
REDUCING HIGHER-ORDER THEOREM PROVING

TO A SEQUENCE OF SAT PROBLEMS

CHAD E. BROWN

Abstract. We describe a complete theorem proving procedure
for higher-order logic that uses SAT-solving to do much of the
heavy lifting. The theoretical basis for the procedure is a complete,
cut-free, ground refutation calculus that incorporates a restriction
on instantiations. The refined nature of the calculus makes it con-
ceivable that one can search in the ground calculus itself, obtain-
ing a complete procedure without resorting to meta-variables and
a higher-order lifting lemma. Once one commits to searching in a
ground calculus, a natural next step is to consider ground formulas
as propositional literals and the rules of the calculus as proposi-
tional clauses relating the literals. With this view in mind, we de-
scribe a theorem proving procedure that primarily generates rele-
vant formulas along with their corresponding propositional clauses.
The procedure terminates when the set of propositional clauses is
unsatisfiable. We prove soundness and completeness of the proce-
dure. The procedure has been implemented in a new higher-order
theorem prover, Satallax, which makes use of the SAT-solver Min-
iSat. We also describe the implementation and give several exam-
ples. Finally, we include experimental results of Satallax on the
higher-order part of the TPTP library.

1. Introduction

There are a number of distinct aspects of automated theorem prov-
ing. First, there is the usual combinatorial explosion already associated
with search in the propositional case. Second, there is the problem
of finding the correct instantiations for quantifiers. The instantiation
problem appears in the first-order case. A third issue that appears in
the higher-order case is how one builds in certain basic mathematical
properties (e.g., extensionality and choice).
In this paper we give a complete theorem proving procedure for

higher-order logic with extensionality and choice. The procedure sep-
arates the first issue from the second and third. We start from a

Date: May 2012, Technical Report version of an article submitted to Journal of
Automated Reasoning.

1

2 CHAD E. BROWN

complete ground calculus which already builds in extensionality and
choice as well as certain restrictions on instantiations. Given a set
of formulas to refute, the ground calculus can be used to suggest a
sequence of relevant formulas which may be involved in a refutation.
The procedure generates propositional clauses corresponding to the
the meaning of these relevant formulas. When the set of propositional
clauses is unsatisfiable (in the propositional sense), then the original
set of higher-order formulas is unsatisfiable (in the higher-order Henkin
model sense). Conversely, when the original set of higher-order formu-
las is unsatisfiable, then an unsatisfiable set of propositional clauses
will eventually be generated.
Such a procedure has been implemented in the higher-order theorem

prover Satallax.1 The first implementation of Satallax was in Steel
Bank Common Lisp. The latest version of Satallax, Satallax 2.4, is
implemented in Objective Caml. The SAT-solver MiniSat [10] (coded
in C++) is used to determine propositional unsatisfiability.
This paper is a revised and expanded version of [7].

2. Preliminaries

We begin with a brief presentation of Church’s simple type theory
with a choice operator. For more details see a similar presentation
in [3]. Simple types (σ, τ) are given inductively: o|ι|σσ. Types στ cor-
respond to functions from σ to τ . Terms s, t are generated inductively
x|c|st|λx.s where x ranges over variables and c ranges over the logical
constants ⊥, →, ∀σ, =σ, ∗ and εσ. A name is either a variable or a
logical constant. A decomposable name is either a variable or εσ for
some σ. We use δ to range over decomposable names.
Each variable has a corresponding type σ, and for each type there is

a countably infinite set of variables of this type. Likewise each logical
constant has a corresponding type: ⊥ : o, →: ooo, ∀σ : (σo)o, =σ: σσo,
∗ : ι and εσ : (σo)σ. The constant εσ is a choice operator at type σ.
The constant ∗ plays the role of a “default” element of the nonempty
type ι. Types can be assigned to (some) terms in the usual way. From
now on we restrict ourselves to typed terms and let Λσ be the set of
terms of type σ. A formula is a term s ∈ Λo.
We adopt common notational conventions: stu means (st)u, s =σ t

(or s = t) means =σ st, s → t means → st, ¬s means s → ⊥, ⊤ means
¬⊥, s 6=σ t (or s 6= t) means ¬(s =σ t), ∀x.s means ∀σλx.s and εx.s
means εσλx.s. Binders have as large a scope as is consistent with given

1Satallax is available at satallax.com.

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 3

parenthesis. For example, in ∀x.px → qx the occurrence of x in qx is
bound by the ∀. The set Vt of free variables of t is defined as usual.
An accessibility context (C) is a term with a hole []σ of the form

[]s1 · · · sn, ¬([]s1 · · · sn), ([]s1 · · · sn) 6=ι s or s 6=ι ([]s1 · · · sn). We write
C[s] for the term one obtains by putting s into the hole. A term s is
accessible in a set A of formulas iff there is an accessibility context C
such that C[s] ∈ A.
Let [s] denote a βη-normal form of s that makes a canonical choice

of bound variables. That is, for any s, t ∈ Λσ, [s] = [t] iff s and t are
αβη-equivalent. (In the implementation, de Bruijn indices are used.)
A term s is normal if [s] = s.
A substitution is a type preserving partial function from variables

to terms. If θ is a substitution, x is a variable, and s is a term that
has the same type as x, we write θxs for the substitution that agrees

everywhere with θ except θxsx = s. For each substitution θ let θ̂ be the
usual extension of θ to all terms in a capture-avoiding manner.
A frame D is a typed collection of nonempty sets such that Do =

{0, 1} and Dστ is a set of total functions from Dσ to Dτ . An assignment
I intoD is a mapping from variables and logical constants of type σ into
Dσ. An assignment I is logical if it interprets each logical constant to be
an element satisfying the corresponding logical property. For example,
if I is logical, then I⊥ = 0. An assignment I is an interpretation if
it can be extended in the usual way to be a total function Î mapping
each Λσ into Dσ. A Henkin model (D, I) is a frame D and a logical
interpretation I into D. We say a formula s is satisfied by a Henkin
model (D, I) if Îs = 1. A set A of formulas is satisfied by a Henkin
model if each formula in A is satisfied by the model.
Let A be a set of formulas. A term s is discriminating in A iff there

is a term t such that s 6=ι t ∈ A or t 6=ι s ∈ A. For each set A of
formulas and each type σ we define a nonempty universe UA

σ ⊆ Λσ as
follows.

• Let UA
o = {⊥,¬⊥}.

• Let UA
ι be the set of discriminating terms in A if there is some

discriminating term in A.
• Let UA

ι = {∗} if there are no discriminating terms in A.
• Let UA

στ = {[s]|s ∈ Λστ ,Vs ⊆ VA}.

When the set A is clear in context, we write Uσ.
We call a finite set of normal formulas a branch. A cut-free tableau

calculus for higher-order logic with extensionality is given in [8]. The
calculus is complete with respect to Henkin models without choice.
The details of the completeness proof indicated that one can restrict

4 CHAD E. BROWN

C⊥ ⊥ is not in A.
C¬ If ¬s is in A, then s is not in A.
C 6= s 6=ι s is not in A.
C→ If s → t is in A, then A ∪ {¬s} or A ∪ {t} is in Γ.
C¬→ If ¬(s → t) is in A, then A ∪ {s,¬t} is in Γ.
C∀ If ∀σs is in A, then A ∪ {[st]} is in Γ for every t ∈ UA

σ .
C¬∀ If ¬∀σs is in A, then A ∪ {¬[sx]} is in Γ for some variable x.
Cmat If δs1 . . . sn is in A and ¬δt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si 6= ti} is in Γ for some i ∈ {1, . . . , n}.
Cdec If δs1 . . . sn 6=ι δt1 . . . tn is in A,

then n ≥ 1 and A ∪ {si 6= ti} is in Γ for some i ∈ {1, . . . , n}.
Ccon If s =ι t and u 6=ι v are in A,

then either A ∪ {s 6= u, t 6= u} or A ∪ {s 6= v, t 6= v} is in Γ.
Cbq If s =o t is in A, then either A ∪ {s, t} or A ∪ {¬s,¬t} is in Γ.
Cbe If s 6=o t is in A, then either A ∪ {s,¬t} or A ∪ {¬s, t} is in Γ.
Cfq If s =στ t is in A, then A ∪ {[∀x.sx =τ tx]} is in Γ

for some x ∈ Vσ \ (Vs ∪ Vt).
Cfe If s 6=στ t is in A, then A ∪ {¬[∀x.sx =τ tx]} is in Γ

for some x ∈ Vσ \ (Vs ∪ Vt).
Cε If εσs is accessible in A, then either A ∪ {[s(εs)]} is in Γ or

there is some x ∈ Vσ \ Vs such that A ∪ {[∀x.¬(sx)]} is in Γ.

Figure 1. Abstract consistency conditions (must hold
for every A ∈ Γ)

instantiations for quantifiers on base types to terms occurring on one
side of a disequation. This restriction is shown complete for the first-
order case in [8]. The calculus is extended to include choice in [3] and
the restriction on instantiations is proven complete in the higher-order
case. The proof of completeness makes use of abstract consistency.
A set Γ of branches is an abstract consistency class if it satisfies all
the conditions in Figure 1. This definition differs slightly from the
one in [3] because we are using → instead of ¬ and ∨. With obvious
modifications to account for this difference, Theorem 2 in [3] implies
that every A ∈ Γ (where Γ is an abstract consistency class) is satisfiable
by a Henkin model. We state this here as theModel Existence Theorem.

Theorem 2.1 (Model Existence Theorem). Let Γ be an abstract con-
sistency class. Each A ∈ Γ is satisfiable by a Henkin model.

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 5

3. Mapping into SAT

We next describe a simple mapping from higher-order formulas into
propositional literals and clauses. The essential idea is to abstract away
the semantics of logical connectives. The general technique of using a
propositional abstraction is standard and is used by SMT solvers (e.g.,
see [9]).
Let Atom be a countably infinite set of propositional atoms. For each

atom a, let a denote a distinct negated atom. A literal is an atom or a
negated atom. Let Lit be the set of all literals. Let a denote a. A clause
is a finite set of literals, which we write as l1 ⊔ · · · ⊔ ln. A propositional
assignment is a mapping Φ from Atom to {0, 1}. We extend any such
Φ to literals by taking Φ(a) = 1 − Φ(a). We say an assignment Φ
satisfies a clause C if there is some literal l ∈ C such that Φl = 1. An
assignment Φ satisfies a set S of clauses if Φ satisfies C for all C ∈ S.
Let ⌊.⌋ be a function mapping Λo into Lit such that ⌊¬s⌋ = ⌊s⌋,

⌊s⌋ = ⌊[s]⌋, and if ⌊s⌋ = ⌊t⌋, then Is = It in every Henkin model
(D, I).

Theorem 3.1. In the implementation, ⌊s⌋ = ⌊t⌋ whenever s and t are
the same up to βη and the removal of double negations. Under some
flag settings, symmetric equations u = v and v = u are assigned the
same literal.

We say Φ is a pseudo-model of A if Φ⌊s⌋ = 1 for all s ∈ A. We say
an assignment Φ is Henkin consistent if there is a Henkin model (D, I)

such that Φ⌊s⌋ = Îs for all s ∈ Λo.

4. States and Successors

Theorem 4.1. A quasi-state Σ is a 5-tuple (FΣ
p ,F

Σ
a ,U

Σ
p ,U

Σ
a ,C

Σ) where

FΣ
p and FΣ

a are finite sets of normal formulas, UΣ
p and UΣ

a are finite sets

of normal terms, and CΣ is a finite set of clauses. We call formulas
in FΣ

p passive formulas, formulas in FΣ
a active formulas, terms in UΣ

p

passive instantiations and terms in UΣ
a active instantiations.

Given a quasi-state Σ, we define the following notation:

FΣ := FΣ
p ∪ FΣ

a UΣ := UΣ
p ∪ UΣ

a

UΣ
p,σ := UΣ

p ∩ Λσ UΣ
a,σ := UΣ

a ∩ Λσ

During the procedure, we will only consider quasi-states that satisfy
certain invariants. Such a quasi-state will be called a state. Before
giving the technical definition of a state, we consider a simple example.

6 CHAD E. BROWN

In this example we will refer to the quasi-states as states, as they will
always satisfy the relevant properties.
Each step of the search process will pass from one state to a successor

state. The passive formulas and passive instantiations of a successor
state will always include all the passive formulas and passive instanti-
ations of the previous state. Likewise, all the clauses of the previous
state will be clauses of the successor state. Often we obtain a successor
state by moving an active formula (instantiation) to the set of pas-
sive formulas (instantiations). We will refer to this as processing the
formula (instantiation).
This use of the terminology “active” and “passive” was introduced

in [7]. If a formula or instantiation is active, it is waiting to be pro-
cessed which will cause some action to be taken. An alternative would
be to refer to active formulas and instantiations as “pending.” If a
formula or instantiation is passive, then it has already been processed
and will no longer directly cause any actions. Passive formulas and
instantiations can be used as side information when processing active
formulas and instantiations. An alternative would be to refer to passive
formulas and instantiations as “usable.” To avoid confusion, we point
out that in some theorem proving literature (e.g., the description of
Inst-Gen in [12]) the adjectives “active” and “passive” are used in just
the opposite way: a formula is “passive” if it is waiting to be processed
and “active” after having been processed.

Theorem 4.1. Let p, q : o be variables. Suppose we wish to refute the
branch with two formulas: p and ∀q.p → q. We begin with a state Σ0

with FΣ0

p = ∅, FΣ0

a = {p, ∀q.p → q}, UΣ0

p = {⊥,⊤}, UΣ0

a = ∅ and CΣ0

contains exactly the two unit clauses ⌊p⌋ and ⌊∀q.p → q⌋. We will
refute this branch in one step. In particular, we process the formula
∀q.p → q by moving it from being active to passive and by applying
all the instantiations of type o in UΣ0

p . This results in a state Σ1 in

which FΣ1

p = {∀q.p → q}, FΣ1

a = {p, p → ⊥, p → ⊤}, UΣ1

p = UΣ0

p ,

UΣ1

a = UΣ0

a and CΣ1 contains the two unit clauses from CΣ0 as well

as the two clauses ⌊∀q.p → q⌋ ⊔ ⌊p → ⊥⌋ and ⌊∀q.p → q⌋ ⊔ ⌊p → ⊤⌋.

Note that ⌊p → ⊥⌋ is the same as ⌊p⌋. Clearly there is no propositional
assignment satisfying the clauses in CΣ1. This completes the refutation.
The two states can be displayed as in Figure 2.

Theorem 4.2. A quasi-state Σ = (FΣ
p ,F

Σ
a ,U

Σ
p ,U

Σ
a ,C

Σ) is a state if the

conditions in Figures 3 and 4 hold and for every clause C in CΣ and
every literal l ∈ C, either l = ⌊s⌋ for some s ∈ FΣ or l = ⌊s⌋ for some
s ∈ FΣ

p .

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 7

Fp Fa Up Ua C

Σ0 p, ∀q.p → q ⊥, ⊤ ⌊p⌋
⌊∀q.p → q⌋

Σ1 ∀q.p → q ✘✘✘✘✘
∀q.p → q ⌊∀q.p → q⌋ ⊔ ⌊p⌋

p → ⊥, p → ⊤ ⌊∀q.p → q⌋ ⊔ ⌊p → ⊤⌋

Figure 2. States from Example 4.1

S⊥ If ⊥ is in Fp, then ⌊⊥⌋ is in C.

S 6= If s 6=ι s is in Fp, then ⌊s = s⌋ is in C.

S→ If s → t is in Fp and t is not ⊥, then {¬s, t} ⊆ F and

⌊s → t⌋ ⊔ ⌊¬s⌋ ⊔ ⌊t⌋ is in C.

S¬→ If ¬(s → t) is in Fp, then {s,¬t} ⊆ F, ⌊s → t⌋ ⊔ ⌊s⌋ and

⌊s → t⌋ ⊔ ⌊¬t⌋ are in C.

S∀ If ∀σs is in Fp and t ∈ Up,σ, then [st] ∈ F and

⌊∀σs⌋ ⊔ ⌊st⌋ is in C.

S¬∀ If ¬∀σs is in Fp, then there is some variable x of type σ

such that ¬[sx] ∈ F and ⌊∀σs⌋ ⊔ ⌊sx⌋ is in C.

Smat If δs1 . . . sn and ¬δt1 . . . tn are in Fp where n ≥ 1, then si 6= ti
is in F for each i ∈ {1, . . . , n} and

⌊δs1 . . . sn⌋ ⊔ ⌊δt1 . . . tn⌋ ⊔ ⌊s1 6= t1⌋ ⊔ · · · ⊔ ⌊sn 6= tn⌋ is in C.

Sdec If δs1 . . . sn 6=ι δt1 . . . tn is in Fp where n ≥ 1, then si 6= ti
is in F for each

i ∈ {1, . . . , n} and

⌊δs1 . . . sn = δt1 . . . tn⌋ ⊔ ⌊s1 6= t1⌋ ⊔ · · · ⊔ ⌊sn 6= tn⌋ is in C.

Scon If s =ι t and u 6=ι v are in Fp, then

{s 6= u, t 6= u, s 6= v, t 6= v} ⊆ F

and the following four clauses are in C:

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊s 6= u⌋ ⊔ ⌊s 6= v⌋,

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊s 6= u⌋ ⊔ ⌊t 6= v⌋,

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊t 6= u⌋ ⊔ ⌊s 6= v⌋,

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊t 6= u⌋ ⊔ ⌊t 6= v⌋

Figure 3. Conditions on a quasi-state Σ = (Fp,Fa,Up,Ua,C)

8 CHAD E. BROWN

Sbq If s =o t is in Fp, then {s, t,¬s,¬t} ⊆ F and

⌊s = t⌋ ⊔ ⌊s⌋ ⊔ ⌊¬t⌋ and ⌊s = t⌋ ⊔ ⌊¬s⌋ ⊔ ⌊t⌋ are in C.

Sbe If s 6=o t is in Fp, then {s, t,¬s,¬t} ⊆ F and

⌊s = t⌋ ⊔ ⌊s⌋ ⊔ ⌊t⌋ and ⌊s = t⌋ ⊔ ⌊¬s⌋ ⊔ ⌊¬t⌋ are in C.

Sfq If s =στ t is in Fp, then there is some x ∈ Vσ \ (Vs ∪ Vt) such

that [∀x.sx =τ tx] is in F and ⌊s = t⌋ ⊔ ⌊∀x.sx = tx⌋ is in C.

Sfe If s 6=στ t is in Fp, then there is some x ∈ Vσ \ (Vs ∪ Vt) such

that [¬∀x.sx =τ tx] is in F and ⌊s = t⌋ ⊔ ⌊¬∀x.sx = tx⌋ is in C.

Sε If εσs is accessible in Fp, then there is some x ∈ Vσ \ Vs such

that [s(εs)] and [∀x.¬(sx)] are in F and

⌊s(εs)⌋ ⊔ ⌊∀x.¬(sx)⌋ is in C.

Figure 4. More conditions on a quasi-state Σ = (Fp,Fa,Up,Ua,C)

We say a propositional assignment Φ satisfies a state Σ if Φ satisfies
CΣ. We say Σ is propositionally satisfiable if there is a Φ such that Φ
satisfies Σ. Otherwise, we say Σ is propositionally unsatisfiable. Fur-
thermore, we say Σ is Henkin satisfiable if there is a Henkin consistent
propositional assignment satisfying CΣ. Note that checking whether Σ
is propositionally satisfiable is simply a SAT-problem.
A variable x is fresh for a state Σ if x is not free in any s ∈ FΣ ∪UΣ.
We now consider a second simple example.

Theorem 4.2. Let p : ιo and x : ι be variables. Suppose we wish to
prove the following basic property of the choice operator ει: ∀x.px →
p(ειp). The refutation will proceed in seven steps taking us from an
initial state Σ0 (corresponding to assuming the negation) to a state
Σ7 such that CΣ7 is propositionally unsatisfiable. The states Σi for
i ∈ {0, . . . , 7} are indicated in Figure 5. In the first step we process
¬∀x.px → p(εp) by choosing a fresh variable y : ι and including the new
formula ¬(py → p(εp)) and a clause relating the literals corresponding
to the two formulas. The resulting state is Σ1. We obtain Σ2 by pro-
cessing ¬(py → p(εp)) and obtaining two new formulas py and ¬p(εp)
and two new clauses. We obtain Σ3 by processing py. In general, pro-
cessing such a formula involves mating it with all passive formulas of
the form ¬pt. Since there are no such passive formulas (in particular,
¬p(εp) is active), Σ3 only differs from Σ2 in that py has been made
passive. We obtain Σ4 by processing ¬p(εp). This involves mating it
with the passive formula py to obtain the formula y 6= εp and adding a
new clause. (The reader should note that the new clause in Σ4 will not
be used to show the final set of clauses is propositionally unsatisfiable.)

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 9

Fp Fa Up Ua C

Σ0 ¬∀x.px → p(εp) ⌊∀x.px → p(εp)⌋

Σ1 ¬∀x.px → p(εp) ✭✭✭✭✭✭✭
¬∀x.px → p(εp) ⌊∀x.px → p(εp)⌋ ⊔ ⌊py → p(εp)⌋
¬(py → p(εp))

Σ2 ¬(py → p(εp)) ✭✭✭✭✭✭✭
¬(py → p(εp)) ⌊py → p(εp)⌋ ⊔ ⌊py⌋

py, ¬p(εp) ⌊py → p(εp)⌋ ⊔ ⌊p(εp)⌋

Σ3 py ✚✚py

Σ4 ¬(p(εp)) ✘✘✘¬p(εp) ⌊py⌋ ⊔ ⌊p(εp)⌋ ⊔ ⌊y = εp⌋
y 6= εp

Σ5 y 6= εp ✘✘✘
y 6= εp y, εp ⌊p(εp)⌋ ⊔ ⌊∀x.¬px⌋
∀x.¬px, p(εp)

Σ6 ∀x.¬px ✘✘✘✘∀x.¬px, p(εp)

Σ7 ¬py y ✁y ⌊∀x.¬px⌋ ⊔ ⌊py⌋

Figure 5. States from Example 4.2

To obtain Σ5 we process y 6= εp. Since y and εp are discriminating
terms in the set of passive formulas of Σ5, we add them to the set of
active instantiations. Also, since εp is accessible in FΣ5

p , we include
the formulas ∀x.¬px and p(εp) as well as a clause corresponding to the
meaning of the choice operator ε. We obtain Σ6 by processing ∀x.¬px.
In principle, this means instantiating with all passive instantiations of
type ι, but we have no passive instantiations of this type. Finally, we
obtain Σ7 by processing the instantiation y. Since y has type ι, we will
use it as an instantiation for the passive formula ∀x.¬px. As a con-
sequence, we add the formula ¬py and a corresponding clause. At this
point, the clauses are propositionally unsatisfiable and we are done.

Given a branch A, an initial state Σ for A is a state with A ⊆ FΣ,
and CΣ = {⌊s⌋|s ∈ A}. (We require A ⊆ FΣ rather than A ⊆ FΣ

a

to allow for the possibility that some formulas in A are passive rather
than active in an initial state. In practice, this could result from some
preprocessing of formulas in A.) To see that for any branch A there is
an initial state, consider Σ with FΣ

p = ∅, FΣ
a = A, UΣ

p = ∅, UΣ
a = ∅ and

CΣ = {⌊s⌋|s ∈ A}.

Theorem 4.3. We say a state Σ′ is a successor of a state Σ (and write
Σ → Σ′) if FΣ

p ⊆ FΣ′

p , FΣ
a ⊆ FΣ′

, UΣ
p ⊆ UΣ′

p , UΣ
a ⊆ UΣ′

, CΣ ⊆ CΣ′

, and
if Σ is Henkin satisfiable, then Σ′ is Henkin satisfiable.

Note that the successor relation is reflexive and transitive. Also,
soundness of the procedure is built into the definition of the successor
relation.

10 CHAD E. BROWN

Theorem 4.1 (Soundness). Let A be a branch. If there is a proposi-
tionally unsatisfiable Σ′ such that ΣA → Σ′, then A is unsatisfiable.

Proof. Assume (D, I) is a Henkin model of A. Choose Φ such that

Φ⌊s⌋ = Îs for each s ∈ A. Clearly, Φ demonstrates that ΣA is Henkin
satisfiable. On the other hand, since Σ′ is propositionally unsatisfiable,
it is Henkin unsatisfiable. This contradicts the definition of ΣA →
Σ′. �

A strategy which chooses a successor state for each propositionally
satisfiable state will yield a sound procedure. One such strategy is to
interleave two kinds of actions: (1) process active formulas and instan-
tiations while making the minimal number of additions of formulas and
clauses consistent with the invariants in Figure 3 and (2) generate new
active instantiations. To ensure soundness, when processing a formula
¬∀σs a procedure should choose a fresh variable x, add ¬[sx] to Fa and

add ⌊∀σs⌋ ⊔ ⌊sx⌋ to C.
If a strategy does not lead to a propositionally unsatisfiable state,

then it will give a finite or infinite path of states. If the strategy is fair,
this path will satisfy certain fairness properties. In this case, we can
use the path to prove the original branch is satisfiable. That is, we can
conclude that every fair strategy is complete.

Theorem 4.4. Let α ∈ ω ∪ {ω}. An α-path (or, simply path) is an
α-sequence Σ = (Σi)i<α of propositionally satisfiable states such that
Σi → Σi+1 for each i with i + 1 < α. We say a type σ is a quantified
type on the path if there exist i < α and s such that ∀σs ∈ FΣi. Such
a path is fair if the following conditions hold:

(1) For all i < α and s ∈ FΣi
a there is some j ∈ [i, α) such that

s ∈ F
Σj
p .

(2) If σ is a quantified type, then for all i < α, A ⊆ FΣi and t ∈ UA
σ

there is some j ∈ [i, α) such that t ∈ U
Σj
p .

Given a branch A0, we will start with an initial state Σ0 for A0. Our
theorem proving procedure will construct a sequence of successor states
in such a way that, unless some state is propositionally unsatisfiable,
the sequence will be a fair path. In order to prove completeness of this
procedure, it is enough to prove that if there is a fair path starting from
Σ0, then A0 is satisfiable. This result will be given as Theorem 4.1 at
the end of this section.
For the remainder of this section we assume a fixed α and fair α-path

Σ.

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 11

Theorem 4.5. Let i < α be given. We say a branch A is i-supported
if A ⊆ FΣi and there is a pseudo-model Φ of A satisfying Σi. We say
a branch A is i-consistent if A is j-supported for all j ∈ [i, α).

Theorem 4.1. Let i < α and j ∈ [i, α) be given. If A is j-supported
and A ⊆ FΣi, then A is i-supported.

Proof. This follows from CΣi ⊆ CΣj . �

Let Γ be the set of all branches A such that A is i-consistent for
some i < α. We will prove Γ is an abstract consistency class.

Theorem 4.2. Let A be an j-consistent branch. Let A1, . . . , An be
branches such that A ⊆ Al ⊆ FΣj for each l ∈ {1, . . . , n}. Either there
is some l ∈ {1, . . . , n} such that Al is j-consistent or there is some
k ∈ [j, α) such that Al is not k-supported for each l ∈ {1, . . . , n}.

Proof. Assume none of A1, . . . , An is j-consistent. Let k1, · · · , kn ∈
[j, α) be such that Al is not kl-supported for each l ∈ {1, . . . , n}. Let
k be the maximum of k1, . . . , kn. By Lemma 4.1 each Al is not k-
supported. �

Theorem 4.3. Γ is an abstract consistency class.

Proof. We verify a representative collection of cases.

C⊥ Suppose ⊥ ∈ A and A is i-consistent. By fairness there is some

j ∈ [i, α) such that ⊥ ∈ F
Σj
p . By S⊥ the unit clause ⌊⊥⌋ is in

CΣj . This contradicts A being j-supported.
C¬ Suppose ¬s and s are in A. Since no propositional assignment

Φ can have Φ⌊¬s⌋ = 1 and Φ⌊s⌋ = 1, A cannot be i-consistent
for any i.

C→ Suppose s → t is in an i-consistent branch A. If t is ⊥, then
A ∪ {¬s} is the same as A and so A ∪ {¬s} is i-consistent.
Assume t is not ⊥. Since A is i-consistent, we know A ⊆ FΣi

and so s → t ∈ FΣi . By fairness there is some j ∈ [i, α)

such that s → t ∈ F
Σj
p . By S→ we know {¬s, t} ⊆ FΣj and

⌊s → t⌋ ⊔ ⌊s⌋ ⊔ ⌊t⌋ is in CΣj . Note that A ∪ {¬s} ⊆ FΣk and
A∪{t} ⊆ FΣk for every k ∈ [j, α). Assume neither A∪{¬s} nor
A ∪ {t} is j-consistent. By Lemma 4.2 there is some k ∈ [j, α)
such that neither A ∪ {¬s} nor A ∪ {t} is k-supported. Since
A is i-consistent, A is k-supported and has some pseudo-model
Φ satisfying Σk. Since ⌊s → t⌋ ⊔ ⌊s⌋ ⊔ ⌊t⌋ is in CΣk and Φ⌊s →
t⌋ = 1, we must have Φ⌊s⌋ = 0 or Φ⌊t⌋ = 1. Thus Φ witnesses
that either A ∪ {¬s} or A ∪ {t} is k-supported, contradicting
our choice of k. Hence either A ∪ {¬s} or A ∪ {t} must be
j-consistent.

12 CHAD E. BROWN

C¬→ Suppose ¬(s → t) is in an i-consistent branch A. Since A is
i-consistent, we know ¬(s → t) ∈ FΣi . By fairness there is

some j ∈ [i, α) such that ¬(s → t) ∈ F
Σj
p . By S¬→ we know

{s,¬t} ⊆ FΣj , and both ⌊s → t⌋ ⊔ ⌊s⌋ and ⌊s → t⌋ ⊔ ⌊t⌋ are
in CΣj . We prove A ∪ {s,¬t} is j-consistent. Let k ∈ [j, α)
be given. Since A is i-consistent, it has some pseudo-model Φ
satisfying Σk. Since Φ⌊¬(s → t)⌋ = 1, we must have Φ⌊s⌋ = 1
and Φ⌊¬t⌋ = 1. Hence Φ is a pseudo-model of A∪{s,¬t} and so
A∪{s,¬t} is k-supported. Therefore, A∪{s,¬t} is j-consistent.

C∀ Let A be an i-consistent branch such that ∀σs ∈ A and t ∈ UA
σ .

Note that ∀σs ∈ A ⊆ FΣi witnesses that σ is a quantified type on

the path. By fairness there is some j ∈ [i, α) such that ∀s ∈ F
Σj
p

and t ∈ U
Σj
p . By S∀ [st] ∈ FΣj and ⌊∀σs⌋ ⊔ ⌊st⌋ is in CΣj . We

prove A is j-consistent. Let k ∈ [j, α) be given. Since A is
i-consistent, it has some pseudo-model Φ satisfying Σk. Since
Φ⌊∀s⌋ = 1 and ⌊∀σs⌋ ⊔ ⌊st⌋ is in CΣj , we must have Φ⌊st⌋ = 1
and so A ∪ {[st]} is k-supported. (We know ⌊[st]⌋ = ⌊st⌋ as a
property of ⌊·⌋.)

C¬∀ Let A be an i-consistent branch such that ¬∀σs ∈ A. By fairness

there is some j ∈ [i, α) such that ¬∀s ∈ F
Σj
p . By S¬∀ there is

some variable x such that ¬[sx] ∈ FΣj and ⌊∀σs⌋ ⊔ ⌊sx⌋ is in
CΣj . Let k ∈ [j, α) be given. Let Φ be a pseudo-model of A
satisfying Σk. Since Φ⌊¬∀s⌋ = 1 we must have Φ⌊¬(sx)⌋ = 1
and so A ∪ {¬[sx]} is k-supported.

Ccon Suppose s =ι t and u 6=ι v are in an i-consistent branch A. By
fairness there is some j ∈ [i, α) such that s =ι t and u 6=ι v are

F
Σj
p . By Scon we know the formulas s 6= u, t 6= u, s 6= v and

t 6= v are in FΣj and the following four clauses are in CΣj :
⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊s 6= u⌋ ⊔ ⌊s 6= v⌋,

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊s 6= u⌋ ⊔ ⌊t 6= v⌋,

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊t 6= u⌋ ⊔ ⌊s 6= v⌋,

⌊s = t⌋ ⊔ ⌊u = v⌋ ⊔ ⌊t 6= u⌋ ⊔ ⌊t 6= v⌋
Assume neither A ∪ {s 6= u, t 6= u} nor A ∪ {s 6= v, t 6= v} is j-
consistent. We know by Lemma 4.2 that there is some k ∈ [j, α)
such that neither A ∪ {s 6= u, t 6= u} nor A ∪ {s 6= v, t 6= v} is
k-supported. Let Φ be a pseudo-model of A satisfying Σk. Note
that Φ⌊s = t⌋ = 1 and Φ⌊u = v⌋ = 0. By examining the four
clauses above, it is clear that we must either have Φ⌊s 6= u⌋ = 1
and Φ⌊t 6= u⌋ = 1 or have Φ⌊s 6= v⌋ = 1 and Φ⌊t 6= v⌋ = 1, a
contradiction.

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 13

�

Theorem 4.1 (Model Existence). Let A0 be a branch and Σ be a fair
α-path such that Σ0 is an initial state for ΣA0

. Then A0 is satisfiable.

Proof. By Theorem 2.1 it is enough to prove A0 is 0-consistent. Let
j ∈ [0, α) be given. Clearly A0 ⊆ FΣ0 ⊆ FΣj . Let Φ satisfy Σj. For
each s ∈ A0, the unit clause ⌊s⌋ is in CΣj and so Φ⌊s⌋ = 1. �

5. Implementation

A procedure along the lines described above has been implemented
in a theorem prover named Satallax. There are some minor differences
from the abstract description. One difference is that double negations
are eliminated during normalization in the implementation (e.g., the
normal form of p(λx.¬¬x) is p(λx.x)). Another difference is that there
is no default constant ∗ of type ι. If there are no discriminating terms
of type ι, then either a variable or the term ειx.⊥ is used as an instan-
tiation of type ι. Also, there may be base types other than ι.
The first version of Satallax was written in Steel Bank Common Lisp.

In this earlier version, MiniSat was restarted and sent all the clauses
generated so far whenever propositional satisfiability was to be tested.
The latest version of Satallax is implemented in Objective Caml. A for-
eign function interface allows Satallax to call MiniSat functions (coded
in C++) in order to add new clauses to the current set of clauses and
to test for satisfiability of the current set of clauses. This is a much
more efficient way of using MiniSat.
Problems are given to Satallax as a TPTP file in THF format [18].

We will refer to several problems from the TPTP problem library [15]
(specifically, TPTP v5.3.0). Such a problem file may include axioms
and optionally a conjecture. The conjecture, if given, is negated and
treated as an axiom. Logical constants that occur in axioms are rewrit-
ten in favor of the basic logical constants ⊥, →, =σ, ∀σ and εσ. Also, all
definitions are expanded and the terms are βη-normalized. (De Bruijn
indices are used to deal with α-convertibility.) If the normalized axiom
s is of the particular form ∀px.px → p(ep) or ∀p.(¬∀x.¬px) → p(ep)
where e is a constant of type (σo)σ for some σ, then e is registered
as a choice operator of type σ and the axiom s is omitted from the
initial branch. Every other normalized axiom is an initial assumption.
The choice rule can be applied with every name registered as a choice
operator.
There are about a hundred flags that can be set in order to control the

order in which the search space is explored. A collection of flag settings
is called a mode. Currently, there are about 300 modes predefined in

14 CHAD E. BROWN

Satallax. A particular mode can be chosen via a command line option.
Otherwise, a default schedule of modes is used and each of the modes
on the schedule is given a certain amount of time to try to refute the
problem.
If the flag Split Global Disjunctions is set to true, then Sa-

tallax will decompose the topmost logical connectives including the
topmost disjunctions. This is likely to result in a set of subgoals which
can be solved independently. This is an especially good idea if, for
example, the conjecture is a conjunction. It is, of course, a bad idea if
there are many disjunctive axioms.
Once the initial branch is determined, the state is initialized to in-

clude a unit clause for each member and the set of active formulas is
initialized to be the initial branch. The terms ⊥ and ¬⊥ are added as
passive instantiations. Additionally, if the flag
Initial Subterms As Instantiations is set to true, then all sub-
terms of the initial branch are added as passive instantiations. During
the search, discriminating terms of type ι are added as active instan-
tiations. If there is a quantifier at a function type στ , a process of
enumerating normal terms of type στ is started. Of course, this enu-
meration process is the least directed part of the search procedure.
The successor relation on states was defined very generally. In par-

ticular, it does not rule out adding more formulas, instantiations and
clauses than the ones suggested by the invariants on states. These ad-
ditions may be very useful, but they are not necessary for completeness.
A simple example is that, if the flag
Instantiate With Func Diseqn Sides is set to true, the terms
s and t are added as active instantiations whenever an active formula
s 6=στ t is processed. In addition, if HOUnif1 is set to true, then
higher-order unification is used to suggest terms to add as active in-
stantiations.

Theorem 5.1. The conjecture of the problem SEU868ˆ5 from the TPTP
states that one characterization of Cαo being a finite set implies another
characterization.

(∀w(αo)o.w(λx.⊥) ∧ (∀rαoxα.wr → w(λt.rt ∨ t = x)) → wC) →
∀P(αo)o.(∀Eαo.¬(∃t.Et) → PE) ∧

(∀YαozαZαo.PY ∧ (∀uα.Zu ≡ (Y u ∨ u = z)) → PZ) → PC

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 15

If Split Global Disjunctions is true, the initial branch contains

∀w(αo)o.w(λx.⊥) ∧ (∀rαoxα.wr → w(λt.rt ∨ t = x)) → wC,
∀Eαo.(∀t.¬Et) → PE,

∀YαozαZαo.PY ∧ (∀uα.Zu ≡ (Y u ∨ u = z)) → PZ,
¬PC

Several instantiations are used in the proof. Two subterms of this ini-
tial branch are P and λx.⊥. Satallax uses P as an instantiation for w
and λx.⊥ as an instantiation for E if
Initial Subterms As Instantiations is true. This yields new for-
mulas

P (λx.⊥) ∧ (∀rαoxα.P r → P (λt.rt ∨ t = x)) → PC

and
(∀t.¬⊥) → P (λx.⊥).

Processing the former formula leads to the introduction of the vari-
ables r and x. Because of mating, the terms r, x and λzα.rz ∨ z = x
eventually appear as sides of disequations. This leads to the use of r
as an instantiation for Y , x for z and finally λzα.rz ∨ z = x for Z
if Instantiate With Func Diseqn Sides is true. This yields the
formula Pr ∧ (∀u.(ru ∨ u = x) ≡ (ru ∨ u = x)) → P (λz.rz ∨ z = x).
Once these appropriate instantiations have been made, the rest of the
search is easy.

At each stage of the search there are a number of options for continu-
ing the search. We call these options commands . There are commands
for processing active formulas and active instantiation. Executing such
a command creates a successor state in which the formula or instan-
tiation is passive. Whenever a command is generated (e.g., when a
new active formula is created), the command is put into a priority
queue. Priorities of different commands are computed using the values
of various flags.
As mentioned earlier, in order to have a complete procedure, we need

to enumerate closed terms to use as instantiations for function types.
There are various commands that correspond to making progress in
such an enumeration process. There are two (independent) enumera-
tion procedures implemented in Satallax. The first enumeration pro-
cedure uses commands to request normal terms of a certain type in a
certain context. The execution of each command corresponds to mak-
ing a further commitment about the term requested. Once a term
is completely determined, it is added as an active instantiation. The
second enumeration procedure is used if the flag Enum Iter Deep is
true. This alternate procedure periodically generates all closed terms

16 CHAD E. BROWN

using the current set of variables and logical constants up to a certain
depth. For completeness, each time we enumerate again, we increase
the depth. We next consider a simple example which demonstrates
both enumeration procedures.

Theorem 5.2. The conjecture in the TPTP problem SYO548ˆ1 is

∃E(ιo)ι∀Pιo.(∃Xι.¬PX) → ¬(P (EP)).

This states that there is an operator which maps each predicate P over
a type ι to an element of ι that does not satisfy P , if such an ele-
ment of exists. The idea is to obtain such an operator by applying
ει to the complement of P . That is, we should prove this by instan-
tiating with (λpιo.ε(λxι.¬px)) for E. Several modes can solve this
problem in less than a second. We describe the search space gener-
ated by two modes: Mode81 (using the first enumeration procedure –
with Enum Iter Deep false) and Mode261 (using the second enu-
meration procedure – with Enum Iter Deep true). Since (ιo)ι is a
quantified type, both enumeration procedures will attempt to generate
instantiation terms of this type.
With Mode81 Satallax executes a sequence of commands including

the following. Request a term of type (ιo)ι. After imitating ει, request
a term of the form λpιo.ει[] where the hole [] is yet to be determined.
To fill the hole, request a term of type ιo where pιo may occur free.
After imitating negation, request a term of the form λx.¬[] where the
hole [] is yet to be determined. To fill the hole, request a term of type
o where pιo and xι may occur free. After projecting p, request a term
of the form p[] where [] is yet to be determined. To fill this last hole,
request a term of type ι in which pιo and xι may occur free. Projecting
x fills this hole and the completed term (λpιo.ε(λxι.¬px)) is added as
an active instantiation. After this, the state quickly becomes proposi-
tionally unsatisfiable. No other potential instantiations of type (ιo)ι
are generated before this useful one is generated. For this reason, by
the time the state becomes propositionally unsatisfiable, only 15 clauses
have been generated, 6 of which form an unsatisfiable core. Note that
each request above is a separate command which is put into the priority
queue and is hence interleaved with the other commands of the search
procedure.
With Mode261 Satallax periodically enumerates terms of type (ιo)ι

with sizes limited to a certain depth. The size of a term depends on
the value of various integer flags. The first time Satallax enumerates
terms with size bounded by 3 and each time the allowed size increases by
2. The flag settings for Mode261 mean that no terms are generated

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 17

until the allowed size is 103, at which point four terms are enumer-
ated. On the next iteration when the allowed size is 105, 365 terms
are enumerated to be used as instantiations. One of these terms is
(λpιo.ε(λxι.⊥ = px)), which leads to a successful proof. By the time the
state becomes propositionally unsatisfiable, 6053 propositional clauses
have been generated; 11 of these clauses form an unsatisfiable core.

The next example has only been proven using a mode in which
Enum Iter Deep is true.

Theorem 5.3. The TPTP problem GRA027ˆ1 is a problem in propo-
sitional type theory. It represents the fact that the Ramsey number
R(3, 3) is greater than 4. The type oo has exactly four elements. The
conjecture states that there is a symmetric relation G : (oo)(oo)o with
no 3-cliques and no 3-anticliques. Satallax can solve this problem with
mode Mode261. Enumerating all terms of type (oo)(oo)o with size
bounded by 3 leads to 13 possible instantiations. Either of the two
terms λX : oo.λY : oo.X⊥ = Y⊥ or λX : oo.λY : oo.Y⊥ = X⊥
provide a solution.

One of the most useful extensions implemented in Satallax is, under
certain flag settings, to generate higher-order clauses with higher-order
literals to be matched against formulas as the formulas are processed.
Such higher-order clauses are only used when every existential variable
in the clause has a strict occurrence in some literal. (A strict occur-
rence is essentially a pattern occurrence which is not below another
existential variable [13].) The following example illustrates the use of
higher-order clauses.

Theorem 5.4. The problem SEU506ˆ2 of the TPTP is a simple set
theory example. We assume a membership relation ∈: ιιo and an empty
set ∅ : ι. We will write s ∈ t for ∈ s t and s /∈ t for ¬(∈ s t). The
problem states that if we have

∀xι.x ∈ ∅ → ∀po.p,
and

∀XYι.(∀xι.x ∈ X → x ∈ Y) → (∀xι.x ∈ Y → x ∈ X) → X = Y,

then we know

∀Aι.(∀xι.x /∈ A) → A = ∅.

Over a hundred modes can solve this problem in less than 2 seconds,
many of which do not use higher-order clauses. An example of a mode
using higher-order clauses that solves the problem is Mode205, which
solves it in less than 0.1 seconds. Since Split Global Disjunctions

18 CHAD E. BROWN

is true, the initial branch contains four formulas:

A 6= ∅
∀x.x /∈ A

∀XYι.(∀xι.x ∈ X → x ∈ Y) → (∀xι.x ∈ Y → x ∈ X) → X = Y
∀xι.x ∈ ∅ → ∀po.p

for a fixed A : ι. As these formulas are processed the following higher-
order clauses are created:

?x /∈ A
?X = ?Y | ¬(∀xι.x ∈ ?X → x ∈ ?Y) | ¬(∀xι.x ∈ ?Y → x ∈ ?X)

?p | ?z /∈ ∅

Here ?x, ?X, ?Y , ?z and ?p are existential variables. Each time a pas-
sive formula is processed, Satallax attempts to match literals in higher-
order clauses against the negation of the formula. Each time a ground
instance of a higher-order clause is generated corresponding proposi-
tional clauses are created and new active formulas are added to the
state. In this particular example, the literal ?X = ?Y matches the for-
mula A = ∅ determining a ground instance of the second higher-order
clause. This leads to the consideration of the two formulas ¬(∀x.x ∈
A → x ∈ ∅) and ¬(∀x.x ∈ ∅ → x ∈ A). Two corresponding witnesses a
and b are created and eventually the formulas a ∈ A, a /∈ ∅, b ∈ ∅ and
b /∈ A. The sole literal in the unit clause ?x /∈ A matches the negation
of the formula a ∈ A. Likewise, the higher-order clause ?p | ?z /∈ ∅
contributes to the search since ?z /∈ ∅ matches b /∈ ∅ and ?p matches an
appropriate formula. (Many instantiations for ?p could be useful here.
The one Satallax uses happens to be b ∈ ∅ → b ∈ A.)

6. Results and Further Examples

TPTP v5.3.0 contains 2924 problems in THF0 format. Among these,
347 are known to be satisfiable. (Satallax 2.4 terminates on many of
these problems, recognizing them as satisfiable.) For 2001 of the re-
maining 2577 problems (77.6%), there is some mode that Satallax 2.4
can use to prove the theorem (or show the assumptions are unsatisfi-
able) within 30 seconds. A strategy schedule running 61 modes for 5
minutes can solve each of the 2001 problems.
One reason for the success of Satallax is that it can solve some prob-

lems by brute force. SEV106ˆ5 is a TPTP problem which codes a
Ramsey-style theorem about graphs and cliques. In Example 5.3 we
proved a lower bound for R(3, 3) by providing an appropriate graph
with 4 nodes. In this example we must prove an upper bound for
R(3, 3) by proving no such appropriate graph with 6 nodes exists. In

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 19

particular, we assume there are at least six distinct individuals and that
there is a symmetric relation (i.e., an undirected graph) on individuals.
There must be three distinct individuals all of whom are related or all
of whom are unrelated. Since we are assuming there are six distinct
individuals, we quickly have six corresponding discriminating terms.
Satallax uses all six of these (blindly) as instantiations for the exis-
tential quantifiers, leading to 63 instantiations. Using mode Mode1

Satallax generates over 8000 propositional clauses which MiniSat can
easily recognize as unsatisfiable. In most examples only a handful of
the clauses are the cause of unsatisfiability. In this example a 284
clauses are used to show unsatisfiability.
Two higher-order examples from the TPTP that Satallax can solve

are SYO378ˆ5 and SYO379ˆ5. These examples were created in Tps

to illustrate the concept of quantificational depth, discussed at the
end of [1]. Let c : ι be a variable and define d0 := λx : ι.x = c,
d1 := λy : ιo.y = d0 ∧ ∃x.yx and d2 := λz : (ιo)o.z = d1 ∧ ∃y.zy
(where s ∧ t means ¬(s → ¬t) and ∃x.s means ¬∀x.¬s). One of the
examples is ∃y.d1y and the other is ∃z.d2z. A high-level proof is simply
to note that d0c, d1d0 and d2d1 are all provable. However, if we expand
all definitions, then these instantiations are no longer so easy to see.
Fortunately, if the flag Instantiate With Func Diseqn Sides is
set to true, then d0 and d1 will appear as the side of a disequation
and Satallax will include them as instantiations early. Verifying the
instantiations work is not difficult. There are modes that can solve
these problems within a second.
We also discuss two particularly interesting examples: SEV429ˆ1 and

SEV430ˆ1. the TPTP. In both examples we use variables f, g : ιι and
x, y : ι. SEV429ˆ1 means every injective function f has a left inverse g
and SEV430ˆ1 means every surjective function f has a right inverse g.

(∀x∀y.fx = fy → x = y) → ∃g.∀x.(g(fx)) = x SEV429ˆ1

(∀y.∃x.fx = y) → ∃g.∀x.(f(gx)) = x SEV430ˆ1

In both SEV429ˆ1 and SEV430ˆ1 Satallax must enumerate poten-
tial instantiations of type ιι for g. Some of the instantiations (e.g.,
λx.x, f and λx.f(fx)) are unhelpful and only serve to make the search
space large. In both cases the instantiation used in the refutation is
λy.εx.fx = y. An equivalent instantiation, λy.εx.y = fx, is also gen-
erated. (While it seems likely that such an equivalent instantiation
could be discarded without sacrificing completeness, there is no cur-
rently known meta-theoretic result to justify this intuition.)
Satallax can prove SEV429ˆ1 using mode Mode214 in about 10

seconds. In the process it generates 15 candidates for g and 115609
propositional clauses. Only 10 of the clauses are needed. Satallax

20 CHAD E. BROWN

can prove SEV430ˆ1 using mode Mode207 in under 2 seconds. In
the process it generates 16 higher-order instantiations (candidates for
g) and 19806 propositional clauses. It turns out that only 6 of these
clauses are required to determine propositional unsatisfiability.
Satallax can also prove SEV430ˆ1 using mode Mode286 in a few

milliseconds. The reason is the flags ExistsToChoice, HOUnif1

and HOUnifMate1 are set to true. (Each of these flags is new to
version 2.4 of Satallax.) When the flag ExistsToChoice is set to
true, the problem is preprocessed by using the choice operator ε to
(essentially) Skolemize the problem. In particular, each negative occur-
rence of a formula ∀σs is replaced by the logically equivalent formula
[s (εx.¬sx)] (where x is fresh). In SEV430ˆ1 the problem is transformed
to give two assumptions:

∀y.f(εx.fx = y) = y

and

∀g.f(g(εy.f(gy) 6= y)) 6= (εy.f(gy) 6= y).

Note that the first assumption essentially contains the appropriate in-
stantiation of g as a subterm. Since the flags HOUnif1 and HOUnif-

Mate1 are set to true, Satallax will attempt to generate instantia-
tions by creating existential variables, mating potentially complemen-
tary formulas and performing higher-order unification. In this particu-
lar case, existential variables ?Y and ?G will be created and a disagree-
ment pair of the form

(f(εx.fx = ?Y) = ?Y) =? (f(?G(εy.f(?Gy) 6= y)) = (εy.f(?Gy) 6= y)).

Higher-order unification can solve for an appropriate instantiation for
?G very quickly.
Satallax 1.4 (the last version of Satallax coded in Common Lisp)

competed in the higher-order division of CASC in 2010 [16] and was
able to prove 120 out of 200 problems, coming in second to LEO-II
1.2 [4] which proved 125 out of 200 problems.
Satallax 2.1 competed in the higher-order division of CASC in 2011 [17]

and came in first by proving 246 out of 300 problems. LEO-II 1.2.8
came in second proving 208 of 300 problems.
Satallax 2.4 will compete in the higher-order division of CASC in

2012.2

2If this paper is accepted, results should be available by the time the final version
is due.

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 21

7. Related Work

Smullyan introduced the notion of abstract consistency in 1963 [14].
One of his applications of abstract consistency is to justify reducing
first-order unsatisfiability of a set M to propositional unsatisfiability
of an extended set R ∪M . The procedure described in this paper and
implemented in Satallax was developed without Smullyan’s application
in mind. Nevertheless, one can consider the procedure to be both an
elaboration of Smullyan’s idea as well as an extension to the higher-
order case.
A different instantiation-based method Inst-Gen is described in [11].

Inst-Gen generates ground instances of first-order clauses and searches
by interacting with a SAT-solver. This method is implemented in the
first-order prover iProver [11, 12]. Note that iProver is also coded in
Objective Caml and uses MiniSat via a foreign function interface. Two
differences between the Inst-Gen method and the method in this paper
should be noted. First, Inst-Gen assumes the problem is in clausal
normal form. We do not make this assumption. As is well known, a
substitution into a higher-order clause may lead to the need for fur-
ther clause normalization. Second, Inst-Gen assumes an appropriate
ordering on closures (clauses with substitutions). This ordering leads
to important restrictions on inferences that can significantly improve
the performance of Inst-Gen. We do not make use of any such order-
ing. In fact, a straightforward attempt to find such an ordering for the
higher-order case is doomed to failure. This can be briefly indicated by
an example. Suppose we define a closure to be a pair C ·θ of an atomic
formula C and a substitution θ. The basic condition of a closure order-
ing ≻ (see [11]) is that C · σ ≻ D · τ whenever Cσ = Dτ and Cθ = D
for some “proper instantiator” θ. In the higher-order case, we would
consider equality of normal forms instead of strict syntactic equality.
Consider two atomic formulas C := p(λxy.fxy) and D := p(λyx.fxy)
where p, f , x and y are variables of appropriate types. Consider the
substitution θp := λfxy.p(λyx.fxy). Clearly Cθ is β-equivalent to
D and Dθ is β-equivalent to C. An appropriate ordering (assuming
θ would be considered a “proper instantiator”) would need to have
C · ∅ ≻ D · ∅ ≻ C · ∅ where ∅ plays the identity substitution.
Regarding higher-order theorem provers, two well-known examples

are Tps [2] and LEO-II [4]. Automated search in Tps is based on
expansion proofs while search in LEO-II is based on a resolution calcu-
lus. Both Tps and LEO-II make essential use of existential variables
which are partially instantiated during search. LEO-II was the first
higher-order prover to take a cooperative approach. LEO-II makes

22 CHAD E. BROWN

calls to a first-order theorem prover to determine if the current set of
higher-order clauses maps to an unsatisfiable set of first-order clauses.

8. Conclusion

We have given an abstract description of a search procedure for
higher-order theorem proving. The key idea is to start with a notion
of abstract consistency which integrates a restriction on instantiations.
We gave a notion of a state which consists of finite sets of formulas,
instantiations and propositional clauses. The invariants in the defini-
tion of a state correspond to the abstract consistency conditions. We
have given a successor relation on states. Any fair strategy for choosing
successors (until the set of propositional clauses is unsatisfiable) will
give a complete theorem prover.
We have also described the implementation of this procedure as a

higher-order theorem prover Satallax. Satallax is still new and there
is a lot of room for improvement and further research. For example,
it would improve Satallax significantly if one integrated procedures for
solving for set variables as described in [5, 6]. Also, at the moment Sa-
tallax is very weak on problems that involve equational reasoning. Ideas
for integrating efficient equational reasoning with the larger search pro-
cedure are needed.
Acknowledgements Thanks to Andreas Teucke whose ongoing work

on translating Satallax refutations to Coq proof terms has led to the
consideration of some of the examples in this paper. Thanks also to
Gert Smolka for his support and stimulating conversations.

References

[1] Andrews, P.B., Bishop, M., Brown, C.E.: System description: TPS: A theorem
proving system for type theory. In: D. McAllester (ed.) Proceedings of the 17th
International Conference on Automated Deduction, Lecture Notes in Artificial
Intelligence, vol. 1831, pp. 164–169. Springer-Verlag, Pittsburgh, PA, USA
(2000)

[2] Andrews, P.B., Brown, C.E.: TPS: A hybrid automatic-interactive system for
developing proofs. Journal of Applied Logic 4(4), 367–395 (2006)

[3] Backes, J., Brown, C.E.: Analytic Tableaux for Higher-Order Logic with
Choice. In: R.H. Jürgen Giesl (ed.) Automated Reasoning: 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010, Proceedings,
LNCS/LNAI, vol. 6173, pp. 76–90. Springer (2010)

[4] Benzmüller, C., Paulson, L., Theiss, F., Fietzke, A.: LEO-II — A co-
operative automatic theorem prover for classical higher-order logic. In:
Fourth International Joint Conference on Automated Reasoning (IJCAR’08),
LNCS (LNAI), vol. 5195, pp. 162–170. Springer (2008). URL www.ags.uni-
sb.de/ chris/papers/C25.pdf

REDUCING HIGHER-ORDER PROVING TO SAT PROBLEMS 23

[5] Bledsoe, W.W., Feng, G.: Set-Var. Journal of Automated Reasoning 11, 293–
314 (1993)

[6] Brown, C.E.: Solving for Set Variables in Higher-Order Theorem Proving.
In: A. Voronkov (ed.) Proceedings of the 18th International Conference on
Automated Deduction, Lecture Notes in Artificial Intelligence, vol. 2392, pp.
408–422. Springer-Verlag, Copenhagen, Denmark (2002)

[7] Brown, C.E.: Reducing Higher-Order Theorem Proving to a Sequence of SAT
Problems. In: N. Bjørner, V. Sofronie-Stockkermans (eds.) CADE - the 23rd
International Conference on Automated Deduction, LNCS/LNAI 6803, pp.
147 – 161. Springer (2011)

[8] Brown, C.E., Smolka, G.: Analytic tableaux for simple type theory and its
first-order fragment. Logical Methods in Computer Science 6(2) (2010)

[9] De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and
applications. Commununications of the ACM 54(9), 69–77 (2011). DOI
10.1145/1995376.1995394. URL http://doi.acm.org/10.1145/1995376.1995394

[10] Eén, N., Sörensson, N.: An Extensible SAT-solver. In: E. Giunchiglia, A. Tac-
chella (eds.) Theory and Applications of Satisfiability Testing, Lecture Notes in
Computer Science, vol. 2919, pp. 333–336. Springer Berlin / Heidelberg (2004)

[11] Korovin, K.: iProver – an instantiation-based theorem prover for first-order
logic (system description). In: A. Armando, P. Baumgartner, G. Dowek (eds.)
Proceedings of the 4th International Joint Conference on Automated Reason-
ing, (IJCAR 2008), Lecture Notes in Computer Science, vol. 5195, pp. 292–298.
Springer (2008)

[12] Korovin, K., Sticksel, C.: iprover-eq: An instantiation-based theorem prover
with equality. In: R.H. Jürgen Giesl (ed.) Automated Reasoning: 5th Inter-
national Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010,
Proceedings, LNCS/LNAI, vol. 6173, pp. 196–201. Springer (2010)

[13] Pfenning, F., Schürmann, C.: Algorithms for equality and unification in the
presence of notational definitions. In: T. Altenkirch, W. Naraschewski, B. Reus
(eds.) TYPES 1998, Lecture Notes in Computer Science, vol. 1657, pp. 179–
193. Springer (1999)

[14] Smullyan, R.M.: A unifying principle in quantification theory. Proceedings of
the National Academy of Sciences, U.S.A. 49, 828–832 (1963)

[15] Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362
(2009)

[16] Sutcliffe, G.: The 5th IJCAR Automated Theorem Proving System Competi-
tion - CASC-J5. AI Communications 24(1), 75–89 (2011)

[17] Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition
- CASC-23. AI Communications 25(1), 49–63 (2012)

[18] Sutcliffe, G., Benzmüller, C.: Automated Reasoning in Higher-Order Logic
using the TPTP THF Infrastructure. Journal of Formalized Reasoning 3(1),
1–27 (2010)

