
Satallax: An Automatic Higher-Order Prover

Chad E. Brown

Saarland University, Saarbrücken, Germany

Abstract. Satallax is an automatic higher-order theorem prover that
generates propositional clauses encoding (ground) tableau rules and uses
MiniSat to test for unsatisfiability. We describe the implementation, fo-
cusing on flags that control search and examples that illustrate how the
search proceeds.

Keywords: higher-order logic, simple type theory, higher-order theorem
proving

1 Introduction

Satallax is an automatic theorem prover for classical higher-order logic with ex-
tensionality and choice. The search proceeds by generating propositional clauses
that simulate tableau rules. Once the set of propositional clauses is unsatisfi-
able, the original higher-order problem is solved. An abstract description of the
search procedure is given in [6]. The corresponding tableau calculus is proven
sound and complete relative to Henkin models in [1], and the search procedure
is proven sound and complete in [6].

In this system description we discuss the implementation of the search pro-
cedure. A number of flags can be used to guide search. We discuss the most
important of these flags and give example problems from TPTP v5.3.0 [10] to
illustrate how these flags affect the behavior of Satallax. (From now on, we use
TPTP to refer to TPTP v5.3.0.)

Satallax won the THF division of the CASC-23 competition at CADE-23 in
2011 [11]. Out of 300 problems with a 5 minute time limit, Satallax 2.1 solved 246.
LEO-II 1.2.8 [3] came in second, solving 208 problems. Among the 300 problems,
there were 15 problems that only Satallax could solve. Most of these 15 problems
were related to a choice operator. Since Satallax is the only system that directly
supports reaonsing with choice operators, it clearly has an advantage on such
problems. By contrast, there were 18 problems LEO could solve but no other
system could. Many of these involved first-order equational reasoning (e.g., group
theory problems).

The first versions of Satallax (1.0-1.4) were coded in Steel-Bank Common
Lisp during 2009-2010. Starting with version 2.0 in 2010, Satallax has been
implemented in Objective Caml with the exception of some code implementing
a foreign function interface to MiniSat functions. MiniSat [8] is implemented
in C++. The latest version of Satallax is Satallax 2.3 (approximately 13,000
lines Objective Caml code and 100 lines of C++) which uses MiniSat 2.2.0
(approximately 2,000 lines of C++). Satallax is available at satallax.com.

2

2 Preliminaries

We will assume familiarity with simple type theory and only briefly review to
make the notation clear. A more detailed presentation can be found in [1]. Simple
types σ, τ are either base types (o, ι, α, β) or function types στ (for functions
from σ to τ). The type o is the type of propositions. Terms (s, t) are either
variables (x, y, z, . . .), logical constants (⊥, →, ∀σ, =σ and εσ), applications
st or λ-abstractions λx.s. Variables have a corresponding type and we only
consider well-typed terms. A term of type o is called a formula. We write sxt
for the capture-avoiding substitution of t for x in s.

We use notation ∀xσ.s or ∀x.s (where x has type σ) for ∀σ(λx.s). We use
infix notation s → t and s =σ t (or s = t) for (→ s)t and (=σ s)t, respectively.
We write ¬s for s → ⊥. We write stu for (st)u except ¬st means ¬(st). Since
the THF problems in the TPTP problem library make use of logical connectives
such as ∨ and ∧, we also use notation s∨ t for ¬s→ t, s∧ t for ¬(s→ ¬t), s↔ t

for s =o t, ∃x.s for ¬∀x.¬s and ∃!x.s for ∃x.s∧∀y.sxy → x = y. The scope of the
λ, ∀, ∃ and ∃! binders is as far to the right as is consistent with parentheses. We
also use the usual notation for quantifying over several variables. For example,
∀xy.s means ∀x.∀y.s and ∃xy.s means ∃x.∃y.s.

A β-redex is of the form (λx.s)t and this redex reduces to sxt . An η-redex is
of the form (λx.sx) where x is not free in s and this redex reduces to s. We also
reduce terms ¬¬s to s. All typed terms have a normal form. Satallax normalizes
eagerly.

A branch A is a finite set of normal formulas. Given a theorem proving
problem, we take all the axioms of the problem and combine them with the
negation of the conjecture (if a conjecture is given) to form a branch A. The
goal is then to prove A is (Henkin-)unsatisfiable.

3 Basic Search Procedure and Implementation

We briefly describe the link between higher-order formulas and propositional
literals. The general technique of using a propositional abstraction is standard
and is used by SMT solvers (e.g., see [7]). Let Atom be a set of propositional
atoms. A literal is an atom a or a negated atom a. Let a be a. Let ⌊−⌋ be a
function from formulas to propositional literals such that ⌊¬s⌋ is ⌊s⌋. (We assume
if ⌊s⌋ = ⌊t⌋, then s and t are equivalent up to renaming and normalization.) A
clause is a finite set of literals. We write a clause {l1, . . . , ln} as l1 ⊔ · · · ⊔ ln.
(We use ⊔ instead of ∨ to distinguish the propositional clause level from the
higher-order formula level.)

A quasi-state Σ is determined by sets of passive and active formulas, sets of
passive and active terms (to be used as instantiations) and a set of propositional
clauses. An active formula or term is one that must still be processed, while a
passive formula or term is one that has already been processed and can now

3

only be used as a side formula when processing a new active formula or term.1

A state is a quasi-state satisfying a finite number of conditions that can be
found in [6]. The idea of the conditions can be easily summarized as follows: For
every (instance of) a tableau rule that can be formed using passive formulas and
passive terms, there are corresponding propositional clauses in the state. Also,
every literal l in a clause is either ⌊s⌋ for some active or passive formula s or is
⌊s⌋ for some passive formula s.

Given a branch A to refute, we can start from any initial state for A. A state
is initial for A if for every formula s in A, s is either active or passive in the
state and the unit clause ⌊s⌋ is a clause in the state.

On an abstract level, a state is transformed into a successor state by pro-
cessing an active formula (making the formula passive), by processing an active
term (making the term passive), or by the generation of a new active term (to
use as an instantiation). The successor state may have new active formulas, new
active terms and new clauses. In reality, the situation is a bit more complicated.
First, there must be an enumeration scheme that creates new active terms for
higher-order quantifiers (if the original problem contains higher-order quanti-
fiers). Also, there are two tableau rules with more than one principal formula:
mating and confrontation.

We describe the mating rule. Suppose we are processing an active formula
ps1 · · · sn where p is a variable. In order to process ps1 · · · sn we should, for each
passive formula ¬pt1 · · · tn (a mate), make each disequation si 6= ti an active
formula in the new state and add a clause

⌊ps1 · · · sn⌋ ⊔ ⌊pt1 · · · tn⌋ ⊔ ⌊s1 = t1⌋ ⊔ · · · ⊔ ⌊sn = tn⌋.

The way the implementation actually handles this case is to create a command
for each pair of mates. When the command is executed, the disequations are
added as active formulas and the corresponding clause is added to the new
state. The confrontation rule is similar to the mating rule, but operates on an
equation s =α t and a disequation u 6=α v at a base type α (other than o).

The particular behavior of the search depends on 33 boolean flags and 79
integer flags. We will describe a few of these flags in Section 4 and give examples
illustrating how they affect search.

Active and passive terms of a state are used as instantiations for quantifiers.
In the implementation, the initial state always starts with two passive terms ⊥
and ¬⊥ which act as instantiations for type o. New active terms s and t of a base
type α (other than o) appear during the search when a disequation s 6=α t is
processed. If no active term of a base type α appears, then eventually a default
element must be inserted as an active term. This default element will either be
a new variable of type α, the term εα(λx.⊥), or some term of type α that has
appeared during the search already. For the sake of completeness, new active
terms of function types must be enumerated during the search. There are two

1 A reviewer pointed out that in some of the literature on superposition-based theorem
proving, the terms “active” and “passive” are used in the opposite way. We keep the
current terminology to be consistent with [6].

4

different enumeration processes for such terms. Under some flag settings other
active terms are inserted into the state. Since some logical constants (e.g., =σ)
depend on a type σ, there is also an enumeration process for generating types.

A command is one of the following:

1. Process a formula s. Unless s is already passive (meaning it has already
been processed), make s passive and add new active formulas, active terms,
proposition clauses, and commands.

2. Process a term tσ as an instantiation. Unless t is already passive, make t
passive and for each passive formula ∀σs add the normal form u of st as a
new active formula, add the command of processing u, and add the clause
⌊∀σs⌋ ⊔ ⌊u⌋.

3. Apply an instance of the mating rule.
4. Apply an instance of the confrontation rule.
5. Create a default element of a base type α.
6. Work on enumerating a new type. Once a type σ has been generated by

the type enumeration process, we can imitate (in the sense of higher-order
unification) logical constants =σ, ∀σ and εσ when enumerating instantiation
terms.

7. Work on enumerating a term of a given type σ with local variables x1, . . . , xn.
8. Given a term tσ1···σnα, work on enumerating a term of type α of the form
ts1 · · · sn with local variables x1, . . . , xn.

9. Use iterative deepening to enumerate all closed terms of a type up to a
certain depth. This is an alternative to the previous enumeration commands
which we will not discuss further.

10. Filter out a passive formula s if the set of clauses implies ⌊s⌋. We will not
discuss filtering further.

A collection of commands is put into a priority queue. The purpose of many
of the integer flags is to determine the priority of new commands as they are
generated. Search proceeds by taking one of the highest priority commands and
processing it.

The search ends successfully when the set of propositional clauses is propo-
sitionally unsatisfiable.

Example 1. We discuss the simple problem SYO357ˆ5 from the TPTP in detail
to illustrate the search procedure. The source for this problem is [2]. The con-
jecture is (∀Pαo.(a∨¬a)∧Pu→ (b∨¬b)∧Pv) → ∀Qαo.Qu→ Qv. Let s1 be the
negation of this conjecture. We start with an initial state with a single active
formula s1 and a single clause ⌊s1⌋. We process this formula, making it passive,
adding two new active formulas s2: ∀Pαo.(a∨¬a)∧Pu→ (b∨¬b)∧Pv and s3:
¬∀Qαo.Qu→ Qv and new clauses ⌊s1⌋⊔⌊s2⌋ and ⌊s1⌋⊔⌊s3⌋. We process s2, but
since there are no passive terms of type αo this adds no new active formulas or
clauses. Since this is the first time a universal quantifier over type αo has been
encountered, we add the command for enumerating a term of type αo. We pro-
cess s3, using Q as a fresh variable, adding the active formula s4: ¬(Qu → Qv)
and clause ⌊s3⌋ ⊔ ⌊s4⌋. We process s4 adding active formulas Qu and ¬Qv and

5

clauses ⌊s4⌋ ⊔ ⌊Qu⌋ and ⌊s4⌋ ⊔ ⌊Qv⌋. At this point, one thing Satallax will do is
to process Qu and then ¬Qv which adds the command for mating these two for-
mulas. This line of actions does not contribute to the solution. Instead, we return
to the command for enumerating a term of type αo. The command is executed
by choosing a fresh variable x of type α and adding a command for enumerat-
ing a term s of type o with x free. We execute this new command by finding
all possible heads for a term of the form λx.−. In the language of higher-order
unification, these heads are either the result of a projection or of an imitation.
No projection is possible (because α is not o). Possible imitations are Qαo and
logical constants of the form εσ1···σno. The instantiation we want has Q at the
head. One new command is to enumerate a term of type o with Q at the head
and with x (possibly) free. To do this we only need to enumerate a term of type
α with x free (to use as the argument of Q). We obtain such a term by projecting
the local variable x and obtain the closed term λx.Qx. In normal form, the term
is Q. We add this as a new active term Q and immediately process this Q. We
use this term Q as an instantiation for the passive universally quantified formula
s2 giving the new active formula s5: (a ∨ ¬a) ∧ Qu → (b ∨ ¬b) ∧ Qv and new
clause ⌊s2⌋ ⊔ ⌊s5⌋. The rest of the search is straightforward. We process s5 and
then the formulas that arise from continuing to process the resulting formulas.
This yields the following clauses which (combined with the clauses above) are
propositionally unsatisfiable.

⌊s5⌋ ⊔ ⌊(a ∨ ¬a) ∧Qu⌋ ⊔ ⌊(b ∨ ¬b) ∧Qv⌋

⌊(a ∨ ¬a) ∧Qu⌋ ⊔ ⌊a ∨ ¬a⌋ ⊔ ⌊Qu⌋

⌊a ∨ ¬a⌋ ⊔ ⌊a⌋
⌊a ∨ ¬a⌋ ⊔ ⌊a⌋

⌊(b ∨ ¬b) ∧Qv⌋ ⊔ ⌊b ∨ ¬b⌋

⌊(b ∨ ¬b) ∧Qv⌋ ⊔ ⌊Qv⌋

4 Flags and Examples

We now consider a few of the most important flags that affect search.
Some flags affect what happens before the search begins. If the boolean

flag Leibeq To Primeq is true, then subterms of the form ∀Pσo.P s → Pt

or ∀P.¬Ps → ¬Pt (where P is free in neither s nor t) are rewritten to s =σ t.
Also, subterms of the forms ∀Rσσo.(∀x.Rxx) → Rst or ∀Rσσo.¬Rst→ ¬∀x.Rxx
(where R is free in neither s nor t) are rewritten to s = t. This is often a good
idea because dealing with equalities is usually easier than dealing with higher-
order quantifiers. Two particular examples from the TPTP in which this is good
idea are SEV288ˆ5 (λxα.λyα.∀qα.qx → qy) = (λx.λy.x = y) and SEV121ˆ5

(λxι.λy.x = y) = (λx.λy.∀pιιo.(∀z.pzz) → pxy). In both cases, the problem be-
comes trivial after rewriting the quantified formulas into equations. An example
in which this is a bad idea is SYO357ˆ5 (Example 1) because the conjecture
becomes (∀Pαo.(a ∨ ¬a) ∧ Pu → (b ∨ ¬b) ∧ Pv) → u = v. The instantiation
needed for P is (λzα.u = z) which is more complicated than the instantiation Q
used in Example 1.

6

Another flag that controls preprocessing is Split Global Disjunctions.
If this flag is true, then the initial branch is split into several branches each of
which is refuted independently. We next consider an example where this is a
good idea.

Example 2. The formula (∀xy.x = y → φx ↔ ψx) → (∃!x.φx) ↔ ∃!x.ψx is the
conjecture of SEU550ˆ2 from the TPTP. This can be split into two independent
branches to refute:

{(∀xy.x = y → φx↔ ψx), φx, (∀y.φy → x = y), (∀x.ψx→ ¬∀y.ψy → x = y)}
{(∀xy.x = y → φx↔ ψx), ψx, (∀y.ψy → x = y), (∀x.φx→ ¬∀y.φy → x = y)}

Each of these subgoals is solved in the same way. This is an example in which
we must first instantiate with a default element before we obtain disequations
that give more helpful instantiation terms as active terms.

An example for which setting Split Global Disjunctions to true is a bad
idea is SYO181ˆ5 (a propositional encoding of McCarthy’s Mutilated Checker-
board problem [9]) because the preprocessing would split it into over 2271 inde-
pendent subgoals. On the other hand, if Split Global Disjunctions is false,
then SYO181ˆ5 is easy to solve.

If the flag Initial Subterms As Instantiations is true, then we seed the
initial state with active terms for each subterm of the initial branch. (This
would simplify the proofs in Example 2 since x is a subterm, and hence we
avoid the need to instantiate with a default element.) If the flag Instanti-

ate With Func Diseqn Sides is true, then each time a functional disequation
s 6=στ t is processed the terms s and t are added as active terms.

Example 3. The conjecture of the problem SEU868ˆ5 from the TPTP states that
one characterization of Cαo being a finite set implies another characterization.

(∀w(αo)o.w(λx.⊥) ∧ ∀rαoxα.wr → w(λt.rt ∨ t = x) → wC) →
∀P(αo)o.(∀Eαo.¬(∃t.Et) → PE) ∧

(∀YαozαZαo.PY ∧ ∀uα.Zu ≡ (Y u ∨ u = z) → PZ) → PC

If Split Global Disjunctions is true, the initial branch contains

∀w(αo)o.w(λx.⊥) ∧ ∀rαoxα.wr → w(λt.rt ∨ t = x) → wC,

∀Eαo.(∀t.¬Et) → PE,

∀YαozαZαo.PY ∧ ∀uα.Zu ≡ (Y u ∨ u = z) → PZ,

¬PC

Several instantiations are used in the proof. Two subterms of this initial branch
are P and λx.⊥. Satallax uses P as an instantiation for w and λx.⊥ as an
instantiation for E if Initial Subterms As Instantiations is true. Process-
ing the formula P (λx.⊥) ∧ ∀rαoxα.P r → P (λt.rt ∨ t = x) → PC leads to the
introduction of the variables r and x. Because of mating, the terms r, x and
λzα.¬rz → z = x eventually appear as sides of a disequation. This leads to the
use of r as an instantiation for Y , x for z and finally λzα.¬rz → z = x for Z if
Instantiate With Func Diseqn Sides is true.

7

One of the most successful additions to the basic search procedure is the use
of higher-order clauses and pattern unification to find instantiations. If the flag
Enable Pattern Clauses is set to true, then processing universally quantified
formulas may generate higher-order clauses with meta-variables. For example,
an assumption ∀xy.x ⊆ y → y ⊆ x → x =ι y will generate a clause of the
form ?X 6⊆?Y |?Y 6⊆?X|?X =ι?Y . Afterwards, whenever a ground term s 6=ι t is
processed, the propositional clause

⌊∀xy.x ⊆ y → y ⊆ x→ x = y⌋ ⊔ ⌊s ⊆ t⌋ ⊔ ⌊t ⊆ s⌋ ⊔ ⌊s = t⌋

is added and s 6⊆ t and t 6⊆ s are added as active formulas. An example is
SEU506ˆ2 in the TPTP.

If the boolean flag Treat Conjecture As Special is true, then the con-
jecture (and subformulas of the conjecture) are processed before the other for-
mulas. The integer flag Axiom Delay determines how long the other formulas
are delayed. The integer flag Relevance Delay delays formulas longer if they
do not have variables in common with the conjecture.

There are many more flags we will not discuss here. There are 279 modes
(collections of flag settings) in Satallax 2.3. Given a five minute timeout, the
strategy schedule (sequence of modes with a timeout) contains 37 modes. The
TPTP (v5.3.0) contains 2924 THF (higher-order) problems. Of these, 343 are
known to be satisfiable. Of the remaining 2581 THF problems, the strategy
schedule can prove 1817 (70%) – including the examples above.

5 Conclusion and Future Work

In terms of CASC, Satallax has already proven to be a successful prover. How-
ever, there is much room for improvement. One possibility would be to integrate
Satallax with an SMT solver [7, 4]. Another possibility would be to solve for set
variables using the techniques described in [5]. Also, integrating Satallax with
an interactive proof assistant would provide new ground upon judging its effec-
tiveness. Preliminary steps have been taken to integrate Satallax with the proof
assistant Coq.

References

1. Julian Backes and Chad E. Brown. Analytic Tableaux for Higher-Order Logic with
Choice. Journal of Automated Reasoning, 47(4):451–479, 2011.

2. Christoph Benzmüller. Equality and Extensionality in Automated Higher-Order
Theorem Proving. PhD thesis, Universität des Saarlandes, 1999.

3. Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud Fietzke. LEO-
II - a cooperative automatic theorem prover for higher-order logic. In Fourth
International Joint Conference on Automated Reasoning (IJCAR’08), volume 5195
of LNAI. Springer, 2008.

8

4. Jasmin Christian Blanchette, Sasche Böhme, and Lawrence C. Paulson. Extend-
ing Sledgehammer with SMT Solvers. In Nikolaj Bjørner and Viorica Sofronie-
Stockkermans, editors, CADE the 23rd International Conference on Automated
Deduction, LNCS/LNAI 6803, pages 116 – 130. Springer, Jul 2011.

5. Chad E. Brown. Solving for Set Variables in Higher-Order Theorem Proving.
In Andrei Voronkov, editor, Proceedings of the 18th International Conference on
Automated Deduction, volume 2392 of Lecture Notes in Artificial Intelligence, pages
408–422, Copenhagen, Denmark, 2002. Springer-Verlag.

6. Chad E. Brown. Reducing Higher-Order Theorem Proving to a Sequence of SAT
Problems. In Nikolaj Bjørner and Viorica Sofronie-Stockkermans, editors, CADE
the 23rd International Conference on Automated Deduction, LNCS/LNAI 6803,
pages 147 – 161. Springer, Jul 2011.

7. Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduc-
tion and applications. Commun. ACM, 54(9):69–77, September 2011.

8. Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Theory and Applications of Satisfiability Testing,
volume 2919 of Lecture Notes in Computer Science, pages 333–336. Springer Berlin
/ Heidelberg, 2004.

9. John McCarthy. A Tough Nut for Proof Procedures, July 1964. Stanford Artificial
Intelligence Memo No. 16.

10. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

11. G. Sutcliffe. The CADE-23 Automated Theorem Proving System Competition -
CASC-23. AI Communications, page To appear, 2012.

