
M-Set Models

Chad E. Brown1

1 Introduction

In [1] Andrews studies elementary type theory, a form of Church’s type the-
ory [12] without extensionality, descriptions, choice, and infinity. Since most
of the automated search procedures implemented in Tps [4] do not build in
principles of extensionality, descriptions, choice or infinity, they are essen-
tially searching for proofs in elementary type theory. In particular, search
procedures based on Miller’s expansion proofs correspond to proofs in ele-
mentary type theory extended with η-conversion. In [9] a model class Mβη

is defined and proven sound and complete with respect a natural deduction
calculus corresponding to elementary type theory with η-conversion. One
can add extensionality principles to automated search procedures [8, 10, 11]
in order to target smaller (more restricted) model classes (as presented in [9])
which better approximate the class of standard models. Alternatively, one
can construct interesting models in Mβη which do not satisfy the full ex-
tensionality principles. One can then prove results about such models by
proving theorems in the weaker logic. Suppose M ∈ Mβη and we want to
know if some property P holds for M. Suppose we can find a proposition
A such that the property P holds if M |= A. We can conclude P holds if
we prove the proposition A in elementary type theory with η-conversion.

Category theory can provide a Kripke-style semantics of intuitionistic
higher-order logic [14, 15]. In particular, categories of presheaves are Carte-
sian closed (thus providing a semantics for simply-typed λ-calculus) and
contain a subobject classifier (thus providing a semantics for intuitionistic
logic). Since a one-object category is simply a monoid, a presheaf over a
one-object category is simply a set with a monoid action (an M -set) [13, 15].
From these abstract considerations, we know thatM -sets (for a fixed monoid
M) provide a semantics for simply typed λ-calculus and intuitionistic higher-
order logic.

In this article we consider M -sets as a semantics for simply typed λ-
calculus and fragments of classical higher-order logic. We can start with
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any M -set of interest and use this to interpret a base type of individu-
als. Function types are interpreted using the presheaf exponent. This will
provide a means for interpreting simply typed λ-terms in a way that re-
spects βη-equality. However, the ξ extensionality principle may not hold
in general. The type of truth values need not be interpreted as the topos
subobject classifier. Instead, the type of truth values can be any M -set Do
with a function ν from Do into a two-element set {T, F}. We will consider
two choices for Do and ν. Once we have such an M -set model of classi-
cal higher-order logic, we could use a classical theorem prover which does
not build in extensionality principles (such as Tps) to prove properties of
the M -set model. To demonstrate this idea, we use Tps to prove a simple
fixed point theorem and then construct an M -set model in which the fixed
point theorem is meaningful. In order to appeal to a wide audience, we will
exclusively use set-theoretic rather than category-theoretic language.

2 Motivation: A Proof in TPS

The higher-order theorem prover Tps has been under development under
the leadership of Peter B. Andrews for several decades [7, 6, 4, 5]. Tps

supports both automated proof search and interactive proof construction.
The automated search procedures combine mating search with higher-order
unification. The search procedures in Tps written before 2003 did not
build in extensionality reasoning (except η-conversion). When Tps proves
a proposition using one of these search procedures, then the proposition is
a theorem of elementary type theory with η.

The logic of Tps is based on simple type theory, as described briefly
below. More details are given in other sources [3, 9, 11]. We take the set
T of simple types to be the same as in [12]. There are two base types o (of
truth values), ι (of individuals), and a type (αβ) of functions from β to α
for all types α and β. The set of well-formed formulas of a type α depend
on given sets of variables, parameters and logical constants. Let us fix a set
V of typed variables and a set P of typed parameters. For each type α, Vα
and Pα denote the subset of V and P of type α (respectively). We assume
each Vα is countably infinite. The logical constants we consider are those
in the set Sall defined by

{⊤o,⊥o,¬oo,∧ooo,∨ooo,⇒ooo,≡ooo}

∪ {Πα
o(oα)|α ∈ T } ∪ {Σαo(oα)|α ∈ T } ∪ {=α

oαα |α ∈ T }.

We will consider a signature S of typed (logical) constants which may vary
throughout the paper. We will always assume S is a subset of Sall. The set
of well-formed formulas (or terms) of type α over a signature S is denoted
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by wffα(S) (or wffα when the signature S is clear in context). We define
each such family of sets inductively as follows:

• xα ∈ wffα(S) for each variable xα ∈ Vα.

• Wα ∈ wffα(S) for each parameter Wα ∈ Pα.

• cα ∈ wffα(S) for each constant cα ∈ Sα.

• [Fαβ Bβ] ∈ wffα(S) for each F ∈ wffαβ(S) and B ∈ wffβ(S).

• [λxβAα] ∈ wffαβ(S) for each variable xβ ∈ Vβ and A ∈ wffα(S).

The set Free(Aα) ⊂ V of free variables in A is defined in the usual way. A
term Aα is closed if Free(Aα) = ∅. Let cwffα(S) (or cwffα) be the set of
all closed terms of type α. We use A

↓β to refer to the β-normal form of A

and A
↓ to refer to the βη-normal form of A.

We now consider a simple example of a proof in Tps. Note that every
individual is a fixed point of the identity function [λxι x]. For every individ-
ual iι, i is the unique fixed point of the identity function [λxι i]. If the only
functions of type ιι are the constant functions and the identity function,
then all such functions will have a fixed point. In fact, we can find a fixed
point operator Yι(ιι) taking each function fιι to a fixed point of f . The
corresponding theorem can be proven formulated as

∀Po(ιι)[P [λxι x]∧∀ iι P [λx i] ⊃ ∀ fιι P f ] ⊃ ∃Yι(ιι)∀ f [ f [Y f ] = Y f ] (1)

This theorem can be proven automatically in Tps in less than a second.
Tps also translates the proof into the natural deduction shown in Figure 1.
The two nontrivial instantiations are shown in the justifications of lines (2)
and (10) in Figure 1. In line (10) the fixed point operator Y is chosen
to be the function taking f to f u (where u is arbitrary). In order to
prove Y f is a fixed point, we use the hypothesis to prove [f [f u]] = [f u].
The corresponding instantiation for the predicate Poι is shown in line (2).
Since this instantiation contains a logical symbol (equality at type ι), Tps

must use a PRIMSUB (primitive substitution, see [2]) to prove the theorem
automatically.

The conclusion of (1) may seem suspicious to many readers. Unless there
is only one individual of type ι, there will of course be functions from indi-
viduals to individuals which do not have fixed points. On the other hand,
the hypothesis of (1) is also very strong. In standard set-theoretic semantics
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(1) 1 ⊢ ∀Po(ιι)[P [λxι x] ∧ ∀ iι P [λx i] ⊃ ∀ fιι P f ] Hyp
(2) 1 ⊢ [λ fιι[ f [ f uι] = f u]][λxι x] ∧ ∀ iι[λ f [ f [ f u] = f u]][λx i]

⊃ ∀ f [λ f [ f [ f u] = f u]] f UI: [λ fιι[ f [ f uι] = f u]] 1
(3) 1 ⊢ uι = u ∧ ∀ iι[ i = i] ⊃ ∀ fιι[ f [ f u] = f u] Lambda: 2
(4) ⊢ uι = u Assert REFL=
(5) ⊢ iι = i Assert REFL=
(6) ⊢ ∀ iι[ i = i] UGen: iι 5
(7) ⊢ uι = u ∧ ∀ iι[ i = i] RuleP: 4 6
(8) 1 ⊢ ∀ fιι[ f [ f uι] = f u] MP: 7 3
(9) 1 ⊢ ∀ fιι[ f [[λ f f uι] f ] = [λ f f u] f ] Lambda: 8
(10) 1 ⊢ ∃Yι(ιι)∀ fιι[ f [Y f ] = Y f ] EGen: [λ fιι f uι] 9
(11) ⊢ ∀Po(ιι)[P [λxι x] ∧ ∀ iι P [λx i] ⊃ ∀ fιι P f ]

⊃ ∃Yι(ιι)∀ f [ f [Y f ] = Y f ] Deduct: 10

Figure 1. Tps Natural Deduction Proof of a Fixed Point Theorem

of type theory, both the hypothesis and conclusion of (1) can only be true if
there is only one individual. However, Tps has proven (1) as a formal the-
orem of elementary type theory. Consequently, the theorem will be true in
any model of elementary type theory. There are nontrivial models in which
(1) is meaningful (in the sense that the hypothesis is valid in the model).
In the next sections we will prove the existence of a class of M -set models.
We will construct a particular M -set model in which (1) is meaningful in
Section 6.

3 Semantics

We now summarize the semantic notions used in the paper. These notions
are described in more detail in other sources [9, 11]. There are no new
concepts introduced in this section.

An S-model will be a tuple 〈D,@, E , ν〉 where 〈D,@〉 is an applicative
structure, E is an evaluation function interpreting terms in 〈D,@〉, and ν
determines which members of Do will be considered “true.”

A (typed) applicative structure is a pair 〈D,@〉 where D is a typed family
of nonempty sets and @αβ : Dαβ ×Dβ → Dα for each function type (αβ).
We write simply f@b for @αβ(f, b), leaving the types implicit. We call an
applicative structure functional if for all types α, β ∈ T and f, g ∈ Dαβ , if
f@b = g@b for all b ∈ Dβ , then f = g.

Let D be a typed family of nonempty sets. An assignment ϕ into D
is a typed function ϕ : V → D. ϕ, [a/x] denotes the assignment such that
(ϕ, [a/x])(x) = a and (ϕ, [a/x])(y) = ϕ(y) for variables y other than x.
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Let 〈D,@〉 be an applicative structure. An S-evaluation function for A
is a function E taking any assignment ϕ into D and term A ∈ wffα(S) to
Eϕ(A) ∈ Dα satisfying the following properties:

1. Eϕ
∣

∣

V
= ϕ

2. Eϕ([FB]) = Eϕ(F)@Eϕ(B) for any F in wffαβ(S) and B in wffβ(S)
and types α and β.

3. Eϕ(A) = Eψ(A) for any type α and A ∈ wffα(S), whenever ϕ and ψ
coincide on Free(A).

4. Eϕ(A) = Eϕ(A↓β) for all A ∈ wffα(S).

The triple J = 〈D,@, E〉 is an S-evaluation if 〈D,@〉 is an applicative struc-
ture and E is an S-evaluation function for 〈D,@〉. We say J is η-functional

if
Eϕ(A) = Eϕ(A↓)

for any type α, formula A ∈ wffα(S), and assignment ϕ. We say J is ξ-
functional if for all types α, β ∈ T , M,N ∈ wffβ(S), assignments ϕ, and
variables xα,

Eϕ(λxαM) = Eϕ(λxαN)

whenever Eϕ,[a/x](M) = Eϕ,[a/x](N) for every a ∈ Dα. We say J is functional

if the underlying applicative structure is functional. As proven in [9] (for a
particular S) and [11] (for a general S), an evaluation is functional iff it is
both η-functional and ξ-functional.

For the rest of the paper, we fix two distinct values T 6= F. Let A := 〈D,@〉
be an applicative structure and ν : Do → {T, F} be a function. For each
logical constant cα and element a ∈ Dα, we define properties Lc(a) with
respect to ν in Table 1. Roughly speaking, the property Lc(a) means a

behaves like the logical constant c modulo ν.
Let J := 〈D,@, E〉 be an evaluation. We call a function ν : Do → {T, F}

an S-valuation for J if for every logical constant c ∈ S, Lc(E(c)) holds with
respect to ν. In such a case, we call M := 〈D,@, E , ν〉 an S-model (or
simply a model when S is clear in context). A model M := 〈D,@, E , ν〉 is
called functional if the applicative structure 〈D,@〉 is functional. We say
M is η-functional [ξ-functional] if the evaluation 〈D,@, E〉 is η-functional
[ξ-functional]. We define five properties a model M can satisfy in Table 2.
Properties η, ξ, and f are forms of functional extensionality. Property b is a
form of Boolean extensionality. Property q is a requirement that the model
realize equality at all types.
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prop. where holds when for all

L⊤(a) a ∈ Do ν(a) = T

L⊥(b) b ∈ Do ν(b) = F

L¬(n) n ∈ Doo ν(n@a) = T iff ν(a) = F a ∈ Do

L∨(d) d ∈ Dooo ν(d@a@b) = T iff ν(a) = T or ν(b) = T a, b ∈ Do

L∧(c) c ∈ Dooo ν(c@a@b) = T iff ν(a) = T and ν(b) = T a, b ∈ Do

L⇒(i) i ∈ Dooo ν(i@a@b) = T iff ν(a) = F or ν(b) = T a, b ∈ Do

L≡(e) e ∈ Dooo ν(e@a@b) = T iff ν(a) = ν(b) a, b ∈ Do

LΠα(π) π ∈ D
o(oα) ν(π@f) = T iff ∀a ∈ Dα ν(f@a) = T f ∈ Doα

LΣα(σ) σ ∈ D
o(oα) ν(σ@f) = T iff ∃a ∈ Dα ν(f@a) = T f ∈ Doα

L=α(q) q ∈ Doαα ν(q@a@b) = T iff a = b a, b ∈ Dα

Table 1. Logical Properties of ν : Do → {T, F}

M satisfies property when

η M is η-functional.
ξ M is ξ-functional.
f M is functional.
b ν is injective.
q for all types α there is a qα ∈ Doαα

such that L=α(qα) holds.

Table 2. Properties of Models
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4 M-set Models

Let M be a monoid with identity e. An M -set is a set A with an action

giving an element am ∈ A for each a ∈ A and m ∈M such that

• (am)n = a(mn)

• ae = a

for all a ∈ A and m,n ∈M . Given two M -sets A and B, we can define the
M -set exponent AB,M as the set

AB,M := {f : M ×B → A|∀k,m ∈M∀b ∈ B.f(k, b)m = f(km, bm)} (2)

with action taking f ∈ AB,M and m ∈M to the function fm : M ×B → A
defined by

fm(k, b) := f(mk, b). (3)

Note that fm is in AB,M since for k, n ∈M and b ∈ B

fm(k, b)n = f(mk, b)n = f(mkn, bn) = fm(kn, bn).

To check that AB,M is an M -set, we must ensure (fm)n = f(mn) and fe = f.
Both facts are easily verified:

((fm)n)(k, b) = (fm)(nk, b) = f(m(nk), b) = f((mn)k, b) = (f(mn))(k, b)

(fe)(k, b) = f(ek, b) = f(k, b)

DEFINITION 1. Let M be a monoid with identity e. An M -set applicative

structure is a pair 〈D,@〉 where

• 〈D,@〉 is an applicative structure,

• Dα is an M -set for each type α ∈ T ,

• Dαβ is the M -set Dα
Dβ ,M for all types α, β ∈ T , and

• (f@b) = f(e, b) for f ∈ Dαβ and b ∈ Dβ where α, β ∈ T .

We can specify an M -set applicative structure by giving two nonempty
M -sets for the two base types.

THEOREM 2. Let M be a monoid with identity e ∈ M . If A and B
are nonempty M -sets, then there is a unique M -set applicative structure

A = 〈D,@〉 such that Dι = A and Do = B.

Proof. We define Dα by induction on α as follows:
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• Dι := A

• Do := B

• Dαβ := Dα
Dβ,M

Let @ be defined by (f@b) := f(e, b) for f ∈ Dαβ and b ∈ Dβ where α, β ∈ T .
We must verify that A := 〈D,@〉 is an M -set applicative structure with
Dι = A and Do = B. The only nontrivial property to check is that each
Dα is nonempty. We prove this by induction on types. We have assumed
Dβ is nonempty for base types β ∈ {ι, o}. Assume Dα is nonempty. Choose
some a ∈ Dα. Let f : M ×Dβ → Dα be the function defined by f(k, b) = ak.
In order to conclude Dαβ is nonempty, we check f ∈ Dαβ . We must check
f(k, b)m = f(km, bm) for k,m ∈M and b ∈ Dβ . This is easy:

f(k, b)m = (ak)m = a(km) = f(km, bm).

In order to show A is unique, suppose A′ = 〈D′,@′〉 is an M -set ap-
plicative structure such that D′

ι = A and D′
o = B. An easy induction on α

proves each M -set Dα is equal to D′
α. Given this fact, we know @ and @′

must coincide as well. �

We now define an action on the set of assignments in an obvious way.

DEFINITION 3. Let M be a monoid and A = 〈D,@〉 be an M -set ap-
plicative structure. For any assignment ϕ : V → D into D and k ∈ M , we
let ϕk : V → D denote the assignment given by ϕk(x) := ϕ(x)k for each
variable x.

An evaluation function maps terms to values in an applicative structure.
In order to obtain evaluation functions which respect the actions of an M -
set applicative structure, we consider an M -indexed family of evaluation
functions.

DEFINITION 4. Let M be a monoid and A = 〈D,@〉 be an M -set applica-
tive structure. An M -set family of S-evaluation functions for A is a family
(Em)m∈M of functions satisfying the following properties:

1. Emϕ (x) = ϕ(x) for x ∈ V .

2. Emϕ ([Fαβ Bβ ]) = Emϕ (F)@Emϕ (B).

3. Emϕ (w) = Eeψ(w)m for w ∈ P ∪ S and any assignments ϕ and ψ.
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4. Emϕ (λxβAα) = f ∈ Dαβ where f is the function such that

f(k, b) = Emkϕk,[b/x](A).

Note that in Definition 4 we have not actually required each Em to be an
S-evaluation function for A. The fact that each Em is such an S-evaluation
function follows from the conditions in Definition 4. The first two condi-
tions in Definition 4 correspond directly to the first two conditions in the
definition of evaluation functions. All four conditions in Definition 4 are
used (together) to verify the remaining two conditions in the definition of
evaluation functions.

THEOREM 5. Let M be a monoid with identity e, A = 〈D,@〉 be an M -

set applicative structure and (Em)m∈M be an M -set family of S-evaluation

functions for A. For each m ∈ M , Em is an η-functional S-evaluation

function for A. Furthermore, for any m,n ∈ M , assignment ϕ, and term

A ∈ wffα(S), we have

Emϕ (A)n = Emnϕn (A).

Proof. See Appendix A. �

Since such evaluation functions are η-functional, they will be ξ-functional
iff the underlying applicative structure is functional. It is not difficult to
show that the underlying applicative structure will be functional if M is a
group. The more interesting case is when M is not a group. If M is not a
group then using the theorems above we can construct evaluations in which
η-functionality holds but ξ-functionality fails (see Example 11).

Just as we can specify an M -set applicative structure by giving nonempty
M -sets for the two base types, we can specify anM -set family of S-evaluation
functions by interpreting the parameters and constants.

THEOREM 6. Let M be a monoid with identity e, A = 〈D,@〉 be an M -set

applicative structure and I : (P ∪ S) → D be a typed function. There is a

uniqueM -set family of evaluation functions (EI,m)m∈M such that EI,e
ϕ (w) =

I(w) for all w ∈ P ∪ S and assignments ϕ.

Proof. See Appendix B. �

AnM -set model will be anM -set applicative structure with an evaluation
function which is part of an M -set family of evaluation functions along with
a function ν : Do → {T, F} which respects the interpretations of the logical
constants in S.
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DEFINITION 7. Let M be a monoid with identity e. An M -set S-model

(or, M -set model) is an S-model 〈D,@, E , ν〉 where 〈D,@〉 is an M -set ap-
plicative structure and there is an M -set family of evaluation functions
(Em)m∈M such that Eϕ(A) = Eeϕ(A) for all terms A ∈ wffα(S) and assign-
ments ϕ.

We can specify an M -set S-model by giving the M -set applicative struc-
ture, valuation ν, and an interpretation of parameters and logical constants
which respects the properties of the logical constants.

THEOREM 8. Let M be a monoid with identity e, A = 〈D,@〉 be an M -set

applicative structure, I : (P ∪ S) → D be a typed function and ν : Do →
{T, F} be a function such that Lc(I(c)) holds for all c ∈ S. Let (EI,m)m∈M

be the M -set family of evaluation functions given by Theorem 6. Then

M := 〈D,@, EI,e, ν〉 is an M -set S-model satisfying property η.

Proof. This is an obvious consequence of Theorems 5 and 6. �

5 Interpreting the Type of Truth Values

In order to apply Theorem 8, we must give an interpretation I for all param-
eters and logical constants. The interpretation I(c) of each logical constant
c ∈ S must satisfy the corresponding logical property Lc(I(c)) with respect
to ν. Given an applicative structure A and function ν, it may be the case
that no value a satisfies Lc(a) with respect to ν. In such a case there are
no M -set S-models (where c ∈ S) over this applicative structure using this
valuation ν. If there is such an a, we will say A realizes c with respect to ν.

DEFINITION 9. Let A = 〈D,@〉 be an applicative structure, ν : Do →
{T, F} be a function and cα be a logical constant. We say A realizes c with
respect to ν if there is some a ∈ Dα such that Lc(a) holds with respect to
ν.

There are several options one can choose for Do and ν : Do → {T, F}.
This choice affects which logical constants will be realized. If we further
want the model to satisfy property b (Boolean extensionality), then the
following choice is all but forced upon us:

• Set: Do := {T, F}

• Action: Tm = T and Fm = F (the trivial action).

• Valuation: ν is the identity – i.e., ν(T) = T and ν(F) = F

In fact, using this simple choice we can realize all logical constants except
equality. We can only realize equality in such a model if a certain cancella-
tion law holds.
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THEOREM 10. Let M be a monoid with identity e and A = 〈D,@〉 be an

M -set applicative structure. Suppose

• Do = {T, F},

• Tm = T and Fm = F.

Let ν : Do → {T, F} be the identity function. Each logical constant in the

set
{⊤o,⊥o,¬oo,∧ooo,∨ooo,⇒ooo,≡ooo}

∪ {Πα
o(oα)|α ∈ T } ∪ {Σαo(oα)|α ∈ T }

is realized in A with respect to ν. Furthermore, for each α ∈ T , =α is

realized by A with respect to ν iff the following cancellation law holds:

∀a, b ∈ Dα ∀m ∈M if am = bm, then a = b.

Proof. Obviously ⊤ and ⊥ are realized using T and F, respectively. Let
n : M ×Do → Do be the function defined by

n(m, b) :=

{

T if b = F

F otherwise.

We easily verify n ∈ Doo:

n(m, b)k = n(m, b) = n(mk, b) = n(mk, bk).

It is also clear that L¬(n) holds with respect to ν:

n@b = T ⇔ n(e, b) = T ⇔ b = F.

Let d : M ×Do → M ×Do → Do be

d(m, b)(n, c) :=

{

F if b = F = c

T otherwise.

For any k ∈ M , d(m, b)(n, c)k = F iff b = F = c iff b = F = ck iff
d(m, b)(nk, ck) = F. Hence d(m, b)(n, c)k = d(m, b)(nk, ck) and d(m, b) ∈
Doo. Similarly, for any k ∈ M , d(m, b)k(n, c) = F iff d(m, b)(kn, c) = F iff
b = F = c iff bk = F = c iff d(mk, bk)(n, c) = F. Hence d(m, b)k = d(mk, bk)
and d ∈ Dooo. Clearly, L∨(d) holds.

Since ¬ and ∨ are realized, we can conclude that ∧, ⇒ and ≡ must also
be realized. Similarly, to show that each Σα is realized, we can simply show
each Πα is realized.
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Let π : M ×Doα → Do be defined by

π(m, f) :=

{

T if ∀a ∈ Dα f(e, am) = T

F otherwise.

To check π ∈ Do(oα), we must prove

π(m, f)k = π(mk, fk)

for m, k ∈M and f ∈ Doα. Note that

π(m, f)k = T iff π(m, f) = T

iff ∀a ∈ Dα f(e, am) = T

iff ∀a ∈ Dα f(e, am)k = T

iff ∀a ∈ Dα f(k, amk) = T

iff ∀a ∈ Dα (fk)(e, amk) = T

iff π(mk, fk) = T.

Hence π(m, f)k = π(mk, fk) and so π ∈ Do(oα). Note that π@f = T iff
∀a ∈ Dα f@a = f(e, a) = T. Thus LΠα(π) holds.

Finally, we turn our attention to equality. First, suppose there is some
q ∈ Doαα realizing =α, i.e., such that

q@a@b = T ⇔ a = b

for a, b ∈ Dα. Assume there is some a, b ∈ Dα and m ∈ M such that
am = bm but a 6= b. We can compute F = T, a contradiction, as follows:

F = q@a@b = q(e, a)(e, b) = q(e, a)(e, b)m = q(e, a)(m, bm)

= (q(e, a)m)(e, bm) = q(m, am)(e, bm)

= q(m, bm)(e, bm) = (q(e, b)m)(e, bm)

= q(e, b)(m, bm) = q(e, b)(e, b)m = q(e, b)(e, b) = T

Conversely, suppose that the cancellation law holds in Dα. We define
q : M ×Dα →M ×Dα → Do (realizing =α) by

q(m, a)(n, b) =

{

T if ∃c ∈ Dα such that a = cm and b = cmn
F otherwise.

Let k ∈ M be given and suppose q(m, a)(n, b)k = T. Then q(m, a)(n, b) =
T and there is some c ∈ Dα such that a = cm and b = cmn. Since
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bk = cmnk, c also witnesses q(m, a)(nk, bk) = T. For the converse, sup-
pose q(m, a)(nk, bk) = T. Then there is some c ∈ Dα such that a = cm
and bk = cmnk. By the cancellation law, b = cmn and so c witnesses
q(m, a)(n, b) = T. Hence q(m, a)(n, b)k = q(m, a)(nk, bk) and so q(m, a) ∈
Doα. Next we prove q ∈ Doαα by proving q(m, a)k = q(mk, ak). Sup-
pose q(m, a)k(n, b) = T. That is, there is some c ∈ Dα such that a = cm
and b = cmkn. Since ak = cmk, this proves q(mk, ak)(n, b) = T. Fi-
nally, suppose q(mk, ak)(n, b) = T. Then for some c ∈ Dα, ak = cmk and
b = cmkn. By the cancellation law, a = cm and so q(m, a)(kn, b) = T.
Hence q(m, a)k = q(mk, ak) and so q ∈ Doαα. Note that L=α(q) holds since
q@a@b = T iff ∃c ∈ Dα such that a = c = b iff a = b. �

The fact that equality may not be realized by such a model is a problem,
but can be overcome. Using Theorem 3.62 from [9] we can obtain a model
which realizes equality by taking a quotient by the congruence relation in-
duced by Leibniz equality. A different problem with this choice for Do is
that the sets Doα may be too small. In particular, as we show in the next
example, the subsets of Dι represented in Doι may be quite sparse.

EXAMPLE 11. Let M2 be the monoid {0, 1} under multiplication where 1
is the identity. Let A = 〈D,@〉 be the M2-set applicative structure given by
Theorem 2 such that Dι is the M2-set {0, 1} with action by multiplication
and Do is the M2-set {T, F} with the trivial action. Let ν be the identity
function. Note that the cancellation law does not hold in Dι since 1 ·0 = 0 ·0
but 1 6= 0. By Theorem 10, =ι is not realized in A with respect to ν. Let
S be the set

{⊤o,⊥o,¬oo,∧ooo,∨ooo,⇒ooo,≡ooo}

∪ {Πα
o(oα)|α ∈ T } ∪ {Σαo(oα)|α ∈ T }

By Theorem 10 each logical constant in S is realized in A with respect to
ν. Let I : (P ∪S) → D be a function such that Lc(I(c)) holds with respect
to ν for every c ∈ S. Let (EI,m)m∈M2 be the M2-set family of evaluation
functions given by Theorem 6. By Theorem 8 M := 〈D,@, EI,e, ν〉 is an
M2-set S-model satisfying property η. Since ν is the identity function, M
also satisfies property b. On the other hand, M does not satisfy property f

and hence does not satisfy property ξ. Consider the two functions f, g ∈ Dιι
given by f(m, a) := a and g(m, a) := m · a. Clearly, f(1, a) = g(1, a) for all
a ∈ {0, 1}. However, f 6= g. Finally, we consider Doι. For all p ∈ Doι, we
must have p(1, 0) = p(1, 0)0 = p(0, 0) = p(1, 1)0 = p(1, 1). Thus, the only
subsets of Dι represented by functions in Doι are ∅ and {0, 1}. If we take
the quotient of this model as in Theorem 3.62 from [9], then Dι will collapse
to be a singleton.

13



If we are willing to accept models for which property b fails, then we
have much more flexibility in our choice of Do. We may want to interpret
Do to be an M -set so that all logical constants in Sall are realized and
so that all subsets of Dα are represented by a function in Doα. We can
obtain such an M -set by taking Do to be the power set P(M) of M and
defining an action taking Xm to {y ∈ M |my ∈ X} for each X ∈ P(M)
and m ∈ M . One can easily verify (Xm)n = X(mn) and Xe = X so that
this is an M -set. We must also choose a function ν : P(M) → {T, F}. A
natural option to consider is taking G to be an ultrafilter on P(M) and then
defining ν(X) := T iff X ∈ G. It turns out that we obtain a model with
all the properties we want by taking G to be the principal ultrafilter with
principal element e ∈M . That is, we define ν(X) := T iff e ∈ X .

THEOREM 12. Let M be a monoid with identity e and A = 〈D,@〉 be an

M -set applicative structure. Suppose

• Do = P(M) and

• Xm = {y ∈M |my ∈ X}.

Let ν : Do → {T, F} be defined by

ν(X) :=

{

T if e ∈ X
F otherwise.

Each logical constant in the set

{⊤o,⊥o,¬oo,∧ooo,∨ooo,⇒ooo,≡ooo}

∪ {Πα
o(oα)|α ∈ T } ∪ {Σαo(oα)|α ∈ T } ∪ {=α

oαα |α ∈ T }.

is realized in A with respect to ν. Furthermore, for all S ⊆ Dα there is some

pS ∈ Dα→o such that for all a ∈ Dα we have ν(pS@a) = T iff a ∈ S.

Proof. The constants ⊤ and ⊥ can be realized using M and ∅, respectively.
To realize negation, we define n : M × P(M) → P(M) by n(m,X) :=

M \ X . To check n ∈ Doo, we must prove n(mk,Xk) = n(m,X)k for all
X ∈ P(M) and m, k ∈ M . This is true since x ∈ n(mk,Xk) iff x /∈ Xk
iff kx /∈ X iff x ∈ n(m,X)k. To prove L¬(n), note that ν(n@X) = T iff
e ∈ n(e,X) iff e /∈ X iff ν(X) = F.

Next we turn to disjunction. We define d : M × P(M) →M × P(M) →
P(M) by d(m,X)(n, Y ) := (Xn) ∪ Y . We first prove d(m,X) ∈ Doo by
proving d(m,X)(nk, Y k) = (d(m,X)(n, Y ))k. This equation holds since
x ∈ d(m,X)(nk, Y k) iff x ∈ Xnk or x ∈ Y k iff kx ∈ Xn or kx ∈ Y iff
kx ∈ d(m,X)(n, Y ) iff x ∈ (d(m,X)(n, Y ))k. We next prove d ∈ Dooo
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by proving d(mk,Xk) = d(m,X)k, which holds since d(mk,Xk)(n, Y ) =
(Xkn) ∪ Y = d(m,X)(kn, Y ). To prove L∨(d), note that ν(d@X@Y ) = T

iff e ∈ X ∪ Y iff either ν(X) = T or ν(Y ) = T. Since ¬ and ∨ are realized,
so are ∧, ⇒ and ≡.

Let α be a type. To prove Πα is realized, let

πα(m, f) := {x ∈M |∀a ∈ Dα e ∈ f(x, a)}

define πα : M×Doα → Do. Now, x ∈ πα(mk, fk) iff ∀a ∈ Dαe ∈ (fk)(x, a) iff
∀a ∈ Dαe ∈ f(kx, a) iff kx ∈ πα(m, f) iff x ∈ πα(m, f)k. Hence πα(mk, fk) =
πα(m, f)k and so πα ∈ Do(oα). Also, LΠα(πα) holds since ν(πα@f) = T iff
∀a ∈ Dαe ∈ f(e, a) iff ∀a ∈ Dαν(f@a) = T. Since ¬ and Πα are realized, so
is Σα.

To prove =α is realized, let qα(m, a)(n, b) := {x ∈ M |anx = bx} de-
fine qα : M × Dα → M × Dα → P(M). We have x ∈ qα(m, a)(nk, bk)
iff ankx = bkx iff kx ∈ (qα(m, a)(n, b) iff x ∈ (qα(m, a)(n, b))k. Hence
qα(m, a)(nk, bk) = (qα(m, a)(n, b))k and so qα(m, a) ∈ Doα. Next, we
compute x ∈ qα(mk, ak)(n, b) iff aknx = bx iff x ∈ qα(m, a)(kn, b). Conse-
quently, qα(mk, ak)(n, b) = qα(m, a)(kn, b) and so qα(mk, ak) = qα(m, a)k.
Therefore, qα ∈ Doαα as desired. The property L=α(qα) holds since

ν(qα@a@b) = T iff e ∈ {x ∈M |aex = b} iff a = b.

Finally, we verify that all subsets of Dα are represented in Doα. Let
S ⊆ Dα be given. We define pS(m, a) := {x|ax ∈ S}. We compute x ∈
pS(mk, ak) iff akx ∈ S iff kx ∈ pS(m, a) iff x ∈ pS(m, a)k. Hence pS ∈ Doα.
Note that ν(pS@a) = T iff e ∈ pS(e, a) iff a ∈ S, as desired. �

We now use Theorem 12 to modify Example 11 and obtain an M -set
model in Mβη. As in Example 11 we take M2 to be the monoid {0, 1}
under multiplication where 1 is the identity. For the reasons discussed in
Example 11 we will not choose Do to be the two element set {T, F}. Instead
we let Do be P({0, 1}) with action and ν given as in Theorem 12. Using
Theorems 2, 12 and 8 we know we can obtain an Sall-model by specifying
an M2-set Dι and a value I(wα) ∈ Dα for each parameter w.

EXAMPLE 13. Let A be a set with an equivalence relation ∼. Suppose for
each ∼-equivalence class we choose a canonical element. Let C : A→ A be
the function taking each a to the canonical element C(a). Note that for all
a ∈ A, a ∼ C(a) and for all a, b ∈ A, a ∼ b iff C(a) = C(b). In particular,
C(C(a)) = C(a) for all a ∈ A. We can consider A an M2-set by defining
the action a1 = a and a0 := C(a). This is an M2-set since C is idempotent.
Let us take Dι to be this M2-set and apply Theorem 2 to obtain an M2-set
applicative structure 〈D,@〉.
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The equivalence relation ∼ on A and canonical form function C extends
to all types. For each type α, we can define an idempotent function Cα :
Dα → Dα by Cα(a) := a0. This clearly induces an equivalence relation
∼α on each Dα given by a ∼α b iff Cα(a) = Cα(b). Only the functions
f : Dβ → Dα which respect the equivalence relations are represented in
Dαβ . To see this, suppose g ∈ Dαβ and (g@b) = f(b) for all b ∈ Dβ . If
a ∼β b, then

f(a)0 = g(1, a)0 = g(0, a0) = g(0, b0) = g(1, b)0 = f(b)0

and so f(a) ∼α f(b). Next, suppose f : Dβ → Dα is such that f(a) ∼α f(b)
whenever a ∼β b. Define g : M × Dβ → Dα by g(m, a) := f(a)m. Clearly,
g@a = g(1, a) = f(a). Since g(m0, a0) = f(a0)0 = f(a)0 = g(m, a)0 (using
the fact that a0 ∼α a), we have g ∈ Dαβ .

In order to apply Theorem 8 we need a typed function I : (P ∪Sall) → D
interpreting parameters and logical constants. We know by Theorem 12
that for all c ∈ Sall there is some I(c) such that Lc(I(c)) holds. Let I(w)
be chosen arbitrarily for parameters. Using Theorem 8 we can conclude
that M := 〈D,@, EI,e, ν〉 is an M2-set model satisfying property η. As
in Example 11, property ξ fails in M since the applicative structure is
not functional. To see this, the reader may consider f, g ∈ Doo given by
f(m,X) := X and g(m,X) := Xm. Since Do has four elements, property b

fails. Since the model realizes equality at all types, q holds and so M ∈ Mβη.
We know by Theorem 12 for all types α and sets S ⊆ Dα, there is a func-

tion in Doα representing S. In particular, Doι is rich enough to represent all
subsets of A. On the other hand, only the functions from A to A respecting
∼ are represented in Dιι.

6 An Example Model

We now construct a concrete M -set model in which the formal theorem (1)
from Section 2 is meaningful. Let NI = {0, 1, 2, . . .} be the set of nonnegative
integers. Let M := NI

NI be the set of all functions from NI into itself and let
e ∈ M be the identity function. For each m,n ∈ M we define mn ∈ M to
be (mn)(i) := n(m(i)) (reverse composition). Clearly M is a monoid under
this operation with identity e. We consider NI as an M -set with action
taking a ∈ NI and m ∈M to am := m(a).

By Theorem 2 there is an M -set applicative structure 〈D,@〉 such that
Dι = NI (with action given above) and Do = P(M) (with action as in
Theorem 12). Let ν : Do → {T, F} be defined by

ν(X) :=

{

T if e ∈ X
F otherwise.
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By Theorem 12 every logical constant in Sall is realized in the applicative
structure with respect to ν. Let I : Sall∪P → D be defined so that Lc(I(c))
holds with respect to ν for each c ∈ Sall. By Theorem 6 there is a unique
M -set family of evaluation functions (EI,m)m∈M such that EI,e

ϕ (w) = I(w)

for w ∈ Sall ∪ P and assignments ϕ. By Theorem 8 M := 〈D,@, EI,e, ν〉 is
an M -set S-model satisfying property η. Furthermore, since Sall includes
equality at each type, property q must hold and so M ∈ Mβη.

Since M is a model of elementary type theory in η, the theorem (1) from
Section 2

∀Po(ιι)[P [λxι x] ∧ ∀ iι P [λx i] ⊃ ∀ fιι P f ] ⊃ ∃Yι(ιι)∀ f [ f [Y f ] = Y f ]

must be true in the model. Consequently, if we can prove

ν(EI,e(∀Po(ιι)[P [λxι x] ∧ ∀ iι P [λx i] ⊃ ∀ fιι P f ])) = T (4)

then we can conclude

ν(∃Yι(ιι)∀ f [ f [Y f ] = Y f ]) = T (5)

In order to interpret (4), fix an arbitrary assignment ϕ, let

I := EI,e
ϕ (λxι x) ∈ Dιι

and for each i ∈ NI let

K
i := EI,e

ϕ,[i/y](λxι y) ∈ Dιι.

We easily compute
I(m, a) = EI,m

ϕm,[a/x](x) = a

and
K
i(m, a) = EI,m

ϕm,[im/y],[a/x](y) = im = m(i).

Using the properties of the interpretations of logical constants in M, we
have (4) is valid in M if for all Φ ∈ Do(ιι), e ∈ Φ(e, f) whenever e ∈ Φ(e, I)
and e ∈ Φ(e, Ki) for all i ∈ NI . This is the case if Dιι = {I}∪ {Ki|i ∈ NI }. To
verify this equation, it is enough to show every f ∈ Dιι is either I or Ki for
some i.

Let S ∈ M be the successor function. For each m ∈ M and a ∈ NI , let
[a ·m] ∈M be the function such that [a ·m](0) := a and [a ·m](i+1) := m(i)
for i ∈ NI . Clearly 0[a ·m] = a and S[a ·m] = m.

Let f ∈ Dιι be given. We have

f(m, a) = f(S[a ·m], 0[a ·m]) = f(S, 0)[a ·m] = [a ·m](f(S, 0)).
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If f(S, 0) = 0, then

f(m, a) = [a ·m](0) = a

for all a ∈ NI and so f = I. If f(S, 0) = i+ 1 for i ∈ NI , then

f(m, a) = [a ·m](i+ 1) = m(i)

and so f = K
i.

Consequently, (4) is valid in M. Since (1) is also valid in M (as a
theorem of elementary type theory), the conclusion (5) must be valid in M.
We conclude the existence of a fixed point operator Y ∈ Dι(ιι) such that
f(e, Y (e, f)) = Y (e, f) for all f ∈ Dιι.

7 Conclusion and Future Work

We have used M -sets to construct models (in the sense of [9]) of fragments
of classical higher-order logic. These models always satisfy property η, but
may not satisfy property ξ. Property b depends on the choice of Do and ν.
As we have demonstrated, there is a tradeoff between satisfying property b

and realizing equality (property q) in M -set models. We have used these
abstract results to obtain a model in which Dιι is sparsely populated and
there is a fixed point operator in Dι(ιι). In future work we hope to consider
more interesting choices for monoids M and M -sets. Such models may
provide novel applications of nonextensional higher-order theorem proving.
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A Proof of Theorem 5

Let M be a monoid with identity e, A = 〈D,@〉 be an M -set applicative
structure, and (Em)m∈M be an M -set family of S-evaluation functions for
A. We will prove a series of results allowing us to conclude Theorem 5.

LEMMA 14. For any term A ∈ wffα(S), m,n ∈M , and assignment ϕ, we

have

Emϕ (A)n = Emnϕn (A).

Proof. This follows by induction on A. The variable, parameter and
constant cases are easy. The application case is verified by computing

Emϕ (FB)n = (Emϕ (F)@Emϕ (B))n by Definition 4(2)

= Emϕ (F)(e, Emϕ (B))n by Definition 1(1)

= Emϕ (F)(n, Emϕ (B)n) by (2) and Definition 1(1)

= (Emϕ (F)n)(e, Emϕ (B)n) by (3)

= (Emnϕn (F))(e, Emnϕn (B)) by the inductive hypothesis

= Emnϕn (F)@Emnϕn (B) by Definition 1(1).

For the abstraction case, we verify Emϕ (λxβCγ)n = Emnϕn (λxβCγ) by com-
puting

(Emϕ (λxC)n)(k, b) = Emϕ (λxC)(nk, b) by (3)

= Emnkϕnk,[b/x](C) by the inductive hypothesis

= Emnϕn (λxC)(k, b) by Definition 4(4).
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In the next lemma, we combine property (3) of Definition 4 with Lemma 14
to verify the third property of evaluation functions.

LEMMA 15. For any term A ∈ wffα(S), m ∈ M , and assignments ϕ and

ψ, if ϕ(x) = ψ(x) for all x ∈ Free(A), then Emϕ (A) = Emψ (A).

Proof. The proof is by an easy induction on A. Note that if A is a
parameter or constant w, then we have Emϕ (A) = Eeψ(A)m = Emψ (A) by
using property (3) of Definition 4 twice. �

We now prove a Substitution-Value Lemma similar to Lemma 3.20 in [9]
for evaluations. In this case we must prove the result before we know Em is
an evaluation function.

LEMMA 16 (Substitution-Value Lemma). For any term A ∈ wffα(S), B ∈
wffβ(S), x ∈ Vβ, m ∈M , and assignment ϕ,

Emϕ,[Em
ϕ (B)/x](A) = Emϕ ([B/x]A).

Proof. The proof is another straightforward induction on A. If A is a
parameter or constant w, we use Lemma 15 to conclude

Emϕ,[Em
ϕ (B)/x](w) = Emϕ (w) = Emϕ ([B/x]w).

Suppose A is [λyδCγ ] where y and x are distinct and y /∈ Free(B). In this
case, we have

Emϕ,[Em
ϕ (B)/x]([λyδC])(k, d)

= Emkϕk,[Em
ϕ (B)k/x],[d/y](C) by Definition 4(4)

= Emk
ϕk,[Emk

ϕk (B)/x],[d/y]
(C) by Lemma 14

= Emk
ϕk,[d/y],[Emk

ϕk,[d/y]
(B)/x]

(C) by Lemma 15 since y /∈ Free(B) ∪ {x}

= Emkϕk,[d/y]([B/x]C) by the inductive hypothesis

= Emϕ ([λyδ[B/x]C])(k, d) by Definition 4(4)

= Emϕ ([B/x][λyδC])(k, d).

The remaining cases are left to the reader. �
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We next check that Em respects a single, top-level β-reduction.

LEMMA 17. For any term A ∈ wffα(S), B ∈ wffβ(S), x ∈ Vβ, m ∈ M ,

and assignment ϕ,

Emϕ ([[λxA]B]) = Emϕ ([B/x]A).

Proof. We compute

Emϕ ([[λxA]B]) = Emϕ ([λxA])(e, Emϕ (B)) = Emϕ,[Em
ϕ (B)/x](A) = Emϕ ([B/x]A)

using Lemma 16. �

We also check Em respects a single, top-level η-reduction.

LEMMA 18. For any term F ∈ wffαβ(S), x ∈ Vβ, m ∈M , and assignment

ϕ, if x /∈ Free(F), then

Emϕ ([λx [Fx]]) = Emϕ (F).

Proof. We verify this fact by computing

Emϕ ([λx [Fx]])(k, b)

= Emkϕk,[b/x]([Fx]) by Definition 4(4)

= Emkϕk,[b/x](F)@b by Definition 4(1 and 2)

= Emkϕk (F)@b by Lemma 15 since x /∈ Free(F)

= Emkϕk (F)(e, b) by Definition 1(1)

= (Emϕ (F)k)(e, b) by Lemma 14

= Emϕ (F)(k, b) by (3).

�

Using the previous two lemmas, we can prove Em respects one step βη-
reductions inside a term.

LEMMA 19. For any terms A,B ∈ wffα(S), m ∈M , and assignment ϕ, if

A βη-reduces to B in one step, then

Emϕ (A) = Emϕ (B).
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Proof. This follows by an induction on the position of the redex in A using
Lemmas 17 and 18 for the base cases. �

Finally, Em respects βη-normalization. This establishes both the final
property of evaluation functions and η-functionality.

LEMMA 20. For any term A ∈ wffα(S), m ∈ M , and assignment ϕ, we

have

Emϕ (A) = Emϕ (A↓).

Proof. The proof is by induction on the number of reductions using
Lemma 19 at each step. �

We now have the necessary results to conclude Theorem 5. By Defini-
tion 4, we know Emϕ (x) = ϕ(x) for each variable x and we know Emϕ ([FB]) =
Emϕ (F)@Emϕ (B). By Lemma 15, we know Emϕ (A) = Emψ (A) whenever ϕ and
ψ agree on Free(A). By Lemma 20 twice, we know

Emϕ (A) = Emϕ (A↓) = Emϕ (A↓β)

(since the βη-normal form of A
↓β is A

↓). Hence Em is an S-evaluation
function. Furthermore, Em is η-functional by Lemma 20. Finally, we know

Emϕ (A)n = Emnϕn (A)

holds by Lemma 14.

B Proof of Theorem 6

Let M be a monoid with identity e, A = 〈D,@〉 be an M -set applica-
tive structure and I : (P ∪ S) → D be a typed function. If (EI,m)m∈M

and (FI,m)m∈M are both M -set families of evaluation functions such that
EI,e(w) = I(w) = FI,e(w) for all w ∈ P ∪ S, then an easy induction on A

proves

∀A, ϕ,m we have EI,m
ϕ (A) = FI,m

ϕ (A).

Hence we have uniqueness and must only prove existence of such a family
(EI,m)m∈M .

The construction of (EI,m)m∈M for the proof of Theorem 6 requires some
work. We could try to define EI,m

ϕ (A) by induction on A. Unfortunately,
for the λ-abstraction case we must somehow know the function f where

f(k, b) = EI,mk
ϕk,[b/x](A)

22



is in Dαβ . Instead of defining EI,m
ϕ (Aα) ∈ Dα by induction, we define set

valued function Eval
I(Aα,m, ϕ) ⊆ Dα by induction, prove each value of

Eval
I(A,m, ϕ) is a singleton, and define EI,m

ϕ (Aα) to be the unique value
in this singleton.

We define Eval
I(Aα,m, ϕ) ⊆ Dα by induction as follows:

• Eval
I(xα,m, ϕ) := {ϕ(x)} for x ∈ V .

• Eval
I(wα,m, ϕ) := {I(w)m} for w ∈ P ∪ S.

• Eval
I([Fαβ Bβ ],m, ϕ) :=

{f@b|f ∈ Eval
I(F,m, ϕ), b ∈ Eval

I(B,m, ϕ)}

for F ∈ wffαβ(S) and B ∈ wffβ(S)

• Eval
I([λxβ Aα],m, ϕ) :=

{f ∈ Dαβ |∀k ∈M, b ∈ Dβ f(k, b) ∈ Eval
I(A,mk, (ϕk, [b/x]))}

for x ∈ Vβ and A ∈ wffα(S).

LEMMA 21. For every A ∈ wffα(S), assignment ϕ, m,n ∈ M and a ∈
Eval

I(A,m, ϕ), we have an ∈ Eval
I(A,mn, ϕn).

Proof. This follows by an easy induction on A using the definition of

Eval
I(A,m, ϕ).

If A is a variable x, then a = ϕ(x) and so

an = ϕ(x)n = (ϕn)(x) ∈ Eval
I(x,mn, ϕn).

If A is a parameter or constant w, then a = I(w)m and so

an = I(w)mn ∈ Eval
I(w,mn, ϕn).

Suppose A is [FαβBβ ]. Then a is f@b for some f ∈ Eval
I(F,m, ϕ) and

b ∈ Eval
I(B,m, ϕ). By the inductive hypothesis, fn ∈ Eval

I(F,mn, ϕn)
and bn ∈ Eval

I(B,mn, ϕn). We compute

an = (f@b)n = f(e, b)n = f(n, bn) = (fn)(e, bn) = ((fn)@(bn))

and conclude an ∈ Eval
I([FB],mn, ϕn).

Suppose A is [λxβCγ ]. Then a ∈ Dγβ is a function such that a(k, b) ∈

Eval
I(C,mk, (ϕk, [b/x])) for all k ∈ M and b ∈ Dβ . Note that an(k, b) =

a(nk, b). Hence an(k, b) ∈ Eval
I(C,mnk, (ϕnk, [b/x])). Thus

an ∈ Eval
I([λxC],mn, ϕn)

as desired. �
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LEMMA 22. For every A ∈ wffα(S), assignment ϕ, and m ∈ M , there is

a unique a ∈ Dα such that a ∈ Eval
I(A,m, ϕ).

Proof. This also follows by induction on A. The cases for variables, pa-
rameters, logical constants and applications are easy. We only show the
λ-abstraction case. Suppose A is [λxβCγ ]. By the inductive hypothesis, for

all k ∈M and b ∈ Dβ, there is a unique value in Eval
I(C,mk, (ϕk, [b/x])).

Let f : M × Dβ → Dγ be the function taking (k, b) to this unique value.

In order to conclude f ∈ Eval
I(A,m, ϕ), we must verify that f ∈ Dγβ. On

the one hand, f(kn, bn) ∈ Eval
I(C,mkn, (ϕkn, [bn/x])) by the choice of f.

On the other hand, f(k, b)n ∈ Eval
I(C,mkn, (ϕkn, [bn/x])) by Lemma 21.

Using the inductive hypothesis,

Eval
I(C,mkn, (ϕkn, [bn/x]))

is a singleton and we must have

f(k, b)n = f(kn, bn)

which verifies f ∈ Dγα. Finally, suppose g ∈ Eval
I(A,m, ϕ). For any

k ∈ M and b ∈ Dβ , we must have g(k, b) ∈ Eval
I(C,mk, (ϕk, [b/x])) and

so g(k, b) = f(k, b). Thus g = f and Eval
I(A,m, ϕ) is a singleton. �

We can now prove Theorem 6. Let EI,m
ϕ (A) be the unique member of

Eval
I(A,m, ϕ) for all A ∈ wffα(S), m ∈M and assignments ϕ into D. Note

that EI,m
ϕ (w) = I(w)m since Eval

I(w,m,ϕ) = {I(w)m} and so EI,e
ϕ (w) =

I(w) for each parameter or constant w. It remains to check the conditions
in Definition 4. For each variable x, Emϕ (x) = ϕ(x) since Eval

I(x,m, ϕ) =
{ϕ(x)}. For each parameter or constant w, we have Emϕ (w) = I(w)m =

Eeψ(w)m. Since Emϕ (F) ∈ Eval
I(F,m, ϕ) and Emϕ (B) ∈ Eval

I(B,m, ϕ), we

know Emϕ (F)@Emϕ (B) ∈ Eval
I([FB],m, ϕ). Hence

Emϕ (FB) = Emϕ (F)@Emϕ (B).

Finally,
Emϕ (λxβAα) = f ∈ Eval

I([λxβAα],m, ϕ) ⊆ Dαβ

where f(k, b) ∈ Eval
I(A,mk, (ϕk, [b/x])), i.e., f(k, b) = EI,mk

ϕk,[b/x](A). Thus

all the conditions in Definition 4 hold and the proof is complete.
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