
A Metric Model of Lambda Calculus with Guarded Recursion
Lars Birkedal

IT University of Copenhagen
birkedal@itu.dk

Jan Schwinghammer
Saarland University

jan@ps.uni-saarland.de

Kristian Støvring
IT University of Copenhagen

kss@itu.dk

Abstract

We give a model for Nakano’s typed lambda calculus with guarded recursive definitions in a
category of metric spaces. By proving a computational adequacy result that relates the interpretation
with the operational semantics, we show that the model can be used to reason about contextual
equivalence.

1 Introduction

Recent work in semantics of programming languages and program logics has suggested that there might
be a connection between metric spaces and Nakano’s typed lambda calculus with guarded recursive
definitions [8]. In this paper we show that is indeed the case by developing a model of Nakano’s calculus
in a category of metric spaces and by showing that the model is computationally adequate. The latter is
done with the use of a logical relation, whose existence is non-trivial because of the presence of recursive
types. We define the relation in a novel indexed way, inspired by step-indexed models for operational
semantics [2].

For space reasons, we can only briefly hint at some of the motivating applications in semantics:
In [4], Birkedal et al. gave a model of a programming language with recursive types, impredicative

polymorphism and general ML-style references. The model is a Kripke model, where the set of worlds is
a recursively defined metric space (with the recursion variable in negative position). A simplified variant
of the recursive equation can be formulated in a version of Nakano’s calculus.

Pottier [9] has recently suggested to use Nakano’s calculus as a calculus of kinds in an extension of Fω

with recursive kinds, which can serve as a target calculus for a store-passing translation of a language
with ML-style references. The model we present here can be extended to a model of Fω with recursive
kinds by indexing complete uniform per’s over metric spaces.

Hinze [6] has shown, in the context of Haskell streams, how the uniqueness of fixed points of con-
tractive functions in an operational setting can be used for verification. Nakano’s calculus can be used to
formalize such arguments, and in our model unique fixed points for contractive functions do exist.

For reasoning about imperative interactive programs, Krishnaswami et al. [7] related an efficient
imperative implementation to a simple model of functional reactive programming. In current unpublished
work by Krishnaswami on extending this to higher-order programs, metric spaces are being used to model
the functional reactive programs to capture that all uses of recursion are guarded. A logical relation is
used to relate the functional reactive programs and the imperative implementation thereof; that logical
relation is defined using ideas that seem similar to those we are using in our logical relation for the
adequacy proof in Section 3.

In the remainder of the paper, we present (our version of) Nakano’s calculus (Section 2), define the
denotational semantics and prove that it is computationally adequate (Section 3), briefly discuss some
closely related work (Section 4), and conclude with some comments about future work.

2 Nakano’s Lambda Calculus

In this section we recall the typed lambda calculus of Nakano [8]. It allows certain forms of guarded
recursive definitions, and tracks guardedness via a modality in the type system. We shall show that this

1

birkedal@itu.dk
jan@ps.uni-saarland.de
kss@itu.dk

A Metric Model of Lambda Calculus with Guarded Recursion Birkedal et al.

Γ,x:τ ` x : τ Γ ` n : Int
Γ,x:τ ` t : σ

Γ ` λx:τ.t : τ → σ

Γ ` t1 : •n(τ → σ) Γ ` t2 : •n
τ

Γ ` t1 t2 : •n
σ

Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (t1, t2) : τ1× τ2

Γ ` t : •n(τ1× τ2)

Γ ` proji(t) : •n
τi

•Γ ` t : •τ

Γ ` t : τ

Γ ` t : •τi, j

Γ ` Ini, j(t) : tyi

Γ ` t : tyi Γ,x1:•τi,1 ` t1 : τ . . . Γ,xik :•τi,ki ` tki : τ

Γ ` case t of Ini,1(x1)⇒ t1 | . . . | Ini,ki(xki)⇒ tki : τ

Γ ` t : τ ` τ ≤ σ

Γ ` t : σ

Figure 1: Typing rules of Nakano’s lambda calculus

` τ ≤ σ

` •τ ≤ •σ

` τ
′ ≤ τ ` σ ≤ σ

′

` τ → σ ≤ τ
′→ σ

′
` τ ≤ τ

′ ` σ ≤ σ
′

` τ×σ ≤ τ
′×σ

′ ` τ ≤ •τ

` τ → σ ≤ •τ →•σ ` •τ →•σ ≤ •(τ → σ) ` τ×σ ≤ •τ×•σ ` •τ×•σ ≤ •(τ×σ)

Figure 2: Subtyping

modality can be understood semantically as a scaling operation of the distances in a metric space.
The precise language considered below differs from that presented by Nakano in [8] in that we

assume a fixed number of “global” (possibly mutually recursive) datatype declarations. In contrast,
Nakano includes equi-recursive types of the form µX .A (subject to some well-formedness conditions
that ensure formal contractiveness, and a type equivalence relation).

Syntax and typing. We assume that there is a fixed number of type identifiers ty1, . . . , tyn, each as-
sociated with a recursive data type equation in the style of Haskell or ML that specifies constructors
Ini,1, . . . , Ini,ki :

data tyi = Ini,1 of τi,1 | . . . | Ini,ki of τi,ki . (1)

The types τi,1, . . . ,τi,ki that appear on the right hand side of (1) are built up from ground types b (for sim-
plicity, we restrict ourselves to Int) and the identifiers ty1, . . . , tyn, using product and function space and
the unary type constructor ‘•’ (referred to as ‘later’ modality in recent work on step-indexed semantics
[3]). One concrete instance of (1) is a type of infinite sequences of τ’s: data seqτ = Cons of τ × seqτ .
In general, these declarations need not be monotone, however, and the identifiers tyi may also appear in
negative positions. For instance, Nakano [8, Ex. 1] considers the type data u = Fold of u→ τ . With this
type, the fixed point combinator Y from untyped lambda calculus has type (•τ → τ)→ τ; thus, it is not
necessary to include a primitive for recursion.

Terms and their types are given in Figure 1. The type system uses the subtyping relation defined in
Figure 2 (omitting the reflexivity and transitivity rules). Intuitively, the type •τ may be understood as
the set of values of type τ that need to be guarded by a constructor. This intuition explains the two rules
for typing constructor applications and pattern matching in Figure 1: The application of a constructor
lets one remove the outermost modal operator, and it also folds the recursive type. Conversely, the case
construct removes a constructor, and the typing rule records this fact by applying the modality to the
type of the bound variables. The typing rules for function application and component projections are
also generalized to take care of the modal operator. We write Tm(τ) for the set of closed terms of type τ .

2

A Metric Model of Lambda Calculus with Guarded Recursion Birkedal et al.

Operational semantics and contextual equivalence. The operational semantics consists of the usual
(deterministic, call-by-name) reduction rules of lambda calculus with constructor types. One does not
reduce under constructors: every term of the form Ini, j(t) is a value. We take contextual equivalence as
our notion of program equivalence. Formally, we observe the values that terms yield when plugged into
closing, base-type valued contexts: Let us write `C : (Γ′ . τ ′)((Γ . τ) for a context C if Γ `C[t] : τ

whenever Γ′ ` t : τ ′. Then t1 and t2 are contextually equivalent, written Γ ` t1 ' t2 : τ , if Γ ` t1 : τ and
Γ ` t2 : τ , and for all `C : (Γ. τ)((/0. Int) and n ∈ N, C[t1]

∗→ n ⇔ C[t2]
∗→ n.

3 Denotational Semantics

We give a denotational semantics of types and terms in the category of complete, 1-bounded ultrametric
spaces and non-expansive maps between them.

Ultrametric spaces. We briefly recall some basic definitions and results about metric spaces [10]. A
1-bounded ultrametric space (X ,d) is a metric space where the distance function d : X×X→R takes val-
ues in the closed interval [0,1] and satisfies the “strong” triangle inequality d(x,y)≤max{d(x,z),d(z,y)}.
A metric space is complete if every Cauchy sequence has a limit. Because of the use of max in the above
inequality, rather than ‘+’ as for the weaker triangle inequality of metric spaces in general, a sequence
(xn)n∈N in an ultrametric space (X ,d) is a Cauchy sequence if for every ε > 0 there exists n ∈ N such
that d(xk,xk+1)≤ ε for every k ≥ n.

A function f : X1→ X2 between metric spaces (X1,d1), (X2,d2) is non-expansive if d2(f (x), f (y))≤
d1(x,y) for all x,y ∈ X1. It is contractive if there exists some δ < 1 such that d2(f (x), f (y))≤ δ ·d1(x,y)
for all x,y ∈ X1. The complete, 1-bounded, non-empty, ultrametric spaces and non-expansive functions
between them form a Cartesian closed category CBUltne. Products are given by the set-theoretic product
where the distance is the maximum of the componentwise distances. The exponential (X1,d1)→ (X2,d2)
has the set of non-expansive functions from (X1,d1) to (X2,d2) as underlying set, and the distance func-
tion is given by dX1→X2(f ,g) = sup{d2(f (x),g(x)) | x ∈ X1}.

A functor F : (CBUltop
ne)

n×CBUltn
ne −→ CBUltne is locally non-expansive if d(F(f ,g),F(f ′,g′))≤

max{d(f1, f ′1),d(g1,g′1), . . . ,d(fn, f ′n),d(gn,g′n)} for all non-expansive f = (f1, . . . , fn), f ′ = (f ′1, . . . , f ′n),
g = (g1, . . . ,gn) and g′ = (g′1, . . .g

′
n). It is locally contractive if there exists some δ < 1 such that

d(F(f ,g),F(f ′,g′))≤ δ ·max{d(f1, f ′1),d(g1,g′1), . . . ,d(fn, f ′n),d(gn,g′n)}. Note that the factor δ is the
same for all hom-sets. By multiplication of the distances of (X ,d) with a non-negative shrinking factor
δ < 1, one obtains a new ultrametric space, δ · (X ,d) = (X ,d′) where d′(x,y) = δ ·d(x,y). By shrinking,
a locally non-expansive functor F yields a locally contractive functor (δ ·F)(X ,Y) = δ · (F(X ,Y)).

It is well-known that one can solve recursive domain equations in CBUltne by an adaptation of the
inverse-limit method from classical domain theory:

Theorem 1 (America-Rutten [1]). Let Fi : (CBUltop
ne)

n×CBUltn
ne −→ CBUltne be locally contractive

functors for i = 1, . . . ,n. Then there exists a unique (up to isomorphism) X = (Xk,dk)k ∈ CBUltn
ne such

that (Xi,di)∼= Fi(X ,X) for all i.

The metric spaces we consider below are bisected, meaning that all non-zero distances are of the
form 2−n for some natural number n≥ 0. When working with bisected metric spaces, the notation x n

= y
means that d(x,y)≤ 2−n. Each relation n

= is an equivalence relation because of the ultrametric inequality;
we are therefore justified in referring to the relation n

= as “n-equality.” Since the distance of a bisected
metric space is bounded by 1, the relation x 0

= y always holds. Moreover, the n-equalities become finer
as n increases, and x = y if x n

= y holds for all n. Finally, a function f : X1→ X2 between bisected metric
spaces is non-expansive iff x1

n
=x′1⇒ f (x1)

n
= f (x′1), and contractive iff x1

n
=x′1⇒ f (x1)

n+1
= f (x′1) for all n.

3

A Metric Model of Lambda Calculus with Guarded Recursion Birkedal et al.

Denotational semantics of Nakano’s lambda calculus. We can now define the interpretation of types
and terms in CBUltne. More precisely, by induction on the type τ we define locally non-expansive
functors Fτ : (CBUltop

ne)
n×CBUltn

ne −→ CBUltne, by separating positive and negative occurrences of the
identifiers ty1, . . . , tyn in τ:

FInt(X ,Y) = (Z,d), where d is the discrete metric

Ftyi
(X ,Y) = Yi

Fτ1×τ2(X ,Y) = Fτ1(X ,Y)×Fτ2(X ,Y)

Fτ1→τ2(X ,Y) = Fτ1(Y,X)→ Fτ2(X ,Y)

F•τ(X ,Y) = 1
2 ·Fτ(X ,Y)

Now consider the functors Fi : (CBUltop
ne)

n×CBUltn
ne −→ CBUltne for i = 1, . . . ,n, defined by

Fi(X ,Y) = 1
2 ·Fτi,1(X ,Y)+ . . .+ 1

2 ·Fτi,ki
(X ,Y) . (2)

Because of the shrinking factor 1/2 in (2), each Fi is in fact locally contractive. Theorem 1 therefore
gives a unique fixed point D with ιi : Fi(D,D)∼= Di for all i. We use D to give the semantics of types:

JτK def
= Fτ(D,D) .

Example 2 (Interpretation of streams). On streams, the semantics yields the “natural” metric. In fact,
since JseqτK∼= 1

2 · (JτK× JseqτK) we have

dJseqτK(s1s2 . . . , s′1s′2 . . .)≤ 2−n ⇔ dJτK(s1,s′1)≤ 2−(n−1) ∧ dJseqτK(s2s3 . . . , s′2s′3 . . .)≤ 2−(n−1) .

In particular, because of the discrete metric on JIntK, for seqInt this means s n
= s′ holds if s1 = s′1, . . . ,sn−1 =

s′n−1, i.e., if the common prefix of s and s′ has at least length n−1, and s = s′ if si = s′i for all i ∈ N.

For each subtyping derivation ∆ of a judgement ` τ ≤σ we define a corresponding coercion function,
i.e., a non-expansive function J∆K : JτK→ JσK. First note that, for each of the 5 subtyping axioms ` τ ≤σ

in Figure 2 (as well as the reflexivity axiom), the underlying sets of JτK and JσK are equal. Thus we can
define J∆K as the identity on the underlying sets, and it is easy to check that ∆ is in fact non-expansive.
If ∆ is obtained from ∆1 and ∆2 by an application of the transitivity rule, then J∆K is defined as the
composition of J∆1K and J∆2K. Finally, for each of the 3 structural rules in Figure 2, we use the functorial
property of the respective type constructor to define J∆K from the coercions of the subderivations. It
follows by induction that the coercion determined from any derivation ∆ of ` τ ≤ σ is the identity on the
underlying set of JτK, and hence independent of ∆.

Each term x1:τ1, . . . ,xn:τn ` t : τ denotes a non-expansive function

JtK : Jτ1K× . . .× JτnK→ JτK

which is defined by induction on the typing derivation. The cases of lambda abstraction, application,
pairing and projections are given in terms of the cartesian closed structure on CBUltne. From the def-
inition of the type interpretation it follows that ιi is an isomorphism between 1

2 · Jτi,1K+ . . .+ 1
2 · Jτi,kiK

and JtyiK. Together with the injections from J•τi, jK = 1
2 · Jτi, jK into the sum, this isomorphism is used to

interpret the constructors and pattern matching of the calculus:

JIni, j(t)K(~a) = (ιi ◦ in j ◦JtK)(~a) and Jcase t of Ini,1(x1)⇒ t1 | . . . | Ini,ki(xki)⇒ tkiK(~a) = Jt jK(~a,a)

where ι
−1
i (JtK(~a)) = in j(a) for some 1≤ j ≤ ki and a ∈ Jτi, jK. We obtain a model that is sound:

4

A Metric Model of Lambda Calculus with Guarded Recursion Birkedal et al.

Theorem 3 (Soundness). If /0 ` t : τ and t1→ t2 then Jt1K = Jt2K in JτK.

Remark 4 (Recursive definitions). In [8] Nakano shows that the fixed point combinator Y from untyped
lambda calculus can be represented by λ f .∆ f (Fold(∆ f)) where ∆ f = λx. f (case x of Fold(y)⇒ yx) and
the data type data u = Fold of u→ τ is assumed, and that this term has type (•τ → τ)→ τ . Note that
in the above interpretation, where the modality is interpreted by scaling the distances by 1/2, the type
•τ→ τ denotes the set of all non-expansive functions 1

2 · JτK→ JτK, or equivalently (by the bisectedness
of JτK) the contractive functions on JτK. Such functions have a unique fixed point in JτK by the Banach
fixed point theorem, and we can show that Y indeed returns this fixed point since f (JY K f) = JY K f .

As an alternative to this coding, we could introduce a recursion operator rec : (•τ→ τ)→ τ for each
τ as a primitive, with reduction rule rec t→ t (rec t), and use the above observation for its interpretation.

Computational adequacy. We now relate the interpretation of lambda terms in the metric model and
their operational behaviour. In particular, we prove that the semantics is sound for reasoning about
contextual equivalence: if two terms have the same denotation then they are contextually equivalent.

The general idea of the adequacy proof is standard: the universal quantification over contexts prevents
a direct inductive proof, so we use the compositionality of the denotational semantics and construct a
(Kripke) logical relation between semantics and syntax. More precisely, we consider the family (Rk

τ)
k
τ of

relations indexed by types τ and natural numbers k, where Rk
τ ⊆ JτK×Tm(τ) is given by:

n Rk
Int t ⇔ t ∗→ n

(a1,a2) Rk
τ1×τ2

t ⇔ a1 Rk
τ1

proj1(t) ∧ a2 Rk
τ2

proj2(t)

f Rk
τ1→τ2

t ⇔ ∀ j,a1, t1. j ≤ k ∧ a1 R j
τ1 t1 ⇒ f a1 R j

τ2 t t1

a Rk
•τ t ⇔ k > 0 ⇒ a Rk−1

τ t

a Rk
tyi

t ⇔ ∃a′, t ′. a = (ιi ◦ in j)(a′) ∧ t ∗→ Ini, j(t ′) ∧ a′ Rk
•τi, j

t ′

Note that it is the natural number index which lets us define the relations Rk
τ inductively in the presence

of recursive types tyi. We prove the ‘fundamental property’ by induction on typing derivations:

Proposition 5. If Γ ` t : τ , k ∈ N, and ai Rk
τi

ti for all xi:τi in Γ, then JtK(~a) Rk
τ t[~x:=~t].

Proof sketch. By induction on the derivation of Γ ` t : τ . The proof uses the closure of the relations under
the operational semantics, the downwards closure (Kripke monotonicity) in k, and the closure under the
coercions determined by the subtyping relation.

Now adequacy is easily proved. In fact, given Γ ` t1 : τ , Γ ` t2 : τ and ` C : (Γ . τ) ((/0 . Int),
and C[t1]

∗→ n for some n ∈ N, then JC[t2]K = JC[t1]K = n follows from the assumption Jt1K = Jt2K and
Theorem 3. By Proposition 5, JC[t2]K Rk

Int C[t2], and therefore n Rk
Int C[t2] holds. But by definition this

means C[t2]
∗→ n, and with a symmetric argument the claim Jt1K = Jt2K ⇒ Γ ` t1 ' t2 : τ follows.

Apart from using the semantics directly to reason about contextual equivalence, we can also use com-
putational adequacy to derive more abstract proof principles from it. For instance, by the characterization
of the metric on seqInt given in Example 2 and the fact that there are closed terms getn : seqInt→ •n Int
that yield the n-th element of a sequence, we obtain a variant of Bird and Wadler’s take lemma: if getn t1
and getn t2 reduce to the same value, for each n ∈ N, then /0 ` t1 ' t2 : seqInt. Similarly, we can exploit
the uniqueness of fixed points of contractive equations also in the operational setting: if there exists a
closed term f : •τ → τ such that f t1 and t1 are convertible, and also f t2 and t2 are convertible, then
/0 ` t1 ' t2 : τ . See, for instance, Hinze’s article [6] for numerous applications of such a unique fixed
point principle phrased in the context of Haskell streams, and Pottier’s work [9] for a similar application
to establish type equivalences in the context of Fω with recursive kinds.

5

A Metric Model of Lambda Calculus with Guarded Recursion Birkedal et al.

4 Related Work

Metric semantics of PCF. Escardó [5] presents a metric model of PCF. One can, almost,1 factor his
interpretation of PCF into two parts: (1) a syntactic translation from PCF to Nakano’s calculus, extended
with constants for integer operations and a booleans, and (2) the metric interpretation of Nakano’s calcu-
lus presented here. The basic idea of the syntactic translation is that a potentially divergent PCF term of
integer type is translated into a term of the recursive type Ints = Done of Int | Next of Ints. After evaluat-
ing such a term, one either obtains an actual integer answer, Done(n), or a new term that one can evaluate
in the hope of eventually getting an integer answer. PCF function types are translated to function types.

Now, for all types τ that are used to interpret PCF types, one defines a term delay : •τ→ τ; this term
is used to define the fixed-point combinator of PCF in terms of the fixed-point combinator of our calculus
(Remark 4). See Escardó for more details. Intuitively, the idea is that unfolding a recursive definition
takes a “computation step,” which will be visible as an extra Next in the final answer of type Ints. Escardó
shows an adequacy result which implies that the semantics of a PCF term does indeed match the number
of unfoldings of the fixed-point combinator; the same information can be obtained from our adequacy
proof using the definition of the logical relation on recursive types. Escardó gives two adequacy proofs,
the first of which uses a Kripke logical relation as in our adequacy proof.

Since Escardó considers PCF, he does not treat recursively defined types, as we do here.

5 Conclusion and Future Work

We have presented a computationally adequate metric model of lambda calculus with guarded recursion.
It complements Nakano’s realizability interpretations [8], and it explains the modality in terms of scaling.

We conjecture that an adaptation of the present model can be used to give a model for focusing proof
systems with recursive types [11].

References
[1] P. America and J. J. M. M. Rutten. Solving reflexive domain equations in a category of complete metric

spaces. Journal of Computer and System Sciences, 39(3):343–375, 1989.
[2] A. W. Appel and D. McAllester. An indexed model of recursive types for foundational proof-carrying code.

ACM Transactions on Programming Languages and Systems, 23(5):657–683, 2001.
[3] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal model of a modern, major, general

type system. In Proceedings of POPL, pages 109–122, 2007.
[4] L. Birkedal, K. Støvring, and J. Thamsborg. Realizability semantics of parametric polymorphism, general

references, and recursive types. In Proceedings of FOSSACS, pages 456–470, 2009.
[5] M. Escardó. A metric model of PCF. Presented at the Workshop on Realizability Semantics and Applications,

June 1999. Available at the author’s web page.
[6] R. Hinze. Functional pearl: streams and unique fixed points. In Proceedings of ICFP, pages 189–200, 2008.
[7] N. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-driven programs using ramified frame prop-

erties. In Proceedings of TLDI, pages 63–76, 2010.
[8] H. Nakano. A modality for recursion. In Proceedings of LICS, pages 255–266, 2000.
[9] F. Pottier. A typed store-passing translation for general references. Submitted, Apr. 2010.

[10] M. B. Smyth. Topology. In Handbook of Logic in Computer Science, volume 1. Oxford Univ. Press, 1992.
[11] N. Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis, Carnegie Mellon

University, 2009.

1Due to the syntactic restrictions on recursive types in our variant of Nakano’s calculus, the metrics on PCF ground types
(and hence on all types) differ slightly in our model and Escardó’s model.

6

	Introduction
	Nakano's Lambda Calculus
	Denotational Semantics
	Related Work
	Conclusion and Future Work

