ects of A1 := ��A01 on the subtree constraints in �:(Reduce1) xA1Y1 [:q (A) [fx[�]zg [zA01Y1 [:q 0(A01) [:q (f�g[A2) [0where 0 = [�1 ���01; : : : ; �n ���0n], A1] A2 = A, jA1j >1 and z; � new. A01 is a disjoint copy of A1. xA1Y1 is short forfx[�1]y1; : : : ; x[�n]yng. may not contain constraints of form ���0 :2L in .Note that we have avoided constraints of the form ��� :q � 0. We also employ thenon-deterministic rules(Reduce2) :q (A) [:q 0(A) [(Solv) f� :q0 �g [f� :2f�F �; � :2g�F �g [f 6= gif � contains constraints � :2L1 and � :2L2 such that L1 = F1L01 andL2 = F2L02 for two �nite sets F1; F2 � L.(Reduce2) is needed because path variables always denote non-empty paths. We willview (Reduce1) and (Reduce2) as a single rule (Reduce).To complete our rule system, we need the rules (LangDec�), (DecClash), (Join) and(Empty). Since we will show that the rule system is terminating, we can replace(LangDec�) by a simpler version, namely(LangDecdfun) f��� :2Lg [f� :2Pg [f� :2Sg [P�S � L; (P; S) 2 dfun(L)L must contain a path w with jwj > 1.

144 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTHere dfun : }(L+)! }(L+)�}(L+) is a decomposition function that assigns to eachregular language L a �nite set of decompositions. dfun is called decompositioncomplete if for every regular language L and every path w = w1w2 2 L there is apair (P; S) in dfun(L) with w1 2 P and w2 2 S. The complete set of rules is denotedRSolvdfun.We illustrate the rule system RSolvdfun using one of the pre-solved clauses listed in sec-tion 5.4.1 on page 126, namely� = (�1 :q �2; �1 :q �3; �2 :q �3; x[�1]y1; x[�2]y2; x[�3]y3;�1 :2(f [g); �2 :2(f+ [h+); �3 :2h(f [g))Using the notation introduced in this section, we can write � as:q (f�1; �2; �3g) [(x[�1]y1; x[�2]y2; x[�3]y3; �1 :2(f [g);�2 :2(f+ [h+); �3 :2h(f [g))A successfulRSolvdfun-derivation transforming � into a solved clause appears in �gure 5.5.In the derivation we assume a function dfun withdfun(f+ [h+) = f(f+ [h+; f+ [h+)gand dfun(h(f [g)) = f(h; f [g)g:After the explanation of the rule system we can commence the technical part. Aclause � is called partitioned if the set of divergence constraints of � is of the form:q (A1)] : : :] :q (An), where the Ai are disjoint.Proposition 5.15 There exists a decomposition function dfun that is decompositioncomplete.Proof. See proof of lemma 5.3 for the construction of such a function. 2Proposition 5.16 Let � be a pre-solved clause and let
 be a RSolvdfun-derivative of �.Then
 is partitioned. Furthermore, for every pair of variables �; � such that � 6= �,x[�]y 2
 and x[�]z 2
 we have
 j= � :q �.Proposition 5.17 For every partitioned clause � the rule (Reduce) = (Reduce1) +(Reduce2) is VX (�)-sound and globally VX (�)-preserving. The rule (Solv) is �X [�P -sound and �X[�P-preserving. If dfun is decomposition complete, then (LangDecdfun)is �X [�P-sound and �X [�P-preserving.

5.5. THE SECOND PHASE 145�# (Reduce1) with A1 = f�2; �3g(�1 :q �; �02 :q0 �03; x[�1]y1; x[�]z; z[�02]y2; z[�03]y3; �1 :2(f [g);���02 :2(f+ [h+); ���03 :2h(f [g))# 2� (LangDecdfun)(�1 :q �; �02 :q0 �03; x[�1]y1; x[�]z; z[�02]y2; z[�03]y3; �1 :2(f [g);� :2(f+ [h+); �02 :2(f+ [h+); � :2h; �03 :2(f [g))# (Solv)(�1 :q �; x[�1]y1; x[�]z; z[�02]y2; z[�03]y3; �1 :2(f [g);�02 :2hL�; �03 :2gL�; � :2(f+ [h+); �02 :2(f+ [h+); � :2h; �03 :2(f [g))# 3� (Join)(�1 :q �; x[�1]y1; x[�]z; z[�02]y2; z[�03]y3; �1 :2(f [g);� :2h; �02 :2h+; �03 :2g)# (Reduce2)(�1 :q0 �; x[�1]y1; x[�]z; z[�02]y2; z[�03]y3; �1 :2(f [g);� :2h; �02 :2f+; �03 :2g)# (Solv)(x[�1]y1; x[�]z; z[�02]y2; z[�03]y3; �1 :2(f [g);�1 :2fL�; � :2hL�; � :2h; �02 :2f+; �03 :2g)# 2� (Join)(x[�1]y1; x[�]z; z[�02]y2; z[�03]y3;�1 :2f; � :2h; �02 :2f+; �03 :2g)Figure 5.5: A successful RSolvdfun-derivation

146 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFTLemma 5.9 RSolvdfun is terminating.Proof. For (Solv), (Join), (LangDec), (DecClash) and (Empty) it is trivial to seethat there are no in�nite derivations using only these rules. Furthermore, there areno derivations which use (Reduce) in�nitely often, since during every application of(Reduce) at least one divergence constraint is removed (note that jA1j > 1 is anapplication condition of (Reduce1)). Hence, there are no in�nite RSolvdfun-derivations.2Lemma 5.10 Let � be a pre-solved clause. If dfun is decomposition complete, thena RSolvdfun-derivative of � is RSolvdfun-irreducible if and only if it is solved.Proof. Let
 be a RSolvdfun-derivative of �. We have to show that if
 is not solved,then one of the rules applies.Condition 1 is satis�ed by every RSolvdfun-derivative of � since � is pre-solved and we donot add or change any sort restriction constraint. If one of the conditions 2 or 3 is notsatis�ed, then one of the rules (Join) or (Empty) will apply. Condition 6 is satis�edby every RSolvdfun-derivative of � by proposition 5.16. Now let's check the conditions 4,5 and 7:
 contains a constraint ��� :2L. (LangDecdfun) or (DecClash) is applicable.
 contains a constraint � :q �. By proposition 5.16 we know that in this case
is of the form :q (A) [. Given the above we can assume that (Reduce) isapplicable.
 contains a constraint � :q0 �. Then either 7 is satis�ed or (Solv) is applicable.2Lemma 5.11 For every pre-solved clause � there is a �nite and e�ectively com-putable set of solved clauses � such that for every A[[�]]AVX(�) = [
2�[[
]]AVX(�):Proof. Follows from propositions 5.15, 5.16 and 5.17 and lemmas 5.9 and 5.10. 2Corollary 5.4 Satis�ability of pre-solved clauses is decidable.

5.5. THE SECOND PHASE 147Finally, we are able to combine both phases.Theorem 5.4 Satis�ability of prime clauses is decidable.Proof. Follows from the corollaries 5.3 and 5.4. 2Theorem 5.5 The positive existential fragment of Th(TRFT) and Th(RRFT) is de-cidable.Proof. Follows from Propositions 5.3 and 5.5, which show that every RFT-clause canbe translated into an RF-clause such that validity in the corresponding feature treestructures is preserved, Lemma 5.11, which shows that one can e�ectively transforma prime clause into an equivalent �nite set of solved clauses, and Lemma 5.2, whichshows that solved clauses are satis�able in TRF and RRF. 2

148 CHAPTER 5. DECIDABILITY OF A FRAGMENT OF RFT

Appendix AMathematical PreliminariesWe assume the reader to be familiar with �rst-order predicate logic. The signatureof our �rst-order languages always contains the binary relation symbol :=, which isinterpreted as equality, and the special symbols ? (\false") and > (\true"). ? (resp.>) is the same as the empty disjunction (resp. conjunction). We assume an in�nitealphabet of variables and adopt the conventions that x, y, z always denote variables,and X, Y always denote �nite, possibly empty sets of variables.Compound formulae are obtained as usual with the connectives ^, _, !, $, : andthe quanti�ers 9 and 8. We call atomic formulae also constraints.We identify 9x9y� with 9y9x�. If X = fx1; : : : ; xng, we write 9X� for 9x1 : : :9xn�.If X = ;, then 9X� stands for �. Moreover, we use ~9� [~8�] to denote the existential[universal] closure of a formula �, and 9!x� as an abbreviation for9x� ^ 8x; y(�^ �[x y]! x := y):For a set of variables X = fx1; : : : ; xng the quanti�er 9!X� is de�ned as 9x1 : : :9xn�.Moreover, V(�) is taken to denote the set of all variables that occur free in a formula�. The letters � and will always denote formulae. We use the conventions that towrite �(x1; : : : ; xn) if x1; : : : ; xn is the set of free variables of �.We assume that the conjunction of formulae is an associative and commutative op-eration that has > as identity element. This means that we identify �^ (^ �) with� ^ (^ �), and � ^ > with � (but not, for example, xfy ^ xfy with xfy). A con-junction of atomic formulae can thus be seen as the �nite multiset of these formulae,where conjunction is multiset union, and > (the \empty conjunction") is the emptymultiset. We will write � � (or 2 �, if is an atomic formula) if there exists aformula 0 such that ^ 0 = �. 149

150 APPENDIX A. MATHEMATICAL PRELIMINARIESStructures and satisfaction of formulae are de�ned as usual. A valuation into astructure A is a total function from the set of all variables into the universe U(A) ofA. A valuation �0 into A is called an x-update [X-update] of a valuation � intoA if �0 and � agree everywhere except possibly on x [X]. We use [[�]]A to denotethe set of all valuations � such that A; � j= �. We write � j= (\� entails ") if[[�]]A � [[]]A for all structures A, and � j=j (\� is equivalent to ") if [[�]]A = [[]]Afor all structures A.A theory is a set of closed formulae. A model of a theory is a structure that satis�esevery formulae of the theory. A formula � is a consequence of a theory T (T j= �)if ~8� is valid in every model of T . A formula � entails a formula in a theory T(� j=T) if [[�]]A � [[]]A for every model A of T . Two formulae �, are equivalentin a theory T (� j=jT) if [[�]]A = [[]]A for every model A of T .A theory T is complete if for every closed formula � either � or :� is a consequenceof T . The set of all sentences valid in some speci�c �rst-order structure A is calledthe theory of A (abbreviated by Th(A)). The theory of a single structure is alwaysa complete theory. A theory is decidable if the set of its consequences is decidable.Since the consequences of a recursively enumerable theory are recursively enumerable(completeness of �rst-order deduction), a complete theory is decidable if and only ifit is recursively enumerable.Two �rst-order structures A,B are elementarily equivalent if, for every �rst-orderformula �, � is valid in A if and only if � is valid in B. Note that all models of acomplete theory are elementarily equivalent.A transformation rule is an ordered pair � plus optional application conditions.Rule instances are de�ned as usual. With �[x y] we denote the formula that isobtained from � by replacing every occurrence of x with y. We say that r = � isapplicable to �0 if there is an instance of �0 0 of r and the application conditions notedin the de�nition of r are satis�ed. We write � !r
 if r is applicable on � and theresult of the application is
. For a set of transformation rules R we say � !R
 ifthere is an r 2 R with �!r
. � is called R-irreducible if no rule instance r 2 Rapplies to �. We say that a formula � is R-reducible if � is not R-irreducible. Asequence �0!r0 �1 � � � �i !ri �i+1 � � �is called a derivation. A formula
 is called a R-derivative of � if there is aderivation from � to
 that uses only rule instances of R. Note that we ommit R ifthe set of rules is clear from the context.A rule system R is called terminating if there are no ini�nite derivations, and

151quasi-terminating if for every formula �, the set of derivable formulae is �nite.In the following, we recall some standard de�nitions for lattices and �xpoints ofcontinous functions. They can be found in a standard text book on lattice theory(e.g., [DP90]).Let P be a set partially ordered by 4. An element n 2 P is a lower bound for asubset N of P if 8m 2 N : n 4 m;and an upper bound for N if 8m 2 N : m 4 n. n is the greatest lower boundof N (denoted by uN) if n is a lower bound of N and in addition8m 2M : m lower bound for N) m 4 n:The least upper bound FN of N is de�ned analogously. A partially ordered setP is called complete lattice if for all subsets N of P , both FN and uN is de�ned.A non-empty subset D of a partially ordered set P is called directed if for every�nite subset F of D there is an upper bound in D. A function T : P ! P on anordered set P is continuous if for every directed set D in PT (GD) = G T (D) (:= GfT (x) j x 2 Dg):An element a 2 M is called �xpoint of T if T (a) = a. A �xpoint a is a least�xpoint of T if a 4 b for all other �xpoints b of T . Similarly, we de�ne greatest�xpoint. The least �xpoint is denoted by lfp(T), and the greatest �xpoint by gfp(T).In order to describe �xpoints we need to de�ne ordinal powers of the function T .We de�ne T " 0 := ?T " � := T (T " (�� 1)); if � is a successor ordinalT " � := GfT " (�) j � < �g; if � is a limes ordinaland T # 0 := >T # � := T (T # (�� 1)); if � is a successor ordinalT # � := GfT # (�) j � < �g; if � is a limes ordinalThe next two theorems states the well-known results for the �xpoints of continuousfunction over a complete lattice.

152 APPENDIX A. MATHEMATICAL PRELIMINARIESTheorem A.1 (Kleene) Let P be a complete lattice and T : P ! P be a continuousfunction. Then lfp(T) = T " !;and there is some ordinal � withgfp(T) = T # � 0 for all � 0 � �.Theorem A.2 (Tarksi) Let P be a complete lattice and T : P ! P be a continuousfunction. Then lfp(T) = Gfm j T (m) � mgand lfp(T) = Gfm j m � T (m)g:The next de�nitions will be concerned with special properties of algebraic lattices.An element k of an CPO P is called �nite if for every directed set D in Pk 4GD) k 4 d for some d 2 D:The set of �nite elements is denoted by F (P). A complete lattice P is calledalgebraic1 if for every a 2 p a = Gfk 2 F (P) j k 4 agIf we consider an algebraic lattice, then continuity of a function has a special role,namely that the the function is complete determined by its �nite approximations.The next proposition is a reformulation of Proposition 3.31 in [DP90, page 62].Proposition A.1 If P is an algebraic lattice, then T : P ! P is a continuousfunction if and only iffor all e 2 P : T (e) = GfT (k) j k 2 F (P) ^ k 4 eg:1Normally, a lattice is called algebraic if every element a 2 P is the least upper bound of thecompact elements that are smaller than a. But in complete lattices, the compact elements are justthe �nite ones.

153Proof. For the �rst direction we know that e = Ffk j k 2 F (P)^ k 4 eg, since P isalgebraic. As fk j k 2 F (P) ^ k 4 eg is directed and T is continuous we know thatT (e) = T (Gfk j k 2 F (P) ^ k 4 eg) = GfT (k) j k 2 F (P) ^ k 4 egFor the other direction assume that T (e) = FfT (k) j k 2 F (P) ^ k 4 eg for everye 2 P . We have to show that GT (D) = T (GD)for every directed set D. We know that T (d) = FfT (k) j k 2 F (P) ^ k 4 dg forevery d 2 D, which implies FT (D) = FfT (k) j k 2 F (P) ^ 9d 2 D : k 4 dg. Now k�nite implies that k 4 FD i� k 4 d for some d 2 D. This shows thatG T (D) = GfT (k) j k 2 F (P) ^ k 4 GDg:Using our assumption we get FfT (k) j k 2 F (P) ^ k 4 FDg = T (FD). 2

154 APPENDIX A. MATHEMATICAL PRELIMINARIES

Bibliography[AK86] Hassan A��t-Kaci. An algebraic semantics approach to the e�ective reso-lution of type equations. Theoretical Computer Science, 45:293{351,1986.[AK93] Hassan A��t-Kaci. An introduction to LIFE | programming with logic,inheritance, functions and equations. In Dale Miller, editor, Proc. ofthe International Symposium on Logic Programming, pages 52{68, Vancouver, October 1993. MIT Press.[AKLN87] Hassan A��t-Kaci, Patrick Lincoln, and Roger Nasr. Le Fun: Logic, equa-tions, and functions. In Proceedings of the 1987 Symposium onLogic Programming, pages 17{23. IEEE Computer Society, 1987.[AKN86] Hassan A��t-Kaci and Roger Nasr. Login: A logic programming languagewith built-in inheritance. The Journal of Logic Programming, 3:185{215, 1986.[AKN89] Hassan A��t-Kaci and Roger Nasr. Integrating logic and functional pro-gramming. Lisp and Symbolic Computation, 2:51{89, 1989.[AKP93] Hassan A��t-Kaci and Andreas Podelski. Towards a meaning of LIFE. TheJournal of Logic Programming, 16:195{234, 1993.[AKPG93] Hassan A��t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-sorted feature theory uni�cation. In Dale Miller, editor, Proc. of theInternational Symposium on Logic Programming, pages 506{524,Vancouver, October 1993. MIT Press.[AKPS94] Hassan A��t-Kaci, Andreas Podelski, and Gert Smolka. A feature-basedconstraint system for logic programming with entailment. TheoreticalComputer Science, 122(1{2):263{283, January 1994.155

156 BIBLIOGRAPHY[Baa90] Franz Baader. Augmenting concept languages by transitive closure ofroles: An alternative to terminological cycles. Research Report RR-90-13, DFKI, Postfach 2080, 6750 Kaiserslautern, Germany, 1990.[Baa91] Franz Baader. Augmenting concept languages by transitive closure ofroles: An alternative to terminological cycles. In Proc. of the 12thInternational Joint Conference on Arti�cial Intelligence, pages446{451, Sidney, 1991.[Bac89] Rolf Backofen. Integration von Funktionen, Relationen und Typen beimSprachentwurf. Teil II: Attributterme und Relationen. Master's thesis,Universit�at Erlangen-N�urnberg, 1989.[Bac94] Rolf Backofen. Regular path expressions in feature logic. Journal ofSymbolic Computation, 17:412{455, 1994.[Bac95a] Rolf Backofen. A complete axiomatization of a theory with feature andarity constraints. The Journal of Logic Programming, 1995. Toappear.[Bac95b] Rolf Backofen. Type systems and de�nite equivalences. Forthcoming,1995.[BBN+93] Franz Baader, Hans-J�urgen B�urckert, Bernhard Nebel, Werner Nutt, andGert Smolka. On the expressivity of feature logics with negation, func-tional uncertainty, and sort equations. Journal of Logic, Languageand Information, 2:1{18, 1993.[BEG90] Rolf Backofen, Lutz Euler, and G�unther G�orz. Towards the integration offunctions, relations and types in an AI programming language. In HeinzMarburger, editor, Proc. of the 14th German Workshop on Ar-ti�cial Intelligence, volume 251 of Informatik Fachberichte, pages297{306. Springer, Berlin, 1990.[BK93] Rolf Backofen and Hans-Ulrich Krieger. The TDL/UDiNe system. InBackofen et al. [BKSU93], pages 67{74. DFKI Document D-93-27.[BKSU93] Rolf Backofen, Hans-Ulrich Krieger, Stephen P. Spackman, and HansUszkoreit, editors. Report of the EAGLES Workshop on Imple-mented Formalisms at DFKI, Saarbr�ucken, 1993. DFKI DocumentD-93-27.

BIBLIOGRAPHY 157[BS85] Ronald J. Brachman and James G. Schmolze. An overview of the KL-ONE knowledge representation system. Cognitive Science, 9(2):171{216, April 1985.[BS93a] Rolf Backofen and Gert Smolka. A complete and recursive feature theory.In Proc. of the 31th Annual Meeting of the Association for Com-putational Linguistics, pages 193{200, Columbus, Ohio, 1993. Fullversion has appeared as Research Report RR-92-30, DFKI, Stuhlsatzen-hausweg 3, 66123 Saarbr�ucken, Germany, and will appear in TheoreticalComputer Science.[BS93b] Patrick Blackburn and Edith Spaan. A modal perspective on the com-putational complexity of attribute value grammar. Journal of Logic,Language and Information, 2:129{169, 1993.[BT94] Rolf Backofen and Ralf Treinen. How to win a game with features.In Jean-Pierre Jouannaud, editor, 1st International Conference onConstraints in Computational Logics, Lecture Notes in Comput-er Science, vol. 845, pages 320{335, M�unchen, Germany, 7{9 September1994. Springer-Verlag.[Car92] Bob Carpenter. The Logic of Typed Feature Structures, volume 32of Cambridge Tracts in Theoretical Computer Science. CambridgeUniversity Press, Cambridge, UK, 1992.[Car94] Bob Carpenter. Ale: The attribute logic engine. user's guide, version2:0. Technical report, Carnegie{Mellon University, Pittsburgh, PA 15213,1994.[CL89] Hubert Comon and Pierre Lescanne. Equational problems and disuni�-cation. Journal of Symbolic Computation, 7:371{425, 1989.[Cla78] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,Logic and Databases, pages 293{322. Plenum Press, New York, NY,1978.[DD93] Jochen D�orre and Michael Dorna. CUF { a formalism for linguistic knowl-edge representation. In D�orre [D�or93a], pages 1{22. DYANA DeliverableR1.2.A.[DE89] Jochen D�orre and Andreas Eisele. Determining consistency of featureterms with distributed disjunctions. In Dieter Metzinger, editor, Proc.

158 BIBLIOGRAPHYof the 13th German Workshop on Arti�cial Intelligence, volume216 of Informatik Fachberichte, pages 270{279. Springer, Berlin, 1989.[DE90] Jochen D�orre and Andreas Eisele. Feature logic with disjunctive uni�ca-tion. In Proc. of the 13th International Conference on Computa-tional Linguistics, pages 100{105, Helsinki, Finland, 1990.[DE91] Jochen D�orre and Andreas Eisele. A comprehensive uni�cation-basedgrammar formalism. Deliverable R3.1.B, DYANA | ESPRIT Basic Re-search Action BR3175, Centre for Cognitive Science, University of Edin-burgh, January 1991.[Der87] Nachum Dershowitz. Termination of rewriting. Journal of SymbolicComputation, 3:69{116, 1987.[D�or93a] Jochen D�orre, editor. Computational Aspects of Constraint-BasedLinguistic Descriptions, 1993. DYANA Deliverable R1.2.A.[D�or93b] Jochen D�orre. Feature-Logik und Semiunifcation. PhD thesis, Uni-versit�at Stuttgart, 1993. In German.[DP90] P. A. Davey and H. A. Priestley. Introduction to Lattices and Or-der. Cambridge Mathematical Textbooks. Cambridge University Press,Cambridge, England, 1990.[DR89] Jochen D�orre and William C. Rounds. On subsumption and semi-uni�cation in feature algebras. IWBS report, IWBS, IBM Deutschland,Postfach 80 08 80, 7000 Stuttgart 80, Germany, 1989.[DR92] Jochen D�orre and William C. Rounds. On subsumption and semiu-ni�cation in feature algebras. Journal of Symbolic Computation,13(4):441{461, April 1992.[Eur94] European Community. EAGLES Interim Report, 1994. draft.[EZ90a] Martin Emele and R�emi Zajac. A �xed-point semantics for feature typesystems. In St�ephane Kaplan and Mitsuhiro Okada, editors, Condition-al and Typed Rewriting Systems, 2nd International Workshop,LNCS 516, pages 383{388, Montreal, Canada, June 11{14, 1990. Springer-Verlag.[EZ90b] Martin Emele and R�emi Zajac. Typed uni�cation grammars. In Proc. ofthe 13th International Conference on Computational Linguistics,pages 293{298, Helsinki, Finland, 1990.

BIBLIOGRAPHY 159[HS88] Markus H�ohfeld and Gert Smolka. De�nite relations over constraint lan-guages. LILOG-Report 53, IBM Deutschland GmbH, Stuttgart, October1988.[HSW93] Martin Henz, Gert Smolka, and J�org W�urtz. Oz|a programming lan-guage for multi-agent systems. In Ruzena Bajcsy, editor, 13th Interna-tional Joint Conference on Arti�cial Intelligence, volume 1, pages404{409, Chamb�ery, France, 1993. Morgan Kaufmann Publishers.[HSW95] Martin Henz, Gert Smolka, and J�org W�urtz. Object-oriented concurrentconstraint programming in Oz. In V. Saraswat and P. Van Hentenryck,editors,Principles and Practice of Constraint Programming, chap-ter 2, pages 27{48. The MIT Press, Cambridge, MA, 1995. To appear.[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,Languages, and Computation. Addison-Wesley Series in ComputerScience. Addison-Wesley Publishing Company, Reading, MA, 1979.[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Principlesof Programming Languages, pages 111{119, 1987.[Joh88] Mark Johnson. Attribute-Value Logic and the Theory of Gram-mar, volume 16 of CSLI Lecture Notes. CSLI, 1988.[Joh91] Mark Johnson. Features and formulae. Computational Linguistics,17(2):131{151, 1991.[Joh94] Mark Johnson. Computing with features as formulae. ComputationalLinguistics, 20(1):1{25, 1994.[Kay79] Martin Kay. Functional grammar. In C. Chiarello et al., editor, Pro-ceedings of the 5th Annual Meeting of the Berkeley LinguisticsSociety, pages 142{158, Berkeley, CA, 1979.[KB82] Ronald M. Kaplan and Joan Bresnan. Lexical-Functional Grammar: Aformal system for grammatical representation. In J. Bresnan, editor, TheMental Representation of Grammatical Relations, pages 173{381.MIT Press, Cambridge (MA), 1982.[KM88] R. M. Kaplan and J. T. Maxwell III. An algorithm for functional uncer-tainty. In Proceedings of the 12th International Conference onComputational Linguistics, pages 297{302, Budapest, Hungary, 1988.

160 BIBLIOGRAPHY[KR86] Robert T. Kasper and William C. Rounds. A logical semantics for featurestructures. In Proceedings of the 24th Annual Meeting of theACL, Columbia University, pages 257{265, New York, N.Y., 1986.[KR90] Ropert T. Kasper and William C. Rounds. The logic of uni�cation gram-mar. Lingusitic and Philosophy, 13:35{58, 1990.[Kri95] Hans-Ulrich Krieger. TDL|A Type Description Language forConstraint-Based Grammars. Foundations, Implementation,and Applications. PhD thesis, Universit�at des Saarlandes, 1995. Forth-coming.[KS94] Hans-Ulrich Krieger and Ulrich Sch�afer. TDL|a type descriptionlanguage for constraint-based grammars. In Proceedings of the15th International Conference on Computational Linguistics,COLING-94, pages 893{899, Kyoto, Japan, 1994.[KZ88] Ronald M. Kaplan and Annie Zaenen. Long-distance dependencies, con-stituent structure, and functional uncertainty. In M. Baltin and A. Kroch,editors, Alternative Conceptions of Phrase Structure. University ofChicago Press, Chicago, 1988.[Mah88] Michael J. Maher. Complete axiomatizations of the algebras of �nite,rational and in�nite trees. In Proceedings of the 3rd Annual Sym-posium on Logic in Computer Science, pages 348{457, Edinburgh,Scotland, July 1988.[MAK90] Richard Meyer and Hassan Ait-Kaci. Wild-life, a user manual. TechnicalNote 1, Digital Equipment Corporation, November 1990.[Man93a] Suresh Manandhar. Cuf in context. In D�orre [D�or93a], pages 45{53.DYANA Deliverable R1.2.A.[Man93b] Suresh K. Manandhar. Relational Extensions to Feature Logic: Ap-plications to Constraint Based Grammars. PhD thesis, Universityof Edinburgh, 1993.[MK89] John Maxwell and Roland Kaplan. An overview over disjunctive con-straint satisfaction. In Proceedings of the International ParsingWorkshop 1989, pages 18{27, 1989.[Mos92] Lawrence S. Moss. Completeness theorems for logics of feature structures.In Y. N. Moschovakis, editor, Logic from Computer Science, pages387{403, Berlin, Heidelberg, New York, 1992. Springer-Verlag.

BIBLIOGRAPHY 161[MP93] M. Andrew Moshier and Carl J. Pollard. The domain of set-valued featurestructures. CLAUS Report 35, Universit�at des Saarlandes - Computer-linguistik, 1993.[NP93] Joachim Niehren and Andreas Podelski. Feature automata and recog-nizable sets of feature trees. In Marie-Claude Gaudel and Jean-PierreJouannaud, editors, TAPSOFT 93: Theory and Practice of Soft-ware Development, Lecture Notes in Computer Science, vol. 668, pages356{375, Orsay, France, 13{16 April 1993. Springer-Verlag.[NS91] Bernhard Nebel and Gert Smolka. Attributive description formalisms ...and the rest of the world. In O. Herzog and C.-R. Rollinger, editors,Text Understanding in LILOG: Integrating Computational Lin-guistics and Arti�cial Intelligence, volume 546 of Lectures Notesin Arti�cial Intelligence, pages 439{452. Springer-Verlag, Berlin, Ger-many, 1991.[Per83] Fernando C.N. Pereira. Parsing as deduction. In Proceedings of the21th Annual Meeting of the Association for Computational Lin-guistics, pages 137{144, Cambridge, MA, 1983.[PM90] Carl J. Pollard and M. Drew Moshier. Unifying partial descriptions ofsets. In P. Hanson, editor, Information, Language, and Cognition.Vol. 1 of Vancouver Studies in Cognitive Science, pages 285{322.University of British Columbia Press, 1990.[Pod92] Andreas Podelski. A monoid approach to tree automata. In MauriceNivat and Andreas Podelski, editors, Tree Automata and Languages,pages 41{56. North-Holland, 1992.[Pol89] Carl Pollard. Sorts in uni�cation-based grammar and what they mean.Unpublished manuscript, 1989.[PS87] Carl Pollard and Ivan A. Sag. Information-Based Syntax and Se-mantics. Vol. 1: Fundamentals, volume 13 of CSLI Lecture Notes.Chicago Univ. Press, Chicago, 1987.[PS94] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Gram-mar. Studies in Contemporary Linguistics. University of Chicago Press,Chicago, 1994.

162 BIBLIOGRAPHY[Rea91] Mike Reape. An introduction to the semantics of uni�cation-based gram-mar formalisms. Deliverable R3.2.A, DYANA, Centre for Cognitive Sci-ence, University of Edinburgh, January 1991.[RJ94] C. J. Rupp and Rod Johnson. On the portability of complex constraint-based grammars. In Proc. of the 15th International Conference onComputational Linguistics, pages 900{905, Kyoto, Japan, 1994.[RK86] William C. Rounds and Robert Kasper. A complete logical calculus forrecord structures representing linguistic information. In Proc. of theSymposium on Logic in Computer Sciences, pages 38{43, Cam-bridge (MA), 1986. IEEE Computer Society.[Rou88] William Rounds. Set values for uni�cation-based grammar formalismsand logic programming. Report CLSI-88-129, CSLI, Stanford (CA), June1988.[Sar91] Vijay A. Saraswat. Semantic foundation of concurrent constraint pro-gramming. In Principles of Programming Languages, pages 333{352, 1991.[Shi86] Stuart M. Shieber. An Introduction to Uni�cation-Based Ap-proaches to Grammar, volume 4 of CSLI Lecture Notes. StanfordUniversity, Stanford (CA), 1986.[Shi89] Stuart M. Shieber. Parsing and type inference for natural and comput-er languages. Technical Note 460, SRI International, Menlo Park, MA,March 1989.[Shi92] Stuart M. Shieber. Constraint-Based Grammar Formalisms. MIT- Press, Cambridge, Massachusetts - London, 1992.[Smo88] Gert Smolka. A feature logic with subsorts. LILOG-Report 33, IWBS,IBM Deutschland, Stuttgart, May 1988.[Smo92] Gert Smolka. Feature constraint logics for uni�cation grammars. Journalof Logic Programming, 12:51{87, 1992.[Smo93] Gert Smolka. Logische Programmierung. Lecture Notes (in German),1993.[Smo94a] Gert Smolka. A calculus for higher-order concurrent constraint program-ming with deep guards. Research Report RR-94-03, DFKI, Stuhlsatzen-hausweg 3, D-66123 Saarbr�ucken, Germany, February 1994.

BIBLIOGRAPHY 163[Smo94b] Gert Smolka. The de�nition of Kernel Oz. DFKI Oz documentation series,DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, 1994.[Smo94c] Gert Smolka. A foundation for higher-order concurrent constraint pro-gramming. In Jean-Pierre Jouannaud, editor, 1st International Con-ference on Constraints in Computational Logics, Lecture Notesin Computer Science, vol. 845, pages 50{72, M�unchen, Germany, 7{9September 1994. Springer-Verlag.[Smo94d] Gert Smolka. An Oz primer. DFKI Oz documentation series, DFKI,Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany, 1994.[SR90] Vijay A. Saraswat and Martin Rinard. Concurrent constraint program-ming. In Proceedings of the 7th Annual ACM Symposium onPrinciples of Programming Languages, pages 232{245, San Francis-co, CA, January 1990.[SSS91] Manfred Schmidt-Schau� and Gert Smolka. Attributive concept descrip-tions with complements. Arti�cial Intelligence, 48:1{26, 1991.[ST94] Gert Smolka and Ralf Treinen. Records for logic programming. TheJournal of Logic Programming, 18(3):229{258, April 1994.[SUP+83] Stuart Shieber, Hans Uszkoreit, Fernando Pereira, Jane Robinson, andMabry Tyson. The formalism and implementation of PATR-II. In Bar-bara J. Grosz and Mark E. Stickel, editors, Research on InteractiveAcquisition and Use of Knowledge, pages 39{79. AI Center, SRIInternational, Menlo Park, Cal., 1983.[Tre93] Ralf Treinen. Feature constraints with �rst-class features. In Andrzej M.Borzyszkowski and Stefan Soko lowski, editors, Mathematical Foun-dations of Computer Science, Lecture Notes in Computer Science,vol. 711, pages 734{743, Gda�nsk, Poland, 30 August{3 September 1993.Springer-Verlag.[Ven87] K. N. Venkataraman. Decidability of the purely existential fragment of thetheory of term algebra. Journal of the Association for ComputingMachinery, 34(2):492{510, April 1987.[VSJ88] K. Vijay-Shanker and A. K. Joshi. Feature structure based tree adjoin-ing grammars. In Proc. of the 12th International Conference onComputational Linguistics, pages 714{719, Budapest, Hungary, 1988.

164 BIBLIOGRAPHY[Zaj92] R�emi Zajac. Inheritance and constraint-based grammar formalisms.Computational Linguistics, 18(2):159{182, 1992.

Index to SymbolsC + 1, 46C � 1, 46P (xp), 66[�], 71[
], 70?, 149[[�]]A# , 132�, 23~9�, 1499!�, 149ht1; : : : ; tni, 37���, 114�[x y], 150� , 150>, 149!r, 150!R, 150~8�, 149p :2L, 114p :q q, 114p :� q, 114p�1�, 24t[p]t0, 114tLt0, 29t[t0]t00, 27tft0, 28xF , 28x := y, 149xf", 74xp # yq, 66xp#, 67xpt, 66

jxpj
, 72adjoinAt(�; f; �), 25appT (S1; : : : ; Sn; x1; : : : ; xni ; C), 56arity(�), 24atom(x), 28CFT0, 28CV(�), 75Dec(), 79, 96Dece(), 96F , 29F0, 27FT0, 27FTP0 , 65I(m), 50TCFT0 , 28TF0 , 27TFT0, 28TRF, 114TRFT, 29in(x; y), 38intdom(R;M), 50L, 23[[L]], 29leaves(�), 23nat(x), 45NUM(�), 45PATH(�), 42165

166 INDEX TO SYMBOLSR(F0), 48RCFT0, 30RF0, 30RFT0 , 30RRF, 114RRFT, 30refl-trans�R(x; y), 40RELn(�), 38restr(M1; : : : ;Mn; S1; : : : ; Sn; C), 56RF, 113RFT, 29seqT (S1; : : : ; Sn), 56SET(�), 37simulate(�; �), 26subsume(�; �), 26subtree(�; �), 24subtreeAt(�; p; �), 24T # �, 151T " �, 151TMP , 50Th(A), 150TUPLEn(�1; : : : ; �n), 36U(A), 150Utree(A), 114V(�), 149

List of Theorems, Lemmas etc.Corollary 3.1, 51Corollary 3.2, 52Corollary 4.1, 88Corollary 4.2, 103Corollary 5.1, 131Corollary 5.2, 138Corollary 5.3, 141Corollary 5.4, 146De�nition 3.1, 40De�nition 3.4, 49De�nition 3.5, 49De�nition 3.6, 50De�nition 3.7, 53De�nition 4.12, 81De�nition 4.16, 94De�nition 4.21, 98De�nition 4.22, 99Lemma 3.1, 41Lemma 3.2, 51Lemma 3.3, 51Lemma 3.4, 53Lemma 3.5, 56Lemma 4.1, 63Lemma 4.10, 100Lemma 4.11, 103Lemma 4.12, 105Lemma 4.13, 106Lemma 4.3, 82Lemma 4.4, 85Lemma 4.5, 86Lemma 4.6, 86

Lemma 4.7, 87Lemma 4.8, 95Lemma 5.1, 118Lemma 5.10, 146Lemma 5.11, 146Lemma 5.2, 119Lemma 5.3, 124Lemma 5.4, 126Lemma 5.5, 130Lemma 5.6, 131Lemma 5.7, 137Lemma 5.8, 139Lemma 5.9, 144Proposition 2.1, 29Proposition 3.1, 36Proposition 3.10, 44Proposition 3.11, 44Proposition 3.12, 44Proposition 3.13, 45Proposition 3.14, 50Proposition 3.15, 50Proposition 3.16, 51Proposition 3.17, 52Proposition 3.18, 56Proposition 3.19, 56Proposition 3.2, 37Proposition 3.3, 37Proposition 3.4, 38Proposition 3.7, 40Proposition 3.8, 42Proposition 3.9, 42167

168 LIST OF THEOREMS, LEMMAS ETC.Proposition 4.1, 69Proposition 4.10, 73Proposition 4.11, 74Proposition 4.12, 76Proposition 4.13, 78Proposition 4.14, 79Proposition 4.15, 80Proposition 4.16, 81Proposition 4.17, 82Proposition 4.18, 82Proposition 4.19, 91Proposition 4.2, 70Proposition 4.20, 91Proposition 4.21, 92Proposition 4.22, 93Proposition 4.23, 93Proposition 4.24, 94Proposition 4.25, 94Proposition 4.26, 95Proposition 4.27, 95Proposition 4.28, 96Proposition 4.29, 97Proposition 4.3, 70Proposition 4.30, 98Proposition 4.31, 98Proposition 4.32, 98Proposition 4.33, 99Proposition 4.34, 100Proposition 4.4, 71Proposition 4.5, 72Proposition 4.6, 72Proposition 4.7, 72Proposition 4.8, 72Proposition 4.9, 73Proposition 5.1, 113Proposition 5.10, 133Proposition 5.11, 133Proposition 5.12, 133Proposition 5.13, 133

Proposition 5.14, 142Proposition 5.15, 144Proposition 5.16, 144Proposition 5.17, 144Proposition 5.2, 115Proposition 5.3, 115Proposition 5.4, 116Proposition 5.5, 116Proposition 5.6, 117Proposition 5.7, 122Proposition 5.8, 124Proposition 5.9, 124Proposition A.1, 152Theorem 2.1, 32Theorem 3.1, 57Theorem 3.2, 57Theorem 3.3, 58Theorem 4.1, 76Theorem 4.2, 77Theorem 4.3, 87Theorem 4.4, 87Theorem 4.5, 107Theorem 4.6, 107Theorem 5.3, 140Theorem 5.4, 146Theorem 5.5, 147

Subject Indexaccess function, 72arity, 24associated, 55atoms, 24binds to, 68, 116clause, 116admissible, 126basic, 116partioned, 144pre-solved, 117prime, 117solved, 74, 118, 141closed under decomposition, 121closure, 70of a prime formula, 71co-�nite sets, 29concatenation, 114congruence, 93constraintarity, 28basic, 68clash-free, 93clashing, 93direct divergence, 141divergence, 114exclusion, 74feature, 28generalised, 27for, 79graph, 94path, 66

path restriction, 114path term, 116pre�x, 114subtree, 114decomposition complete, 144de�nable, 31, 53de�niteequivalence, 49formula, 49program, 49de�nitionally equivalent, 30determinant, 90diverge, 113directly, 141eliminates, 68, 116endomorphism, 26explicit de�nition, 30feature tree, 23rational, 24formulaprime, 71, 95saturated, 95solved, 68, 92graph, 69, 92, 94normaliser, 69, 92of a basic constraint, 94of a congruence, 94parameters, 75, 91169

170 SUBJECT INDEXpath, 23rooted, 72decided, 82, 99determined, 98free, 99realised, 72value of, 72�-closed, 121�-complete, 133pre�x-closed, 23projection, 73regular path expressions, 29relational extension, 48restriction to, 55R(F0)-interpretation, 49subsumed, 26subtree, 24at, 24direct, 24tree domain, 23variableconstrained, 75, 92decided, 79, 96explicitly, 96implicitly, 96determined, 90#-equivalent, 132#-preserving, 133globally, 133#-solution, 132#-sound, 133X-joker, 82, 99

