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Abstract. In the 1970s van Benthem Jutting translated Landau’s book
Grundlagen der Analysis into Automath. The type theory of Automath
differs from modern type theories in significant ways. The most impor-
tant difference is that Automath is λ-typed while most modern type
theories are Π-typed. In this paper we define the notion of a faithful re-
production of an Automath signature. We describe how one can obtain a
particular faithful reproduction of a signature corresponding to the Au-
tomath version of Landau’s book. We then consider what properties a
Π-typed type theory must have in order for the faithful reproduction to
be a correct signature. Based on this information, we can give different
mappings of the reproduction into type theories such as ECC and, in
particular, the system Coq.
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1 Introduction

The first large scale mathematical formalization was the Automath version of
Landau’s book Grundlagen der Analysis [9] carried out by van Benthem Jut-
ting [7]. There are some aspects of the Automath language that have not been
incorporated into modern type theories. First and foremost, Automath is λ-
typed while most modern type theories are Π-typed. (An exception is λδ [6],
which is a modern λ-typed type theory. We should note that the van Benthem
Jutting formalization has been ported to λδ [5].) Another unusual aspect of the
Automath language AUT-QE, in which the Landau formalization was carried
out, is so-called type inclusion. Type inclusion allows one to use, e.g., predicates
as propositions.

There is an obvious mapping from the syntax of a Π-typed type theory to
the syntax of a λ-typed type theory: simply change every Π to be a λ. This
mapping is far from injective, of course. Given a correct signature in a λ-typed
type theory, one may ask whether there is a preimage of this mapping that is
also a correct signature in a Π-typed type theory. We explore this question with
some particular signatures corresponding to the van Benthem Jutting Automath
book. It will turn out that one can find an appropriate preimage, assuming one
does a few η-expansions. The fact that these η-expansions are necessary is due
to type inclusion in AUT-QE.
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Once we have an appropriate preimage, we can ask what properties the Π-
typed type theory must have so that the preimage is a correct signature. A
contextual variant of LF would be enough, but a traditional version of LF is
not. The Extended Calculus of Constructions (ECC) is also enough. Finally, we
discuss a particular port of the appropriate preimage to the proof assistant Coq.1

2 Syntax and Type Theories

We start by giving enough syntax to describe both the Automath type theory
AUT-QE and the Π-typed type theories we will consider. Let V be a countably
infinite set of variables, C be a countably infinite set of constants and S be
a set of sorts. Let prop and type be distinct sorts in S. These are the only
two sorts in AUT-QE. We use x, y, z to range over variables, c, d to range over
constants and s to range over sorts. We define terms, substitutions, contexts and
signatures recursively. We use M, N, A, B to range over terms, θ, ϕ to range over
substitutions, Γ to range over contexts and Σ to range over signatures.

Terms (M, N, A, B) ::= x|s|[θ]c|(Πx : A.M)|(λx : A.M)|MN

Substitutions (θ, ϕ) ::= ·|θ, x := M

Contexts (Γ ) ::= ⊙|Γ, x : A

Signatures (Σ) ::= •|Σ, c : (Γ ⊲ A)|Σ, c : (Γ ⊲ M : A)

We write nonempty contexts as x1 : A1, · · · , xn : An instead of ⊙, x1 :
A1, · · · , xn : An. We adopt similar conventions for nonempty substitutions and
nonempty signatures. We also assume the usual notion of a variable x being free
in a term M . We say x is free in a substitution θ if there is some y := M in θ

where x is free in M . We consider α-equivalent terms to be the same. We assume
no variable is listed twice in the domain of a substitution or context. Likewise,
we assume no constant is listed twice in the domain of a signature.

It should be noted that we are diverging from the customary notation for Au-
tomath. For example, an application MN is written as < N > M in Automath
notation. Also, in Automath each occurrence of a constant c is accompanied with
a list of parameters M1, . . . , Mn written as c(M1, . . . , Mn). The corresponding
notation in our case is [θ]c where θ is the substitution x1 := M1, . . . , xn := Mn,
where the variables xi are determined by the context of the declaration of c.

There are substitution operations θM and θ ◦ ϕ allowing us to apply a sub-
stitution θ to a term M or substitution ϕ defined as follows.

– θx := M if x := M is in θ. Otherwise, θx := x.
– θs := s

– θ[ϕ]c := [θ ◦ ϕ]c

1 Files corresponding to the results reported in this paper are available at
http://www.ps.uni-saarland.de/∼cebrown/landau/index.php
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– θ(Πx : A.M) := (Πy : θA.(θ, x := y)M) where y is chosen, depending on θ,
x, A and M , to avoid capture.

– θ(λx : A.M) := (λy : θA.(θ, x := y)M) where y is chosen to avoid capture.
– θ(MN) := (θM)(θN)
– θ ◦ · := ·
– θ ◦ (ϕ, x := M) := (θ ◦ ϕ), x := θM

We define β and η redexes and their reducts as usual:

(λx : A.M)N is a β-redex with reduct [x := N ]M

(λx : A.Mx) is an η-redex with reduct M if x is not free in M

Conversely, if x is not free in M , we say λx : A.Mx is an η-expansion of M .
We can define three congruent reflexive transitive notions of reduction in the
usual way. We write M →β N to mean M β-reduces to N in 0 or more steps
(where the reduction may occur at any subterm position). We use M →η N and
M →βη N to mean the corresponding notion for η or both β and η. For each
∗ ∈ {β, η, βη} we write M ≡∗ N for the corresponding equivalence relations. We
can also apply the equivalence relation ≡∗ to compare two substitutions, two
contexts or two signatures in an obvious way.

Let Σ be a signature. Relative to Σ, we have a notion of δ-reduction.

[θ]c is a δ-redex with reduct θM if c : (Γ ⊲ M : A) is in Σ

We write →Σ
δβ for the congruent reflexive transitive relation induced by δ-

reduction and β-reduction, and ≡Σ
δβ for the corresponding equivalence relation.

We can also apply these relations to substitutions and contexts. We will not
apply these relations to signatures, since they are relative to a signature already.

There are several type theories in the Automath family. The only one of
interest in this paper is AUT-QE, as this is the type theory in which Landau’s
Grundlagen was formalized. The definition of AUT-QE can be found in [4].
For the purpose of this paper, we will not need the full definition of AUT-QE.
The first important fact is that no Π-abstraction Πx : A.M will appear in
any Automath signature, context, substitution or term. All the other language
constructions will be used. In Section 3 we will describe Automath signatures
corresponding to the van Benthem Jutting formalization of Landau’s book. There
we will discuss particular aspects of the AUT-QE type theory that are relevant.

We now turn to a Π-typed type theory. We cannot directly use a pure type
system since we wish to discuss signatures. Furthermore, we wish to include
contextual declarations in signatures as Automath makes extensive use of them.
In most implemented systems, declarations are global, i.e., are not relative to
a context Γ . This is true in the Twelf system [13]. In terms of our notation, a
declaration in a Twelf signature Σ must be of the form c : (⊙ ⊲ A) or c : (⊙ ⊲

M : A). In recent years, work has been done on contextual type theories [11,
1]. While the aim of the work on contextual type theories is the treatment of
meta-variables, this could also give a way to treat declarations in context. A
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practical way to make some contextual definitions in Twelf could be to make use
of the recent module system [14]. (This abuse of the module system should work
unless there is an occurrence of a term [θ]c where a variable free in θ is bound
in the context in which it occurs. There are such occurrences of terms in the
Automath Grundlagen book.) In systems such as Coq [3], definitions can be made
within a context of variables, but they become global definitions in the signature.
This is possible because in type theories such as ECC (Extended Calculus of
Constructions) [10] there are enough universes to guarantee that definitions in
context can always be replaced by global definitions where application is used
instead of substitution. That is, we could use [·]c N1 · · · Nn instead of [x1 :=
N1, . . . , xn := Nn]c. Barendregt gives a pure type system that corresponds (more
or less) to AUT-QE (see page 216 of [2]). A “parking place” sort ∆ is used to
allow for “certain terms.” In practice these “certain terms” would correspond to
the subterms of the form [·]cN1 · · ·Nk with k < n. This mechanism is described in
more detail (in the context of AUT-68) in [8].2 A compromise position is taken
in the λ68 system of [8]. In λ68, definitions are made global and application
is used instead of substitution, but the definitions are made global using new
binders § (instead of λ) and ¶ (instead of Π). These new binders prevent terms
like §x : A.B from being “first class citizens” of the type theory.

We will follow the tradition of pure type systems by defining a type theory
T relative to a set A of axioms and a set R of rules, but depart from the tradi-
tion of pure type systems in two other ways. First, we must include signatures
with contextual declarations. We support contextual declarations by including
substitutions and always pairing constants with substitutions. Second, we define
the type theory in an algorithmic style.3

We consider the set S of sorts to be fixed, with prop and type playing a
special role. Let us further suppose there are two other distinct sorts kindp and
kind. An axiom is a pair s1 : s2 of sorts. Axioms are used to indicate that a sort
is a member of another sort. We will commonly assume axioms prop : kindp and
type : kind. A rule is a triple (s1, s2, s3) of sorts. A rule is used to indicate that
a sort is closed under certain Π-abstractions. We follow the usual convention
(see [2]) of writing (s1, s2) for the rule (s1, s2, s2).

Given sets A of axioms and R of rules, the type theory T := T (A,R) will
consist of four judgments:

– ⊢T Σ sig meaning Σ is a correct signature.

– Σ ⊢T Γ ctx meaning that Γ is a correct context, if Σ is a correct signature.

– Σ; Γ ⊢T M : A meaning that M has type A, if Σ and Γ are correct.

– Σ; Γ ⊢T θ : Γ ′ meaning θ substitutes the variables in dom(Γ ′) within the
context Γ , assuming Σ and Γ are correct.

2 According to Section 3.1 of [8], the idea to use such a sort ∆ for this purpose
originated with van Benthem Jutting.

3 The rules give an abstract description of a simple checker the author has imple-
mented. This checker has been used to justify the claims about which rules are
sufficient to check signatures corresponding to the Grundlagen.
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Axiom
(s1, s2) ∈ A

Σ; Γ ⊢ s1 : s2

Var
x : A ∈ Γ

Σ; Γ ⊢ x : A

Prim
c : (Γ ′

⊢ A) ∈ Σ Σ; Γ ⊢ θ : Γ
′

Σ; Γ ⊢ [θ]c : θA

Def
c : (Γ ′

⊢ M : A) ∈ Σ Σ; Γ ⊢ θ : Γ
′

Σ; Γ ⊢ [θ]c : θA

Ap
Σ; Γ ⊢ M : (Πx : A.B) Σ; Γ ⊢ N : A

Σ; Γ ⊢ MN : ([x := N ]B)
λ

Σ; Γ, x : A ⊢ M : B

Σ; Γ ⊢ (λx : A.M) : (Πx : A.M)

Π
Σ; Γ ⊢ A : s1 Σ; Γ, x : A ⊢ B : s2 (s1, s2, s3) ∈ R

Σ; Γ ⊢ (Πx : A.B) : s3

Conv
Σ; Γ ⊢ M : A A ≡

Σ
δβ B

Σ; Γ ⊢ M : B
SubstE

Σ; Γ ⊢ · : ⊙

SubstC
Σ; Γ ⊢ θ : Γ

′

Σ; Γ ⊢ M : θA

Σ; Γ ⊢ θ, x := M : Γ
′

, x : A
CtxE

Σ ⊢ ⊙ ctx

CtxC
Σ ⊢ · : Γ ctx Σ; Γ ⊢ A : s

Σ ⊢ Γ, x : A ctx
SigE

⊢ Σ sig

SigPrim
⊢ Σ sig Σ ⊢ Γ ctx Σ; Γ ⊢ A : s

⊢ Σ, (c : Γ ⊲ A) sig

SigDef
⊢ Σ sig Σ ⊢ Γ ctx Σ; Γ ⊢ A : s Σ; Γ ⊢ M : A

⊢ Σ, c : (Γ ⊲ M : A) sig

Fig. 1. Type theory T (A,R)

These judgments are defined by the rules in Figure 1. Note that there is no
cumulativity of universes as in ECC, and there is no use of η-conversion. We use
δβ-conversion (relative to the current signature) to check definitional equality.
We make no major claims about the meta-theory of such a type theory T , and
do not intend this paper to be a study of such type theories.

In order to define the notion of a faithful reproduction of an Automath sig-
nature, we define an operator that erases the distinction between Π-binders and
λ-binders by mapping both to λ-binders. We define ⌊−⌋ on all terms, substitu-
tions, contexts and signatures as follows:
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⌊x⌋ := x ⌊s⌋ := s ⌊([θ]c)⌋ := [⌊θ⌋]⌊c⌋ ⌊(Πx : A.M)⌋ := λx : ⌊A⌋.⌊M⌋

⌊(λx : A.M)⌋ := λx : ⌊A⌋.⌊M⌋ ⌊(MN)⌋ := ⌊M⌋⌊N⌋ ⌊·⌋ := ·

⌊(θ, x := M)⌋ := (⌊θ⌋, x := ⌊M⌋) ⌊⊙⌋ := ⊙ ⌊Γ, x : A⌋ := ⌊Γ ⌋, x : ⌊A⌋

⌊•⌋ := • ⌊(Σ, c : (Γ ⊢ A))⌋ := ⌊Σ⌋, c : (⌊Γ ⌋ ⊢ ⌊A⌋)

⌊(Σ, c : (Γ ⊢ M : A))⌋ := ⌊Σ⌋, c : (⌊Γ ⌋ ⊢ ⌊M⌋ : ⌊A⌋)

Let Σ be a signature and T be a type theory. A faithful reproduction of Σ

in T is a signature Σ′ such that ⊢T Σ′ sig and ⌊Σ′⌋ is the same as Σ. For each
∗ ∈ {β, η, βη}, a faithful reproduction of Σ in T modulo ∗ is a signature Σ′ such
that ⊢T Σ′ sig and ⌊Σ′⌋ ≡∗ Σ.

3 The Automath Landau Book

Information about the Automath formalization of Landau can be found in [7,
15]. The Automath “book” is a file with 10702 lines. This book determines a
signature we will denote by ΣA. The signature declares 32 primitive (undefined)
constants and 6878 defined constants, for a total of 6910 signature elements.
Each of these signature elements is declared on a unique line. The remaining
lines either open or close “paragraphs” or change the current context Γ . The
paragraph system of Automath was important part of making the formalization
process realistic since it allowed for names to be reused without conflicts. We can
safely ignore the paragraph system when discussing the signature ΣA. To avoid
conflicts with names, as well as to help locate signature elements in the original
Automath book, we incorporate the Automath paragraph names as prefixes to
the original signature element name. For example, one of the constants declared
in ΣA is l e is. In the Automath book, the corresponding name is simply is,
which is declared in the paragraph e which is a subparagraph of the (global)
paragraph l. When no conflict will arise, we will omit unnecessary prefixes for
the sake of readability.

We describe a few of the first declarations in ΣA, but only those we will need
in the subsequent discussion.

– imp : (a : prop, b : prop ⊲ (λx : a.b) : prop) defines implication using
λ in a way that is quite unique to Automath. In a Π-typed type theory,
implication would be represented by Πx : a.b. We will write M ⇒ N for the
term [a := M, b := N ]imp.

– con : (⊙ ⊲ prop) assumes con to play the role of a false proposition. It is in
the empty context. We will write ⊥ to mean the term [·]con.

– not : (a : prop ⊲ (a ⇒ ⊥) : prop) defines negation. We will write ¬M for
the term [a := M ]not.

– wel : (a : prop ⊲ ¬(¬a) : prop) defines wel to be the double negation
operation.
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– et : (a : prop, w : ([a := a]wel) ⊲ a) declares et as the axiom that makes
the logic classical by allowing one to prove a proposition a by proving its
double negation. We will write et(M, N) for the term [a := M, w := N ]et.

– all : (σ : type, p : (λx : σ.prop) ⊲ p : prop) is intended to represent the
universal quantifier over a type. We will write ∀MN as notation for the term
[σ := M, p := N ]all.

The definition of all already means there will not be a faithful reproduction of
ΣA in our Π-typed type theories. The reproduction of λx : σ.prop must have a
sort as a type, and so it must be Πx : σ.prop. Assuming Πx : σ.prop 6≡Σ

δβ prop,
one can easily see that Σ; σ : type, p : Πx : σ.prop 6⊢T p : prop by examining
the rules in Figure 1.4

The only reason the definition of all is correct in AUT-QE is that AUT-QE
has type inclusion [4]. In general, type inclusion means any term of the form
λx1 : M1 · · ·λxn : Mnλy : N.s also has type λx1 : M1 · · ·λxn : Mn.s (where s is
either type or prop). In this particular case, p has both type λx : σ.prop and
(by type inclusion) type prop in AUT-QE.

If we η-expand the definition of all to be λx : σ.px, then in order to obtain
a faithful reproduction we will only need to have the following:

Σ; σ : type, p : Πx : σ.prop ⊢T Πx : σ.px : prop.

There is also another reason to η-expand the definition of all. As is discussed
in Section 4.1.1 of [7], η-reduction is only used twice to check that ΣA is a
correct AUT-QE signature. Both of these cases can be avoided by changing the
definitions of two signature elements. The first is to change the definition of all
to be λx : σ.px. The second is to change the definition of r imp, which is a
dependent form of implication. The declaration of r imp in ΣA is as follows:

– r imp : (a : prop, b : λx : a.prop ⊲ b : prop)

These two definitions can be easily changed in the Automath book, and Wiedijk’s
Automath checker [15] verifies that η-reduction is no longer needed to check the
book. Let Σ1

A
be the signature that corresponds to this modified book. That is,

Σ1
A

is the same signature as ΣA with the two exceptions that the definitions of
all and r imp in Σ1

A
are λx : σ.px and λx : a.bx, respectively.

We now turn to the signature element non.

non : (σ : type, p : (λx : σ.prop) ⊲ (λx : σ.¬(px)) : λx : σ.prop)

We will write non(M, N) for the term [σ := M, p := N ]non. The definition of
non could be reproduced in a type theory T in two different ways: Πx : σ.¬(px)
or λx : σ.¬(px). The first option is the proposition meaning the predicate p is
empty. The second option defines the complement of the predicate p. We will
further discuss this ambiguity below.

4 Since λx : σ.prop and prop are δβ-normal, Πx : σ.prop 6≡Σ
δβ prop follows from

confluence of →Σ
δβ.
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We now consider the signature element some t1, which corresponds to a
simple lemma. The context in which some t1 is defined consists of five variable
declarations: σ : type, p : (λx : σ.prop), n : ¬(∀σp), m : non(σ, non(σ, p)), s : σ.
The type is ps, and the definition (proof term) is et(ps, ms). Note that neither
the definition nor the type depend on the variable n. Also, none of the types of
the variables that follow n in the context depend on n. In such a case we could
clearly simplify the declaration of some t1 to omit n from the context.

The fact that some definitions have such unnecessary dependencies is an
artifact of the Automath language. In the Automath language it is very easy
to declare a variable in context and make use of it in several declarations that
follow. If the variable is in context when a definition is made, it will remain part
of the context of the definition even if it is not used. This also means that every
occurrence of the defined constant will be associated with a substitution that
substitutes for the irrelevant variable.

These irrelevant context variables are uninteresting but make the task of
finding a faithful reproduction more difficult. For this reason, we computed a
simplified signature Σ2

A
from Σ1

A
in which the contexts of all definitions are

reduced to the smallest correct context in which the type and definition make
sense. (The contexts of primitive constants were not changed.) It turned out
that 24% (8843 out of 36837) of the variables in contexts could be removed.
(The signature Σ2

A
has been checked to be a correct AUT-QE signature by

Wiedijk’s Automath checker [15].)
Except some t1, the declarations of the constants discussed above are the

same in Σ2
A

and Σ1
A

. The context of some t1 in Σ2
A

is

σ : type, p : (λx : σ.prop), m : non(σ, non(σ, p)), s : σ

Before we leave some t1, we discuss the type non(σ, non(σ, p)) given for the
variable m. In AUT-QE, the subterm non(σ, p) has type λx : σ.prop. By type
inclusion, the term non(σ, p) also has type prop. We must consider the subterm
non(σ, p) as having type λx : σ.prop in order to use it as it is in non(σ, non(σ, p)).
Intuitively, we think of non(σ, p) as being the complement of the predicate p.
Likewise, non(σ, non(σ, p)) has type λx : σ.prop and prop. In this case, to use the
term as a type for m, we must consider it has having the type prop. Intuitively,
non(σ, non(σ, p)) means the complement of p is empty.

Here we see a fundamental difficulty in obtaining faithful reproductions of
Automath signatures. It is not simply the case that some λ-binders correspond
to λ’s while other correspond to Π ’s. The λ in the definition of non is used in
both ways even within a single term. (The point that it is not clear whether
a λ in AUT-QE should be a λ or a Π is discussed in Section 5.2 of [8]. This
is in contrast to AUT-68, for which a translation to a Π-typed type theory is
given in Definition 23 of [8].) If we will be satisfied with a faithful reproduction
modulo η, then there is a simple solution in this case. We treat λ as a λ in the
definition of non, but wrap the occurrence of non with a Π when required. In
this particular case, we can use Πx : σ.non(σ, non(σ, p))x as the type of m in the
context of the definition of some t1. Note that applying ⌊−⌋ to this term yields
λx : σ.non(σ, non(σ, p))x which η-reduces to the desired Automath term.
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4 A Faithful Reproduction

There is a signature ΣΠ such that ⌊ΣΠ⌋ ≡η Σ2
A

. This signature was mostly
obtained using an ad hoc algorithm to recognize when some λs should be changed
to Πs. Roughly speaking, using Automath terminology, λ-abstractions of degree
1 are changed to Π-abstractions, λ-abstractions of degree 3 are left alone, and to
decide whether to change a λ-abstraction of degree 2 to a Π-abstraction, analyze
how it is used. We dynamically η-expanded and later η-reduced again after
deciding which λs should be Πs. There is a type theory T for which ⊢T ΣΠ sig

holds. For any such T , ΣΠ is a faithful reproduction of Σ2
A

modulo η.

We conjecture that there is an appropriate type theory T (any of the ones
discussed in Section 5) and an algorithm which can always compute a faithful
reproduction in T modulo η of a correct AUT-QE signature. In practical terms,
this would mean any correct AUT-QE signature could be ported to modern
systems such as Coq.

A natural question to ask is whether ⌊ΣΠ⌋ is itself a correct AUT-QE sig-
nature. It turns out that it is. Also, the Automath checker confirms that η-
conversion is not needed to check ⌊ΣΠ⌋.

Let Σ3
A

be ⌊ΣΠ⌋. The signature Σ3
A

differs from Σ2
A

in that some subterms
of 25 declarations in Σ3

A
must be η-reduced to obtain Σ2

A
. Consequently, Σ3

A

only differs from the original signature ΣA by doing some η-expansions and by
removing unnecessary variables from the contexts of declarations. Hence Σ3

A
is

arguably the same as the signature one obtains from the van Benthem Jutting
Automath version of Landau’s book. Also, ΣΠ is clearly a faithful reproduction
of Σ3

A
in any type theory T for which ⊢T ΣΠ sig.

For comparison, in Figure 2 we show some of the signature elements discussed
in Section 3 in both Σ2

A
and ΣΠ . The type of m in the context of some t1 shows

the only example in Figure 2 where an η-expansion was required to introduce
a λ that is reproduced as a Π . Of course, if we had started from ΣA, then we
would have needed to η-expand the definitions of all and r imp as well.

Almost all of the η-expansions are with occurrences of non. The only examples
of η-expansions that are not associated with a non occur in r ande2. r ande2

corresponds to a natural deduction rule for a dependent conjunction. In r ande2,
several occurrences of a variable b of type Πx : a.prop (where a : prop) are
wrapped in a Π to form a term of type prop. The context of r ande2 is of the
form . . . , a1 : [a := a, b := b]and in Σ2

A
. After η-expanding an occurrence of b

and changing the λ to a Π , the context of r and has the form . . . , a1 : [a :=
a, b := (Πx : a.bx)]and in ΣΠ . The same process is repeated with one occurrence
of b in the type of r ande2 and two occurrences of b in the definition of r ande2.
Note that all of these η-expansions are required to account for the fact that
AUT-QE has type inclusion, but T does not.

We also note that all of the η-expansions are either required in the logical
preliminaries of the Automath book (before the content of Landau begins) or
in Chapter 1 of Landau’s book. To be more specific, the only η-expansions that
are required in the part of the Automath book corresponding to Landau’s book
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Element Context Type Definition

imp (Σ2

A) a : prop, b : prop prop (λx : a.b)
(ΣΠ) a : prop, b : prop prop (Πx : a.b)

all (Σ2

A) σ : type, p : (λx : σ.prop) prop (λx : σ.px)
(ΣΠ) σ : type, p : (Πx : σ.prop) prop (Πx : σ.px)

non (Σ2

A) σ : type, p : (λx : σ.prop) (λx : σ.prop) (λx : σ.(¬px))
(ΣΠ) σ : type, p : (Πx : σ.prop) (Πx : σ.prop) (λx : σ.(¬px))

some t1 (Σ2

A) σ : type, p : (λx : σ.prop),
m : non(σ, non(σ, p)), s : σ ps et(ps, ms)

(ΣΠ) σ : type, p : (Πx : σ.prop),
m : (Πx : σ.non(σ, non(σ, p))x), s : σ ps et(ps, ms)

r imp (Σ2

A) a : prop, b : (λx : a.prop) prop (λx : a.bx)
(ΣΠ) a : prop, b : (Πx : a.prop) prop (Πx : a.bx)

Fig. 2. Some signature elements in Σ2

A and ΣΠ

are in some lemmas used to prove Satz 27. Satz 27 is a theorem stating that the
natural numbers are well-ordered.

5 Type Theories for the Reproduction

We have already fixed four distinct sorts prop, type, kindp and kind. We fix the
set A0 of axioms to be prop : kindp and type : kind. We could identify kindp

and kind, but for now it is worth pointing out that they need not be identified.
We fix the set R0 of 6 rules as follows:

R0 := { (prop, prop), (type, prop), (type, type),
(prop, type), (type, kindp), (prop, kindp) }

Let T0 be T (A0,R0). This type theory T0 is sufficient to obtain ⊢T0
ΣΠ sig.

Consideration of four signature elements is sufficient to justify the inclusion
of each of the rules in R0. Two of these elements have already been discussed:
all and r imp. Their contexts, types and definitions can be found in Figure 2.
(In the judgments below, we omit the signature. The intended signature is the
part of ΣΠ preceding the declaration of the signature element in question.) To
check the definition of all, we must check

σ : type, p : (Πx : σ.prop) ⊢T0
Πx : σ.px : prop

which requires the rule (type, prop). In order for the context of all to be cor-
rect, we must have σ : type ⊢T0

(Πx : σ.prop) : s for some sort s. We could
introduce a new sort s and include the rule (type, kindp, s) to handle this case.
We follow the simpler alternative of using kindp as the sort s and including the
rule (type, kindp). Similarly, to check the correctness of the context of r imp,
a : prop, b : (Πx : a.prop), we must have a : prop ⊢T0

(Πx : a.prop) : s for some



11

sort s. We include the rule (prop, kindp) to handle this case. The definition and
type of r imp require

r imp : a : prop, b : λx : a.prop ⊢T0
Πx : b.bx : prop

which makes the inclusion of the rule (prop, prop) mandatory.
Without the rule (type, type) we could not even form simple types. Still,

it is worth examining a declaration in ΣΠ to justify the inclusion of this rule.
Consider the primitive declaration fisi corresponding to the axiom of functional
extensionality. The declaration of fisi in ΣΠ makes use of the primitive element
is representing (polymorphic) book equality:

– is : (σ : type, s : σ, t : σ ⊲ prop). We use M =A N as notation for the term
[σ := A, s := M, t := N ]is.

Let Γ denote the context of fisi:

σ : type, τ : type, f : (Πx : σ.τ), g : (Πx : σ.τ), i : (Πx : σ.(fx =τ gx))

The type of fisi is (f =(Πx:σ.τ) g). In order for the signature ΣΠ to be correct,
we need Γ ⊢T0

(f =(Πx:σ.τ) g) : s for some sort s. Given the type of σ in the
context of is, we need Γ ⊢T0

(Πx : σ.τ) : type, justifying the rule (type, type).
Finally, we must justify the inclusion of the rule (prop, type). For this reason

we consider the signature element seq, an element makes use of three other
definitions in ΣΠ . It is enough to consider the contexts and types of these three
elements, so we omit the definitions.

– real : (⊙ ⊲ · · · : type) is the type of reals. We write real for [·]real.
– intrl : (r : real ⊲ · · · : prop) is the predicate that recognizes when a real

is an integer. We write intrl(M) for the term [r := M ]intrl.
– lessis : (r : real, s : real ⊲ · · · : prop) is the relation between reals r and

s that is true when r ≤ s. We write M ≤ N for [r := M, s := N ]lessis.

Let Γ be x : real, y : real, α : type, the context of seq. The type of seq is
type. The definition of seq is

Πt : real.Πu : intrl(t).Πv : (y ≤ t).Πw : (t ≤ x).α.

Let x and y be real numbers and α be a type. If there are n integers in the
interval [x, y], then seq corresponds to a type of n-tuples of elements of type α.
A set-theoretic way to interpret the definition is as the function space

{t ∈ [x, y]|t is an integer} → α.

Clearly we need

Γ ⊢T0
(Πt : real.Πu : intrl(t).Πv : (y ≤ t).Πw : (t ≤ x).α) : type.

The simplest way to ensure this is to include the rule (prop, type). Note that
this rule is stronger than what is required. By including the rule (prop, type),
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we have p : prop, α : type ⊢T0
(Πv : p.α) : type, which is not necessary to

have ⊢T0
ΣΠ . It would be enough to include a new sort ctype (for “conditional”

types) and the rules (prop, type, ctype), (prop, ctype) and (type, ctype, type).
If we wished to work in a type theory without contextual declarations, then

we could use global definitions and replace substitution with application. With-
out going into technical details, let Σ⊙

Π be a signature corresponding to ΣΠ in
the following sense (using M ′ to refer to the term that corresponds to each M):

1. Every declaration of the form

c : (x1 : N1, . . . , xn : Nn ⊲ A) or c : (x1 : N1, . . . , xn : Nn ⊲ M : A)

in ΣΠ is of the form

c : (⊙ ⊲ ∀x1 : N ′
1 · · · ∀xn : N ′

n.A′)
or c : (⊙ ⊲ λx1 : N ′

1 · · ·λxn : N ′
n.M ′ : ∀x1 : N ′

1 · · · ∀xn : N ′
n.A′)

(respectively) in Σ⊙
Π .

2. Every occurrence of a constant [M1, . . . , Mn]c in ΣΠ is replaced by
[·]c M ′

1 · · · M ′
n in Σ⊙

Π .5

We do not have ⊢T0
Σ⊙

Π sig; we need more rules. The type of all in Σ⊙
Π is

Πσ : type.Πp : (Πx : σ.prop).prop.

We know σ : type ⊢T0
(Πx : σ.prop) : kindp and σ : type, p : (Πx : σ.prop) ⊢T0

prop : kindp. There is no rule (kindp, kindp, s) in R0 for any sort s. We could
consider using kindp for s and adding the rule (kindp, kindp). However, if we add
the rule (kindp, kindp), then we could not only form (Πp : (Πx : σ.prop).prop)
but also higher types such as (Πq : (Πp : (Πx : σ.prop).prop).prop). To avoid
this extra strength, we can use a “parking place” sort ∆.

Once we have fixed the new sort ∆, we add 13 new rules to the rules in R0,
all of which allow us to form new Π-abstractions in ∆. We define R1 as follows:

R1 := R0 ∪ { (type, kind, ∆), (type, ∆), (kind, kind, ∆),
(kindp, kind, ∆), (kind, type, ∆), (kindp, type, ∆),
(kind, prop, ∆), (kind, kindp, ∆), (prop, ∆),
(kind, ∆), (kindp, prop, ∆), (kindp, ∆), (kindp, kindp, ∆) }

We have ⊢T1
Σ⊙

Π sig for T1 := T (A0,R1).
Suppose we choose to identify the sorts kindp and kind (and call them both

�). Since kind does not appear in any of the rules of T0, this would have no
significant effect on this theory. On the other hand, 6 of the additional 13 rules
of T1 would be duplicates. It turns out, however, that in order to check Σ⊙

Π the
rule (type, �, ∆) is no longer needed if kindp and kind are the same. Let A2

consist of prop : � and type : � and R2 consist of the following 12 rules:

(prop, �), (type, �), (type, type), (prop, type), (type, prop), (prop, prop),
(�, prop, ∆), (�, type, ∆), (�, �, ∆), (type, ∆), (prop, ∆), (�, ∆)

5 This is similar to the treatment of constants depending on parameters in Definition
23 of [8].
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We define T2 to be T (A2,R2) and note that ⊢T2
Σ⊙

Π sig.
In addition to identifying the sorts kindp and kind, we could, of course,

identify prop and type. This would have some unfortunate consequences. In
particular, the constant et is declared in ΣΠ as a primitive notion with context
a : prop, w : [a := a]wel and type a. This is intended to allow one to prove
propositions by contradiction. If prop is the same as type, then we could apply
et to types as well as propositions. Essentially, et would act as a choice operator.
(This point is discussed in Section 4.1.2 of [7].)

Nevertheless, suppose we do identify prop and type (and call them ∗) and
identify kindp and kind (and call them �). In this case, R0 reduces to be simply

{(∗, �), (∗, ∗)}

which corresponds to a contextual version of the type theory LF. This also
corresponds to the extension of λ68 corresponding to AUT-QE given in Section
5.2 of [8].

In order to check Σ⊙
Π , it is enough to have a type theory T3 := T (A3,R3)

where A3 is {∗ : �} and R3 consists of the 6 rules

(∗, �), (∗, ∗), (�, ∗, ∆), (�, �, ∆), (∗, ∆), (�, ∆)

This is the pure type system corresponding to AUT-QE given on page 216 of [2].

6 Mapping the Reproduction into ECC and Coq

In general, a translation of ΣΠ or Σ⊙
Π into another type theory will be determined

by the mapping of the sorts type and prop. Assuming the rules of Figure 1 are
admissible in the target theory, we can verify the signature maps to a correct
target signature by also giving sorts corresponding to kind, kindp and ∆ and
checking that the axioms and rules of one of the type theories of Section 5 hold
in the target theory.

Coq is a proof assistant [3] based on the Calculus of Inductive Constructions.
As mentioned before, while declarations in Coq may be made within a context
of variables, they are always made global and given a global type. Hence we only
discuss translating Σ⊙

Π into Coq. For the purpose of type checking Σ⊙
Π , we only

need the ECC fragment [10]. The sorts (or “universes”) of ECC consist of an
impredicative universe Prop and a hierarchy of predicative universes Typen for
n ≥ 0. These universes are cumulative: Prop is a subuniverse of each Typen

and Typen is a subuniverse of Typem whenever n ≤ m.
The translation into Coq will be determined by the translation of type and

prop. While the most obvious translation mapping prop to Prop and type to
Type0 suffices, it is worth noting that other translations will also map into
a correct ECC signature. Suppose we decide to map type and prop to ECC
universes Ut and Up, respectively. By cumulativity, there is some natural number
k such that Ut : Typek and Up : Typek. For this reason, it is enough to consider
the type theory T2 in which kind and kindp are identified as �. We can translate
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� and ∆ to be Typek. By our choice of k, the axioms type : � and prop : �

will map to axioms that are satisfied in ECC. The 12 rules of T2 map to 11 rules:

(Up,Typek), (Ut,Typek), (Ut, Ut), (Up, Ut), (Ut, Up), (Up, Up), (Ut,Typek),
(Typek, Up,Typek), (Typek, Ut,Typek), (Typek,Typek), (Up,Typek)

Many of the rules correspond to rules that are either clearly in ECC, or are in
ECC by the choice of k. The only rules that may not be in ECC are (Up, Ut)
and (Ut, Up). There are essentially three correct ways to choose Up and Ut.

1. Choose Up to be Prop and Ut to be Typen (where k will be chosen such
that k > n). Here we know (Prop,Typen) is a rule of ECC since Prop is
a subuniverse of Typen. We know (Typen,Prop) is a rule of ECC since
Prop is impredicative.

2. We may reverse the roles of the sorts, choosing Ut to be Prop and Up to be
Typen (where k will be chosen such that k > n).

3. We may choose Up and Ut to be the same universe (either Prop or Typen

for some n).

In the system Coq, one simply writes Type for Typen, leaving the system to
check for consistency of the implicit universe indices. Each of the three options
above gives a correct Coq file. Using the Coq universe Set, one can find even
more possibilities for translating into Coq. Some of these options are only correct
if one chooses Set to be impredicative.

In spite of these choices, there is a motivation for choosing the “obvious”
option of sending type to Type and prop to Prop. Recall that 32 of the dec-
larations in the Automath book are primitive notions. We can define most of
these primitive notions in Coq if we map type to Type and prop to Prop.

The last primitive notions declared in the Automath book consist of the type
nat and the Peano axioms. These are the only primitive notions corresponding
to the Landau book. The other primitive notions are in the logical preliminaries.
If we map type to Type, then we can use Coq’s inductive types to define nat

and prove the Peano axioms. (We can even do this if we map both type and
prop to Type. The induction axiom in this case will be a recursion operator.) If
we map type to Prop, we can also define an inductive proposition nat, but the
Peano axioms will not be provable. In fact, if nat is a Prop, then its members
are proofs. The Peano axioms imply there is more than one nat, hence more than
one proof of nat. In Coq, one can prove proof irrelevance from excluded middle.6

Consequently, if we map type to Prop in Coq, then the primitive notions of Σ⊙
Π

will lead to an inconsistency.
Five of the primitive notions in the Automath book correspond to assuming

that for each type σ there is a type of sets over σ. This essentially makes the
underlying logic higher-order. Consider the corresponding primitive notions in
Σ⊙

Π (omitting the empty contexts and empty substitutions):

– set : Πσ : type.type corresponds to a type of sets over the type σ.

6 This is true for the Calculus of Inductive Constructions, an extension of ECC.
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– esti : Πσ : type.Πs : σ.Πs0 : (setσ).prop is a membership relation be-
tween an element s and a set s0.

– setof : Πσ : type.Πp : (Πx : σ.prop).(setσ) maps each predicate p over σ

to a set over σ.
– estii and estie assert equivalence of (estiσ s (setofσ p)) and ps.

Since ECC is a higher-order type theory, there is an easy way to appropriately
define these in Coq: simply use the function type σ → Prop as the type of sets
over σ. Application can be used to define esti, and setof can be defined by
simply returning p. The remaining definitions are trivial. in Coq. If we choose
to both map type and prop to Type, then the definition of setof would be ill-
typed, as p would have type σ → Type and we would need to return something
of type σ → Prop. Of course, we could consider changing the definition of set
to be λσ : type.σ → Type. This choice leads to a universe inconsistency in Coq
later when set types are used to define quotient types.

Suppose we map type to Type and prop to Prop. We can define 26 of the 32
primitive notions in Coq. We briefly consider the 6 remaining primitive notions
which cannot be defined in Coq. They correspond to axioms that are commonly
assumed when Coq is being used to formalize classical mathematics.

– et is the formulation of the double negation law considered earlier. If we
define con to be False in Coq, et will be precisely the double negation law.

– ind corresponds to an indefinite description operator and oneax is the axiom
that ind behaves as an indefinite description operator.

– fisi is an axiom of functional extensionality.
– otax1 can be described as follows. The signature element ot allows one to

construct a new type ot(σ, p) from a given type σ and a predicate p over σ.
The signature element in is a function from ot(σ, p) to σ. Now, otax1 is the
axiom stating that in is injective. A natural way to define ot(σ, p) in Coq
is using a Σ-type (an inductive type) of pairs (x, u) where x : σ and u : px.
Of course, in can then be defined as the first projection sending (x, u) to x.
We can only prove otax1 is injective if we have proof irrelevance.

– isseti is an axiom of set extensionality. Assuming we define sets as predi-
cates in Coq, isseti will correspond to extensionality of predicates.

We conclude with a brief remark about Martin-Löf style type theories with
predicative universes but no impredicative universe. The analysis above clearly
demonstrates that one can map Σ⊙

Π into such a type theory by mapping type

and prop to the same universe. As noted earlier, identifying type and prop

means that the double negation law will give a choice principle.

7 Conclusion

We have defined a notion of a faithful reproduction of an Automath signature in a
Π-typed type theory. After omitting redundant context variables and performing
a few η-expansions to handle type inclusion, the signature of the Automath
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Landau formalization can be faithfully reproduced in a type theory such as ECC
(in different ways). We have described one rendering of such a reproduction as
a Coq file. In this Coq version, all the primitive notions of the Automath book
can be defined in the Coq version, if one assumes classical logic, extensionality
principles, and a description operator.
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