
Fachbereich 14 Informatik
Universität des Saarlandes

Forschungsbereich Programmiersprachen

Beta Reduction Constraints

Diplomarbeit

Angefertigt unter der Leitung von Prof. Dr. Gert Smolka
Zweitgutachter: Prof. Dr. Manfred Pinkal

Betreuung: Dr. Joachim Niehren

Manuel Bodirsky

Eingereicht am 29. März 2001

Diese Arbeit wurde finanziell unterstützt vom Forschungsbereich Programmier-
systeme, dem Procope Projekt und durch die Projekte NEP und CHORUS des
Sonderforschungsbereiches 378 ’Resourcenadaptive Kognitive Prozesse’.

Hiermit erkläre ich, daß ich diese Arbeit selbständig verfaßt und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbrücken, 29. März 2001

Manuel Bodirsky

2

Kurzfassung

Diese Arbeit beschäftigt sich mit Constraintsprachen zur partiellen Beschreibung
von Lambdatermen. Insbesondere werden Betareduktionsconstraints eingeführt,
die ausdrücken daß ein Lambdaterm Redukt eines anderen ist. Wir untersuchen
die Ausdrucksstärke von Betareduktionsconstraints, indem wir sie mit Parallelis-
musconstraints vergleichen. Schließlich zeigen wir Anwendungen von Betareduk-
tionsconstraints bei der semantischen Unterspezifikation in der Computerlinguistik.

3

Abstract

This thesis investigates languages that partially describe lambda terms. In par-
ticular, beta reduction constraints are introduced, which express that one lambda
term beta-reduces to another. We investigate the expressive power of beta reduc-
tion constraints by relating them to parallelism constraints, and give applications
of beta reduction constraints in semantical underspecification of computational
linguistics.

4

Acknowledgements

First I would like to thank professor Gerd Smolka, and the programming systems
lab, for supporting me with a perfect research environment.

I am indebted to Joachim Niehren, who draw my attention to underspecification
and constraint technology. He gave me motivation and during all the different
phases of the work he was a great discussion partner. He always confirmed me in
the right ideas and I learned a lot when he helped me bringing them into a better
shape.

Then I want to thank Katrin Erk, Alexander Koller, Sebastian Pado, Prof.
Manfred Pinkal and the other members of the CHORUS team for the work we did
together, their commitment and their enthusiasm for the project.

Finally, I have to thank my fellow students Tobias Gärtner, Timo von Oertzen
and Jan Schwinghammer, who brought fun into my studies in Saarbrücken, for
their remarks on later versions of this thesis, and my dear family.

5

6

Contents

1 Introduction 9

1.1 Lambda Calculus in Computational Semantics 11

1.2 Semantic Underspecification . 13

1.3 Contributions of this Thesis . 16

2 Lambda Structures 19

2.1 Prerequisites . 19

2.2 Lambda Structures . 21

2.3 Contexts in Lambda Structures . 23

2.4 Correspondence Functions . 24

3 The Constraint Language for Lambda Structures 29

3.1 Syntax and Semantics of CLLS . 29

3.2 Applications of Parallelism Constraints 32

3.3 Summary of Notation . 32

4 Beta Reduction Constraints 35

4.1 The Beta Reduction Relation . 35

4.2 Examples . 37

4.3 Soundness of the Definition . 38

4.4 Group Parallelism . 40

7

Contents

4.5 Describing Beta Reduction with Group Parallelism 43

5 Expressiveness of Beta Reduction Constraints 47

5.1 Expressiveness of Constraint Languages 47

5.2 Expressing Similarity . 49

5.3 Expressing non overlapping Parallelism 51

6 Underspecified Beta Reduction 59

6.1 A Procedure for Underspecified Beta Reduction 60

6.2 Solving Group Parallelism Constraints 61

6.3 Dealing with Correspondence Functions 65

6.4 The Procedure in Action . 66

6.5 Avoiding Disambiguation . 67

6.6 An Example . 70

7 Conclusion and Outlook 73

8

1 Introduction

This thesis investigates expressive constraint languages that partially describe
lambda terms [Egg et al., 2001, Erk et al., 2001, Bodirsky et al., 2001a]. In partic-
ular, beta reduction constraints are introduced. We will study their expressiveness
by relating them to parallelism constraints in the constraint language for lambda
structures, CLLS. Solving beta reduction constraints will have applications in the
field of semantic underspecification of computational linguistics.

The constraint languages presented here extend standard tree description lan-
guages [Marcus et al., 1983, Backofen et al., 1995, Duchier and Niehren, 2000] based
on dominance constraints. Tree description languages are first-order languages that
partially describe finite labeled trees. These languages have variables ranging over
nodes in the tree; they provide constraints about edge relationships and labeling.

Tree descriptions have many applications in modern computational linguistics,
in syntax as well as in semantics [Rogers and Vijay-Shanker, 1994, Duchier, 2000].
Since trees are the basic concept of syntactic analysis, parsing of natural language
can be seen as constraint solving for tree description constraints [Duchier, 1999,
Duchier and Thater, 1999].

One example for applications of the description languages in semantics is the
constraint language for lambda structures (CLLS) [Egg et al., 1998, 2001, Erk
et al., 2001]. CLLS is a first-order language to partially describe λ-terms. It was
developed as a formalism for underspecified semantics. Semantic underspecification
[Reyle, 1993, van Deemter and Peters, 1996, Pinkal, 1996] is an approach to deal
with semantic ambiguity in natural language sentences. A single CLLS constraint
may be satisfied by many λ-terms, and can thus represent several readings of a
sentence at the same time.

The idea to describe λ-terms with (extensions of) tree description languages is
to see a λ-term as a tree equipped with additional binding edges (see Figure 1.1 on
the following page). One can then describe a λ-term partially as one would describe
a standard tree structure. But in addition to dominance constraints in standard
tree description languages CLLS also provides parallelism [Erk and Niehren, 2000]

9

1 Introduction

lam

@

f var

ǫ

1

11 12

Figure 1.1: The lambda structure of λx.@(f x)

and binding constraints.

An important problem for CLLS is underspecified beta reduction. Given a CLLS
constraint representing many lambda terms, the aim is to efficiently compute a com-
pact description of the reducts after reducing at all specified redexes. In particular,
we want to avoid enumerating and individually beta-reducing the described lambda
terms. In this thesis we show that beta reduction constraints lay the foundation for
underspecified beta reduction.

Beta reduction constraints conservatively extend CLLS. They declaratively de-
scribe a single β-reduction step. With beta reduction constraints, we can lift β-
reduction to descriptions of λ-terms. These descriptions are at first very implicit,
and can be made explicit by solving the constraints. To this end, we express beta
reduction constraints with group parallelism constraints. Parallelism constraints
describe, that some segments of a tree look the same, i.e. segments are struc-
turally equal. We will slightly extend parallelism that is already an integral part
of CLLS to the notion of group parallelism. This will enable us to adapt a known
semi-decision procedure for CLLS to also deal with beta-reduction constraints.

Next, we will express a large fragment of parallelism constraints with beta
reduction constraints. Thus it is likely that parallelism constraints are not an
overhead for the treatment of beta reduction constraints. CLLS including paral-
lelism is equally expressive as context unification [Niehren et al., 1997, Niehren
and Koller, 1998], whose decidability is an open problem in theoretical computer
science [RTA-List, 1998, Lévy, 1996, Schmidt-Schauß and Schulz, 1999].

Plan of the Introduction: We will now go through an example in the
application of computational linguistics to give intuitions and motivation for the
later formal sections of this thesis. First, we will explain why the lambda calculus
and beta reduction is an important tool in computational semantics. Then we will
motivate underspecified semantic descriptions for computational linguistics. After
that we can formulate the problem of underspecified beta reduction.

10

1.1 Lambda Calculus in Computational Semantics

1.1 Lambda Calculus in Computational

Semantics

Lambda terms and beta reduction are the subject of the classical lambda calculus
[Barendregt, 1984], and also play an important rôle in higher order logic (HOL)
theorem proving [Huet, 1975]. Seen as a syntactic operation, β-reduction serves as
the basic evaluation step in operational semantics of many programming languages,
since (among many other reasons) it models fundamental concepts such as variable
binding and scope. We now want to demonstrate by example how the lambda
calculus is used in semantics of computational linguistic.

Consider the natural language sentences

Every student laughs. (1.1)

Peter and Marc love mary. (1.2)

We would like to assign them some meaning representation in an automated pro-
cess. If we choose classical predicate logic to represent the meaning of these sen-
tence, the representations look like

∀x.(stud(x)→ laugh(x)) (1.3)

love(peter,mary) ∧ love(marc,mary) (1.4)

Lets look at 1.3: here we state in logic formulas that for all x, if x is a student,
is also laughs. Note that some parts in the natural language sentence, such as
the quantifier Every in 1.1, influence the shape of the formula at several positions.
Here, Every translates to the logical quantifier ∀x and the implication → between
the restriction and the scope of the quantifier. In the second sentence, one of the
constituents occurs twice in the semantic representation, namely love, since both
peter and Marc love Mary.

We say, the semantic construction does not follow the principle of composition-
ality. We would rather like to derive the semantics of a natural language sentence
by combining the semantics of its components in a simple way.

In 1.5 on the next page, we show a higher order analysis of the first of the above
sentences (due to [Montague, 1970, 1974]; see [Gamut, 1991] for an introduction)
that is derived compositionally.

The idea behind using lambda calculus for compositional analysis is to under-
stand a quantifier as a function, that takes two properties as argument and gives

11

1 Introduction

back a truth value. For universal quantification this value is true, if every element
that has the first property also has the second property. In the case of every this
reads in λ-terms as follows1:

Every = λP.λQ.(∀x.(@(P x)→ @(Q x)))

In our example, the property to be a student is called the restriction, and the
property to pay attention is called the scope of the quantifier Every.

@(@(Every Student) Payatt) (1.5)

Student and Payatt are themselves λ-terms, where we abstract to use them as
properties:

Student = λx.@(stud x) (1.6)

Payatt = λx.@(payatt x) (1.7)

Note that every part in the natural language sentence translates directly to a λ-
term, and the different parts of the sentences are simply connected with application
symbols according to the structure of the sentence.

Beta reduction is a reduction relation that is defined on λ-terms: We replace a
λ-term C(@(λx.B A)) by its reduct C(B[x/A]). If we β-reduce the λ-term in 1.5
several times, we will get the formula in 1.3 2.

@(@(Every Student) Payatt)→β @(λQ.(∀x.(@(Student x))→ @(Q x)) Payatt)

→β ∀x.(@(λx.@(stud x) x)→ @(Payatt x))

→β ∀x.@(stud x)→ @(λx.@(stud x) x)

→β ∀x.@(stud x)→ @(payatt x)

This means that we can do both compositional analysis and get the desired
simple representations. This is, why λ-terms play an important rôle when doing
semantics. Now we want to motivate, why it is so interesting to have languages
that partially describe λ-terms.

1In higher order logics it is standard to only use constant symbols (of appropriate type) to repre-
sent relations. The formula stud(x) thus becomes @(stud, x), where @ stands for application.
We will recall some basics of the λ-calculus in Chapter 2 on page 19.

2except the difference in analyzing relations that we already mentioned

12

1.2 Semantic Underspecification

∀
→

@

stud var

@

lam

¬
@

payatt var

var

¬
∀
→

@
stud var

@
lam

@

payatt var

var

Figure 1.2: The two readings of Every student did not pay attention.

1.2 Semantic Underspecification

One of the challenging problems in computational linguistics is to deal with ambi-
guity. Ambiguity is omnipresent in natural language. We will give two examples.

Every student does not pay attention. (1.8)

Peter read his paper. And so did Marc. (1.9)

In the first case there is a so called scope ambiguity. There is the reading that
there is a student who does not pay attention. The other possible meaning is that
none of the students pays attention. We say that the negation not can have wide
scope (it is not the case that every student does pay attention.) or narrow scope
(for every student it is not the case that every student pays attention).

The second ambiguity is a result of interaction between an ellipsis and an
anaphorical reference (his paper). There is the reading that Marc also read Peters
Paper. And the reading that Marc also read his own paper.

There are much more potential sources of ambiguities. Since usually they dis-
ambiguate independently from each other, the total number of readings grows
exponentially in the number of ambiguities. Thus, enumerating all of them for
further processing steps in applications is not feasible.

In this thesis, whenever using linguistic examples for illustration, we are con-
sidering only scope ambiguities. Even if we restrict ourselves to only one source of
ambiguity, it is not difficult to find examples with huge numbers of readings, for
instance the sentence Every student of a university in some German city does not
want to apply in every department of a company. The reader may try to spell out
the different meanings.

13

1 Introduction

@
@

Every stud
lam

@
payatt var

¬
R0

X0

Figure 1.3: Underspecified Description of ‘Every student did not pay attention’

We want to take a closer look at the simpler example Every student does not
pay attention. The two readings can be represented in predicate calculus as

∀x(@(stud x)→ ¬@(payatt x))
¬(∀x(@(stud x)→ @(payatt x)))

The systematically and compositionally derived λ-terms for this sentence look
as follows:

@(@(Every Student) λx.(¬@(payatt x)))
@(@(¬((Every Student) λx.@(payatt x)))

The idea of underspecification is to work with a single, compact representation
that represents all the different readings [Reyle, 1993, van Deemter and Peters,
1996, Pinkal, 1996]. One approach to underspecification is to separate a meta
language and an object language: The object language is a formalism that describes
the meaning of a sentence, the meta language describes formulas in this formalism.

An elegant formalism for such a meta language in semantic underspecification is
the constraint language for λ-structures, CLLS [Pinkal, 1996, Erk et al., 2001] (see
[Koller, 1999] for comparison with other formalisms). CLLS describes λ-structures,
i.e. tree structures with an additional binding function (see Figure 1.1 on page 10).
They represent (untyped) λ-terms as known from classical lambda calculus (for a
formal definition of all these notions see Chapter 2 on page 19 and Chapter 3 on
page 29). CLLS provides constraints for labeling, dominance, lambda binding and
parallelism, i.e. structural similarity of tree segments.

It is easy to specify CLLS constraints by drawing its constraint graph. The
CLLS constraint for the above example is given in Figure 1.3. A solid line represents
a parent-relationship, dotted lines stand for the dominance relation. Note that
the visualization of constraints are graphs, and in contrast to their models not
necessarily trees, since dotted lines for dominance edges can lead to the same node.
Note that both λ-terms shown above are models of the constraint in 1.3.

Of course the constraint has much more solutions, some of which are clearly

14

1.2 Semantic Underspecification

@

lam

∀

→

@

stud var

@

var var

lam

@

payatt var

¬

R1

Y0

Y3

Y6

Y7Y1

Y2

Y4

Y5

Y8

∀

→

@

stud var

@

lam

@

payatt var

var

¬

R2

Z8

Z0

Z3

Z5

Z6

Z7

Z9

∀

→

@

stud var
@

payatt var

¬

R3

Figure 1.4: Underspecified β-reduction steps for ‘Every student did not pay atten-
tion’

not readings of the initial sentence. But this does not limit the approach, since
it mostly suffices to consider the solutions that do not introduce new material,
i.e. there is a labeling constraint for every node in the model. However, in this
form the approach is flexible enough to deal with phenomena like reinterpretation
[Koller et al., 2000b, Striegnitz, 1999], where new material has to be inserted to
get reasonable readings of the sentence.

We only have advantages of underspecified representations, if we are able to
avoid enumerating all readings when performing further processing steps. As we
have already seen, an important processing step on semantic representations is β-
reduction. Since β-reductions simplify the λ-structures greatly, we are interested
in underspecified beta reduction [Bodirsky et al., 2001b]: Is it possible to lift β-
reduction to descriptions of λ-structures in CLLS? We will see some examples
showing what underspecified beta reduction should do, and why the problem is
nontrivial.

We would like to give a description of the models in figure 1.3 on the preced-
ing page that are β-reduced as far as possible, i.e. we would like to β-reduce the
description itself.

The first β-reduction step, with the redex atX0 is straightforward. Even though
the description is underspecified, the reducing part is a completely known λ-term.
The result is shown on the left-hand side of Figure 1.4. Here we have just one
redex, starting at Y0, which binds a single variable. The next reduction step is less
obvious: The ¬ operator could either belong to the context (the part between R1

and Y0) or to the argument (below Y4). Still, it is not difficult to give a correct
description of the result: it is shown in the middle of Figure 1.4. For the last step,
which takes us to the rightmost description, the redex starts at Z8. Note that now
the ¬ might be part of the body or part of the context of this redex. Finally the
result is precisely a description of the two readings as first-order formulas (Figure

15

1 Introduction

@
lam
f

@
b var

a

¬ f

@
b

a

¬X
Y U

V

Figure 1.5: Problems with rewriting of descriptions

1.2).

Judging from this first example, the problem does not look too difficult. Twice,
we did not even know what exactly the parts of the redex looked like, but it was still
easy to derive correct descriptions of the reducts. But this is not always the case.
Consider Figure 1.5, an abstract but simple example. In the left description, there
are two possible positions for the ¬: above X or below Y . Proceeding näıvely as
above, we arrive at the right description in Figure 1.5. But this description is also
satisfied by the term f(¬(b a)), which cannot be obtained by reducing any of the
terms described on the left-hand side. More generally, the näıve “graph rewriting”
approach is unsound, since the resulting descriptions may have the wrong solutions.

We attack this problem using beta reduction constraints. They describe that a
certain subtree is a beta-reduct of another subtree. Thus, in contrast to the graph
rewriting approach mentioned above, with beta reduction constraints we can have
a sound description of the reducts of a constraint per definition.

But to really solve the problem of underspecified beta reduction, we have to
find out how to make these descriptions more explicit. What is the underspecified
description of the results after subsequently reducing at several specified redexes?

1.3 Contributions of this Thesis

We introduce β-reduction constraints in Chapter 4 and show that β-reduction con-
straints can be translated into group parallelism constraints, a generalization of
parallelism constraints in CLLS. This is an important result, since an existing so-
lution procedure for CLLS can be extended to group parallelism. We thus have a
method to make the tree descriptions containing β-reduction constraints more ex-
plicit. Explicit information about the structure of the solutions might be important
for further processing steps in natural language applications.

In chapter 5 of the thesis, we investigate the relation between parallelism and

16

1.3 Contributions of this Thesis

β-reduction and the expressive power of their constraint languages. We show that
β-reduction constraints can express similarity constraints. Using this, we express
non self-overlapping parallelism constraints. It is thus very likely that parallelism
solvers are not an overkill for beta reduction constraints.

Chapter 6 will present an algorithm for underspecified β-reduction. Beta re-
duction constraints only describe a single β-reduction step. In practice, however,
we are interested in describing the result of several β-reduction steps. For instance
in the application of underspecified semantics of natural language, we can assume
simply typed λ-structures. Thus, on every model of an underspecified description,
every sequence of beta-reduction steps must terminate. So we are interested in
describing for a given underspecified description the result after reducing at all
specified redexes. The algorithm presented here uses a saturation procedure to
solve β-reduction constraints that builds on an existing solver for parallelism con-
straints. The procedure avoids distribution rules by additional propagation rules,
and therefore is truly underspecified.

Related Publications: This work contains results published in [Bodirsky
et al., 2001a]. A paper about the procedure in Chapter 6 has been submitted
[Bodirsky et al., 2001b].

17

1 Introduction

18

2 Lambda Structures

In this chapter, we will define lambda structures. Since lambda structures will rep-
resent higher order logic (HOL) formulas, we will first very briefly introduce some
elements of the classical lambda calculus. We then define some important no-
tions for lambda structures and finally show how they correspond to the respective
notions for λ-terms.

2.1 Prerequisites

Since lambda structures can represent higher order logic formulas, we will introduce
the syntax of higher order logic (HOL) in this section. HOL is an extension of
first order logic. The idea of the extension is to provide constructions for more
complicated mathematical objects in the logical language, and on the other side
to introduce types to ensure the consistency of the system. It is a formalism that
is popular in computational linguistic, since it has the expressiveness of first order
logic while avoiding involved set theoretic encodings. Thus HOL allows natural
formalizations of semantics of natural language sentences.

Furthermore, there is a nice syntactically defined relation on HOL-formulas,
the β-reduction relation. Beta reduction has very nice properties as a reduction
system, e.g. it is confluent. If the HOL-formulas (that are also called λ-terms) are
simply typed they have a unique normal form with respect to β-reduction.

We do not worry about types of λ-terms in this thesis. We see λ-terms as
a syntactic objects, where a particularly interesting relation is defined on. Lets
assume a countable signature Σ = {f, g, . . .} of function symbols, each equipped
with an arity ar(f) ≥ 0, that we sometimes indicate by superscript fn. Symbols
of arity 0 are constants, written as a, b, Finally we need a countable set of
variables x, y, Then (untyped) λ-terms are defined as follows:

1. Every variable and every constant symbol is a λ-term.

19

2 Lambda Structures

2. If A and B are λ-terms, then so is @(A B)
(A applied to B).

3. If A is a λ-term and x is a variable, then λx.A is also a λ-term.

4. If A1, . . . , An are λ-terms, then fn(A1 . . . An) is a λ-term.

We define free, bound and global variables as usual.

If lambda structures represent HOL formulas, we represent the connectives ∀,
→, and ¬ as logical symbols (i.e. as elements in Σ), and we allow var-labeled nodes
to be bound by a ∀- or ∃-labeled node. This makes the examples much more
readable. In the formal parts of this thesis we adopt the standard approach of
analyzing them as constants of appropriate type in the signature, and hence leafs
in the structure; thus, wherever needed we can assume that all var-labeled nodes
are bound by a lam-labeled node.

The beta reduction step on λ-terms looks as follows

C(@(λx.B A)) →β C(B[x/A]) x free for A

We call the left-hand side the reducing tree, the right-hand side the reduct of the β-
reduction. An λ-term @(λx.B A) is called a redex (reducible expression). We call
C the context, B the body, and A the argument of the reduction step. By x has to
be free for A we mean that there is binder in B that would bind any variable in A.
For instance, one cannot simply β-reduce (λx.λy.x)y without renaming the bound
occurrence of y beforehand. Otherwise, the global variable y in the argument got
captured by the binder λy in the body.

We can always ensure this by using different variable names for every binder.
Thus it makes sense to consider equality up to α-conversion =α, i.e. consistent
renaming of locally bound variables.

C(λx.B) =α C(λy.B) for all variable symbols y that are not free inB

A useful notion when working with λ-terms are contexts A,B,C, Contexts
are λ-terms built over a signature Σ that also contains an additional constant
symbol •. They provide an easy way to specify certain functions from λ-terms to
λ-terms. For instance f(a •) is a function which maps g(b) to f(a g(b)).

Definition 1 (Contexts). A context A,B,C, . . . is a λ-term built over the sig-
nature Σ containing the 0-ary constant symbol •.

20

2.2 Lambda Structures

g

f

a b

ǫ

1

11 12

Figure 2.1: The tree structure of g(f(a b)).

Let n be the number of occurrences of • in a context A. Then A specifies a
n-ary function fA from λ-terms to λ-terms. Let A1, . . . , An be λ-terms. The image
of fA(A1, . . . , An) is defined as A where the i-th occurrence of the symbol • in A
is replaced by Ai.

Note that although two contexts are α-equivalent, they might specify different
functions. Consider for instance the context λx.• that is α-equivalent to λy.•. But
if we apply them to the λ-term x, the results are λx.x and λy.x and they are not
α-equivalent.

In the next chapter, we will see how to represent λ-terms with a tree structure
and an additional binding function.

2.2 Lambda Structures

We first repeat the standard definition of trees, where trees are defined using a
tree domain and a labeling function. In the second part of this section, we extend
tree structures to lambda structures, that can deal with variable binding. This is
necessary, since we want to interpret the lambda structures as logical formulas.

Let (N+)∗ be the set of all words generated over the positive natural numbers.
A tree domain D is a non-empty subset of (N+)∗, such that

• D is prefix-closed: if w ∈ D, and w′ is a prefix of w, then w′ ∈ D.

• D always contains the older brothers of any of it’s nodes:

∀w ∈ (N+)∗, ∀i > 0 : w·i ∈ D ⇒ ∀0 < j < i : w·j ∈ D

We will call the elements of D positions or nodes. Next, we assume a signature
Σ = {f, g, . . .} of function symbols, each equipped with an arity ar(f) ≥ 0, that
we sometimes indicate by superscript fn. Symbols of arity 0 are constants, written
as a, b, . . .

21

2 Lambda Structures

lam

@

f var

ǫ

1

11 12

Figure 2.2: The lambda structure of λx.@(f x)

Definition 2. A Σ-tree structure θ is a pair (Dθ, Lθ) of a tree domain Dθ and a
labeling function Lθ from Dθ to Σ, such that for all w ∈ Dθ, if the arity of Lθ(w)
is n, then w·n ∈ Dθ but w·(n+ 1) /∈ Dθ.

We write θ.π for the subtree at position π. ǫ is the empty path, and π1·π2 the
concatenation of π1 and π2. π is a prefix of a path π′ if there is a (possibly empty)
π′′ such that π·π′′ = π′.

A Σ-tree structure uniquely corresponds to a ground term over Σ, thus we also
specify trees by expressions like g(f(a b)). One then obtains the tree domain Dθ,
i.e. the set of all nodes, by recursively traversing the term structure:

Df(θ1 ... θn) = ǫ ∪ {iπ | π ∈ Dθi
, 1 ≤ i ≤ n}

Now we can consider λ-terms as pairs of a tree and a binding function that
encodes variable binding. We assume that Σ contains the symbols var (arity 0, for
variables), lam (arity 1, for abstraction), and @ (arity 2, for application). The tree
uses these symbols to reflect the structure of the λ-term.

The binding function λ explicitly maps var-labeled nodes to lam-labeled nodes
binding them. For example, Fig. 2.2 shows a representation of the term λx.f(x).
Here λ(12) = ǫ. Such an extension of a tree structure by a binding function is
called a lambda structure.

Definition 3. A λ-structure τ is a triple (Dθ, Lθ, λ) of a tree θ = (Dθ, Lθ) and a
binding function λ : L−1

θ (var)→ L−1
θ (lam) such that λ(π) is always a prefix of π.

A λ-structure corresponds uniquely to a closed λ-term modulo α-renaming, i.e.
consistent renaming of locally bound variables. We will freely consider λ-structures
as first-order model structures with domain Dθ. As such, they define relations of
labeling, binding, inverse binding, dominance, disjointness, and inequality of nodes.
Later we will add parallelism and β-reduction relations on top of these. The labeling
relation π:f(π1, . . . , πn) holds in a λ-structure τ if Lθ(π) = fn and πi = πi for all
1 ≤ i ≤ n. Dominance ⊳∗ is the prefix relation between paths of Dθ; inequality 6=
is simply inequality of paths; disjointness π⊥π′ holds if neither π⊳∗π′ nor π′⊳∗π.

22

2.3 Contexts in Lambda Structures

π0

π1π2

Figure 2.3: The tree segment π0/π1, π2

We will also consider intersections, unions, and complements of these relations; for
instance, proper dominance ⊳+ is ⊳∗∩ 6=, and equality = is ⊳∗ ∩ ⊲∗.

2.3 Contexts in Lambda Structures

It is clear that lambda structures can be translated in closed lambda terms and
vice versa. But we would also like to have a notion on lambda structures that
corresponds to the notion of contexts in lambda terms.

To talk about parts of trees we now define tree segments. Intuitively, a tree
segment is a part of a tree which starts at a certain node, but potentially with some
subtrees missing (see Figure 2.3). For instance the context, body, and argument of
a redex in a λ-structure will all be tree segments.

Definition 4. A tree segment α of a λ-structure τ is given by a tuple π0/π1, . . . , πn

of nodes in Dτ (we read this: the tree segment π0 up to π1 to πn), such that π0⊳
∗πi

and πi(⊥∪=)πj holds in τ for 1 ≤ i < j ≤ n. The node r(α) = π0 is called the
root, and hs(α) = π1, . . . , πn is the sequence of holes of α. If n = 0 we write
α = π0/. The nodes between the root r(α) and the holes hs(α) are defined as

b(α) =df {π ∈ Dτ | r(α)⊳∗π ∧
∧

π′∈hs(α)

π′¬⊳+π}

If we want to exempt the holes of the segment, we define b−(α) =df b(α)− hs(α).

Now, we define how to read off contexts from λ-structures. It is clear that
we can assign a context to every tree segment. The holes of the tree segment
then correspond to the occurrences of • in the λ-term representing the context.
The only thing one has to be careful about is the treatment of variable binding.
In λ-terms, binding is specified by names for the variables modulo α-equivalence,
whereas λ-structures provide an explicit binding function. If we want to translate
from λ-structures into λ-terms, we have to consistently find names for the variables

23

2 Lambda Structures

¬
@

@

lam

lam

∀
→

@
var var

@
var var

lam

@

stud var

lam

@
payatt var

π

Figure 2.4: Description of a HOL-formula for ‘Every student did not pay attention’

at the var-labeled positions in the λ-structure. Assigning variable names that are
indexed with the position of the binder to the var-labeled nodes will do the trick.

Definition 5. Let τ be a λ-structure and α = π0/π1, . . . πn be a tree segment in
τ . We now define the context Tτ (α) of the tree segment α using the fresh variable
names xπ. We define T inductively using Tτ (α) =df Tα(π0), where

Tα(π) =df

• π = πi, 1 ≤ i ≤ n

xλ(π) L(π) = var

λxπ.Tα(π·1) L(π) = lam

f(Tα(π·1) . . . Tα(π·n)) L(π) = fn

Examples: We could also define Every = λP.λQ.(∀x(@(P x) → @(Q x))) by
reading it off the λ-structure in Figure 2.4, using the new definitions of Section 2.3
on the preceding page:

Every = Tτ (π/)

The context ¬(•), assigning every formula its negation, can be read off the tree
segment at top of the tree in Figure 2.4:

Tτ (ǫ/1) = ¬(•)

2.4 Correspondence Functions

We defined what it means for two tree segments ’to look the same’. This is the
case when the contexts read off at the tree segment are equal up to local renaming

24

2.4 Correspondence Functions

of variables. We would rather like to have a direct and simple characterization
of structural equality of tree segments. To this end, we introduce the important
concept of correspondence functions, that will also play an crucial rôle when defining
and processing beta reduction and parallelism constraints in later chapters.

Definition 6. A correspondence function between the tree segments α, β in a λ-
structure τ is a bijective mapping c : b(α) → b(β) which satisfies for all nodes
π1, . . . , πn of τ :

1. The roots correspond: c(r(α)) = r(β)

2. The sequences of holes correspond:

hs(α) = π1, . . . , πn ⇔ hs(β) = c(π1), . . . , c(πn)

3. Labels and children correspond within the proper segments. For π in b−(α)
and label f :

π:f(π1, . . . , πn)⇔ c(π):f(c(π1), . . . c(πn))

4. Internally bound variables are bound correspondingly. For π ∈ b−(α) such
that λ(π) ∈ b−(α):

λ(c(π)) = c(λ(π)).

Note that we also require internal binding to be consistent (Property 4), in
contrast to [Bodirsky et al., 2001a]. Since we have to prove some technical results,
it is much nicer to have this property for correspondence functions, for instance it
is necessary in Lemma 1.

The next lemma will be used very often, so we do not mention it explicitly in
some later proofs. It will give us the possibility to either use term terminology or
to use correspondence functions when speaking about structurally equal contexts
in a lambda structure. Very briefly, the lemma says that there is a correspondence
function between two tree segments if and only if the context functions for these
tree segments are the same. This is very easy to see, but one has to be careful
about binders. Especially correspondence functions do not impose any restrictions
on global variables. Therefore we only get equality of contexts up to some renaming
of the global variables of the context.

Lemma 1. Let τ be a λ-structure, and δ = π0/π1, . . . , πn , δ′ = π′
0/π

′
1, . . . , π

′
n tree

segments in τ . Then there exists a correspondence function between δ and δ′ if and
only if there is a renaming ρ of the global variables such that

ρ(Tτ (δ)) =α ρ(Tτ (δ
′))

25

2 Lambda Structures

Proof. Let c be such a correspondence function between δ and δ′ in τ . We will show
by induction over the tree structure, that ρ(Tδ(ω)) =α ρ(Tδ′(c(ω))) for ω ∈ b−(δ),
where

ρ(xπ) =df

{

xc(π) if π ∈ b−(δ)

var otherwise

In particular, ρ(Tδ(π0)) =α ρ(Tδ′(π
′
0)) and therefore ρ(Tτ (δ)) =α ρ(Tτ (δ

′)) (see
Definition 5 on page 24).

We distinguish four different cases:

1. The node ω is in one of the nodes {π1, . . . , πn}. Thus ρ(Tδ(ω)) = ρ(Tδ(πi)) =
ρ(Ai) = • for some 1 ≤ i ≤ n. Since c is a correspondence function we know
that ρ(Tδ′(c(πi))) = ρ(Tδ′(π

′
i)) = ρ(Ai) = •.

2. The node ω is labeled ω:f(ω1, . . . , ωm) for some fm ∈ Σ. Thus
ρ(Tδ(ω)) = f(ρ(Tδ(ω1)) . . . ρ(Tδ(ωm))) which by induction hypothe-
sis equals f(ρ(Tδ′(c(ω1))) . . . ρ(Tδ′(c(ωm)))). As c is a correspon-
dence function, c(ω):f(c(ω1) . . . c(ωm)), and therefore ρ(Tδ(ω)) =
f(ρ(Tδ′(c(ω1))) . . . ρ(Tδ′(c(ωm)))) = ρ(Tδ′(c(ω))).

3. ω is a var-labeled node. Here, either ω is bound in b−(δ), and then ρ(Tδ(ω)) =
ρ(xλ(ω)) = xc(λ(ω)) = xλ(c(ω)) = Tδ′(c(ω)) = ρ(Tδ′(c(ω))), again we used that
c is a correspondence function. Or ω is bound above π0. Then ρ(Tδ(ω)) =
ρ(xω) = var = ρ(Tδ′(c(ω))).

4. There is an abstraction ω : lam(ω1) at position ω. This implies ρ(Tδ(ω)) =
λxω.ρ(Tδ(ω1)) and by induction hypothesis this is λxω.ρ(Tδ′(c(ω1))). Local
consistent renaming gives us the desired equation

ρ(Tδ(ω)) = λxω.ρ(Tδ′(c(ω1))) =α ρ(λxc(ω1).Tδ′(c(ω1)) = ρ(Tδ′(c(ω))).

For the other direction, suppose that ρ(T (δ)) =α ρ(T (δ′)) for some renaming ρ.
We have to show, that there is a correspondence function c between δ and b(δ′).
We choose

c(π0·ω) =df π
′
0·ω for all ω such that π0ω ∈ b−(δ)

and show that c preserves the root, holes, labeling and internal binding (Definition 6
on the preceding page). To do so we first show by induction that

ρ′(Tδ(π)) =α ρ
′(Tδ′(c(π))) π ∈ b−(δ) (2.1)

where ρ′(xω) = ρ(xω), if ω is not in b−(δ), and ρ′(xω) = xc(ω) else.

26

2.4 Correspondence Functions

We cannot use ρ instead of ρ′, since some of the local variables might become
global variables during the induction. The base case is already given (for Tδ(π0)
there is no difference between ρ and ρ′). For the induction step, suppose ρ′(Tδ(π)) =
ρ′(Tδ(c(π))). It follows immediately that ρ′(Tδ(π·i)) = ρ′(Tδ(π)·i) = ρ′(Tδ(c(π·i)))
for all π·i ∈ b−(δ).

Now we use 2.1 to prove that c in fact is a correspondence function, i.e. we have
to check the following properties of Definition 6:

1. It is clear that c maps the root of δ to the root of δ′.

2. The i-th hole in δ is mapped to the i-th hole in δ′: Let πi be in {π1, . . . , πn}.
We know that ρ′(Tδ(πi)) = ρ′(•) = • = ρ′(Tδ(c(πi))) by 2.1. But since c is
monotonic with respect to the lexicographic ordering on the nodes in b−(δ)
the i-th bullet • in Tτ (δ) must correspond to the i-th bullet • in Tτ (δ

′), and
this can only be the case if c(πi) = π′

i.

3. The function c preserves labeling. First, let π be labeled with fm that
is not var. Then we know that ρ(Tδ(π)) = ρ(f(Tδ(π·1) . . . Tδ(π·m))) =
f(ρ(Tδ(π·1) . . . ρ(Tδ(π·m)))) =α ρ(Tδ′(c(π))) by 2.1. If π is var-labeled we
obtain ρ(Tδ(π)) = ρ(xλ(π)) = ρ(Tδ′(c(π))) also by 2.1, thus c(π) must also be
var-labeled.

4. The function c also preserves internal binding. Let π be var-labeled, and
bound in b(δ). By 2.1 we know that ρ(Tδ(λ(π))) =α ρ(Tδ′(c(λ(π)))).
Since we are only allowed to consistently rename local variables this equals
ρ(Tδ′(λ(c(π)))). Thus c(λ(π)) = λ(c(π)).

Thus there exists a correspondence function between δ and δ′, and we have proven
the equivalence.

Now that we have correspondence functions, it is easy to define the parallelism
relation, as it is given in [Egg et al., 2001]. The parallelism relation α ∼ α′ holds
between two tree segments α, α′ iff there exist a correspondence function between α
and α′, and additionally some natural restrictions concerning variable binding hold.
These restrictions were developed when modeling linguistic phenomena. This thesis
shows that they are again essential if one wants to relate parallelism to the concept
of beta reduction, and if we want to formulate underspecified beta reduction.

Definition 7. Let τ be a λ-structure, and α, α′ be two tree segments of the same
arity. Then the parallelism relation α ∼ α′ holds, iff there is a correspondence
function c between α and α′, such that

27

2 Lambda Structures

1. for a var-labeled node bound outside a parallel tree segment, the corresponding
node is bound at the same place:

λ(π) /∈ b(α) ⇒ λ(c(π)) = λ(π) π ∈ b−(α)

λ(π′) /∈ b(α′) ⇒ λ(c−1(π′)) = λ(π′) π′ ∈ b−(α′)

2. there are no hanging binders:

λ−1(π) ⊆ b−(α) π ∈ b−(α)

λ−1(π′) ⊆ b−(α′) π′ ∈ b−(α′)

If α = π/ and α′ = π′/, i.e. the parallelism relation holds between tree segments
without holes, we write π ∼ π′ and say that the similarity relation holds between
the nodes π and π′.

28

3 The Constraint Language for
Lambda Structures

In the last chapter, we saw lambda structures. Now we will present a constraint
language, that is interpreted over lambda structures: CLLS, the constraint lan-
guage for lambda structures. First, we will introduce its syntax and semantics.
Then we will illustrate with more examples from semantic underspecification the
applications of parallelism, the most expressive constraint in CLLS.

3.1 Syntax and Semantics of CLLS

We introduce CLLS, the constraint language for lambda structures [Egg et al.,
2001, 1998, Erk et al., 2001], which contains literals for dominance, λ-binding
constraints and parallelism such that lambda structures can be described partially.
We omit anaphoric linking constraints, that are also contained in CLLS to model
linguistic phenomena that we do not consider here (they are for instance necessary
in Example 1.9 of the introduction).

The symbols X, Y, Z are variables that will denote nodes.

Then the abstract syntax of CLLS-constraints looks as follows:

ϕ, ψ ::= ϕ ∧ ψ | ∃Xϕ | false
| XRY | X:f(X1, . . . , Xn) (ar(f) = n)
| X0/X1 ∼ Y0/Y1

| λ(X)=Y | λ−1(X0)={X1, . . . , Xn}
R,R′ ::= ⊳∗ | ⊲∗ | ⊥ | 6= | R∪R′ | R∩R′

In this work we could restrict ourselves to fewer types of literals (dominance,
disjointness, labeling, parallelism and binding); but for processing, one also needs
inequality [Althaus et al., 2001, Koller et al., 2000a], or even set operators for rela-

29

3 The Constraint Language for Lambda Structures

lam

var var

X

X1 X2

Figure 3.1: The constraint graph of λ−1(X)={X1, X2} ∧ X⊳∗X1 ∧ X⊳∗X2

tion descriptors R (see also [Duchier and Niehren, 2000]). We use the abbreviations
X = Y and X⊥Y for X({⊳∗} ∩ {⊲∗})Y and X{⊥}Y .

Note that inverse binding λ−1(X)={X1, . . . , Xn} makes a stronger statement
than a conjunction of single lambda binding constraints λ(X1)=X∧ . . .∧λ(Xn)=X
which does not express that only the Xi are bound by X. In the application to
computational linguistics, and in all examples shown in this paper, we always have
an inverse binding literal for every variable for which we have a labeling constraint
with lam; that is, we have complete information about variable binding.

We will also use first-order formulas Φ built over constraints. We write V(Φ)
for the set of variables occurring in Φ. Given a pair (τ, σ) of a λ-structure τ and
a variable assignment σ : G → Dτ , for some set G ⊇ V(ϕ), we can associate a
truth value to Φ in the usual Tarskian sense. We say that (τ, σ) satisfies Φ iff
Φ evaluates to true under (τ, σ). In this case, we write (τ, σ) |= Φ and say that
(τ, σ) is a solution of Φ. Φ is satisfiable iff it has a solution. Entailment Φ |= Φ′

means that all solutions of Φ are also solutions of Φ′, equivalence Φ |=| Φ′ is mutual
entailment.

The precise complexity of the satisfiability of CLLS-constraints is still unknown.
Since they can express context unification, where the decidability is an open prob-
lem, this seems to be a difficult task. But there are various results for several frag-
ments of CLLS. Dominance constraints [Koller et al., 1998, Duchier and Niehren,
2000] comprise only labeling and node relationships, but not binding and paral-
lelism literals. The type of dominance constraints that occurs in applications of
semantic underspecification is called normal dominance constraints [Althaus et al.,
2001, Koller et al., 2000a]. Pure dominance constraints do not contain labeling
literals [Cornell, 1994]. Figure 3.2 shows the complexity of all these constraint
languages.

We draw constraints as graphs (Fig. 3.1 and 3.3 on the facing page) where
nodes represent variables. Labels and solid lines indicate labeling literals, while
dotted lines represent dominance. Dashed arrows indicate the binding relation;
disjointness and inequality literals are not represented graphically.

The syntactic equivalent of tree segments are segment terms A =

30

3.1 Syntax and Semantics of CLLS

Fragment Complexity Literature
Dominance Constraints without
set operators

NP-complete [Koller et al., 1998]

Dominance Constraints including
set operators

NP-complete [Duchier and Niehren,
2000]

Normal Dominance Constraints in P [Althaus et al., 2001,
Koller et al., 2000a]

Pure Dominance Constraints (in-
cluding set operators)

open [Cornell, 1994]

Figure 3.2: Fragments of CLLS and the complexity of their satisfiability problem

X0/X1, . . . , Xn , where the Xi are variables of a constraint ϕ such that X0⊳
∗Xi ∈ ϕ

for 1 ≤ i ≤ n. The root of A is again r(A) = X0, the holes are hs(A) = X1, . . . , Xn.

The fact that a segement term really denotes a tree segment can be axiomatized
in CLLS with the following constraint:

seg(A) =df

n
∧

i=1

X0⊳
∗Xi ∧

∧

1≤i<j≤n

Xi{⊥∪=}Xj

If a constraint Φ entails that the label of some variable X of the constraint equal
fn, one also has syntactic access to the children nodes. By adding X:(X1, . . . , Xn)
with fresh variables X1, . . . , Xn to the constraint, we do not change the solutions
of Φ. We call the tree segment terms that are ’syntactically reachable’ in this sense
fragments of the constraint graph. Every variable in a constraint Φ is in some
fragment. Note that the same argument does not work for dominance constraints
X⊳∗X ′, since X ′ may not exist uniquely. It is very easy to find the fragments in a
constraint graph: They are just the parts connected by solid lines.

f

Y

X

X1 X2

Figure 3.3: The unsatisfiable constraint graph of X:f(X1, X2) ∧ X1⊳
∗Y ∧ X2⊳

∗Y

31

3 The Constraint Language for Lambda Structures

3.2 Applications of Parallelism Constraints

Another nice features of this approach to underspecification is that it also models
the interaction between scope ambiguities and natural language phenomena like
ellipsis.

We will show a simple elliptic example to explain the basic idea of how to treat
this in CLLS.

Peter sleeps. Marc does too.

In the second (target) sentence, the actual activity of Marc is not mentioned ex-
plicitly, but it is referred to the first (source) sentence. Thus we can construct
the semantics of the target sentence if we use the semantics of the source sen-
tence: Peter sleeps and Marc sleeps. In CLLS this can be done using parallelism
constraints:

X0:@(X1, X2) ∧X1:sleep ∧X2:peter

∧X0/X2 ∼ Y0/Y2 ∧ Y2:marc

A famous class of examples where ellipsis and scope ambiguities interact are
the so called Hirschbühler sentences [Hirschbühler, 1982].

Every man loves a woman. Several gorillas do, too.

The main observation there is that a scope ambiguity in the target and the
source sentence of an ellipsis do not disambiguate independently, but they behave
parallel. This was historically the reason to take parallelism constraints into CLLS.
If we describe the semantics of the target sentence by referring to the source sen-
tence via a parallelism constraint, and if after some time you hear the sentence: Her
name was Mary, we do not only know the reading of the source sentence, namely
that every man loves Mary, but we also know that there is only one woman that
every gorilla loves.

3.3 Summary of Notation

In the last two chapters we introduced lambda terms, lambda structures and the
constraint language over lambda structures. Thus we accumulated quite a bit of
notation, and want to give a short overview over the used symbols:

32

3.3 Summary of Notation

• f, g are the elements of Σ.

• x, y, . . . stand for the variables in λ-terms.

• A,B,C, . . . are contexts (λ-terms).

• We use τ1, τ2, . . . for lambda structures, and

• π, ω for the nodes in lambda structures.

• a, b, . . . are the elements of Σ of arity 0.

• γ, β, α denote tree segments.

• c1, c2, . . . are correspondence functions.

• Φ,Ψ stand for constraints in CLLS.

• X, Y, Z, . . . are the variables in the constraint language CLLS.

• A,B,C, . . . also denote tree segment terms. There is little danger to mix
them with lambda terms, since the latter are a semantic notion and occur in
other contexts.

• σ is the assignment function that assigns nodes to constraint variables.

When drawing constraints, we use the following convention:

• Dashed arrows indicate the binding relation.

• Solid lines stand for the parent-child relation.

• Dotted lines stand for dominance.

33

3 The Constraint Language for Lambda Structures

34

4 Beta Reduction Constraints

In this chapter we will introduce beta reduction constraints. Very briefly, the beta
reduction relation holds between two nodes π and π′ in a lambda structure, iff the
lambda term starting at π′ is the beta reduct of the lambda term starting at π.

We will define this formally using correspondence functions. Then we prove
that the definition in fact does what is known from the classical beta reduction
step on lambda terms.

Next, we extend the definition of parallelism, such that it is expressive enough
to deal with lambda binding in a flexible way. Especially, group parallelism con-
straints can describe the beta reduction constraint. This is important, since ex-
isting procedures for CLLS can be extended such that they can deal with group
parallelisms.

4.1 The Beta Reduction Relation

In this section, we add the β-reduction relation to lambda structures and then
extend the constraint language with β-reduction constraints to talk about it. The β-
reduction relation on nodes of a lambda structure corresponds exactly to traditional
beta reduction on lambda terms. This will be shown formally in section 4.3 on
page 38.

We define the β-reduction relation on λ-structures to be a relation between
nodes in the same λ-structure (see Figure 4.1). This allows us to see the β-reduction
relation as a conservative extension of the existing λ-structures. The representa-
tions both of the reducing and reduced term are part of same big λ-structure. In
figure 4.1 on the following page, these are the segments rooted by r(γ) and r(γ′)
respectively.

A redex in a lambda structure is a sequence of segments (γ, β, α) in this lambda

35

4 Beta Reduction Constraints

var var

lam

@

π0

π1

γ γ′

β

β ′

α
α′

2α′
1

Figure 4.1: The one step beta reduction relation for n = 2.

structure that are connected by nodes π0, π1 with the following properties.

hs(γ) = π0, π0:@(π1, r(α)), π1:lam(r(β)), and λ−1(π1) = {hs(β)}

We call a group (γ′, β ′, α′
1, . . . , α

′
n) reductlike, iff hs(γ′) = r(β ′) and r(α′

i) is the
ith hole of β ′ for all 1 ≤ i ≤ n.

Note that not every reductlike group is a potential reduct of a beta reduction,
since we cannot enforce that there is no binder from the argument into the body
(that would violate the freeness condition).

The lambda structure in Figure 4.1 contains a redex (γ, β, α) and also its reduct
(γ′, β ′, α′

1, α
′
2). There, corresponding segments (γ to γ′, β to β ′, α to both α′

1 and
α′

2) have the same structure.

Definition 8 (Beta Reduction). Let τ be a λ-structure. Then

(γ, β, α)→β (γ′, β ′, α′
1, . . . , α

′
n)

holds in τ iff first, (γ, β, α) form a redex at positions and (γ′, β ′, α′
1, . . . , α

′
n) are

reductlike.. Second, there are correspondence functions cγ between γ, γ′, cβ between
β, β ′ and ciα between α, α′

i (for 1 ≤ i ≤ n), such that for each c between δ, δ′ among
these functions and each π ∈ b−(δ), the following conditions hold:

1. if π is bound in the context then the corresponding node is bound by a binder
node that cγ-corresponds to the binder of π.

λ(π) ∈ b−(γ)⇒ λ(c(π)) = cγ(λ(π))

2. corresponding var-labeled nodes with binders outside the group segments are
bound by the same binder node:

λ(π) /∈ b(πr/)⇒ λ(c(π)) = λ(π)

36

4.2 Examples

Capturing in β-reduction on λ-terms in classical λ-calculus is avoided by a
freeness condition, as we have seen it in section 2.1 on page 19. The following
proposition states that the analogous problem can never arise with the β-reduction
relation on λ-structures.

Proposition 1 (No Capturing). Global variables in the argument are never
captured by a λ-binder in the body: with the notation of Definition 8 this is that no
var-labeled node in b(α′

i) is bound by a lam-labeled node in b−(β ′).

Proof. Assume there exists a node π′ in b(α′
i) such that λ(π′) ∈ b−(β ′). There

must be a corresponding var-labeled node π with ciα(π) = π′, which is bound either
in α, in γ or outside the reducing tree. In the first case the binding property of the
correspondence function, in the second property 1 on the facing page and in the
third case property 2 on the preceding page of the beta reduction definition leads
to a contradiction.

The β-reduction relation conservatively extends λ-structures. We extend our
constraint syntax similarly by adding β-reduction literals

(C,B,A)→β (C ′, B′, A′
1, . . . , A

′
n)

that are interpreted by the β-reduction relation. We call a CLLS-constraint that
contains β-reduction literals, but not contains parallelism literals a beta reduction
constraint.

4.2 Examples

Figure 4.2 on the following page shows an example of a λ-structure containing
both a reducing tree below π0 and its reduct below π′

1, and thus the beta reduction
relation holds on the corresponding nodes:

(π0/π1 , π4/π6 , π6/) →β (π′
0/π

′
1 , π

′
1/π

′
6 , π

′
6/)

Note the different cases the variables are bound with respect to the reducing tree
at π0: There are global variables bound above π0 and π′

0, a variable bound at π1

in the context and the redex variable at π4.

All the global variables are bound at the same place. The correspondent of the
node bound in the context is bound at the corresponding place. Thus, the binding
properties for the beta reduction relation holds.

37

4 Beta Reduction Constraints

lam

g

lam

@

lam

@

var var

var

lam

@

var var

π0 π′
0

π1 π′
1

π2

π4

π3 π′
4

Figure 4.2: The subterm λy.(@(λx.@(z x) y) beta reduces to the subterm
λy.@(z y).

Lets again consider the constraint example in fig. 1.5 on page 16, where rewriting
the constraint graph to obtain a description of the reducts was not possible. If you
allow yourself beta reduction constraints, such a description is trivially possible
(see fig. 4.3).

The submodels of this constraint starting at the node denoted by R′ are ex-
actly the reducts of the submodels below the node denoted by R. This will be a
consequence of Theorem 1 in the next chapter.

4.3 Soundness of the Definition

We would like to show that the definition of the beta reduction relation does ex-
actly what is known from the beta reduction step in classical lambda calculus. In
particular, we want to show the correctness of the definition of β-reduction on λ-
structures: If a λ-structure satisfies the beta reduction relation between π and π′,
the λ-term starting at π′ is the β-reduct of the λ-term starting at π in the classical

@
lam
f

@
b var

a

¬X
Y

R R′

X ′

Y ′

Figure 4.3: Describing the reducts with a beta reduction constraint

38

4.3 Soundness of the Definition

sense.

The definition should also be complete in the following sense. Suppose, we are
given two λ-terms τ1 and τ2, such that τ1 →β τ2. Consider a λ-structure containing
the two λ-terms. Note that such a λ-structure can always be found! Then, the
β-reduction relation on λ-structure holds between the respective positions.

These two properties, correctness and completeness, are implied by the following
theorem:

Theorem 1 (Soundness). Let τ be a λ-structure, π and π′ two positions in this
structure, τ1 and τ2 two λ-terms, and ρ a bijective renaming of the global variables
such that ρ(τ1) =α Tτ (π/) and ρ(τ2) =α Tτ (π

′/), then the following equivalence
holds:

τ1 →β τ2 ⇔ ∃γ, β, α, γ′, β ′, α′
1, . . . , α

′
n : r(γ) = π ∧ r(γ′) = π′

∧ (γ, β, α)→β (γ′, β ′, α′
1, . . . , α

′
n)

Before we prove this theorem, we would explain why we need to rename the
global variables with ρ. This is a technical detail. When reading off λ-terms from
tree segments, the function T of Definition 5 on page 24 might choose names for
the global variables that are different from the names of the global variables in τ1
and τ2.

Proof. First, assume that the right side holds. We have to show that τ1 →β

τ2. The beta reduction relation implies that the tree below π is of the form
C(@(λxπl

.B(xπl
. . . xπl

) A)). The correspondence relations cγ, cβ, c
i
α, 1 ≤ i ≤ n

and Lemma 1 on page 25 imply that the tree below τ2 is C ′(B′(A′
1, . . . , A

′
n)), where

C ′, B′ and A′
1, . . . A

′
n look like their unprimed counterparts, except that the symbol

xπ is replaced by xcγ(π), xcβ(π) and xc1α(π), . . . , xcn
α(π), respectively. It remains to be

shown that binding is correct:

• the global variables in τ2 have the same names as the corresponding global
variables in τ1.

• that internally bound variables in τ1 and τ2 are bound correspondingly.

Let x be a global variable in τ1, and ω its position in τ . We know that ρ(x) = Tτ (ω).
Let δ be one on the tree segments γ, β, α1 . . . αn. Then by Property 2 of Definition 8
on page 36, Tτ (ω) = Tτ (cδ(ω)). Thus we have shown that corresponding global
variables in τ and τ ′ indeed have the same name.

39

4 Beta Reduction Constraints

Let x be a locally bound variable of τ1, except the variable of the redex. Let ω0

be the position of the binder in the corresponding λ-structure τ1, and ω1, . . . , ωm

the positions of the occurrences of the variable. Thus, λ−1(ω0) = {ω1, . . . , ωm}.
Let ω be one of these variable occurrences, i.e. ω ∈ {ω1, . . . , ωm}, and δ its tree
segment among γ, β, α1, . . . , αn. If ω ∈ b−(γ) then cδ(ωi) is bound at cγ(ω0) by
property 1 on page 36. Else, if ω /∈ b−(γ), by Lemma 1 on page 37 the only
remaining possibility is that ω is also bound in δ. In this case cδ(ωi) is bound at
cδ(ω0). Therefore we obtain that the nodes in τ2 corresponding to some occurrence
of x in τ1 are bound correspondingly.

For the other direction, assume that τ1 →β τ2. We have to check the β-
reduction relation between π and π′. It is easy to see that there must be a
redex redexπ,π0

(γ, β, α) in τ . Now we have to give correspondence functions
cγ , cβ, c

1
α, . . . , c

n
α that satisfy Properties 2 and 1 on page 36 of the β-reduction

definition.

Since τ1 reduces to τ2, we know that τ1 is of the form C(@(λxπl
.B(xπl

. . . xπl
) A))

and τ2 of the form C(B(A1 . . . An)) modulo α-renaming. By Lemma 1 we know
that there exist correspondence functions cγ : b(γ) → b(γ′), cβ : b(β) → b(β ′),
ciα : b(αi)→ b(α′

i) for 1 ≤ i ≤ n.

Since the renaming of the global variables of τ1 and τ2 is bijective, and the global
variables of τ1 and the corresponding global variables of τ2 are named the same, we
have shown that for any var-labeled node bound outside of τ1 the corresponding
node in C ′ is bound at the same place. Thus we also have proven Property 2.

To check 1, let ω be a var-labeled node in b(δ), where δ is in {γ, β, α1, . . . , αn}.
Let ω be bound at ω0 in γ. We have to show that λ(cδ(ω)) = cγ(ω0). Because of
Tτ1(ω) = xω0

we know that TC(B(A1...An))(ω) = xω0
. Since τ2 =α C(B(A1 . . . An)) it

follows that Tτ2(cδ(ω)) = xcγ(ω0) and thus λ(cδ(ω)) = cγ(ω0).

4.4 Group Parallelism

In the last section we saw how to describe redexes and reducs in a single lambda
structure using beta reduction constraints. However, these constraints remain very
implicit, i.e. the structure of the reduct is only described via the beta reduction
constraint and not by explicit labeling and dominance constraints.

In this section, we extend CLLS with group parallelism constraints (Definition
9), a generalization of the parallelism constraints in CLLS that we already intro-
duced. Then we show that CLLS with group parallelism can express β-reduction
constraints (Theorem 2).

40

4.4 Group Parallelism

lam

var

lam

var

α

β

α′

β ′

lam

var var

α′

β ′

α

β

(α, β) ∼ (α′, β ′) α ∼ α′ ∧ β ∼ β ′

Figure 4.4: Binding in a group parallelism vs. a conjunction of ordinary paral-
lelisms.

Since an existing solution procedure for parallelism constraints [Erk and
Niehren, 2000] can be extended to deal with group parallelism, this gives us a
procedure that makes beta reduction constraints more explicit.

Both parallelism and group parallelism constraints require the structural sim-
ilarity of tree segments. A group is a sequence of (not necessarily different) tree
segments. Group parallelism relates two groups (α1, . . . αn) and (α′

1, . . . α
′
n) if each

pair of segments αi, α
′
i is structurally isomorphic. The only difference between a

group parallelism and a conjunction of ordinary parallelisms is the treatment of
the binding functions.

If var-labeled nodes in one segment are bound in another tree segment of the
group, in a group parallelism the corresponding node is bound by the corresponding
binder (Figure 4.4). This cannot be expressed by ordinary parallelism constraints
for two reasons. Consider the group parallelism (α, β) ∼ (α′, β ′), and compare this
to α ∼ α′ ∧ β ∼ β ′. Suppose there is a var-labeled node π in α bound in β. This
is a hanging binder with respect to β ∼ β ′. Moreover, Property 2 of the definition
of the parallelism relation α ∼ α′ requires π to be bound at the same place as its
correspondent. But in group parallelisms we want the correspondent to be bound
by the corresponding node of the binder with respect to the parallelism between β
and β ′ (compare Figure 4.4).

Definition 9. The group parallelism relation ∼ of a λ-structure τ is the greatest
symmetric relation between groups of the same size such that

(α1, . . . , αn) ∼ (α′
1, . . . , α

′
n)

implies for all 1 ≤ k ≤ n that there is a correspondence function ck : b(αk)→ b(α′
k)

satisfying the following properties for all 1 ≤ i, j ≤ n and π ∈ b−(αi):

41

4 Beta Reduction Constraints

lam

π:var

lam

var

lam

var

α′α β ′

c2

c1

c1

c2

lam

var

lam

π:var

α

β

α′

β ′

c2

c1

(α, α) ∼ (α′, β ′) α ∼ α′ ∧ β ∼ β ′

Figure 4.5: Binding into the same segment vs. binding into another group segment.

1. for a var-labeled bound outside αi but inside αj, the correspondent is bound
at the corresponding place with respect cj:

λ(π) ∈ b−(αj) ∧ λ(π) /∈ b−(αi) ⇒ λ(ci(π)) = cj(λ(π))

2. for a var-labeled node bound above the reducing tree, the corresponding node
is bound at the same place:

λ(π) /∈ ∪n
k=1b

−(αk) ⇒ λ(ci(π)) = λ(π)

3. there are no hanging binders:

λ−1(π) ⊆ ∪n
k=1b

−(αk)

Such a greatest symmetric relation always exists, since the union of two relations
satisfying the above requirements again satisfies them. The parallelism relation
(Definition 7 on page 27) is a special case of group parallelism, where n = 1.

Note that Condition 1 of Definition 9 must not apply to variables that are
bound in the same tree segment, see Figure 4.5. If 1 was applicable in the left
picture, it would enforce λ(c1(π)) = c2(λ(π)), which is not the case.

We extend CLLS by group parallelism literals that are interpreted by the group
parallelism relation. A group parallelism literal has the following form, where
A1, . . . Am, A

′
1, . . . , A

′
m are segment terms:

(A1, . . . , Am) ∼ (A′
1, . . . , A

′
m)

A group parallelism constraint contains CLLS-constraints and group parallelism
literals, but does not contain β-reduction literals. (Similarly, we call a constraint
that does not contain parallelism or group parallelism literals a beta reduction
constraint.)

42

4.5 Describing Beta Reduction with Group Parallelism

4.5 Describing Beta Reduction with Group

Parallelism

The beta reduction relation on λ-structures basically states that certain parts in a
λ-structure look the same, namely the context in the reducing tree to the context in
the reduct etc. Both the beta reduction and the parallism relation are formulated
using correspondence functions. But the definition of parallelism is too restrictive
concerning its binding properties. There might be variables in the body that are
bound in the context, so every parallelism literal that only considers the context
has hanging binders. Group Parallelism is much more flexible with respect to this.

Although very simple in principle, theorem 2 is one of the key statements of
this thesis, since it will enable us to use existing algorithms for parallelism in CLLS
to also process β-reduction constraints.

We will now show how to encode beta reduction constraints in CLLS. First, we
axiomatize a redex in CLLS. For segment terms C = X/X0, B = X3/X4, . . . , Xn

and A = X2/, , we set:

redexX0,X1
(C,B,A) =df seg(A) ∧ seg(B) ∧ seg(C)

∧ X0:@(X1, X2) ∧ X1:lam(X3)

∧ λ−1(X1) = {X4, . . . , Xn}

This reads: the context, body and argument segment terms really denote tree
segments; we have an @-labeled node with a λ-labeled node as a first child; we do
know all occurrences of the variables bound there.

Next, we define reduct-like groups. Let C = X/X0, B = X ′
0/X

′
1, . . . , X

′
n and

Ai = Xi/ for 1 ≤ i ≤ n, then we define:

reductlike(C,B,A1, . . . , An) =df seg(A1) ∧ · · · ∧ seg(An) ∧ seg(B) ∧ seg(C)

∧X0=X
′
0 ∧X1=X

′
1 ∧ · · · ∧Xn=X ′

n

We already mentioned that not every group that satisfies reductlike is a potential
reduct, since we cannot enforce that there is no binder from the argument into the
body (capturing, see Lem. 1). But in the following encoding this will be implied
by the group parallelism constraints.

Theorem 2. Beta reduction constraints can be expressed in CLLS with group par-
allelism via the following equivalence:

(C,B,A)→β (C ′, B′, A′
1, . . . , A

′
n) |=| ∃ X0, X1 : redexX0,X1

(C,B,A)

∧ (C,B,A, . . . , A) ∼ (C ′, B′, A′, . . . , A′)

∧ reductlike(C ′, B′, A′
1, . . . , A

′
n)

43

4 Beta Reduction Constraints

Proof. We will check the two-side entailment separately, first from right to left. Let
σ be a variable assignment into some λ-structure that solves the right hand side.
To show that it also solves the β-reduction literal on the left hand side, we define
α = σ(A), α′

i = σ(A′
i), β = σ(B), β ′ = σ(B′), γ = σ(C), and γ′ = σ(C ′). The tree

segments (γ, β, α) form a redex and the group (γ′, β ′, α′
1, . . . , α

′
n) is reductlike since

this is explicitely stated in the constraint on the right hand side.

Properties 1 and 2 for the beta reduction relation (Definition 8) are then sub-
sumed by the corresponding properties of the group parallelism relation (Definition
9).

For the other direction, let (τ, σ′) solve the beta-reduction literal on the left
hand side. Let γ, γ′, β, β ′, α and α′

i for 1 ≤ i ≤ n be defined as above. According
to (Definition 8) the tree segments (α, β, γ) form a reducing tree, where we call the
redex position π0 and binder position π1.

It remains to check whether (τ, σ) solves the group parallelism literal on the right
hand side. We consider the following symmetric relation ≈ which relates the group
(γ, β, α, . . . , α) with (γ′, β ′, α′

1, . . . , α
′
n) and conversely. We show that ≈ satisfies

all conditions in the definition of group parallelism (Definition 9) so that ≈ is
subsumed by the group parallelism relation ∼ since the latter is maximal with that
property. It then follows that (τ, σ) satisfies (C,B,A, . . . , A) ∼ (C ′, B′, A′

1, . . . A
′
n).

First of all, both above groups satisfy condition 3. This is clear for the group
(γ′, β ′, α′

i, . . . , α
′
n)) which covers the complete subtree below σ(r(γ)) by definition

of γ′, β ′, and α′
i. A similar argument applies for (γ, β, α, . . . , α) which covers the

whole tree below r(γ′) except the @-labeled node π0, the lam-labeled node π1 and
the var-labeled nodes hs(α).1, . . . , hs(α).n in the redex. But these variables are
bound by π1.

Second, we have to check properties 1 and 2 for group parallelisms (Definition
9) for appropriate correspondence functions. Let D =df b(γ) ∪ b(β) ∪ b(α) and
D′ = b(r(γ′)/). The semantics of the β-reduction literal implies the existence of
suitable correspondence functions cγ between segments γ, γ′, cβ between β, β ′ and
ciα between α, α′

i for 1 ≤ i ≤ n. Since ≈ is symmetric, we also have to check
properties 1 and 2 for all inverse correspondence functions c−1 : δ′ → δ:

1. Let π′ be a var-labeled node in b−(δ′) bound in δ′. The correspondent π of
π′ must also be var-labeled. Thus, it must be bound somewhere. If it is
bound outside of all group segments, by property 2, we have c(λ(π)) /∈ D′,
a contradiction to the above assumption. If it is bound in another segment,
which in our case is only possible if π lies in α or in β, and λ(π) is in b−(γ),
the correspondent of the binder has to be bound in γ′. Then we also derive

44

4.5 Describing Beta Reduction with Group Parallelism

a contradiction since γ′ is strictly above β ′ and α′
i. The last case, π is bound

in b−(δ), implies λ(c(π)) = c(λ(π)). Hence c−1(λ(π′)) = c−1(c(λ(π))) =
λ(c−1(π′)) and we are done.

2. Let π′ be a var-labeled node in b(δ′), bound in another group segment, which
is not δ′. This implies that δ is either β ′ or α′

i: Since, if δ was γ, it cannot
be bound in another group segment, since the others are all below γ. There
are three cases to be considered: λ(π′) ∈ b−(β ′) or λ(π′) ∈ b−(α′

j) for some
1 ≤ j ≤ n or λ(π′) ∈ b−(γ′).

The first case is impossible: If δ′ is α′
j, it is forbidden since we have no hanging

binders (Proposition 1). If δ′ is β ′, this contradicts to the fact that the binder
has to be in another group segment.

The second case is also impossible: If δ′ is α′
j for some 1 ≤ j ≤ n, the holes

of the segment β ′ are disjoint or equal (Definition 4). If δ′ is β ′, the third
case is impossible because β ′ lies above α′

j .

Thus, we have that λ(π′) ∈ b−(γ′). Let π be the corresponding node of π′.
As π also has to be var-labeled, it must be bound either in b−(δ), Dτ −D or
b−(γ).

The first case is not possible, since property (1) of the beta reduction relation
implies that π′ is bound in δ′, which is located strictly below γ′.

The second case is also not possible: Assume π is bound inDτ−D, i.e. outside
the group segments. Be property 2 on page 36 we know that λ(π) = λ(π′).

Therefore we know that π lies below λ(π′) and thus must be in a parallel
group segment γ′, β ′ or α′

j for some 1 ≤ j ≤ n. In every case this contradicts
the assumption that π is bound outside all of the group segments.

So let π be bound in γ. Thus property 1 of the beta reduction relation
yields λ(cδ(π)) = cγ(λ(π)) i.e. c−1

γ (λ(π′)) = c−1
γ (cγ(λ(π′))) = λ(c−1

δ (π′)), as
required.

3. Let π′ be a var-labeled node in b(δ′), bound outside D′. Again, the correspon-
dent π must be bound somewhere. If it is bound in D, it is bound in some
group segment δ2, and because cδ2 is a correspondence function, cδ2(π

′) ∈ D′,
a contradiction. Thus, π is bound outside of D. Property 2 of the beta
reduction relation enforces λ(π) = λ(π′).

45

4 Beta Reduction Constraints

46

5 Expressiveness of Beta
Reduction Constraints

Now that we have defined the beta reduction constraint, we are interested in its
expressive power. It is clear that the beta reduction constraint can express struc-
tural identity between certain tree segments. We would like to know whether they
can express parallelism constraints with all its binding properties.

The encodings given in this chapter do not only preserve satisfiability, but they
in principle preserve the solutions. We will define a appropriate notion of expres-
siveness of constraint languages, and we express a relevant fragment of parallelism
constraints with beta reduction constraints and prove the correctness of the encod-
ings.

Since we will use group parallelism constraints in the next chapter to also solve
beta reduction constraints, one could ask whether using group parallelism con-
straints is an overhead for beta reduction constraints. Already parallelism con-
straints are equally expressive to context unification. But satisfiability of a context
unification problem is not known to be decidable [RTA-List, 1998, Lévy, 1996,
Schmidt-Schauß and Schulz, 1999].

Since beta reduction constraints can encode a large fragment of parallelism con-
straints, the results of this section show that it is likely that parallelism constraints
are not an overhead for the treatment of beta reduction constraints.

5.1 Expressiveness of Constraint Languages

We want to express parallelism. One cannot expect for every parallelism con-
straint an equivalent beta reduction constraint, since the solution of a parallelism
constraint might not contain any @-labeled nodes, but you enforce them when
using beta reduction constraints. But we still want to have a notion of expressive-
ness, which is stronger than equivalence with respect to satisfiability. The solutions

47

5 Expressiveness of Beta Reduction Constraints

should preserve the structure of the solutions of the original constraint, more pre-
cisely, they should contain the old solution as a subsolution.

First, we will define submodels and subsolutions.

Definition 10 (Submodels). Let τ1 = (θ1, λ1) and τ2 = (θ2, λ2) be λ-structures.
Then τ1 is a submodel of τ2, iff the underlying tree θ1 of τ1 is a subtree of θ2, and
the binding function coincides on Dτ1:

τ1 ≺ τ2 ⇔df ∃π : τ2.π = τ1 ∧ λ2|Dθ1
= λ1

A solution (τ, σ) of a constraint Φ is a subsolution of a solution (τ ′, σ′) of a
constraint Φ′ where Φ′ contains at least the variables in Φ, if τ is a submodel of
τ ′, the interpretations coincide on the common variables and the new variables are
interpreted in the new parts of the model.

Definition 11 (Subsolutions). Let Φ,Φ′ be constraints such that V(Φ) ⊆ V(Φ′),
let τ, τ ′ be λ-structures, and σ : V(Φ) → τ and σ′ : V(Φ′) → τ ′ be variable assign-
ments. Then we define

(τ, σ) ≺ (τ ′, σ′)

if and only if

1. The model of the first solution is a submodel of the second one:

τ ≺ τ ′

2. The second variable assignment equals the first one, if we restrict it to the
variables of the first constraint:

σ′|V(Φ) = σ

3. The additional variables in the second constraint are not mapped into the
submodel τ of τ ′:

σ′(V(Φ′)− V(Φ)) ∩ τ = ∅

In this case we say that (τ, σ) is a subsolution of (τ ′, σ′), and conversely that (τ ′, σ′)
is a supsolution of (τ, σ).

Note that the subsolution relation is transitive and reflexive.

The least one would expect when defining whether a constraint Φ is expressed
by a constraint Φ′ is that Φ′ should entail Φ, and that Φ′ should be satisfiable if and
only if Φ is satisfiable. But in the reductions that follow in the next chapters, we
have even stronger properties. The solutions of Φ are subsolutions of solutions in
Φ′. Moreover, for every solution of Φ′ we can find a solution of Φ that is subsolution.

48

5.2 Expressing Similarity

Definition 12 (Expressiveness). A constraint Φ is expressed by a constraint Φ′,
if

1. for every solution (τ ′, σ′) of Φ′ there is a solution (τ, σ) of Φ such that

(τ, σ) ≺ (τ ′, σ′)

2. for every solution (τ, σ) of Φ there is a solution (τ ′, σ′) of Φ′ such that

(τ, σ) ≺ (τ ′, σ′)

Suppose we want to show that for every formula Φ containing a certain type of
literal we can find a formula Φ′ not containing this type of literal. Because of the
transitivity of the subsolution it suffices to show that one of these literals can be
expressed. By induction, we know that we can eliminate all of these literals one by
one.

5.2 Expressing Similarity

The similarity relation π ∼ π′ was defined in Section 2.4 on page 24 as a parallelism
relation between the tree segments π/ and π′/ that have no holes.

We also write X ∼ X ′ instead of X/ ∼ X ′/ and these special form of parallelism
literals we call similarity literals. Similarity Constraints are parallelism constraints
where the only parallelism literals are similarity literals.

In this section we will show how to express similarity constraints with beta re-
duction constraints. This will serve as an example for an encoding using the notion
of expressiveness of Definition 12. Additionally, will will in turn use a similarity lit-
eral when encoding parallelism constraints with β-reduction constraints in Section
5.3.

Theorem 3. For every similarity constraint Φ, there is a β-reduction constraint
Φ′ that expresses Φ′.

Proof. As we mentioned in the last chapter, it suffices to express a single similarity
literal X1 ∼ X2. The idea is to make use of the capability of beta reduction to copy
its argument. The two segments of the tree whose similarity has to be expressed
will play the rôle of the two occurrences of an argument.

49

5 Expressiveness of Beta Reduction Constraints

@
λ

β

Y0

Y

Y1 Y2

Y3

X0

X

X1 X2

Figure 5.1: Encoding of Similarity.

The encoding looks as follows:

Φ′ =df ∃ Y, Y0, Y1, Y2, Y3, X,X0 :

((Y/Y0), (Y0/Y1, Y2), Y3/)→
β ((X/X0), (X0/X1, X2), X1/,X2/)

∧ X⊥Y

We start proving Property 2 of Definition 12 on the page before. Let (τ, σ) be
a solution of X1 ∼ X2. We have to construct a solution (τ ′, σ′) of Φ′, such that
(τ, σ) ≺ (τ ′, σ′).

Let σ(X1) be π1 and σ(X2) be π2. We call π0 the greatest common ancestor of
π1 and π2, i.e. π0 is the maximal path such that π0⊳

∗π1 and π0⊳
∗π1. Since π1 ∼ π2,

we have no hanging binders in the tree segment π0/π1, π2 . We can now define

γ := π/π0 C = Tτ (γ)

β := π0/π1, π2 B = Tτ (β)

α1 := π1/ A1 = Tτ (α1)

α2 := π2/ A2 = Tτ (α2)

Clearly, τ = C(B(A1 A2). We now define τ ′ = f(C(@(λx.B(x x) A1) τ). The
choice of A1 is arbitrary, since A1 equals A2 modulo α-renaming. There are no
free variables in this λ-term, since τ has no free variables and the variables in A1,
A2 and B are all bound in C. So we can identify τ ′ with its λ-structure, which
will serve us as a model for Φ′. To see this, extend σ to σ′ by interpreting X with
ǫ·2, Y with ǫ·1 and X0 by π0. Y0, Y1 and Y2 are interpreted by the corresponding
positions of π0, and σ′(Y3) = σ′(X0)·2. Using the soundness of the definition of beta
reduction it is obvious that (τ ′, σ′) satisfies Φ′. Moreover, it is clear that (τ ′, σ′)
is a subsolution of (τ, σ), since the new variables are all interpreted over the first
branch in the model, and the old variables are interpreted as in σ.

For Property 1 of Definition 1, let (τ ′, σ′) be a solution of Φ′. We will show
that the solution (τ, σ) = (τ ′|σ′(X), σ

′|{X1,X2}) satisfies X1 ∼ X2. Because of the
disjointness literal in Φ′ it is clear that (τ, σ) is a subsolution of (τ ′, σ′).

50

5.3 Expressing non overlapping Parallelism

By definition of the β-reduction constraint, there exist π′
0, π

′
a in τ ′ such that

π′
0 : @(π′

0·1, π
′
a) and correspondence functions c1 between π′

a/ and π1/ and c2 be-
tween π′

a/ and π2/. The composition c =df c
−1
1 ◦ c2 between these function is again

a correspondence function. We show that c satisfies all the properties given in the
group parallelism definition. Since we only look at the restricted case of similar-
ity, it suffices to check the properties of internal and external binders for c and
for its inverse c−1. Let ω1 be a var-labeled node in b(π1/), and ω2 its correspon-
dent in b(π2/), and cγ be the correspondence functions between σ(Y)/σ(Y0) and
σ(X)/σ(X0) .

1. Let ω1 be bound in b(π1/). Thus, λ(c−1
1 (ω1)) ∈ b(π′

a/) and we have
λ(c2(c

−1
1 (π1)) = λ(c(ω1)) = λ(ω2) ∈ b(π2/), as required.

2. Let ω1 be bound above b(π1/). In this case we have to show that λ(ω1) =
λ(ω2)). Depending on the location of the binder of ω1 we distinguish three
cases (see Figure 5.1 on the facing page):

a) The binder of ω1 is above σ(X):
By Property 2 on page 36 of the beta reduction relation, λ(ω1) =
λ(c−1

1 (ω1)) = λ(c2(c
−1
1 (ω1))) = λ(ω2).

b) The binder of ω1 is bound between σ(X) and σ(X0):
i.e. σ(X) ⊳

∗ λ(ω1) ⊳
+ σ(X0). If c−1

1 (ω1) would not be bound at
c1−γ (λ(ω1)), we have a contradiction by Property 1 of the beta reduction

relation. Again by Property 1 we conclude that c2(c
−1
1 (ω1) is bound at

cγ(c
−1
γ (λ(ω1)) and thus, λ(ω2) = λ(ω1).

c) The binder of π1 is bound between σ(X0) and σ(X1). But this can
never happen, since we do not have capturing of argument variables
(Proposition 1 on page 37).

Because the construction is symmetric, the proof for the inverse c−1 is the same.
We have thus proven that (τ ′, σ′) satisfies the similarity literal, which concludes
the proof.

5.3 Expressing non overlapping Parallelism

We now present a reduction of parallelism constraints, that are non overlapping, i.e.
for all solutions (τ, σ) of a constraint containing the parallelism literal A ∼ B, it
holds that b−(σ(A))∩b−(σ(B)) = ∅ or σ(A) = σ(B). This is interesting, since non
overlapping beta reduction constraints can in turn be encoded by a non overlapping
group parallelism.

51

5 Expressiveness of Beta Reduction Constraints

Definition 13. Let τ be a λ-structure, and α, α′ two tree segments in τ . Then α
and α′ are called non overlapping, iff

b−(α) ∩ b−(α′) = ∅, or α = α′

For a given constraint Φ two segment terms A and B are non overlapping, iff σ(A)
and σ(B) are non overlapping for all solutions (σ, τ) of Φ.

We start with two lemmas that will be extensively used later on:

Lemma 2. Let Φ be an arbitrary satisfiable constraint, then for X0, X1 in V(Φ)
such that σ(X0/X1) does not have any hanging binders for every solution (τ, σ) of
Φ the following constraint is also satisfiable:

∃ X,C ′, B′, A′ : (C ′, B′, A′)→β (X/X0 , X0/X1 , X1/)

If for every model of Φ there is a tree segment β = π0/π1 that does not have any
hanging binders, the corresponding existential constraint is satisfiable:

∃ X,X0, X1, C
′, B′, A′ : (C ′, B′, A′)→β (X/X0 , X0/X1 , X1/)

Proof. Since Φ is satisfiable, there is a solution (τ, σ) of Φ, where σ assigns β =
π0/π1 to B. We define γ =df ǫ/π0 and α =df π1/, and claim that the lambda
structure of the following closed term

τ ′ =df f(Tτ (γ) @(λx.Tτ (β)(x) Tτ (α))

is a model for the given constraint, provided a two-ary function symbol f in our
signature, and a fresh variable name x. To see this, let σ′ be an extension assigning
ǫ/1·π0 to C ′, 1·π0/1·π1 to B′, 1·π1/ to A′ and 2·σ(Z) to all other variables Z ∈
V .

Lemma 3. Let Φ be an arbitrary satisfiable constraint containing a redex
redex1

X0,X1
(C,B,A) then the following constraint is also satisfiable:

∃C ′, A′, B′ : (C,B,A)→β (C ′, B′, A′)

This lemma is proven analogously by constructing a model.

Theorem 4. Let Φ be a parallelism literal with only non overlapping parallelism
literals, i.e. if A ∼ B then A and B are non overlapping. Then there is a β-
reduction constraint expressing Φ.

52

5.3 Expressing non overlapping Parallelism

@
lam

var

@
lam

var
∼

R′ R

X0

X1

Y0

Y1

Figure 5.2: Idea of the encoding using a parallel reduction.

We will again give a encoding of a parallelism literal (5.4 on page 55 and 5.5
on page 58). But before we prove the correctness of this encoding we would like to
explain the ideas – and problems of the encoding.

The main idea is to employ similarity, that we already can express by beta
reduction constraints. To express a parallelism literal we use two redexes in the
encoding that have potentially different arguments but impose a similarity con-
straint on their bodies (see Figure 5.2). After beta reducing at the two redexes,
the different arguments are placed under the necessarily identical bodies, and we
have thus expressed a parallelism up to one hole.

To make this idea work, we have to express a parallel beta reduction, to describe
the result after reducing at these two redexes. The concept of parallel beta reduc-
tion steps has already been used in classical lambda calculus, for instance when
studying confluence. The idea is to simultaneously perform beta reduction steps
at several disjoint positions in the tree.

There is a problem with the näıve approach, which is to describe the reduct and
from there on to describe the reduct of the reduct. If we describe the reduct we
do not have access to the positions in the constraint that correspond to the second
redex. So we have no variables for the positions in the reduct to write down the
second beta reduction constraint, see Figure 5.3.

@
lam

f
var

g

@

lam

f

var

g

f
g

β

Figure 5.3: It is not possible to add a parallelism constraint that describes the
reduct of the reduct.

53

5 Expressiveness of Beta Reduction Constraints

∃X1
1 , . . . , X5

11,Y 1
2 , . . . , Y 5

10 :

∧ (X7, X2
7 , X3

7 , X4
7) →β (X6, X6, X1

6) ∧ (X6, X0
6 , X1

6 , X2
6) →β (X5, X0

5 , X0
5)

∧ (X5, X0
5 , X1

5 , X2
5) →β (X4, X0

4 , X1
4) ∧ (X4, X4, X1

4 , X1
4) →β (X3, X3, X1

3)

∧ (X3, X0
3 , X1

3 , X2
3) →β (X2, X0

2 , X0
2) ∧ (X2, X0

2 , X1
2 , X2

2) →β (X1, X, X′)

∧ (X7, X7, X1
7 , X2

7) →β (Y6, Y6, Y 1
6) ∧ (Y6, Y 0

6 , Y 1
6 , Y 2

6) →β (Y5, Y 0
5 , Y 0

5)

∧ (Y5, Y 0
5 , Y 1

5 , Y 2
5) →β (Y4, Y 0

4 , Y 1
4) ∧ (Y4, Y4, Y 1

4 , Y 1
4) →β (Y3, Y3, Y 1

3)

∧ (Y3, Y 0
3 , Y 1

3 , Y 2
3) →β (Y2, Y 0

2 , Y 0
2) ∧ (Y2, Y 0

2 , Y 1
2 , Y 2

2) →β (X1, Y, Y ′)

∧ (X7, X2
7 , X3

7 , X4
7) →β (X8, X0

8 , X2
8) ∧ (X8, X1

8 , X2
8 , X3

8) →β (X9, X0
9 , X0

9)

∧ (X9, X9, X1
9 , X2

9) →β (X10, X10, X1
10 ∧ (X10, X0

10, X1
10, X2

10) →β (X11, X0
11, X0

11)

∧ (X7, X7, X1
7 , X2

7) →β (Y8, Y 0
8 , Y 2

8) ∧ (Y8, Y 1
8 , Y 2

8 , Y 3
8) →β (Y9, Y 0

9 , Y 0
9)

∧ (Y9, Y9, Y 1
9 , Y 2

9) →β (Y10, Y10, Y 1
10 ∧ (Y10, Y 0

10, Y 1
10, Y 2

10) →β (X11, Y 0
11, Y 0

11)

∧ X0
11:@(X1

11, X2
11) ∧ Y 0

11:@(Y 1
11, Y 2

11) ∧ X1
11 ∼ Y 1

11

∧
11
∧

i=1

X1⊥Xi ∧
10
∧

i=2

X1⊥Yi

Figure 5.4: The encoding Φ of X/X ′ ∼ Y/Y ′ . See also 5.5.

The problem with the previous example is that the only tree segments that are
accessible via some fragment do not necessarily contain the tree segment of the
second redex in the reduct, and thus we do not have access to the positions where
we want to reduce next.

The idea to overcome this problem is to use the lambda binding constraints.
With the help of additional redexes, we can link the different fragments. To im-
plement this we describe a subtree, which reduces in two reduction chains to both
R1 and R11, i.e. to the reducing tree and and the reduct of the parallel reduction
(see Figure 5.5 on page 58).

We avoid the problem of the missing access to the positions of the second redex
by introducing extra redexes that we use to activate certain positions in the tree.
These activators are applications of identities, which we additionally reduce.

Altogether, we express a disjoint parallelism by the rather complex constraint
Φ′ presented in figure 5.4 on the facing page. It is visualized by its constraint graph
in Figure 5.5 on page 58. We also added some labeling and binding constraints that
are entailed by Φ′. Notice how the access to some parts of the described models
gets lost on the reduction step from X4 to X3, Y4 to Y3, X9 to X10 and Y9 to Y10.
Nonetheless, every relevant position in R1 or R11 can be accessed since we have
described the submodels there twice.

54

5.3 Expressing non overlapping Parallelism

Proof of Theorem 4. Let Φ′ be the constraint drawn in Figure 5.5 on page 58.
We first show that for every solution (τ, σ) of the parallelism constraint we can
construct a solution (τ ′, σ′) of Φ′, such that (τ, σ) ≺ (τ ′, σ′).

If we follow the two reduction chains in fig. 5.5 on page 58 from X1 back to X7

and then from there there on forwards to X11, we construct a model for all of the
beta reduction constraints, where we use the lemmas 2 on page 52 and 3 on page 52
several times. In a next step, we argue that the similarity constraint X0 ∼ Y 0 is
satisfied in this model.

We have to carefully argue for every step, why the lemmas are applicable. We
will do this first for the reduction chain X7 → X6 → X5 → X4 → X3 → X2 → X1.

The requirements for Lemma 2 on page 52 are given for the tree below X1 and
the tree segment denoted by X/X ′ , since the parallelism relation explicitly forbids
hanging binders. The next step applies this lemma on the empty tree segment,
starting and ending at the node corresponding to the redex of the last reduction,
denoted by X2. Thus, hanging binders are also impossible. Then we apply the
lemma to the tree segment starting at the node denoted byX3 ending at the identity
function that we applied in the last reduction step. In this case, hanging binders are
impossible since the argument contains only one variable, which is bound internally.
To satisfy the beta reduction constraint between X4 and X5 we again make use of
the fact that the parallelism constraint X0/X1 ∼ Y0/Y1 has no hanging binders.
But this time we have to use Lemma 2 in its existential form, since we do not
have variables in the constraint, that denote the correspondents of Y/Y ′ below
X4. But these correspondents exists, since we only followed beta reductions with
nondisapearing arguments. These correspondents still form a tree segment. This
is only the case, because we are encoding non-overlapping parallelism. Obviously,
these tree segments are still without hanging binders. The next reduction step
again has an empty body, and in the reduction X7 → X6 the argument does only
contain one locally bound variable, so that we can apply Lemma 2 again.

The reasoning in the other branch of reductions, X7 → Y6 → Y5 → Y4 → Y3 →
Y2 → X1, is similar to the above construction, except the step X7 → Y6, where we
join the other branch again.

We know from beta reduction on linear lambda terms that the order in which
we perform beta reduction steps doesn’t matter. Since the arguments are only used
once, no redex is copied, and all reduction sequences have linear length. Moreover,
no matter in which order all the reductions are made, we always arrive at the same
resulting term. We use this fact to prove the beta reduction relation between Y6

and X7. Since on the reduction chains from X1 to R7 exactly the same (linear)
reductions are made, the last step on both chains leads to the same resulting tree.

55

5 Expressiveness of Beta Reduction Constraints

Starting from X7, it is very easy to see that Lemma 3 on page 52 is applicable
on both branches of the reduction chain, and we again reach the same resulting
tree, denoted by the variable X11. So let (τ ′, σ′) be a solution of all the constraints
except the similarity constraint. Let σ′(X1) = π1, σ

′(X ′
1) = π′

1, σ
′(Y1) = ω1,

σ′(Y ′
1) = ω′

1, σ
′(X11) = π11, σ

′(X ′
11) = π′

11, σ
′(Y11) = ω11, σ

′(Y ′
11) = ω′

11.

The only thing that remains to be checked is whether the similarity relation
holds between π11 and ω11. If we follow the reduction chains from σ′(X11) back
to σ′(X1), the tree segment π1/π

′
1 and its correspondents always falls completely

in the body or in the context of the reductions (notice that we used the fact that
the parallelism holds between non overlapping segments!), and the same holds for
ω1/ω

′
1 . Let c1 and c2 denote the respective composition of all these correspondence

functions, and let c be the correspondence function of the parallelism constraint.

We can define a correspondence function c′ between π11·1/π
′
11 and ω11·1/ω

′
11 by

composing all these correspondence functions:

c′ =df c1 ◦ c ◦ c
−1
2

We extend this correspondence function by c′(π11) = ω11. Since L(π′
11) = L(ω′

11) =
var and c(λ(π′

11)) = c(π11) = ω′
11 = λ(ω′

11) = λ(c(π′
11))) we know that c′ is also

a correspondence function between the larger tree segments π11/ and ω′
11/. Global

variables with respect to the similarity constraint are either bound above σ′(X11)
or in the tree segment σ(X11)/π11, ω11 . In the first case, the variable is global for
all of the roots of the reduction sequence and thus is bound at the same place as
all its correspondents. In the second case, let π be a variable bound below σ′(X11).
Because of the parallelism constraint c1(π1) and c2(c

′(π1)) are bound at the same
place and therefore, π1 and c′(π1) are bound at the same place. Therefore we
have shown all the binding properties of the similarity relation and thus know that
π11 ∼ ω′

11. It is clear that (τ ′, σ′) is also a subsolution of (τ, σ): We know that τ
is a submodel of τ ′, σ′ coincides with σ on the old variables and we interpret the
new variables in the new parts of the constraint only.

Now we turn to Property 1 of Definition 12 on page 49. Let (τ ′, σ′) be a
solution of Φ′. We will show that the submodel below the node denoted by X1 is
a model of the parallelism literal. Since the new variables of Φ′ will be interpreted
in submodels of the constraint that are enforced to be disjoint to X1, we will have
immediately a subsolution that satisfies the parallelism constraint.

Let σ(X1/X
′
1) = α′

1, σ(Y1/Y
′
1) = α′

1, σ(X11/X11) = α11, σ(Y11/Y11) = α′
11.

Let c be the correspondence function between α11 and α′
11, which exists because

of the similarity constraint. Let c1 and c2 be the composition of the respective
correspondence functions on one of the reduction chains from X1 to X11 for the
segment α1 and α2. Again, we define the correspondence function c′ between

56

5.3 Expressing non overlapping Parallelism

π1/π
′
1 and ω1/ω

′
1 by c′ =df c2 ◦ c ◦ c

−1
1 . Lets check the additional properties of the

parallelism relation. Since the reductions at X2 and X5 do not allow that variables
in the argument are captured by binders in the body, we do not have hanging
binders for π1/π

′
1 and ω1/ω

′
1 . A node π in b−(α1) that is var-labeled and bound

outside the tree segment α1 is bound at the same place like its correspondents c(π),
since already c2(π) is bound at the same place like c−1

1 (c(π)) because of property
(outside) of the similarity constraint.

Note that the encoding in turn also implies, that the tree segments α, α′ denoted
by X/X ′ and Y/Y ′ can not overlap. To see this, assume that there is a node in
a solution of the constraint that belongs to both b−(α) and b−(α′). This implies
that there is a node that is both below the node denoted by X1

11 and below Y 1
11.

But since X1
11 ∼ Y 1

11, this implies that X=Y is entailed by Φ′, and thus α = α′.

The encoding can be lifted to segments with arbitrary many holes, but makes
the picture even more complex but does not require any new ideas.

57

5 Expressiveness of Beta Reduction Constraints

@
λv
a
r

@
λv
a
r

@
λv
a
r

@
λ

@
v
a
r

@
λv
a
r

λv
a
r

@
λ

@
v
a
r

@
λv
a
r

@
λv
a
r λv
a
r

@
λ

@
v
a
r

@
λv
a
r

@
λv
a
r

@
λv
a
r

λv
a
r

@
λ

@
λv
a
r

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

@
λ

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

@
λv
a
r

@
λv
a
r

@
λ@

λ

@
v
a
r

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

λv
a
r

@
λv
a
r

@
λv
a
r

@
λv
a
r

@
λv
a
r

@
λv
a
r

@
λ

@
v
a
r

@
λv
a
r

λv
a
r

@
λ

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

@
λ

@
λv
a
r

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

@
λ

@
λv
a
r

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

@
λ

@
λv
a
r

@
v
a
r

@
λv
a
r

λv
a
r

@
λv
a
r

@
λv
a
r

β

β
β

β
β

β

β

β
β

β
β

β

ββ

β
β

β
β

β

β

∼

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1
0

X
1
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
8

Y
9

Y
1
0

XX
′

YY
′

X
11
1

Y
11
1

F
igu

re
5.5:

E
n
co

d
in

g
of
X
/X

′
∼
Y
/Y

′

58

6 Underspecified Beta Reduction

In this chapter, we argue that beta reduction constraints are the basis for a proper
formulation of underspecified beta reduction. This formulation was not possible
before and has important applications in computational linguistics.

We already saw the idea of underspecified beta reduction in Figure 1.4 on
page 15. Here we first explain in which sense we want to perform underspecified
beta reduction. We then present an algorithm, that is parametrized with another
procedure to solve beta reduction constraints. The solver in [Bodirsky et al., 2001a]
for group parallelism is a candidate for such a procedure. We improve this solver
by specifying propagation rules, that use the special form of the group parallelism
constraints that encode a beta reduction literal. Finally, we will illustrate the
power of the procedures for underspecified beta reduction with two examples from
semantic underspecification.

Beta reduction constraints only describe a single beta reduction step. In prac-
tice, however, we are interested in describing the results of several beta reduction
steps. For instance in the application of underspecified semantics of natural lan-
guage, we can assume simply typed lambda structures, and thus on every model
of an underspecified description, every sequence of beta-reduction steps must ter-
minate. In this case we would like to describe the λ-term after performing all beta
reduction steps that are possible.

We are now interested in describing the results after performing as many beta
reduction steps as possible. The general idea is the same as in Chapter 5 on page 47:
We do not describe the set of λ-structures that we are interested in directly by a
constraint, but as submodels of the solutions of a constraint. This means, if we
syntactically find a redex redexn

X0,X1
(C,B,A) in a constraint Φ we add a β-reduction

constraint (C,B,A) → (C ′, B′, A′
1, . . . , A

′
n), where C ′, B′, A′

1, . . . , A
′
n are segment

terms with new variables. The λ-structures that we are interested in can now be
found below r(C ′).

But now it will be difficult to add another beta reduction constraint, since we
do not know the position of the other redexes in the reduct. Thus, we have to

59

6 Underspecified Beta Reduction

@
lam
∧

@
var peter

@
var marc

lam

@
love var

@
AWoman lam

Z0

Z1

Figure 6.1: ”Peter and Marc love a woman.”

make information explicit in order to describe the next beta reduct. This is where
theorem 2 on page 43 comes into play: by the encoding of beta reduction constraints
into group parallelism we can make use of the solvers for group parallelism.

So this chapter is organized as follows: First, we describe the main procedure of
underspecified beta reduction. This procedure uses the solution procedure for par-
allelism developed in [Erk and Niehren, 2000], that was was extended in [Bodirsky
et al., 2001a] to deal with group parallelism. On the one hand, the procedure is
sound and complete, but on the other hand it disambiguates a lot, and we want to
avoid disambiguations. In Section 6.5, we present an alternative procedure. This
procedure never disambiguates, but it cannot solve all the cases that the other
solver can.

We will go through a nontrivial example to show how the complete procedure
works and we will then demonstrate with another example, how the extended solver
avoids disambiguation.

6.1 A Procedure for Underspecified Beta

Reduction

In this section we present the procedure usb that for a given constraint φ con-
structs a CLLS description of a sequence of underspecified β-reduction steps. The
procedure uses another procedure solve for solving β-reduction constraints. In the
following sections we will then discuss possible candidates for solve.

The algorithm usb is shown in Figure 6.2. It starts with a constraint ϕ and
a variable X which denotes the root of the current λ-term to be reduced. The
procedure then selects an syntactic redex below X and adds a description of its
reduct at a new position. Then the solve procedure is applied to resolve the β-
reduction constraint. It returns a set of constraints because it might disambiguate;
an empty set indicates an inconsistency. Finally, usb is called recursively with the

60

6.2 Solving Group Parallelism Constraints

usb(ϕ, X, solve)
1 if there is a formula redex n

X0,X1
(X/X0 , B, A) in φ

2 then add (C,B,A)→β (C ′, B′, A′
1, . . . , A

′
n) to φ

3 where C ′, B′, A′
1, . . . , A

′
n are new segment terms with fresh variables

4 let {φ1, . . . , φm} = solve(φ)
5 return

⋃m
j=1 usb(φi, r(C

′))
6 else return {(φ,X)}

Figure 6.2: Underspecified β-reduction

new constraint and the root variable of the new λ-term.

If the process stops and the result contains (ψ, Y), the submodels of all the
solutions below the node denoted by Y are reducts of the solutions of φ. Conversely,
if we have a solution of φ, then the results of the reduction sequence are the
submodels below the node denoted by Rf . Thus, we found a description of the set
of all reducts as the set of all submodels found below a certain node.

It is easy to see that underspecified beta reduction of sec. 6.1 with the solver of
Sec. 6.2 always terminates on if we interprete CLLS over λ-structures that represent
simply typed lambda terms. Under the simplifying assumption that all redexes are
linear, we can show that it takes time O(kn3) to perform k steps of underspecified
β-reduction on a constraint with n variables. This is feasible for large k as long as
n < 50, which should be sufficient for most reasonable sentences.

6.2 Solving Group Parallelism Constraints

We now present a sound and complete semi-decision procedure for CLLS with
group parallelism, which solves β-reduction constraints because of Theorem 2 on
page 43. This section follows the presentation in [Bodirsky et al., 2001a]. We will
then illustrate the proceeding of the procedure by an example in Section 6.4.

The procedure is obtained by extending an existing semi-decision procedure for
CLLS [Erk et al., 2001] that is based on saturation. A constraint is freely identified
with the set of its literals. Starting with a set of literals, more literals are added
according to some saturation rules. Our saturation rules are implications of the
form

ϕ0 → ∨
n
i=1ϕi for some n ≥ 1

61

6 Underspecified Beta Reduction

Solving dominance constraints: rule system D

(D.clash.ineq) X=Y ∧ X 6=Y → false

(D.clash.disj) X⊥X → false

(D.dom.refl) ϕ → X⊳∗X where X ∈ V(ϕ)

(D.dom.trans) X⊳∗Y ∧ Y ⊳∗Z → X⊳∗Z

(D.eq.decom) X:f(X) ∧ Y :f(Y) ∧ X=Y → ∧n
i=1

Xi=Yi

(D.lab.ineq) X:f(. . .) ∧ Y :g(. . .) → X 6=Y where f 6= g

(D.lab.disj) X:f(. . . Xi, . . . , Xj , . . .) → Xi⊥Xj for 1 ≤ i < j ≤ n

(D.prop.disj) X⊥Y ∧ X⊳∗X′ ∧ Y ⊳∗Y ′ → Y ′⊥X′

(D.lab.dom) X:f(. . . , Y, . . .) → X⊳+Y

(D.distr.notDisj) X⊳∗Z ∧ Y ⊳∗Z → X⊳∗Y ∨ Y ⊳∗X

(D.distr.child) X⊳∗Y ∧ X:f(X) → Y =X ∨
∨n

i=1
Xi⊳

∗Y

Figure 6.3: Saturation rules for dominance constraints

To write down rules more compactly, we will also use arbitrary positive existential
formulas on the left hand side. These can be eliminated in a preprocessing step:
∃-quantified variables can be replaced by fresh variables, and disjunction translates
to several rules.

A saturation rule of the above form is applicable to a constraint ϕ if ϕ0 is
contained in ϕ, but none of the ϕi is. A rule ϕ → Φ is sound if ϕ |= Φ. Apart
from that, we have saturation rules of the form ϕ0 → ∃Xϕ1, which introduce fresh
variables. Such a rule is applicable to ϕ if ϕ0 is in ϕ, but ϕ1, modulo renaming of
X, is not. Given a set S of saturation rules, we call a constraint saturated (under
S) if no further rule of S applies to it. We say that a constraint is in S-solved form
if it is saturated under S and clash-free (i.e. it does not contain false).

Figure 6.3 contains a set of saturation rules for dealing with dominance con-
straints (CLLS constraints of Section 3.1 without binding and parallelism). A
proper treatment of dominance constraints with set operators can be found in
[Duchier and Niehren, 2000, Erk et al., 2001].

The rule system B in Figure 6.4 on the next page is all we need for binding,
if there are no parallelism constraints. The rules state that λ is a function, that
binders dominate their bound variables, that binders go from var-labeled nodes to
nodes labeled lam, ∃ or ∀, and that a λ−1 literal specifies all variables bound by a
certain lambda binder.

To deal with parallelism, we first introduce some formulas that describe mem-
bership in (proper) segments and groups. Note that the terms b(A), b−(A),

62

6.2 Solving Group Parallelism Constraints

Properties of λ binding: rule system B

(B.func) λ(X)=Y ∧ λ(U)=V ∧ X=U → Y =V

(B.total) X:var → ∃Z(λ(X)=Z)

(B.dom) λ(X)=Y → Y ⊳∗X

(B.var) λ(X)=Y → X:var

(B.lam) λ(X)=Y → ∃Z (Y :lam(Z) ∨ Y :∃(Z) ∨ Y :∀(Z))

(B.inv) λ−1(X)={X1, . . . , Xn} →
∧n

i=1
λ(Xi)=X

(B.all) λ−1(X)={X1, . . . , Xn} ∧ λ(Y)=X →
∨n

i=1
Y =Xi

Figure 6.4: Treatment of binding in the absence of parallelism

b(A1, . . . , Am) are not given any formal meaning, even though it would be cor-
rect to interpret them as the corresponding sets of nodes.

We also want to be able to speak about correspondence functions. So we extend
our constraint language by auxiliary correspondence literals

ϕ ::= . . . | co(A,B)(X)=Y

where A and B are segment terms for segments with the same number of holes.
Such a literal states that A and B are parallel within some group parallelism,
that X∈b(A) and Y ∈b(B), and that X corresponds to Y with respect to the
correspondence function for A and B. We introduce two more formulas. Let
C = (A1, . . . , An), D = (B1, . . . , Bn), and 1 ≤ k ≤ n.

co−(A,B)(X)=Y =df co(A,B)(X)=Y ∧ X∈b−(A)
co−k (C,D)(X)=Y =df C∼D ∧ co−(Ak, Bk)(X)=Y

The second lets us talk about correspondence functions for a group paral-
lelism, picking out the k-th correspondence function. In that respect, co−k (C,D)
matches the ck of Definition 9 (except that co−k (C,D)(X)=Y additionally demands
X∈b−(Ak) for convenience).

X∈b(A) =df X0⊳
∗X ∧

∧n
i=1X(⊳∗∪⊥)Xi

X∈b−(A) =df X∈b(A) ∧
∧n

i=1X 6=Xi

X 6∈b−(A) =df X(⊳+∪⊥)X0 ∨
∨n

i=1Xi⊳
∗X

X∈b(A1, . . . , Am) =df

∨m
i=1X∈b(Ai)

X∈b−(A1, . . . , Am) =df

∨m
i=1X∈b−(Ai)

Figure 6.5: Abbreviations for constraints describing membership in segments and
groups

63

6 Underspecified Beta Reduction

The rules for handling parallelism are given in Figure 6.7. The rules (P.init)
and (P.new) introduce correspondence literals; between them, they state that each
node in a parallel segment needs to have a correspondent. (P.init) states that in a
correspondence function, root corresponds to root, and hole to hole, while (P.new)
is responsible for all other nodes. (P.copy.dom) and (P.copy.lab) between them as-
certain the structural isomorphism that Definition 6 demands for a correspondence
function.

Figure 6.6 shows saturation rules for the interaction of group parallelism and
lambda binding. The first four rule schemata directly express the conditions of
Definition 9. The rules (L.distr.gr.1) and (L.distr.gr.2) decide, loosely speaking,
whether variables occurring in a binding literal belong to some segment of a group or
not. This is necessary because we need to know which of the schemata (L.same.seg),
(L.diff.seg), (L.outside) and (L.hang) is applicable. This is expressed by using the
following formula, where C = (A1, . . . , An):

distrC(U) =df

n
∧

i=1

(U∈b−(Ai) ∨ U 6∈b−(Ai)

Finally, (L.inverse) deals with the copying of λ−1 literals. This is necessary if we
want to perform a second beta reduction step, where we need the λ−1 information
again. The schema uses two more formulas. The first one is simple:

λ(X) 6=Y =df ∃Z(λ(X)=Z ∧ Z 6=Y)

The second formula collects, for a finite set S1 of variables, all correspondents
with respect to C ∼ D. Let S1, S2 stand for finite sets of variables, and let C =
A1 . . . , An.

co−(C,D)(S1)=S2 =df

∧n
i=1

∧

X∈S1
(X 6∈b−(Ai) ∨

∨

Y ∈S2
co−i (C,D)(X)=Y)

∧
∧

Y ∈S2

∨

X∈S1

∨n
i=1 co−i (C,D)(X)=Y

So (L.inverse) collects all correspondents of all variables bound by X; for each
of these correspondents it must be known whether it is bound by Y or definitely
bound by something else. Then we can determine λ−1(Y). The soundness of this
rule is not obvious: is it really sufficient to look among the correspondents of
λ−1(X) to compute λ−1(Y)? The following proposition shows that it is.

Proposition 2 (Inverse lambda binding). Suppose (α1, . . . , αn) ∼ (α′
1, . . . ,

α′
n) holds with correspondence functions c1, . . . , cn. Then for all 1 ≤ k ≤ n and all
π ∈ b−(αk),

λ−1(ck(π)) ⊆
n

⋃

i=1

{ci(π
′) | π′ ∈ λ−1(π) ∩ b−(αi)}

64

6.3 Dealing with Correspondence Functions

(L.same.seg) λ(U1)=U2 ∧
∧

2
i=1

co−
k

(C, D)(Ui)=Vi → λ(V1)=V2

(L.diff.seg) λ(U1)=U2 ∧
∧2

i=1
co−

ki
(C, D)(Ui)=Vi ∧ U2 /∈b−(Ak1

) → λ(V1)=V2

(L.outside) λ(U)=Y ∧ co−
k

(C, D)(U)=V ∧ Y /∈b−(C) → λ(V)=Y

(L.hang) λ(U1)=U2 ∧ C∼D ∧ U2∈b−(C) → U1∈b−(C)

(L.distr.1) λ(U1)=U2 ∧ C∼D ∧ U1∈b−(C) → distr
C

(U2)

(L.distr.2) λ(U1)=U2 ∧ C∼D ∧ U2 ∈ b−(C) → distr
C

(U1)

(L.equal) λ(X1)=X2 ∧
∧2

i=1
Xi=Yi → λ(Y1)=Y2

(L.inverse) λ−1(X)=S1 ∧ co−
k

(C, D)(X)=Y ∧ co−(C, D)(S1)=S2 ∪ S3 ∧
∧

V ∈S2
λ(V)=Y ∧

∧

V ∈S3
λ(V)6=Y → λ−1(Y)=S2

Figure 6.6: Lambda binding rules for group parallelism

Proof. Let ω ∈ λ−1(ck(π)). The ”no hanging binders” condition (hang) of Defini-
tion 9 is critical here: it enforces ω ∈

⋃n
i=1 b−(α′

i). If ω ∈ b−(α′
k), then there exists

some π′ ∈ b−(αk) with ck(π
′) = ω. π′ is var-labeled by Definition 6 and has a binder

since λ is total. So we must have λ(ck(π
′)) = ck(λ(π′)) by condition (same.seg) of

Definition 9. Now λ(ck(π
′)) = ck(π) and ck is a bijection, so π′ ∈ λ−1(π). If, on

the other hand, ω 6∈ b−(α′
k) but ω ∈ b−(α′

j), there is again a π′ with cj(π
′) = ω,

and λ(cj(π
′)) = ck(λ(π′)) by condition (diff.seg), so again π′ ∈ λ−1(π).

6.3 Dealing with Correspondence Functions

In the last section we have introduced correspondence literals co(A,B)(U)=V
as auxiliary literals to record correspondence. Actually, correspondence liter-
als are just an abbreviation; what we really use are path equalities. With
A = X0/X1, . . . , Xn and B = Y0/Y1, . . . , Yn, a path equality p(X0

X
Y0

Y
) states, in-

formally speaking, that X below X0 corresponds to Y below Y0. More precisely,
the path equality relation p(.

.
.
.
) on a tree θ is the greatest relation on quadruples of

nodes such that the following holds: p(π1

π2

π3

π4
) is true iff there exists a path π such

that π2 = π1π and π4 = π3π, and for each π′⊳+π, Lθ(π1π
′) = Lθ(π3π

′). This way,

co(Ai, Bi)(U)=V stands for C∼D ∧ p(X0

U
Y0

V
) ∧ U∈b(A)

for 1 ≤ i ≤ |C|, and Ai = X0/X1, . . . , Xn and Bi = Y0/Y1, . . . , Yn.

The main idea about using path equalities is that, as they possess a semantics
of their own, they have properties that we can compute with, irrespective of which
correspondence function the path equalities in question come from. This is ex-
ploited by the saturation rule schemata (P.path. . .), (P.trans. . .), and (P.diff. . .).

65

6 Underspecified Beta Reduction

(P.symm) C ∼ D → D ∼ C

(P.init) C ∼ D → seg(Ai) ∧ co(Ai, Bi)(X
j
i)=Y j

i where 1 ≤ i ≤ n, Ai = X0
i/X1

i , . . . , X
mi

i ,
Bi = X0

i/Y 1
i , . . . , Y

mi

i , and 0 ≤ j ≤ mi

(P.new) C ∼ D ∧ U ∈ b(Ai) → ∃V co(Ai, Bi)(U)=V where V fresh, 1 ≤ i ≤ n

(P.copy.lab)
∧m

i=0
co(A, B)(Xi)=Yi ∧ X0:f(X1, . . . , Xm) ∧ X0∈b−(A) →

Y0:f(Y1, . . . , Ym)

(P.copy.dom) U1 R U2 ∧
∧2

i=1
co(A, B)(Ui)=Vi → V1 R V2

(P.distr.eq) ϕ → X=Y ∨ X 6=Y for X, Y ∈ V(ϕ)

Figure 6.7: Saturation rules, where C = A1, . . . , An and D = B1, . . . , Bn

These schemata ensure the correct interaction of correspondence functions. See
[Erk and Niehren, 2000] for a comprehensive treatment of this topic.

The rules we have presented form a sound and complete semi-decision procedure
for group parallelism constraints.

Theorem 5. There exists a saturation procedure GP which encompasses all in-
stances of the rule schemata in Figure 6.3, 6.7, and 6.6, such that each rule of GP
is sound, and each GP-solved form of a constraint ϕ is satisfiable (soundness),
and for every solution (τ, σ) of ϕ, GP computes a GP-solved form of ϕ of which
(τ, σ) is a solution (completeness).

Proving that GP-solved forms are satisfiable can be done by constructing a
model and variable assignment explicitly. One then has to check that all literals
are indeed satisfied, which requires a tedious case distinction. Proving completeness
is nontrivial as well, but can be done along the lines of [Erk and Niehren, 2000].
The proof is largely independent of the particularities of the rule system we employ.

6.4 The Procedure in Action

We illustrate the procedure of the previous section by solving the constraint in
Figure 6.8. It contains a non-linear lambda redex at (C,B,A) (similarly to Figure
6.1) and a lambda binder at Y1 which can either belong to the context C or argu-
ment A. The group parallelism constraint (C,B,A,A)∼(C ′, B′, A′, A′′) describes a
beta-reduction step for the redex (C,B,A).

A record of the solving steps is given in Figure 6.9 and 6.10. We only comment
on the main steps. In step (4), we have Y1⊳

∗Z ∧X0⊳
∗Z, and as trees do not branch

upwards, one of Y1, X0 must dominate the other. This step effectively guesses
whether Y1, Y2 are in C or in A. With choice (5c), we make two copies of Y1 and

66

6.5 Avoiding Disambiguation

(C,B,A,A) ∼ (C ′, B′, A′, A′′)
with C = X/X0 ,
C ′ = X ′/X ′

0 ,
B = Xt/X1, X2 ,
B′ = X ′

0/X
′
1, X

′
2 ,

A = Xa/,
A′ = X ′

1/, and A′′ = X ′
2/.

λ−1(Xℓ) = {X1, X2}, λ
−1(Y1) = {Z}.

@

lam

f

var var
var

lam

X

X0

Xℓ

X1 X2

Xa

Z

Y1

Y2

Figure 6.8: A group parallelism constraint encoding a non-linear beta reduction
step

Y2 each. This is because A is parallel both to A′ and A′′: because Xℓ binds two
variables, the argument is copied twice. On the other hand, with (7b) Y1 and Y2

are only copied once: they belong to the context C, which is parallel only to C ′.

In Figure 6.10, we continue case (5c) of Figure 6.9, applying the lambda binding
rules. All steps from (22) on prepare the determination of λ−1(Y ′

1) and λ−1(Y ′′
1) in

(25) and (26). We know λ−1(Y1)={Z}. Steps (22) and (23) determine S2 ∪ S3 to
be {Y ′

1 , Y
′′
1 } for both (25) and (26). After (24) we know λ(Z ′) 6=Y ′′

1 and λ(Z ′′) 6=Y ′
1 ,

so we have all we need to infer the correct λ−1 information in the last steps.

6.5 Avoiding Disambiguation

The solver of the last sections makes extensive use of distribution rules. This means
that the algorithm enumerates lots of different cases. Since we are interested in
single and compact representations, we want to avoid this. For instance in the
example of Figure 6.13 on page 70 we did not have to disambiguate the position of
the negation before beta reducing the constraint.

In this section we will show how disambiguation can be avoided in many cases
by specifying additional propagation rules. They do not work for general group
parallelism constraints, but make sense for beta reduction constraints, since the
group parallelism that is used to encode the beta reduction relation is of a very
special form.

Finally we will go through the example of Figure 6.13 on page 70 again and will
see that the description of the reducts can be derived without distribution rules.

The idea to gain stronger propagation is to use underspecified correspondence

67

6 Underspecified Beta Reduction

(1) Y1 6=X0 (D.lab.ineq)
(2) Y1⊳

+Y2, X0⊳
+Xa (D.lab.dom)

(3) Y1⊳
∗Z,X0⊳

∗Z (D.dom.trans)
(4) X0⊳

∗Y1 ∨ Y1⊳
∗X0 (D.distr.notDisj)

(4a) X0⊳
∗Y1:

(5) X0=Y1 ∨Xℓ⊳
∗Y1 ∨Xa⊳

∗Y1

(D.distr.child)

(4b) Y1⊳
∗X0:

(7) Y1=X0 ∨ Y2⊳
∗X0

(D.distr.child)

(5a) X0=Y1: (5b) Xℓ⊳
∗Y1:

. . . both lead to false
(7a) Y1=X0 :
(8) false (D.clash.ineq)

(5c) Xa⊳
∗Y1: (7b) Y2⊳

∗X0:
(9) co(A, A′)(Xa)=X′

1 (P.init)
(10) co(A, A′)(Y1)=Y ′

1 , (P.new)
co(A, A′)(Y2)=Y ′

2 ,
co(A, A′)(Z)=Z′

(11) X′

1⊳∗Y ′

1 , Y ′

2⊳∗Z′ (P.copy.dom)
(12) Y ′

1 :lam(Y ′

2) (P.copy.lab)
(13) co(A, A′′)(Xa)=X′

2 (P.init)
(14) co(A, A′′)(Y1)=Y ′′

1 , (P.new)
co(A, A′′)(Y2)=Y ′′

2 ,
co(A, A′′)(Z)=Z′′

(15) X′

2⊳∗Y ′′

1 , Y ′′

2 ⊳∗Z′′ (P.copy.dom)
(16) Y ′′

1 :lam(Y ′′

2) (P.copy.lab)

(17) co(C, C′)(X)=X′, (P.init)
co(C, C′)(X0)=X′

0

(18) co(C, C′)(Y1)=Y ′

1 , (P.new)
co(C, C′)(Y2)=Y ′

2

(19) X′⊳∗Y ′

1 , Y ′

2⊳∗X′

0 (P.copy.dom)
(20) Y ′

1 :lam(Y ′

2) (P.copy.lab)

Figure 6.9: Solving the group parallelism constraint in Figure 6.8

literals

co({(C1, D1), . . . , (Cn, Dn)})(X)=Y.

Here X is a variable that occurs in one of the tree segments denoted by C1, . . . , Cn,
but we do not know to which one. For instance if we look at the situation in
Figure 6.12, we do not know whether Z0 belongs to the context or the argument
of the redex. But it must belong to one of them, so in any case there will be a
corresponding node in the reducing tree. Thus it makes sense to have a variable Y
that denotes the corresponding node.

Formally, the underspecified correspondence literal is satisfied if the tree seg-
ments denoted by the C’s and by the D’s do not overlap properly, and there
is an i for which co(Ci, Di)(X) = Y is satisfied. In Figure 6.11 on the facing
page and in the following text, we write betan for the constraint (C,B,A) →β

(C ′, B′, A′
1, . . . , A

′
n) and corr for co({(C,C ′), (B,B′), (A,A′

i)}), for any 1 ≤ i ≤ n.

We have to remark several things at this point: The underspecified propagation
rules do only apply if n, the number of occurrences of the vaiable bound at the
redex, is zero. We will discuss the problems occuring with disappearing arguments
in Chapter 7 on page 73.

68

6.5 Avoiding Disambiguation

Continuing (5c)
(21) λ(Z ′) = Y ′

1 , λ(Z ′′) = Y ′′
1 (L.same.seg)

(22) Z 6∈b−(B) ∨ Z ∈ b−(B) (L.distr.2)
(22a) Z 6∈b−(B)
(23) Z 6∈b−(C) ∨ Z ∈ b−(C) (L.distr.2)

(22b) Z 6∈b−(B)
. . . false

(23a) Z 6∈b−(C)
(24) Y ′

1 6=Y
′′
1 ∨ Y ′

1=Y
′′
1 (P.distr.eq)

(23b) Z ∈ b−(C)
. . . false

(24a) Y ′
1 6=Y

′′
1

(25) λ−1(Z ′′) 6= Y ′
1

(26) λ−1(Y ′′
1) = {Z ′} (L.inverse)

(27) λ−1(Y ′′
1) = {Z ′′} (L.inverse)

(24b) Y ′
1=Y

′′
1

. . . false

Figure 6.10: Inverse Binding in case (5c)

Note also that a inverse binding literal in the reduct can only be derived for a
var-labeled node Z0, if we have a linear redex, i.e. if the argument is not copied
more than once. The linear case is especially nice: If we compare the reducing tree
and the reduct, only the @- and lam-labeled nodes of the redex disappear, and no
new nodes are created. Thus every lam-labeled node still binds the same number
of variables. If we have to perform nonlinear beta reduction, we still often succed
with propagation rules in 6.6 on page 65. But in general, we do need distribution
rules and the more involved binding rules of the last section to derive all inverse
binding literals.

We explain the other rules in Figure 6.11 by beta reducing the (linear) exam-
ple 1.4 on page 15 of the introduction.

(UB.solve) (C, B, A)
β
→ (C′, B′, A′

1
, . . . , A′

n) → redexX0,X1
(C, B, A) ∧ (C, B, A, . . . , A) ∼

(C′, B′, A′

1
, . . . , A′

n)

(UB.Var) betan ∧ r(C)⊳∗Z ∧ redexn
X0,X1

(C, B, A) ∧ Z 6=X1 → ∃Z′.corr(Z)=Z′ 1 ≤ i ≤ n

(UB.Copy.Label) betan ∧ Z0:f(Z1, . . . , Zℓ) ∧
∧ℓ

k=0
corr(Zk)=Z′

k
∧ redexn

X0,X1
(C, B, A) ∧ Z0 6=X0 ∧

∧n
k=1 Z0 6=hs(B).k → Z′

0:f(Z′

1, . . . , Z′

ℓ
) 1 ≤ i ≤ n

(UB.Copy.Dom) betan ∧
∧

2
k=1

corr(Zk)=Z′

k
∧ Z1⊳∗Z2 → Z′

1
⊳∗Z′

2
1 ≤ i ≤ n

(UB.Copy.LambdaInv) betan∧λ−1(Z0)={Z1, . . . , Zm}∧redex1
X0,X1

(C, B, A)∧
∧m

k=1 corr(Zk)=Z′

k
∧

∧m
k=1 Zk 6=X0∧

∧n
j=1

∧m
k=1 Zk 6=hs(B).j → λ−1(Z′

0)={Z′

1, . . . , Z′
m}

Figure 6.11: The new propagation rules. See Section 6.5 on page 67 for an expla-
nation of the abbreviations.

69

6 Underspecified Beta Reduction

@
lam

var var

f

R

X

R′

X ′

Y

Z0

Z1

X1 X2

X ′
1 X ′

2

Y ′ Y ′′

X0 X ′
0

Figure 6.12: Underspecified beta redex. The position of Z0 and Z1 can either be
in the context or the argument of the redex at X0.

6.6 An Example

Let us again consider Figure 6.13 we aleady saw in the introduction.

We want to explain the new rules by going through the first reduction step
in Figure 6.13. The β-reduction constraint that belongs to this reduction is
(C,B,A)→β (C ′, B′, A′

1) with C = R1/Y0, B = Y1/Y3, A = Y4/, and C ′ = R2/Z0,
B′ = Z0/Z3, A

′
1 = Z3/. Now the saturation algorithm proceeds as follows:

Copying variables. Using (UB.Var), we check for each variable dominated by
R1 if it has a correspondent with respect to corr. Consider for instance Y6; it has
a correspondent if it lies in one of b(C), b(B), b(A). Using the dominance rules
from [Erk et al., 2001] (which are themselves part of [Bodirsky et al., 2001a]),
we can infer Y6 6=Y1 because the two variables must bear different labels. Hence

@

lam

∀

→

@

stud var

@

var var

lam

@

payatt var

¬

R1

Y0

Y3

Y6

Y7Y1

Y2

Y4

Y5

Y8

∀

→

@

stud var

@

lam

@

payatt var

var

¬

R2

Z8

Z0

Z3

Z5

Z6

Z7

Z9

∀

→

@

stud var
@

payatt var

¬

R3

Figure 6.13: Underspecified β-reduction steps for ‘Every student did not pay at-
tention’

70

6.6 An Example

(UB.Var) applies, and we can introduce a fresh variable Z6 with corr(Y6)=Z6. We
can introduce a fresh variable Z7 and a literal corr(Y7)=Z7 similarly.

Copying labeling literals. The rule (UB.Copy.Label) can copy labeling liter-
als. Consider Y6:¬(Y7). The first two conditions in the rule are clearly satisfied.
The third and fourth require us to verify that the labeling literal is neither the
application labeling for Y0 nor the var labeling for Y3. We have already inferred
Y0 6=Y6 above; Y3 6=Y6 can be derived by a similar argument. Hence the rule applies,
and we can add the literal Z6:¬(Z7).

Copying dominance literals. The rule (UB.copy.dom) serves to copy dom-
inance literals, without requiring any additional inequality tests. In our case,
(UB.copy.dom) adds (among others) R2⊳

∗Z6 and Z7⊳
∗Z5.

Copying dominance literals. To be able to continue with underspecified beta
reduction, there has to be a redex in the reduct. In fact, in our example we
can derive another redex. The most interesting part is the inverse binding literal.
With the above rules, it is easy to derive that there is a variable Z3 below R2 that
is lam-labeled corresponding to Y4, and a var-labeled variable Z9 corresponding
to Y8, which is the only bound variable of Y4. Therefore we can apply the rule
(UB.copy.lambdaInv) and get λ−1(Z3) = Z9.

71

6 Underspecified Beta Reduction

72

7 Conclusion and Outlook

In this thesis we introduced beta reduction constraints. We showed how to process
them in two steps : first, we expressed beta reduction constraints with CLLS
and group parallelism. Then we extended an existing solver for parallelism in
CLLS to also deal with group parallelism, and wrote propagation rules that avoid
disambiguation in many cases.

Next, we expressed non overlapping parallelism constraints with beta reduction
constraints. Thus it is likely that parallelism is not an overhead for the treatment
of beta reduction constraints.

This work emphasizes two points: First, the thesis shows the proper treatment
of binding when working with expressive constraints such as group parallelism
and beta reduction constraints. At first sight it is not clear at all why the binding
properties of parallelism are appropriate. We show in this thesis that the properties
presented here model exactly global variables, local variables and elegantly avoid
capturing. The no-hanging-binders property ensures that inverse lambda binding
constraints can easily be inferred with constraint solvers. For the encodings of beta
reduction into group parallelism constraints and of parallelism into beta reduction
constraints it was the most difficult part to model binding correctly.

The second point is the idea to describe sets of lambda terms with constraint
descriptions of larger lambda structures. In these larger lambda structures, we
only consider the submodels starting at a specified position. This was the central
idea of the definition of expressiveness of constraint languages, and this is exactly
what we do when performing underspecified beta reduction.

Future Work: There are several interesting questions for future work. We
would like to know whether not only parallelism, but also group parallelism is ex-
pressible with beta reduction constraints. This seems very unlikely, since group
parallelism constraints in contrast to beta reduction constraints do not impose any
restrictions about the relative positions of the group segments. This difference be-
comes meaningless, if we are allowed to use disjunction in our constraint language.
But still then, the task seems not easy.

73

7 Conclusion and Outlook

@

@
forall lam

@

var

peter

lam

@
@

greet var

marc

X1

X5

X2

X4

X3

X6

X7

X8

X9

Figure 7.1: This example does not satisfy X2/X3 ∼ X7/X8

It might also be that there is a nicer formulation of what our encodings really
can express, for instance if we look at the first order theories of parallelism and
beta reduction constraints, or if it is possible in the constraint language to also talk
about trees and subtrees and not only about nodes.

Group Parallelism is an interesting new concept by its own. Since it is much
more flexible concerning binding in λ-structures, there are potential applications
in linguistics. Consider for instance the elliptic construction

John greeted everyone that Bill did.

Suppose we want to analyse this as in Figure 7.1. Unfortunately, the above con-
straint is unsatisfiable. Binding property (outside) of the parallelism relation re-
quires that the nodes denoted by X4 and X9 are bound by the same binder 1.

In contrast, group parallelism allows to express the intended structural similar-
ity without violating any binding restrictions by the constraint:

(X1/X2 , X2/X3) ∼ (X5/X6 , X7/X8)

But we have not studied how group parallelisms can be derived automatically
from natural language. Moreover, it is not even clear whether group parallelism
is expressive enough to cover all the phenomena occurring in complicated elliptic
sentences.

Concerning underspecified beta reduction, we have important questions on both
the practical and the theoretical side.

1After β-reduction, these two var-labeled nodes will stand for the same variables. So [Egg et al.,
2001] suggest to introduce a notion of binding equivalence. This might still be a useful notion
when deriving parallelism constraints from natural language input. But anyway, we cannot
use standard parallelism constraints to write down the structural identity that holds in the
semantic analysis shown in Figure 7.1.

74

@

lam

var

g

@

lam

f

var

fβR2R1

@

lam

var

g

@

lam

f

var

R1 R2

g

@

lam

var

g

@

lam

f

var

β R1 R2

Figure 7.2: Underspecified beta reduction (without distribution rules) is not con-
fluent: There are two different normal forms.

On the theoretical side, we want to investigate the formal properties of under-
specified beta reduction. Beta reduction for the classical λ-calculus for instance
is confluent: Let →∗

β denote the transitive closure of →β. Then the property of
confluence says that for any λ-terms B1 ←

∗
β A→

∗
β B2 there exists a λ-term C such

that B1 →
∗
β C ←

∗
β B2.

The notion of confluence for underspecified beta reduction remains to be de-
fined. It is not straightforward, because one has to consider that we are only
interested in submodels of solutions at the node starting at a certain solution.
There is also the problem that underspecified beta reduction in general might use
distribution rules and therefore works on sets of constraints.

For any underspecified beta reduction that does not use distribution rules it is
very unlikely that confluence holds because of the example in Figure 7.2. There
the two syntactical redexes in the constraint might denote the same nodes. If they
denote different nodes, it does matter which redex we reduce first. But we cannot
perform a second reduction, because they might have been equal and there is no
redex in the first reduct any more. A similar argument holds for nonlinear beta
reduction. If an argument is copied twice, and there is a redex for which it is not

75

7 Conclusion and Outlook

clear whether it belongs to the argument or not, the two copies of this redex might
be identical or not. In the case of disappearing arguments, i.e. the binder in the
redex does not bind any variable at all, the case is even worse: Every redex that
could be in the argument must not be further reduced.

If we use the full solver for group parallelism, it is intuitively clear that some
form of confluence holds, since the procedure might use distribution rules until the
relations between all variables are determined. Such constraints directly correspond
to certain minimal solutions, and then underspecified beta reduction corresponds to
the known beta reduction relation with all its properties. However, this argument
still has to be worked out formally.

Another interesting topic is to look for fragments of CLLS-constraints, where
underspecified beta reduction is well behaved. The most promising candidate is
the fragment of normal, linear beta reduction constraints. Here we do not allow
that redexes that are syntactically present denote the same nodes, and we require
every inverse binding literal to be a singleton. We conjecture that there is a solution
procedure such that first, the underspecified beta reduction is complete in the sense
that the redexes that can be found syntactically in the original constraint will be
beta reduced. Second, confluence (in a way still to be defined) holds.

On the practical side we would like to mention two particularly interesting top-
ics. If there are non-linear redexes, the present algorithm can take exponential
time because subterms are duplicated. The same problem is known in ordinary
λ-calculus; an interesting question to pursue is whether the sharing techniques de-
veloped there [Lamping, 1990] carry over to underspecified beta reduction. This
is very promising, since CLLS can express structural similarity. Thus underspec-
ified beta reduction can concentrate on beta reducing one argument. We use the
similarity constraint to describe that all the other occurrences of the argument are
simultaneously reduced. Therefore we avoid the exponential blow up, and also save
underspecified reduction steps. This might also be the key to get an underspec-
ified beta reduction procedure (in which every step describes simultaneous beta
reductions at different positions) that is confluent.

Finally, we would like to apply constraint programming technology to imple-
ment underspecified beta reduction. Implementing underspecified semantic pro-
cessing with constraint programming approaches is very elegant for several rea-
sons. On the one hand we have a clear separation between the modeling and the
implementation language, and are therefore very flexible. Constraint systems are
modular in the sense that we can easily integrate different sources of information
each of which contributes some constraints. Constraint propagation models a bidi-
rectional flow between the various sources of information and eliminates spurious
readings.

76

One the other hand implementations are often very efficient. Dominance con-
straints for example can be implemented in a nice fashion using set constraints
[Duchier and Niehren, 2000], that are provided by a standard package of the Mozart
platform for constraint programming (for instance in [Mozart]). We would like to
have a similar flexible and efficient implementation for underspecified beta reduc-
tion.

77

7 Conclusion and Outlook

78

Bibliography

E. Althaus, D. Duchier, A. Koller, K. Mehlhorn, J. Niehren, and S. Thiel. An effi-
cient algorithm for the configuration problem of dominance graphs. In Proceed-
ings of the 12th ACM-SIAM Symposium on Discrete Algorithms, pages 815–824,
Washington, DC, 7–9Jan. 2001.

R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the
theory of finite trees. Journal of Logic, Language, and Information, 4:5–39, 1995.

H. P. Barendregt. The λ-calculus, its Syntax and Semantics. North Holland, 1984.

M. Bodirsky, K. Erk, A. Koller, and J. Niehren. Beta reduction constraints. In In-
ternational Conference on Rewriting Techniques and Applications, Lecture Notes
in Computer Science, Utrecht, The Netherlands, May 22–24 2001a. Springer-
Verlag, Berlin.

M. Bodirsky, K. Erk, A. Koller, and J. Niehren. Underspecified beta re-
duction. Technical report, Universität des Saarlandes, Programming Sys-
tems Lab, 2001b. Submitted. Version of January 2001 available at
http://www.ps.uni-sb.de/Papers/abstracts/usp-beta.html.

T. Cornell. Determining the consistency of partial descriptions of trees. In Pro-
ceedings of the 32nd ACL, pages 163–170, Las Cruces, New Mexico, 1994.

D. Duchier. Axiomatizing dependency parsing using set constraints. In Sixth
Meeting on Mathematics of Language, pages 115–126, Orlando, Florida, July
1999.

D. Duchier. Constraint programming for natural language processing. Lecture
Notes, European Summer School for Logic, Language and Computation (ESSLLI
2000), 2000.

D. Duchier and J. Niehren. Dominance constraints with set operators. In Proceed-
ings of the First International Conference on Computational Logic (CL2000),
LNCS. Springer, July 2000.

79

Bibliography

D. Duchier and S. Thater. Parsing with tree descriptions: a constraint-based
approach. In Sixth International Workshop on Natural Language Understanding
and Logic Programming (NLULP’99), pages 17–32, Las Cruces, New Mexico,
December 1999.

M. Egg, A. Koller, and J. Niehren. The constraint language for lambda structures.
Journal of Logic, Language, and Information, 2001. To appear.

M. Egg, J. Niehren, P. Ruhrberg, and F. Xu. Constraints over lambda-structures
in semantic underspecification. In Proceedings of the 17th International Confer-
ence on Computational Linguistics and 36th Annual Meeting of the Association
for Computational Linguistics (COLING/ACL’98), pages 353–359, Montreal,
Canada, August 1998.

K. Erk, A. Koller, and J. Niehren. Processing underspecified semantic representa-
tions in the constraint language for lambda structures. Journal of Language and
Computation, 2001. To appear.

K. Erk and J. Niehren. Parallelism constraints. In International Conference on
Rewriting Techniques and Applications, volume 1833 of Lecture Notes in Com-
puter Science, pages 110–126, Norwich, U.K., 2000. Springer-Verlag, Berlin.

L. T. F. Gamut. Logic, Language, and Meaning. University of Chicago Press,
Chicago and London, 1991.

P. Hirschbühler. VP deletion and across the board quantifier scope. In J. Puste-
jovsky and P. Sells, editors, North East Linguistic Society (NELS 12), Univ. of
Massachusetts, 1982.

G. P. Huet. An unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1:27–57, 1975.

A. Koller. Constraint languages for semantic underspecification. Diplom thesis,
Universität des Saarlandes, Saarbrücken, Germany, 1999. http://www.coli.

uni-sb.de/~koller/papers/da.html.

A. Koller, K. Mehlhorn, and J. Niehren. A polynomial-time fragment of dominance
constraints. In Proceedings of the 38th Annual Meeting of the Association of
Computational Linguistics, Hong Kong, 2000a.

A. Koller, J. Niehren, and K. Striegnitz. Relaxing underspecified semantic repre-
sentations for reinterpretation. Grammars, 3(2/3):217–241, 2000b. Special Issue
on MOL’99.

80

Bibliography

A. Koller, J. Niehren, and R. Treinen. Dominance constraints: Algorithms and
complexity. In Third International Conference on Logical Aspects of Computa-
tional Linguistics (LACL ’98), Grenoble, France, December 1998.

J. Lamping. An algorithm for optimal lambda calculus reduction. In ACM Sym-
posium on Principles of Programming Languages, 1990.

J. Lévy. Linear second order unification. In 7th International Conference on Rewrit-
ing Techniques and Applications, volume 1103 of LNCS, pages 332–346, 1996.

M. P. Marcus, D. Hindle, and M. M. Fleck. D-theory: Talking about talking about
trees. In Proceedings of the 21st ACL, pages 129–136, 1983.

R. Montague. Universal Grammar. In R. Thomason, editor, Formal Philosophy:
Selected Papers of Richard Montague, pages 222–246. Yale University Press, New
Haven and London, 1970.

R. Montague. The proper treatment of quantification in ordinary English. In
R. Thomason, editor, Formal Philosophy. Selected Papers of Richard Montague,
pages 247–270. Yale University Press, New Haven and London, 1974.

Mozart. The Mozart System of Oz. Freely available at www.mozart-oz.org. Mozart
Consortium: Universität des Saarlandes, DFKI, SFB 378, SICS, Université de
Louvain.

J. Niehren and A. Koller. Dominance constraints in context unification. In Third In-
ternational Conference on Logical Aspects of Computational Linguistics (LACL
’98), Grenoble, France, December 1998.

J. Niehren, M. Pinkal, and P. Ruhrberg. On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In Proceedings 14th CADE.
Springer-Verlag, Townsville, 1997.

M. Pinkal. Radical underspecification. In Proceedings of the 10th Amsterdam
Colloquium, pages 587–606, 1996.

U. Reyle. Dealing with ambiguities by underspecification: construction, represen-
tation, and deduction. Journal of Semantics, 10:123–179, 1993.

J. Rogers and K. Vijay-Shanker. Obtaining trees from their descriptions: An
application to tree-adjoining grammars. Computational Intelligence, 10:401–421,
1994.

RTA-List. Decidability of context unification. The RTA list of open problems,
number 90, http://www.lri.fr/~rtaloop/, 1998.

81

Bibliography

M. Schmidt-Schauß and K. Schulz. Solvability of context equations with two con-
text variables is decidable. In 16th International Conference on Automated De-
duction, volume 1632 of Lecture Notes in Computer Science, 1999.

K. Striegnitz. On modeling meaning shifts by relaxing underspecified seman-
tic representations. Diplom thesis, Universität des Saarlandes, Saarbrücken,
Germany, 1999. http://www.coli.uni-sb.de/cl/projects/chorus/papers/

kris99.html.

K. van Deemter and S. Peters. Semantic Ambiguity and Underspecification. CSLI,
Stanford, 1996.

82

