
Reducing Higher-Order Theorem Proving to a
Sequence of SAT Problems

Chad E. Brown

Saarland University, Saarbrücken, Germany

Abstract. We describe a complete theorem proving procedure for higher-
order logic that uses SAT-solving to do much of the heavy lifting. The
theoretical basis for the procedure is a complete, cut-free, ground refuta-
tion calculus that incorporates a restriction on instantiations. The refined
nature of the calculus makes it conceivable that one can search in the
ground calculus itself, obtaining a complete procedure without resorting
to meta-variables and a higher-order lifting lemma. Once one commits
to searching in a ground calculus, a natural next step is to consider
ground formulas as propositional literals and the rules of the calculus
as propositional clauses relating the literals. With this view in mind, we
describe a theorem proving procedure that primarily generates relevant
formulas along with their corresponding propositional clauses. The pro-
cedure terminates when the set of propositional clauses is unsatisfiable.
We prove soundness and completeness of the procedure. The procedure
has been implemented in a new higher-order theorem prover, Satallax,
which makes use of the SAT-solver MiniSat. We also describe the imple-
mentation and give some experimental results.

Keywords: higher-order logic, simple type theory, higher-order theorem
proving, abstract consistency, SAT solving

1 Introduction

There are a number of distinct aspects of automated theorem proving. First,
there is the usual combinatorial explosion already associated with search in the
propositional case. Second, there is the problem of finding the correct instanti-
ations for quantifiers. The instantiation problem appears in the first-order case.
A third issue that appears in the higher-order case is how one builds in certain
basic mathematical properties (e.g., extensionality and choice).

In this paper we give a complete theorem proving procedure for higher-order
logic with extensionality and choice. The procedure separates the first issue
from the second and third. We start from a complete ground calculus which
already builds in extensionality and choice as well as certain restrictions on
instantiations. Given a set of formulas to refute, the ground calculus can be used
to suggest a sequence of relevant formulas which may be involved in a refutation.
The procedure generates propositional clauses corresponding to the the meaning
of these relevant formulas. When the set of propositional clauses is unsatisfiable
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(in the propositional sense), then the original set of higher-order formulas is
unsatisfiable (in the higher-order Henkin model sense). Conversely, when the
original set of higher-order formulas is unsatisfiable, then an unsatisfiable set of
propositional clauses will eventually be generated.

Such a procedure has been implemented in the new higher-order theorem
prover Satallax.1 The first implementation of Satallax was in Steel Bank Com-
mon Lisp. This earlier version, Satallax 1.4, competed in the higher-order division
of CASC in 2010 [10]. Satallax 1.4 was able to prove 120 out of 200 problems,
coming in second to LEO-II [4] which proved 125 out of 200 problems. The
latest version of Satallax, Satallax 2.0, is implemented in Objective Caml. The
SAT-solver MiniSat [6] (coded in C++) is used to determine propositional un-
satisfiability.

2 Preliminaries

We begin with a brief presentation of Church’s simple type theory with a choice
operator. For more details see a similar presentation in [3]. Simple types (σ, τ)
are given inductively: o|ι|σσ. Types στ correspond to functions from σ to τ .
Terms s, t are generated inductively x|c|st|λx.s where x ranges over variables
and c ranges over the logical constants ⊥,→, ∀σ, =σ, ∗ and εσ. A name is either
a variable or a logical constant. A decomposable name is either a variable or εσ
for some σ. We use δ to range over decomposable names.

Each variable has a corresponding type σ, and for each type there is a count-
ably infinite set of variables of this type. Likewise each logical constant has a
corresponding type: ⊥ : o, →: ooo, ∀σ : (σo)o, =σ: σσo, ∗ : ι and εσ : (σo)σ.
The constant εσ is a choice operator at type σ. The constant ∗ plays the role of
a “default” element of the nonempty type ι. Types can be assigned to (some)
terms in the usual way. From now on we restrict ourselves to typed terms and
let Λσ be the set of terms of type σ. A formula is a term s ∈ Λo.

We adopt common notational conventions: stu means (st)u, s =σ t (or s = t)
means =σ st, s → t means → st, ¬s means s → ⊥, > means ¬⊥, s 6=σ t (or
s 6= t) means ¬(s =σ t), ∀x.s means ∀σλx.s and εx.s means εσλx.s. Binders
have as large a scope as is consistent with given parenthesis. For example, in
∀x.px → qx the occurrence of x in qx is bound by the ∀. The set Vt of free
variables of t is defined as usual.

An accessibility context (C) is a term with a hole []σ of the form []s1 · · · sn,
¬([]s1 · · · sn), ([]s1 · · · sn) 6=ι s or s 6=ι ([]s1 · · · sn). We write C[s] for the term one
obtains by putting s into the hole. A term s is accessible in a set A of formulas
iff there is an accessibility context C such that C[s] ∈ A.

Let [s] denote a βη-normal form of s that makes a canonical choice of bound
variables. That is, for any s, t ∈ Λσ, [s] = [t] iff s and t are αβη-equivalent. (In
the implementation, de Bruijn indices are used.) A term s is normal if [s] = s.

A substitution is a type preserving partial function from variables to terms.
If θ is a substitution, x is a variable, and s is a term that has the same type
1 Satallax is available at satallax.com.
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as x, we write θxs for the substitution that agrees everywhere with θ except
θxsx = s. For each substitution θ let θ̂ be the usual extension of θ to all terms in
a capture-avoiding manner.

A frame D is a typed collection of nonempty sets such that Do = {0, 1} and
Dστ is a set of total functions from Dσ to Dτ . An assignment I into D is a
mapping from variables and logical constants of type σ into Dσ. An assignment
I is logical if it interprets each logical constant to be an element satisfying the
corresponding logical property. For example, if I is logical, then I⊥ = 0. An
assignment I is an interpretation if it can be extended in the usual way to be a
total function Î mapping each Λσ into Dσ. A Henkin model (D, I) is a frame D
and a logical interpretation I into D. We say formula s is satisfied by a Henkin
model (D, I) if Îs = 1. A set A of formulas is satisfied by a Henkin model if
each formula in A is satisfied by the model.

Let A be a set of formulas. A term s is discriminating in A iff there is a term
t such that s 6=ι t ∈ A or t 6=ι s ∈ A. For each set A of formulas and each type
σ we define a nonempty universe UAσ ⊆ Λσ as follows.

– Let UAo = {⊥,¬⊥}.
– Let UAι be the set of discriminating terms in A if there is some discriminating

term in A.
– Let UAι = {∗} if there are no discriminating terms in A.
– Let UAστ = {[s]|s ∈ Λστ ,Vs ⊆ VA}.

When the set A is clear in context, we write Uσ.
We call a finite set of normal formulas a branch. A cut-free tableau calculus

for higher-order logic with extensionality is given in [5]. The calculus is complete
with respect to Henkin models without choice. The details of the completeness
proof indicated that one can restrict instantiations for quantifiers on base types
to terms occurring on one side of a disequation. This restriction is shown com-
plete for the first-order case in [5]. The calculus is extended to include choice
in [3] and the restriction on instantiations is proven complete in the higher-order
case. The proof of completeness makes use of abstract consistency. A set Γ of
branches is an abstract consistency class if it satisfies all the conditions in Fig-
ure 1. This definition differs slightly from the one in [3] because we are using →
instead of ¬ and ∨. With obvious modifications to account for this difference,
Theorem 2 in [3] implies that every A ∈ Γ (where Γ is an abstract consistency
class) is satisfiable by a Henkin model. We state this here as the Model Existence
Theorem.

Theorem 1 (Model Existence Theorem). Let Γ be an abstract consistency
class. Each A ∈ Γ is satisfiable by a Henkin model.

3 Mapping into SAT

We next describe a simple mapping from higher-order formulas into propositional
literals and clauses. The essential idea is to abstract away the semantics of all
logical connectives except negation.
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C⊥ ⊥ is not in A.
C¬ If ¬s is in A, then s is not in A.
C6= s 6=ι s is not in A.
C→ If s→ t is in A, then A ∪ {¬s} or A ∪ {t} is in Γ .
C¬→ If ¬(s→ t) is in A, then A ∪ {s,¬t} is in Γ .
C∀ If ∀σs is in A, then A ∪ {[st]} is in Γ for every t ∈ UAσ .
C¬∀ If ¬∀σs is in A, then A ∪ {¬[sx]} is in Γ for some variable x.
Cmat If δs1 . . . sn is in A and ¬δt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si 6= ti} is in Γ for some i ∈ {1, . . . , n}.
Cdec If δs1 . . . sn 6=ι δt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si 6= ti} is in Γ for some i ∈ {1, . . . , n}.
Ccon If s =ι t and u 6=ι v are in A,

then either A ∪ {s 6= u, t 6= u} or A ∪ {s 6= v, t 6= v} is in Γ .
Cbq If s =o t is in A, then either A ∪ {s, t} or A ∪ {¬s,¬t} is in Γ .
Cbe If s 6=o t is in A, then either A ∪ {s,¬t} or A ∪ {¬s, t} is in Γ .
Cfq If s =στ t is in A, then A ∪ {[∀x.sx =τ tx]} is in Γ

for some x ∈ Vσ \ (Vs ∪ Vt).
Cfe If s 6=στ t is in A, then A ∪ {¬[∀x.sx =τ tx]} is in Γ

for some x ∈ Vσ \ (Vs ∪ Vt).
Cε If εσs is accessible in A, then either A ∪ {[s(εs)]} is in Γ or

there is some x ∈ Vσ \ Vs such that A ∪ {[∀x.¬(sx)]} is in Γ .

Fig. 1. Abstract consistency conditions (must hold for every A ∈ Γ )

Let Atom be a countably infinite set of propositional atoms. For each atom
a, let a denote a distinct negated atom. A literal is an atom or a negated atom.
Let Lit be the set of all literals. Let a denote a. A clause is a finite set of literals,
which we write as l1 t · · · t ln. A propositional assignment is a mapping Φ from
Atom to {0, 1}. We extend any such Φ to literals by taking Φ(a) = 1−Φ(a). We
say an assignment Φ satisfies a clause C if there is some literal l ∈ C such that
Φl = 1. An assignment Φ satisfies a set S of clauses if Φ satisfies C for all C ∈ S.

Let b.c be a function mapping Λo into Lit such that b¬sc = bsc, bsc = b[s]c,
and if bsc = btc, then Is = It in every Henkin model (D, I).

Remark 1. In the implementation, bsc = btc whenever s and t are the same up
to βη and the removal of double negations. Under some flag settings, symmetric
equations u = v and v = u are assigned the same literal.

We say Φ is a pseudo-model of A if Φbsc = 1 for all s ∈ A. We say an
assignment Φ is Henkin consistent if there is a Henkin model (D, I) such that
Φbsc = Îs for all s ∈ Λo.

4 States and Successors

Definition 1. A quasi-state Σ is a 5-tuple (FΣp ,F
Σ
a ,U

Σ
p ,U

Σ
a ,C

Σ) where FΣp and
FΣa are finite sets of normal formulas, UΣp and UΣa are finite sets of normal
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terms, and CΣ is a finite set of clauses. We call formulas in FΣp passive formulas,
formulas in FΣa active formulas, terms in UΣp passive instantiations and terms
in UΣa active instantiations.

Given a quasi-state Σ, we define the following notation:

FΣ := FΣp ∪ FΣa UΣ := UΣp ∪ UΣa UΣp,σ := UΣp ∩ Λσ UΣa,σ := UΣa ∩ Λσ
During the procedure, we will only consider quasi-states that satisfy certain

invariants. Such a quasi-state will be called a state. Before giving the technical
definition of a state, we consider two simple examples. In these examples we
will refer to the quasi-states as states, as they will always satisfy the relevant
properties.

Each step of the search process will pass from one state to a successor state.
The passive formulas and passive instantiations of a successor state will always
include all the passive formulas and passive instantiations of the previous state.
Likewise, all the clauses of the previous state will be clauses of the successor state.
Often we obtain a successor state by moving an active formula (instantiation)
to the set of passive formulas (instantiations). We will refer to this as processing
the formula (instantiation).

Example 1. Let p, q : o be variables. Suppose we wish to refute the branch
with two formulas: p and ∀q.p → q. We begin with a state Σ0 with FΣ0

p = ∅,
FΣ0
a = {p, ∀q.p → q}, UΣ0

p = {⊥,>}, UΣ0
a = ∅ and CΣ0 contains exactly the

two unit clauses bpc and b∀q.p → qc. We will refute this branch in one step. In
particular, we process the formula ∀q.p → q by moving it from being active to
passive and by applying all the instantiations of type o in UΣ0

p . This results in
a state Σ1 in which FΣ1

p = {∀q.p → q}, FΣ1
a = {p, p → ⊥, p → >}, UΣ1

p = UΣ0
p ,

UΣ1
a = UΣ0

a and CΣ1 contains the two unit clauses from CΣ0 as well as the two
clauses b∀q.p→ qc t bp → ⊥c and b∀q.p→ qc t bp → >c. Note that bp → ⊥c
is the same as bpc. Clearly there is no propositional assignment satisfying the
clauses in CΣ1 . This completes the refutation. The two states can be displayed
as in Figure 2.

Fp Fa Up Ua C

Σ0 p, ∀q.p→ q ⊥, > bpc
b∀q.p→ qc

Σ1 ∀q.p→ q���
�∀q.p→ q b∀q.p→ qc t bpc

p→ ⊥, p→ > b∀q.p→ qc t bp→ >c

Fig. 2. States from Example 1

Example 2. Let p : ιo and x : ι be variables. Suppose we wish to prove the fol-
lowing basic property of the choice operator ει: ∀x.px→ p(ειp). The refutation
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will proceed in seven steps taking us from an initial state Σ0 (corresponding to
assuming the negation) to a state Σ7 such that CΣ7 is propositionally unsat-
isfiable. The states Σi for i ∈ {0, . . . , 7} are indicated in Figure 3. In the first
step we process ¬∀x.px→ p(εp) by choosing a fresh variable y : ι and including
the new formula ¬(py → p(εp)) and a clause relating the literals correspond-
ing to the two formulas. The resulting state is Σ1. We obtain Σ2 by processing
¬(py → p(εp)) and obtaining two new formulas py and ¬p(εp) and two new
clauses. We obtain Σ3 by processing py. In general, processing such a formula
involves mating it with all passive formulas of the form ¬pt. Since there are no
such passive formulas (in particular, ¬p(εp) is active), Σ3 only differs from Σ2

in that py has been made passive. We obtain Σ4 by processing ¬p(εp). This
involves mating it with the passive formula py to obtain the formula y 6= εp and
adding a new clause. (The reader should note that the new clause in Σ4 will
not be used to show the final set of clauses is propositionally unsatisfiable.) To
obtain Σ5 we process y 6= εp. Since y and εp are discriminating terms in the set
of passive formulas of Σ5, we add them to the set of active instantiations. Also,
since εp is accessible in FΣ5

p , we include the formulas ∀x.¬px and p(εp) as well
as a clause corresponding to the meaning of the choice operator ε. We obtain
Σ6 by processing ∀x.¬px. In principle, this means instantiating with all passive
instantiations of type ι, but we have no passive instantiations of this type. Fi-
nally, we obtain Σ7 by processing the instantiation y. Since y has type ι, we will
use it as an instantiation for the passive formula ∀x.¬px. As a consequence, we
add the formula ¬py and a corresponding clause. At this point, the clauses are
propositionally unsatisfiable and we are done.

Fp Fa Up Ua C

Σ0 ¬∀x.px→ p(εp) b∀x.px→ p(εp)c
Σ1 ¬∀x.px→ p(εp)((((

(((¬∀x.px→ p(εp) b∀x.px→ p(εp)c t bpy → p(εp)c
¬(py → p(εp))

Σ2 ¬(py → p(εp)) ((((
(((¬(py → p(εp)) bpy → p(εp)c t bpyc

py, ¬p(εp) bpy → p(εp)c t bp(εp)c
Σ3 py ��py

Σ4 ¬(p(εp)) ���¬p(εp) bpyc t bp(εp)c t by = εpc
y 6= εp

Σ5 y 6= εp ���y 6= εp y, εp bp(εp)c t b∀x.¬pxc
∀x.¬px, p(εp)

Σ6 ∀x.¬px ���
�∀x.¬px, p(εp)

Σ7 ¬py y �y b∀x.¬pxc t bpyc

Fig. 3. States from Example 2
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S⊥ If ⊥ is in Fp, then b⊥c is in C.

S 6= If s 6=ι s is in Fp, then bs = sc is in C.

S→ If s→ t is in Fp and t is not ⊥, then {¬s, t} ⊆ F and bs→ tc t b¬sc t btc
is in C.

S¬→ If ¬(s→ t) is in Fp, then {s,¬t} ⊆ F, bs→ tc t bsc and bs→ tc t b¬tc are in C.

S∀ If ∀σs is in Fp and t ∈ Up,σ, then [st] ∈ F and b∀σsc t bstc is in C.

S¬∀ If ¬∀σs is in Fp, then there is some variable x of type σ such that

¬[sx] ∈ F and b∀σsc t bsxc is in C.

Smat If δs1 . . . sn and ¬δt1 . . . tn are in Fp where n ≥ 1, then si 6= ti is in F for each

i ∈ {1, . . . , n} and bδs1 . . . snc t bδt1 . . . tnc t bs1 6= t1c t · · · t bsn 6= tnc is in C.

Sdec If δs1 . . . sn 6=ι δt1 . . . tn is in Fp where n ≥ 1, then si 6= ti is in F for each

i ∈ {1, . . . , n} and bδs1 . . . sn = δt1 . . . tnc t bs1 6= t1c t · · · t bsn 6= tnc is in C.

Scon If s =ι t and u 6=ι v are in Fp, then {s 6= u, t 6= u, s 6= v, t 6= v} ⊆ F

and the following four clauses are in C:

bs = tc t bu = vc t bs 6= uc t bs 6= vc, bs = tc t bu = vc t bs 6= uc t bt 6= vc
bs = tc t bu = vc t bt 6= uc t bs 6= vc, bs = tc t bu = vc t bt 6= uc t bt 6= vc

Sbq If s =o t is in Fp, then {s, t,¬s,¬t} ⊆ F and bs = tc t bsc t b¬tc
and bs = tc t b¬sc t btc are in C.

Sbe If s 6=o t is in Fp, then {s, t,¬s,¬t} ⊆ F and bs = tc t bsc t btc
and bs = tc t b¬sc t b¬tc are in C.

Sfq If s =στ t is in Fp, then there is some x ∈ Vσ \ (Vs ∪ Vt) such that

[∀x.sx =τ tx] is in F and bs = tc t b∀x.sx = txc is in C.

Sfe If s 6=στ t is in Fp, then there is some x ∈ Vσ \ (Vs ∪ Vt) such that

[¬∀x.sx =τ tx] is in F and bs = tc t b¬∀x.sx = txc is in C.

Sε If εσs is accessible in Fp, then there is some x ∈ Vσ \ Vs such that

[s(εs)] and [∀x.¬(sx)] are in F and bs(εs)c t [∀x.¬(sx)] is in C.

Fig. 4. Conditions on a quasi-state Σ = (Fp,Fa,Up,Ua,C)

Definition 2. A quasi-state Σ = (FΣp ,F
Σ
a ,U

Σ
p ,U

Σ
a ,C

Σ) is a state if the condi-
tions in Figure 4 hold and for every clause C in CΣ and every literal l ∈ C, either
l = bsc for some s ∈ FΣ or l = bsc for some s ∈ FΣp .

We say a propositional assignment Φ satisfies a state Σ if Φ satisfies CΣ .
We say Σ is propositionally satisfiable if there is a Φ such that Φ satisfies Σ.
Otherwise, we say Σ is propositionally unsatisfiable. Furthermore, we say Σ
is Henkin satisfiable if there is a Henkin consistent propositional assignment
satisfying CΣ . Note that checking whether Σ is propositionally satisfiable is
simply a SAT-problem.

A variable x is fresh for a state Σ if x is not free in any s ∈ FΣ ∪ UΣ .
Given a branch A, an initial state Σ for A is a state with A ⊆ FΣ , and

CΣ = {bsc|s ∈ A}. (We require A ⊆ FΣ rather than A ⊆ FΣa to allow for the
possibility that some formulas in A are passive rather than active in an initial
state. In practice, this could result from some preprocessing of formulas in A.)



8

To see that for any branch A there is an initial state, consider Σ with FΣp = ∅,
FΣa = A, UΣp = ∅, UΣa = ∅ and CΣ = {bsc|s ∈ A}.

Definition 3. We say a state Σ′ is a successor of a state Σ (and write Σ → Σ′)
if FΣp ⊆ FΣ

′

p , FΣa ⊆ FΣ
′
, UΣp ⊆ UΣ

′

p , UΣa ⊆ UΣ
′
, CΣ ⊆ CΣ

′
, and if Σ is Henkin

satisfiable, then Σ′ is Henkin satisfiable.

Note that the successor relation is reflexive and transitive. Also, soundness of
the procedure is built into the definition of the successor relation.

Proposition 1 (Soundness). Let A be a branch. If there is a propositionally
unsatisfiable Σ′ such that ΣA → Σ′, then A is unsatisfiable.

Proof. Assume (D, I) is a Henkin model of A. Choose Φ such that Φbsc = Îs
for each s ∈ A. Clearly, Φ demonstrates that ΣA is Henkin satisfiable. On the
other hand, since Σ′ is propositionally unsatisfiable, it is Henkin unsatisfiable.
This contradicts the definition of ΣA → Σ′.

A strategy which chooses a successor state for each propositionally satisfiable
state will yield a sound procedure. One such strategy is to interleave two kinds of
actions: (1) process active formulas and instantiations while making the minimal
number of additions of formulas and clauses consistent with the invariants in
Figure 4 and (2) generate new active instantiations. To ensure soundness, when
processing a formula ¬∀σs a procedure should choose a fresh variable x, add
¬[sx] to Fa and add b∀σsc t bsxc to C.

If a strategy does not lead to a propositionally unsatisfiable state, then it
will give a finite or infinite path of states. If the strategy is fair, this path will
satisfy certain fairness properties. In this case, we can use the path to prove the
original branch is satisfiable. That is, we can conclude that every fair strategy
is complete.

Definition 4. Let α ∈ ω ∪ {ω}. An α-path (or, simply path) is an α-sequence
Σ = (Σi)i<α of propositionally satisfiable states such that Σi → Σi+1 for each i
with i + 1 < α. We say a type σ is a quantified type on the path if there exist
i < α and s such that ∀σs ∈ FΣi . Such a path is fair if the following conditions
hold:

1. For all i < α and s ∈ FΣi
a there is some j ∈ [i, α) such that s ∈ F

Σj
p .

2. If σ is a quantified type, then for all i < α, A ⊆ FΣi and t ∈ UAσ there is
some j ∈ [i, α) such that t ∈ U

Σj
p .

Given a branch A0, we will start with an initial state Σ0 for A0. Our theorem
proving procedure will construct a sequence of successor states in such a way
that, unless some state is propositionally unsatisfiable, the sequence will be a
fair path. In order to prove completeness of this procedure, it is enough to prove
that if there is a fair path starting from Σ0, then A0 is satisfiable. This result
will be Theorem 2 given at the end of this section.

For the remainder of this section we assume a fixed α and fair α-path Σ.
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Definition 5. Let i < α be given. We say a branch A is i-supported if A ⊆ FΣi

and there is a pseudo-model Φ of A satisfying Σi. We say a branch A is i-
consistent if A is j-supported for all j ∈ [i, α).

Lemma 1. Let i < α and j ∈ [i, α) be given. If A is j-supported and A ⊆ FΣi ,
then A is i-supported.

Proof. This follows from CΣi ⊆ CΣj .

Let Γ be the set of all branches A such that A is i-consistent for some i < α.
We will prove Γ is an abstract consistency class.

Lemma 2. Let A be an j-consistent branch. Let A1, . . . , An be branches such
that A ⊆ Al ⊆ FΣj for each l ∈ {1, . . . , n}. Either there is some l ∈ {1, . . . , n}
such that Al is j-consistent or there is some k ∈ [j, α) such that Al is not k-
supported for each l ∈ {1, . . . , n}.

Proof. Assume none of A1, . . . , An is j-consistent. Let k1, · · · , kn ∈ [j, α) be such
that Al is not kl-supported for each l ∈ {1, . . . , n}. Let k be the maximum of
k1, . . . , kn. By Lemma 1 each Al is not k-supported.

Lemma 3. Γ is an abstract consistency class.

Proof. We verify a representative collection of cases.

C⊥ Suppose ⊥ ∈ A and A is i-consistent. By fairness there is some j ∈ [i, α)
such that ⊥ ∈ F

Σj
p . By S⊥ the unit clause b⊥c is in CΣj . This contradicts A

being j-supported.
C¬ Suppose ¬s and s are in A. Since no propositional assignment Φ can have

Φb¬sc = 1 and Φbsc = 1, A cannot be i-consistent for any i.
C→ Suppose s → t is in an i-consistent branch A. If t is ⊥, then A ∪ {¬s} is

the same as A and so A ∪ {¬s} is i-consistent. Assume t is not ⊥. Since A
is i-consistent, we know A ⊆ FΣi and so s → t ∈ FΣi . By fairness there is
some j ∈ [i, α) such that s → t ∈ F

Σj
p . By S→ we know {¬s, t} ⊆ FΣj and

bs→ tc t bsc t btc is in CΣj . Note that A ∪ {¬s} ⊆ FΣk and A ∪ {t} ⊆ FΣk

for every k ∈ [j, α). Assume neither A∪{¬s} nor A∪{t} is j-consistent. By
Lemma 2 there is some k ∈ [j, α) such that neither A ∪ {¬s} nor A ∪ {t} is
k-supported. Since A is i-consistent, A is k-supported and has some pseudo-
model Φ satisfying Σk. Since bs→ tct bsct btc is in CΣk and Φbs→ tc = 1,
we must have Φbsc = 0 or Φbtc = 1. Thus Φ witnesses that either A∪{¬s} or
A∪ {t} is k-supported, contradicting our choice of k. Hence either A∪ {¬s}
or A ∪ {t} must be j-consistent.

C¬→ Suppose ¬(s → t) is in an i-consistent branch A. Since A is i-consistent,
we know ¬(s → t) ∈ FΣi . By fairness there is some j ∈ [i, α) such that
¬(s → t) ∈ F

Σj
p . By S¬→ we know {s,¬t} ⊆ FΣj , and both bs → tc t bsc

and bs→ tctbtc are in CΣj . We prove A∪{s,¬t} is j-consistent. Let k ∈ [j, α)
be given. Since A is i-consistent, it has some pseudo-model Φ satisfying Σk.
Since Φb¬(s → t)c = 1, we must have Φbsc = 1 and Φb¬tc = 1. Hence Φ is
a pseudo-model of A ∪ {s,¬t} and so A ∪ {s,¬t} is k-supported. Therefore,
A ∪ {s,¬t} is j-consistent.
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C∀ Let A be an i-consistent branch such that ∀σs ∈ A and t ∈ UAσ . Note that
∀σs ∈ A ⊆ FΣi witnesses that σ is a quantified type on the path. By fairness
there is some j ∈ [i, α) such that ∀s ∈ F

Σj
p and t ∈ U

Σj
p . By S∀ [st] ∈ FΣj

and b∀σsc t bstc is in CΣj . We prove A is j-consistent. Let k ∈ [j, α) be
given. Since A is i-consistent, it has some pseudo-model Φ satisfying Σk.
Since Φb∀sc = 1 and b∀σsc t bstc is in CΣj , we must have Φbstc = 1 and so
A ∪ {[st]} is k-supported. (We know b[st]c = bstc as a property of b·c.)

C¬∀ Let A be an i-consistent branch such that ¬∀σs ∈ A. By fairness there is
some j ∈ [i, α) such that ¬∀s ∈ F

Σj
p . By S¬∀ there is some variable x such

that ¬[sx] ∈ FΣj and b∀σsc t bsxc is in CΣj . Let k ∈ [j, α) be given. Let
Φ be a pseudo-model of A satisfying Σk. Since Φb¬∀sc = 1 we must have
Φb¬(sx)c = 1 and so A ∪ {¬[sx]} is k-supported.

Ccon Suppose s =ι t and u 6=ι v are in an i-consistent branch A. By fairness
there is some j ∈ [i, α) such that s =ι t and u 6=ι v are F

Σj
p . By Scon

{s 6= u, t 6= u, s 6= v, t 6= v} ⊆ FΣj and the following four clauses are in CΣj :
bs = tc t bu = vc t bs 6= uc t bs 6= vc, bs = tc t bu = vc t bs 6= uc t bt 6= vc
bs = tc t bu = vc t bt 6= uc t bs 6= vc, bs = tc t bu = vc t bt 6= uc t bt 6= vc
Assume neither A ∪ {s 6= u, t 6= u} nor A ∪ {s 6= v, t 6= v} is j-consistent.
By Lemma 2 there is some k ∈ [j, α) such that neither A ∪ {s 6= u, t 6= u}
nor A ∪ {s 6= v, t 6= v} is k-supported. Let Φ be a pseudo-model of A sat-
isfying Σk. Note that Φbs = tc = 1 and Φbu = vc = 0. By examining the
four clauses above, it is clear that we must either have Φbs 6= uc = 1 and
Φbt 6= uc = 1 or have Φbs 6= vc = 1 and Φbt 6= vc = 1, a contradiction.

Theorem 2 (Model Existence). Let A0 be a branch and Σ be a fair α-path
such that Σ0 is an initial state for ΣA0 . Then A0 is satisfiable.

Proof. By Theorem 1 it is enough to prove A0 is 0-consistent. Let j ∈ [0, α) be
given. Clearly A0 ⊆ FΣ0 ⊆ FΣj . Let Φ satisfy Σj . For each s ∈ A0, the unit
clause bsc is in CΣj and so Φbsc = 1.

5 Implementation

A procedure along the lines described above has been implemented in a theorem
prover named Satallax. There are some minor differences from the abstract de-
scription. One difference is that double negations are eliminated during normal-
ization in the implementation (e.g., the normal form of p(λx.¬¬x) is p(λx.x)).
Another difference is that there is no default constant ∗ of type ι. If there are no
discriminating terms of type ι, then either a variable or the term ειx.⊥ is used
as an instantiation of type ι. Also, there may be base types other than ι.

The first version of Satallax was written in Steel Bank Common Lisp. In
this earlier version, MiniSat was restarted and sent all the clauses generated so
far whenever propositional satisfiability was to be tested. The latest version of
Satallax is implemented in Objective Caml. A foreign function interface allows
Satallax to call MiniSat functions (coded in C++) in order to add new clauses
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to the current set of clauses and to test for satisfiability of the current set of
clauses. This is a much more efficient way of using MiniSat.

Problems are given to Satallax as a TPTP file in THF format [11]. Such a
file may include axioms and optionally a conjecture. The conjecture, if given,
is negated and treated as an axiom. Logical constants that occur in axioms are
rewritten in favor of the basic logical constants ⊥, →, =σ, ∀σ and εσ. Also, all
definitions are expanded and the terms are βη-normalized. (De Bruijn indices are
used to deal with α-convertibility.) If the normalized axiom s is of the particular
form ∀px.px → p(ep) or ∀p.(¬∀x.¬px) → p(ep) where e is a constant of type
(σo)σ for some σ, then e is registered as a choice operator of type σ and the
axiom s is omitted from the initial branch. Every other normalized axiom is an
initial assumption. The choice rule can be applied with every name registered as
a choice operator.

There are about a hundred flags that can be set in order to control the order
in which the search space is explored. A collection of flag settings is called a
mode. Currently, there are a few hundred modes in Satallax. A particular mode
can be chosen via a command line option. Otherwise, a default schedule of modes
is used and each of the modes on the schedule is given a certain amount of time
to try to refute the problem.

If the flag Split Global Disjunctions is set to true, then Satallax will
decompose the topmost logical connectives including the topmost disjunctions.
This is likely to result in a set of subgoals which can be solved independently.
This is an especially good idea if, for example, the conjecture is a conjunction.
It is, of course, a bad idea if there are many disjunctive axioms.

Once the initial branch is determined, the state is initialized to include a
unit clause for each member and the set of active formulas is initialized to be
the initial branch. The terms ⊥ and ¬⊥ are added as passive instantiations.
Additionally, if the flag Initial Subterms As Instantiations is set to true,
then all subterms of the initial branch are added as passive instantiations. During
the search, discriminating terms of type ι are added as active instantiations. If
there is a quantifier at a function type στ , a process of enumerating normal terms
of type στ is started. Of course, this enumeration process is the least directed
part of the search procedure.

At each stage of the search there are a number of options for continuing
the search. An example of an option is processing a particular active formula.
Another option might be to work on enumerating instantiations of a given type.
The different search options are put into a priority queue as they are generated.
(The priority queue is modified to ensure every option is eventually considered.)
Many flags control the priority given to different options.

The successor relation on states was defined very generally. In particular, it
does not rule out adding more formulas, instantiations and clauses than the ones
suggested by the invariants on states. These additions may be very useful, but
they are not necessary for completeness. A simple example is that, if the flag
Instantiate With Func Diseqn Sides is set to true, the terms s and t are
added as active instantiations whenever an active formula s 6=στ t is processed.
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One of the most useful extensions implemented in Satallax is, under cer-
tain flag settings, to generate higher-order clauses with higher-order literals to
be matched against formulas as the formulas are processed. This is the only
time Satallax uses existential variables. Such higher-order clauses are only used
when every existential variable in the clause has a strict occurrence in some
literal. (A strict occurrence is essentially a pattern occurrence which is not be-
low another existential variable [8].) We also allow for equational literals which
can be used to perform some equational inference. Rather than give a full de-
scription of this extension, we give one example. Suppose we process a formula
∀f∀x∀y.mf(cxy) = c(fx)(mfy) where m : (ιι)ιι, c : ιιι, f : ιι, and x, y : ι. In
addition to processing this in the usual way (applying all passive instantations
of type ιι), we can create a higher-order unit clause mF (cXY ) = c(FX)(mFY )
where F , X and Y are existential variables. The first and last occurrences of
F are strict. The first occurrence of X is strict. Both occurrences of Y are
strict. Now, when processing a new formula s, Satallax uses higher-order pat-
tern matching to check if s is of the form C[mt(cuv)] for some t, u and v. If so,
a propositional clause

b∀f∀x∀y.mf(cxy) = c(fx)(mfy)c t bC[mt(cuv)]c t bC[c(tu)(mtv)]c

is added to the set of clauses and the formula [C[c(tu)(mtv)]] is added to the set
of active formulas to be processed later.

6 Results and Examples

TPTP v5.1.0 contains 2798 problems in THF0 format. Among these, 343 are
known to be satisfiable. (Satallax 2.0 terminates on many of these problems,
recognizing them as satisfiable.) For 1790 of the remaining 2455 problems (73%),
there is some mode that Satallax 2.0 can use to prove the theorem (or show the
assumptions are unsatisfiable) within a minute. For one other problem there is
a mode that proves the theorem in 96 seconds. A strategy schedule running 36
modes for just over 10 minutes can solve each of the 1791 problems.

One reason for the success of Satallax is that it can solve some problems by
brute force. An example of this is the first-order theorem SEV106ˆ5 from the
TPTP. This is a Ramsey-style theorem about graphs and cliques. We assume
there are at least six distinct individuals and that there is a symmetric relation
(i.e., an undirected graph) on individuals. There must be three distinct individ-
uals all of whom are related or all of whom are unrelated. Since we are assuming
there are six distinct individuals, we quickly have six corresponding discrimi-
nating terms. Satallax uses all six of these (blindly) as instantiations for the
existential quantifiers, leading to 63 instantiations. Using mode Mode1 Satallax
generates over 8000 propositional clauses which MiniSat can easily recognize as
unsatisfiable. In most examples only a handful of the clauses are the cause of
unsatisfiability. In this example a 284 clauses are used to show unsatisfiability.

Two higher-order examples from the TPTP that Satallax can solve are
SYO378ˆ5 and SYO379ˆ5. These examples were created in Tps to illustrate
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the concept of quantificational depth, discussed at the end of [1]. Let c : ι be
a variable and define d0 := λx : ι.x = c, d1 := λy : ιo.y = d0 ∧ ∃x.yx and
d2 := λz : (ιo)o.z = d1 ∧ ∃y.zy (where s ∧ t means ¬(s → ¬t) and ∃x.s means
¬∀x.¬s). One of the examples is ∃y.d1y and the other is ∃z.d2z. A high-level
proof is simply to note that d0c, d1d0 and d2d1 are all provable. However, if
we expand all definitions, then these instantiations are no longer so easy to see.
Fortunately, if the flag Instantiate With Func Diseqn Sides is set to true,
then d0 and d1 will appear as the side of a disequation and Satallax will include
them as instantiations early. Verifying the instantiations work is not difficult.
There are modes that can solve these problems within a second.

We also discuss two particularly interesting examples that are not yet in the
TPTP. In both examples we use variables f, g : ιι and x, y : ι.

(∀y.∃x.fx = y)→ ∃g.∀x.(f(gx)) = x (1)

Formula (1) means every surjective function f has a right inverse g.

(∀x∀y.fx = fy → x = y)→ ∃g.∀x.(g(fx)) = x (2)

Formula (2) means every injective function f has a left inverse g.
In both examples (1) and (2) Satallax must enumerate potential instantia-

tions of type ιι for g. Some of the instantiations (e.g., λx.x, f and λx.f(fx))
are unhelpful and only serve to make the search space large. In both cases the
instantiation used in the refutation is λy.εx.fx = y. An equivalent instantiation,
λy.εx.y = fx, is also generated. (While it seems likely that such an equivalent
instantiation could be discarded without sacrificing completeness, there is no
currently known meta-theoretic result to justify this intuition.)

Satallax can prove (1) using mode Mode219 in under 6 seconds. In the pro-
cess it generates 29 higher-order instantiations (candidates for g) and 17776
propositional clauses. It turns out that only 6 of these clauses are required
to determine propositional unsatisfiability. Satallax can prove (2) using mode
Mode218 in about a minute. In the process it generates 24 candidates for g and
117650 propositional clauses. Only 10 of the clauses are needed.

7 Related Work

Smullyan introduced the notion of abstract consistency in 1963 [9]. One of
Smullyan’s applications of abstract consistency is to justify reducing first-order
unsatisfiability of a set M to propositional unsatisfiability of an extended set
R∪M . The procedure described in this paper and implemented in Satallax was
developed without Smullyan’s application in mind. Nevertheless, one can con-
sider the procedure to be both an elaboration of Smullyan’s idea as well as an
extension to the higher-order case.

A different instantiation-based method Inst-Gen is described in [7]. Inst-Gen
generates ground instances of first-order clauses and searches by interacting with
a SAT-solver. This method is implemented in the first-order prover iProver [7].
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Note that iProver is also coded in Objective Caml and uses MiniSat via a for-
eign function interface. Two differences between the Inst-Gen method and the
method in this paper should be noted. First, Inst-Gen assumes the problem is
in clausal normal form. We do not make this assumption. As is well known, a
substitution into a higher-order clause may lead to the need for further clause
normalization. Second, Inst-Gen assumes an appropriate ordering on closures
(clauses with substitutions). This ordering leads to important restrictions on in-
ferences that can significantly improve the performance of Inst-Gen. We do not
make use of any such ordering. In fact, a straightforward attempt to find such
an ordering for the higher-order case is doomed to failure. This can be briefly
indicated by an example. Suppose we define a closure to be a pair C · θ of an
atomic formula C and a substitution θ. The basic condition of a closure ordering
� (see [7]) is that C · σ � D · τ whenever Cσ = Dτ and Cθ = D for some
“proper instantiator” θ. In the higher-order case, we would consider equality of
normal forms instead of strict syntactic equality. Consider two atomic formulas
C := p(λxy.fxy) and D := p(λyx.fxy) where p, f , x and y are variables of
appropriate types. Consider the substitution θp := λfxy.p(λyx.fxy). Clearly
Cθ is β-equivalent to D and Dθ is β-equivalent to C. An appropriate ordering
(assuming θ would be considered a “proper instantiator”) would need to have
C · ∅ � D · ∅ � C · ∅ where ∅ plays the identity substitution.

Regarding higher-order theorem provers, two well-known examples are Tps [2]
and LEO-II [4]. Automated search in Tps is based on expansion proofs while
search in LEO-II is based on a resolution calculus. Both Tps and LEO-II make
use of existential variables which are partially instantiated during search. LEO-II
was the first higher-order prover to take a cooperative approach. LEO-II makes
calls to a first-order theorem prover to determine if the current set of higher-order
clauses maps to an unsatisfiable set of first-order clauses.

8 Conclusion

We have given an abstract description of a search procedure for higher-order
theorem proving. The key idea is to start with a notion of abstract consistency
which integrates a restriction on instantiations. We gave a notion of a state
which consists of finite sets of formulas, instantiations and propositional clauses.
The invariants in the definition of a state correspond to the abstract consistency
conditions. We have given a successor relation on states. Any fair strategy for
choosing successors (until the set of propositional clauses is unsatisfiable) will
give a complete theorem prover.

We have also described the implementation of this procedure as a higher-
order theorem prover Satallax. A version of Satallax last year proved to be
competitive in the higher-order division of CASC in 2010 [10]. The latest im-
plementation (a complete reimplementation in Objective Caml) is more closely
integrated with the SAT-solver MiniSat [6]. The new implementation will com-
pete in the higher-order division of CASC in 2011.
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Satallax is still new and there is a lot of room for improvement and further re-
search. One of the areas where much more research is needed involves generating
useful higher-order instantiations.

Acknowledgements: Thanks to Andreas Teucke whose ongoing work on
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8. Frank Pfenning and Carsten Schürmann. Algorithms for equality and unifica-
tion in the presence of notational definitions. In Thorsten Altenkirch, Wolfgang
Naraschewski, and Bernhard Reus, editors, TYPES, volume 1657 of Lecture Notes
in Computer Science, pages 179–193. Springer, 1998.

9. Raymond M. Smullyan. A unifying principle in quantification theory. Proceedings
of the National Academy of Sciences, U.S.A., 49:828–832, 1963.

10. Geoff Sutcliffe. The 5th IJCAR Automated Theorem Proving System Competition
- CASC-J5. AI Communications, 24(1):75–89, 2011.

11. Geoff Sutcliffe and Christoph Benzmüller. Automated Reasoning in Higher-Order
Logic using the TPTP THF Infrastructure. Journal of Formalized Reasoning,
3(1):1–27, 2010.


