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Abstract. We give representations for ordered pairs and functions in set theory with
the property that ordered pairs are functions from the finite ordinal 2. We conjecture
that these representations are useful for formalized mathematics since certain isomor-
phic sets are identified. The definitions, theorems and proofs have been formalized
in the proof assistant Coq using only the simply typed features of Coq. We describe
the development within the context of an intuitionistic simply typed (higher-order)
version of (well-founded) Zermelo-Fraenkel set theory without the axiom of infinity.

1. Introduction

A foundation for mathematics must support the basic building blocks of the mathe-
matical universe. Among these basic building blocks are numbers, pairs, sets and func-
tions. A common foundation for mathematics is Zermelo-Fraenkel set theory (ZF) [23].
Sets are the only innate basic building blocks in ZF. However, there are well-known
constructions for numbers, pairs and functions. The finite von Neumann ordinals in
which n = {0, . . . , n − 1} give a common representation for natural numbers. Kura-
towski’s representation of pairs (x, y) as {{x}, {x, y}} is popular and it is common to
identify functions with their graphs. For example, these are the representations used
in the proof assistants Isabelle-ZF [16] and Mizar [21, 7, 4, 5].
Given sets X and Y , X × Y is notation for the set of pairs with components from

X and Y and XY is notation for the set of functions from Y to X. Sometimes the
notation for X × X is simplified to be X2. However, if 2 is the finite ordinal {0, 1},
then we have an ambiguity. Is X2 notation for the set X × X of pairs or for the set
X{0,1} of functions from {0, 1} to X? Mathematically, this is not a serious ambiguity.
There is an obvious isomorphism between the sets X ×X and X{0,1} that respects the
relevant structures. In particular, functions f ∈ X{0,1} can be mapped to pairs (f0, f1)
and pairs (x, y) ∈ X × X can be mapped to a function f ∈ X{0,1} such that f0 = x
and f0 = y. Mathematicians are justified in thinking of X × X and X{0,1} as being,
essentially, the same sets.
When formalizing mathematics, there are drawbacks to having different isomorphic

representations for such a basic operation as pairing. In Mizar’s library, Kuratowski
pairs are defined in the document giving the axioms of the set theory [21]. Later, finite
sequences are defined leading to a different notion of pairing defined as a function from
{1, 2} [6]. Once one has these two definitions, there is always the question of which
notion of pairing is appropriate in different situations. An expert will choose one or the
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other depending on the situation. For example, Definition 11 of the Mizar article [3]
has the form [0, 〈a, b〉] meaning the Kuratowski pair of 0 and the function mapping 1
to a and 2 to b.1 This also means that theorems may be formulated using the different
pairing operations. In order to apply the theorem when the pairing operations do
not match, one would need to explicitly apply an isomorphism. The need to apply
isomorphisms cannot be altogether avoided, but in cases involving such basic objects
as pairs and functions it is worthwhile to consider representations chosen so that many
such isomorphic sets will be equal.
We will describe representations for pairs and functions with the property that the

set X × X will be the same as X{0,1}. That is, pairs will be functions with domain
{0, 1}. A pair u will be equal to (u0, u1) where u0 is u applied to 0 and u1 is u applied
to 1. We will continue to use the representation of natural numbers as finite ordinals.
The representation of functions we will use is one due to Aczel [1]. The representation
of pairs is similar to one considered by Morse [13] and can be informally described as
being the disjoint union of the two sets. Morse ultimately used a different version of
ordered pairs in [13].
Our constructions will work with both finite and infinite sets, but we will never

need to make explicit use of infinite sets. Consequently, we work with a variant of ZF
without the axiom of infinity. Instead of formulating the set theory in first order logic,
we formulate it in simple type theory (higher-order logic). We include a description
operator at the base type. Our simple type theory is intuitionistic. Since we are
working in an intuitionistic setting, the set theory axioms must be chosen carefully.
For example, the usual axiom of regularity implies excluded middle, and so it must
be replaced by an ∈-induction axiom. The axioms we choose are essentially those of
ZFIR as described in [19] (a system first studied by Myhill [14]) except that infinity is
omitted and the axioms are translated into the simply typed setting. The representation
in simple type theory is similar to the version in Isabelle-ZF [16], but with higher-order
aspects similar to those in [2, 15]. One benefit of using simple type theory is that
we can quantify over predicates and (meta-level) functions. Consequently, the axioms
of replacement, separation and ∈-induction can each be stated with a single formula
instead of using a schema of formulas. Another advantage of using simple type theory
is that we can prove that we can define (meta-level) functions by ∈-recursion before
defining an object-level notion of pairing. In fact, ∈-recursion will be used to define
pairing.
In Section 2 we give the simply typed set theory. In Section 3 we give a few basic

definitions and results, including an ∈-recursion theorem. In Section 4 we specify what
we require of our representation of pairs and functions. In Section 5 we define pairing
and prove a number of results, and in Section 6 we do the same for functions. In
Section 7 we define dependent sums and products (sets of pairs and functions).
The material described here has been formalized in the Coq theorem prover [12] using

only the simply typed features of Coq.

1Actually, in the pdf versions of the Mizar articles, the notation for Kuratowski pairs uses bold 〈
and 〉.
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2. Intuitionistic Simply Typed Set Theory

We briefly describe an intuitionistic form of Church’s simple type theory [8, 9]. We
start with two base types ι (the type of sets) and o (the type of propositions). Other
(simple) types are function types: given two types σ and τ , the function type στ is a
type (the type of functions from σ to τ). Let T be the set of types.
Let (Vσ)σ∈T be a disjoint family of infinite sets of variables. We use metavariables

such as x, y, z, . . . to range over variables. We also have a set Cσ of constants of type
σ. We will describe the specific constants in each Cσ shortly. We use the metavariable
c to range over constants.
For each type σ there is a set Λσ of all terms of type σ. We use metavariables s, t

and u to range over terms. This family of sets is defined inductively as follows:

• If x ∈ Vσ, then x ∈ Λσ.
• If c ∈ Cσ, then c ∈ Λσ.
• If s ∈ Λστ and t ∈ Λσ, then (st) ∈ Λτ .
• If x ∈ Vσ and t ∈ Λτ , then (λx.t) ∈ Λστ .
• If s ∈ Λo and t ∈ Λo, then (s → t) ∈ Λo.
• If x ∈ Vσ and t ∈ Λo, then (∀x.t) ∈ Λo.

When s ∈ Λσ, we say s is a term of type σ. If s is a term of type o, we say s is a for-

mula. When writing terms we omit parentheses whenever possible under the following
conventions. Application associates to the left, so that stu means ((st)u). Implication
associates to the right, so that s → t → u means (s → (t → u)). Application binds
more tightly than implication, so that st → su means ((st) → (su)). The scope of
binders λ and ∀ is as far to the right as possible, so that λx.st means (λx.(st)) and
∀x.s → t means (∀x.(s → t)). We write λx1 · · · xn.s for λx1. · · · .λxn.s and ∀x1 · · · xn.s
for ∀x1. · · · .∀xn.s. We will usually not be explicit about the types of variables if the
intended type can be determined. Later we will introduce more notational conventions
for terms when convenient.
We say two terms are α-equivalent if they are the same up to the names of bound

variables. For example, λxy.xy is α-equivalent to λyx.yx. We will treat α-equivalent
terms as being equal. We assume the usual notion of free variables and let Fs denote the
(finite) set of variables that occur free in s. We denote the capture-avoiding substitution
of t for the free occurrences of x in s by sxt . A β-redex is a term of the form (λx.s)t.
The β-reduct of (λx.s)t is sxt . An η-redex is a term of the form λx.sx where x /∈ Fs.
The η-reduct of λx.sx is s. We say s is a redex with reduct t if either s is a β-redex
with β-reduct t or s is an η-redex with η-reduct t. We say s one-step reduces to t if
there is a redex as a subterm of s and t is the result of replacing the redex with its
reduct. Convertibility is simply the reflexive, symmetric, transitive closure of one-step
reducibility. We write s ≈ t if s and t are convertible.
A context is a set of formulas. We use Γ to range over contexts. We define FΓ to

be
⋃

s∈Γ Fs. Note that if Γ is finite, then FΓ is also finite. Hence, for a finite Γ and a
type σ, there will be infinitely many variables in Vσ \ FΓ.
The natural deduction calculus given by the rules in Figure 1 define when Γ ⊢ s holds

for a context Γ and formula s.
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Γ ⊢ s
s ∈ Γ

Γ ⊢ s

Γ ⊢ t
s ≈ t

Γ ∪ {s} ⊢ t

Γ ⊢ s → t

Γ ⊢ s → t Γ ⊢ s

Γ ⊢ t

Γ ⊢ sxy
Γ ⊢ ∀x.s

x ∈ Vσ, y ∈ Vσ \ FΓ
Γ ⊢ ∀x.s

Γ ⊢ sxt
x ∈ Vσ, t ∈ Λσ

Figure 1. Natural Deduction Calculus

What we have developed so far is a general intuitionistic simple type theory. Since
our only interest is a specific instance corresponding to a set theory, we now fix the
constants in the sets Cσ. We will only have seven constants:

• d is a constant of type (ιo)ι. This will be used as a description operator.
• ∈ is a constant of type ιιo. This will be used to represent membership. We
write formulas ∈ s t using infix notation as s ∈ t. As infix notation, we assume
∈ binds more tightly than implication but less tightly than application, so that
st ∈ tu → st ∈ tu means (((st) ∈ (tu)) → ((st) ∈ (tu))).

• ∅ is a constant of type ι. This will be used as the empty set.
•
⋃

and ℘ are constants of type ιι. For s ∈ Λι, the term
⋃
s will correspond to

the union of the set s and the term ℘s will correspond to the power set of s.
• s is a constant of type ι(ιo)ι. This will correspond to sets formed by separation.
We will use the notation {x ∈ s|t} to represent the term ss(λx.t).

• r is a constant of type ι(ιι)ι. This will correspond to sets formed by replacement.
We will use the notation {t|x ∈ s} to represent the term rs(λx.t).

We next define false, negation, conjunction, disjunction, equivalence, equality, exis-
tential and unique existential quantification. It is well-known that such operators can
be defined in such a type theory. Russell indicated how to make some of the defini-
tions [18], and most of the rest can be found in Prawitz [17].

• Let ⊥ be the formula ∀q.q.
• Let ¬ be the term λp.p → ⊥ of type oo.
• Let ∧ be the term λpq.∀r.(p → q → r) → r of type ooo.
• Let ∨ be the term λpq.∀r.(p → r) → (q → r) → r of type ooo.
• Let ≡ be the term λpq. ∧ (p → q)(q → p) of type ooo.

We use infix notation for ∧, ∨ and ≡. We assume application and ∈ bind more tightly
than ∧, ∧ binds more tightly than ∨, ∨ binds more tightly than →, and → binds more
tightly than ≡. We also write s 6∈ t for ¬(s ∈ t) and assume 6∈ has the same binding
strength as ∈.
Equality can be defined at every type, but we will only need it at the base type ι.

• Let = be the term λxy.∀p.px → py of type ιιo.

We use infix notation for =, and assume = has the same binding strength as ∈. We
also write s 6= t for ¬(s = t).
Existential quantification can also be defined at every type. We will only need it at

two types: ι and ιι.
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• Let E be the term λq.∀p.(∀x.qx → p) → p of type (ιo)o.
• Let EF be the term λQ.∀p.(∀F.QF → p) → p of type ((ιι)o)o.

We write ∃x.s for E(λx.s) when x ∈ Vι and for EF (λx.s) when x ∈ Vιι. We also define
unique existential quantification at type ι.

• Let E! be the term λq.(∃x.qx) ∧ ∀xy.qx → qy → x = y.

We write ∃!x.s for E!(λx.s).

• Let ⊆ be the term λXY.∀x.x ∈ X → x ∈ Y of type ιιo.

We use infix notation for ⊆, and assume ⊆ has the same binding strength as ∈ and =.
We can now state the axioms of our intuitionistic simply typed set theory. We give

the axioms as a context Γa consisting of the following formulas:

• (Description) ∀P.(∃!x.Px) → P (dP )
• (Extensionality) ∀XY.X ⊆ Y → Y ⊆ X → X = Y
• (∈-Induction) ∀P.(∀X.(∀x.x ∈ X → Px) → PX) → ∀X.PX
• (Empty) ¬∃x.x ∈ ∅
• (Union) ∀Xx.x ∈

⋃
X ≡ ∃Y.x ∈ Y ∧ Y ∈ X

• (Power) ∀XY.Y ∈ ℘X ≡ Y ⊆ X
• (Separation) ∀XPx.x ∈ {z ∈ X|Pz} ≡ x ∈ X ∧ Px
• (Replacement) ∀XFy.y ∈ {Fz|z ∈ X} ≡ ∃x.x ∈ X ∧ y = Fx

We refer to the theory given by Γa as IZF−∞
ω . The subscript indicates the use of

simple type theory (a form of higher-order logic). The superscript indicates that the
axiom of infinity is omitted. We say a formula s is a theorem of IZF−∞

ω if Γa ⊢ s holds.
From now on, we will only be concerned with theorems of IZF−∞

ω . We will state them
as formulas, but the intended meta-theorem is that the given formula is a theorem of
IZF−∞

ω . We will describe the interesting proofs informally, but all the proofs have been
formalized in Coq in a way that corresponds to proofs in IZF−∞

ω .
The following lemma gives a few theorems which the reader may easily verify.

Lemma 2.1. We have the following.

∀X.∅ ⊆ X ∀X.∅ ∈ ℘X ∀X.X ∈ ℘X ∀F.{Fx|x ∈ ∅} = ∅

∀XFG.(∀x.x ∈ X → Fx = Gx) → {Fx|x ∈ X} = {Gx|x ∈ X}

3. Basic Definitions and Results

Now that we have fixed the set theory in question, we make a few basic definitions
and indicate a few basic theorems which will be needed in the rest of the paper. In
particular, we will define unordered pairs, singletons, binary unions, set difference and
unions of families of sets. Also, we give the natural numbers as finite ordinals.
Zermelo included unordered pairs among the axioms of his original set theory [22].

However, once one adds Fraenkel’s Replacement Axiom, unordered pairs can be defined.
Zermelo points this out in [23]. Suppes gives the easy proof in [20] and Paulson formal-
ized the proof in Isabelle/ZF [16]. The proof in classical ZF constructs the ordered pair
{y, z} by applying replacement with the two element set ℘(℘∅) and a function mapping
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∅ to y and ℘∅ to z. The proof is not quite as easy in IZF−∞
ω , but is still within reach.

First, let T be
{X ∈ ℘(℘∅)|∅ ∈ X ∨ ∅ /∈ X}.

It is easy to prove both ∅ and ℘∅ are elements of this set. Consider the term

tX := λw.∀p.(∅ /∈ X → py) → (∅ ∈ X → pz) → pw

of type ιo. If ∅ /∈ X, then y is the unique w such that tXw. If ∅ ∈ X, then z is the
unique w such that tXw. Let F be the term λX.dtX of type ιι. By the description
axiom, ∅ /∈ X → FX = y and ∅ ∈ X → FX = z. Consequently, {FX|X ∈ T} is a set
that contains precisely y and z, as desired. Putting this together (and β-reducing), we
define U to be the term

λyz.{d(λw.∀p.(∅ /∈ X → py) → (∅ ∈ X → pz) → pw)|X ∈ T}

of type ιιι. We write {s, t} for the term Ust. Formalizing the argument above, one can
prove ∀xyz.x ∈ {y, z} ≡ x = y ∨ x = z.
Once one has unordered pairs, singletons {s} can be taken to mean {s, s}. Unordered

pairs also allow us to define binary unions. We take s∪ t to mean
⋃
{s, t}, and assume

∪ binds more tightly than ∈. Set difference is definable from separation. Let M be
λXY.{x ∈ X|x /∈ Y }. We write s \ t for Mst and assume \ binds as tightly as ∪.
We can also describe a union of a family of sets. Let F be

λXF.
⋃

{Fx|x ∈ X}

of type ι(ιι)ι. We write
⋃

x∈s t for terms of the form Fs(λx.t) and treat this notation
as a binder that binds x and whose scope is as far to the right as possible. Let y ∈ Vι.
It is easy to prove the theorem ∀XFy.y ∈ (

⋃
x∈X Fx) ≡ ∃x.x ∈ X ∧ y ∈ Fx.

We now describe the finite ordinals. We take 0 to be ∅, as usual. The ordinal successor
of a set X is taken to be X ∪{X}. To this end, let s+ be notation for the term s∪{s}.
We assume the postfix + notation binds more tightly than all other notation. We take
1 to be 0+ and take 2 to be 1+. One can easily prove 1 = {0} and 2 = {0, 1}, as
expected.
Using the higher-order aspects of the logic, we can define the natural numbers as the

least predicate containing 0 and closed under ordinal successor. (Of course, we would
need an axiom of infinity to obtain a set of natural numbers, but we do not need such
a set.) Let N be the term λn.∀p.p0 → (∀n.pn → pn+) → pn of type ιo. As expected,
formulas such as N0 and ∀n.Nn → Nn+ are provable. Also, one can prove formulas
corresponding to induction and complete induction. Members of finite ordinals are
finite ordinals: ∀n.Nn → ∀m.m ∈ n → Nm. One can also prove m ∈ n ∨ m /∈ n for
finite ordinals m and n: ∀n.Nn → ∀m.Nm → m ∈ n ∨m /∈ n.
We next describe definitions by ∈-recursion. Such definitions are justified by the

axiom of ∈-induction. Suppose Φ is of type ι(ιι)ι. Let CΦ be the formula

∀XFG.(∀x.x ∈ X → Fx = Gx) → ΦXF = ΦXG.

If CΦ, then the value ΦXF depends only on X and the values Fx for x ∈ X. Under
this condition, Φ can be used to define a (meta-level) function RΦ such that

∀X.RΦX = ΦX(λx.RΦx).
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Since we are working in a higher-order logic, we can define such an operator R of type
(ι(ιι)ι)ιι without too much trouble. First let G of type (ι(ιι)ι)ιιo be

λΦXY.∀R.(∀XF.(∀x.x ∈ X → Rx(Fx)) → RX(ΦXF )) → RXY.

The term GΦ corresponds to the least relation R such that if ∀x.x ∈ X → Rx(Fx),
then RX(ΦXF ).2 We will prove that GΦ is the graph of the function RΦ we want to
define. This justifies defining R to be the term λΦX.d(GΦX).

Lemma 3.1. We have the following.

1. ∀ΦXF.(∀x.x ∈ X → GΦx(Fx)) → GΦX(ΦXF )
2. ∀ΦR.(∀XF.(∀x.x ∈ X → GΦx(Fx) ∧Rx(Fx)) → RX(ΦXF )) →

∀XY.GΦXY → RXY
3. ∀ΦXY.GΦXY → ∃F.(∀x.x ∈ X → GΦx(Fx)) ∧ Y = ΦXF
4. ∀Φ.CΦ → ∀XY Z.GΦXY → GΦXZ → Y = Z
5. ∀Φ.CΦ → ∀X.GΦX(RΦX)
6. ∀Φ.CΦ → ∀X.GΦX(ΦX(RΦ))
Proof.

1. This follows easily from the definition of G.
2. This is an induction principle. Assume

(a) (∀XF.(∀x.x ∈ X → GΦx(Fx) ∧Rx(Fx)) → RX(ΦXF )).

Let R̂ be λXY.GΦXY ∧RXY .
Claim: ∀XF.(∀x.x ∈ X → R̂x(Fx)) → R̂X(ΦXF ).
Proof: Let X and F be such that

(b) ∀x.x ∈ X → R̂x(Fx).

We must prove R̂X(ΦXF ). We have GΦX(ΦXF ) by Part 1 and (b). We have
RX(ΦXF ) by (a) and (b). This proves the claim.
Now assume GΦXY . By the definition of G and the claim proven above, we know

R̂XY . Hence RXY .
3. Let R̂ be λXY.∃F.(∀x.x ∈ X → GΦx(Fx)) ∧ Y = ΦXF . By Part 2 it suffices to

prove

∀XF.(∀x.x ∈ X → GΦx(Fx) ∧ R̂x(Fx)) → R̂X(ΦXF ).

Assume

(c) ∀x.x ∈ X → GΦx(Fx) ∧ R̂x(Fx).

In order to prove R̂X(ΦXF ), we use the witness F . Since ΦXF = ΦXF , it only
remains to prove ∀x.x ∈ X → GΦx(Fx). This is immediate from (c).

4. Assume CΦ. We prove

∀XY Z.GΦXY → GΦXZ → Y = Z

2The formalization of ∈-recursion could be simplified in Coq by defining G as an inductive predicate
since Coq automatically generates and proves induction principles. We use the definition here to remain
within simple type theory.
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by ∈-recursion. Assume

(d) ∀x.x ∈ X → ∀xyz.GΦxy → GΦxz → y = z

and GΦXY and GΦXZ. By Part 3 there is an F such that ∀x.x ∈ X → GΦx(Fx)
and Y = ΦXF . Also, there exists some G such that ∀x.x ∈ X → GΦx(Gx)
and Z = ΦXG. Using (d) we know ∀x.x ∈ X → Fx = Gx. By CΦ we have
ΦXF = ΦXG and so Y = Z.

5. Assume CΦ. We prove ∀X.GΦX(RΦX) by ∈-recursion. Assume ∀x.x ∈ X →
GΦx(RΦx). By Part 1 we have GΦX(ΦX(RΦ)). Combining this with Part 4 we
know ∃!Y.GΦXY . Inspecting the definition of R we conclude GΦX(RΦX) using
the description axiom.

6. Part 6 follows easily from Parts 1 and 5.

�

Theorem 3.1. ∀Φ.CΦ → ∀X.RΦX = ΦX(RΦ).

Proof. This follows from Parts 4, 5 and 6 of Lemma 3.1. �

Alternatively, one could define GΦ to be a fixed point of the monotone operator

λRXY.∃F.(∀x.x ∈ X → Rx(Fx)) ∧ Y = ΦXF

using the Knaster-Tarski Fixed Point Theorem. Parts 1 and 3 of Lemma 3.1 follow
from GΦ being a fixed point of the operator. Once one has these parts, Parts 4, 5
and 6 of Lemma 3.1 follow as above.

4. Specification of Pairs and Functions

We are now in a position to precisely state what we would like an implementation of
pairs and functions to satisfy. For s, t ∈ Λι, we need a term (s, t) of type ι. This can be
provided by a term P of type ιιι which constructs pairs (s, t) as Pst. Similarly, given
a term s ∈ Λι (corresponding to a set) and a term t ∈ Λιι (corresponding to a function
from sets to sets), we would like to have a term Lst of type ι that encodes the function
t when restricted to the set s. This can be given by a term L of type ι(ιι)ι. We use
the λ-binder to have the binder notation λx ∈ s.t for terms of the form Ls(λx.t). One
can distinguish the set theory level λ from the type theory level λ by the presence or
absence of ∈ after the bound variable. The basic correctness property for pairing is

∀xywz.(x, y) = (w, z) ≡ x = w ∧ y = z.

Similarly, the basic correctness property for L is

∀XFG.(∀x.x ∈ X → Fx = Gx) ≡ (λx ∈ X.Fx) = λx ∈ X.Gx.

We must choose P and L so that these formulas will be theorems.
Note that we will now have two kinds of functions: functions at the level of the type

theory are of type στ and functions at the level of the set theory are of type ι. Because
of this distinction in the types, no confusion should arise. We will exclusively use F
and G to range over variables of type ιι and f to range over variables of type ι. Note
that the operator L takes a set X and a type theory level function F and returns the
set theory level function λx ∈ X.Fx.
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In principle this is enough to say we have an encoding of pairs and functions. However,
typically we also want to consider sets of pairs and functions. We specify this for the
dependent case. We want terms Σ and Π of type ι(ιι)ι. We use binder notation
Σx ∈ s.t for terms of the form Σs(λx.t) and use binder notation Πx ∈ s.t for terms of
the form Πs(λx.t). Intuitively, Σx ∈ s.t should be the set of pairs (x, y) where x ∈ s
and y ∈ t (and t may depend on x). Likewise, Πx ∈ s.t should be the set of functions
f taking each x ∈ s to an element of t (and where the intended domain of f is the
set s). We require ∀XY z.z ∈ (Σx ∈ X.Y x) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Y x ∧ z = (x, y)
and ∀XY f.f ∈ (Πx ∈ X.Y x) ≡ ∃F.(∀x.x ∈ X → Fx ∈ Y x) ∧ f = λx ∈ X.Fx to be
theorems. When x /∈ Ft, we write s× t for Σx ∈ s.t and we write ts for Πx ∈ s.t.
A practical implementation of functions should include an operator for applying a

function to an argument. This will be a term A of type ιιι. A term Ast corresponds to
applying the object-level function to argument t. (For now, let us assume s corresponds
to an object-level function and t corresponds to a member of its intended domain.) As
usual, we would like to have an infix notation for Ast. Since s has type ι (and hence
does not have a function type), there is no ambiguity in writing st for Ast. We have
two basic correctness criteria for application. The first corresponds to β-reduction:

∀XFx.x ∈ X → (λx ∈ X.Fx)x = Fx.

The second has the form of a common typing rule in dependent type theory:

∀XY fx.f ∈ (Πx ∈ X.Y x) → x ∈ X → fx ∈ Y x.

We now extend the specification to include extra properties of pairs and functions.
Since the intention is that pairs (s, t) are actually functions with domain 2, we require
∀F.(λx ∈ 2.Fx) = (F0, F1). In addition, we will fix the behavior of application when
used outside the domain of an object-level function by using 0 as a default value and
requiring ∀XFx.x /∈ X → (λx ∈ X.Fx)x = 0.
Finally, we will also require that the set ℘1 is satisfies certain closure properties.

These properties were, in fact, the original motiviation for considering alternative rep-
resentations for pairs and functions. A common way to give a set theoretic (proof
irrelevant) semantics for a type theory with an impredicative universe Prop of propo-
sitions is to interpret Prop as ℘1.3 Since ℘1 is not closed under function spaces when
representing functions as graphs, Aczel [1] introduced an alternative representation so
that ℘1 is closed under function spaces. We will require ℘1 to be closed under function
spaces (where the codomain is in ℘1) and closed under sets of pairs (where the sets
containing both components are in ℘1).
All the requirements of the specification are summarized in Figure 2. The last two

formulas are the formal versions of closure requirements for ℘1.
If we assume the properties of the specification, then a number of theorems are

provable. For example, ∀X.X × X = X2, ∀xy.(x, y)0 = x and ∀xy.(x, y)1 = y are
provable from the specification.

3Note that under classical assumptions, ℘1 is simply 2, in which case 2 has two “propositions” – 0
(false) and 1 (true).
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P ∈ Λιιι L ∈ Λι(ιι)ι A ∈ Λιιι Σ ∈ Λι(ιι)ι Π ∈ Λι(ιι)ι (s, t) := Pst

λx ∈ s.t := Ls(λx.t) st := Ast Σx ∈ s.t := Σs(λx.t)

s× t := Σx ∈ s.t (if x /∈ Ft) Πx ∈ s.t := Πs(λx.t) ts := Πx ∈ s.t (if x /∈ Ft)

∀xywz.(x, y) = (w, z) ≡ x = w ∧ y = z

∀XFG.(∀x.x ∈ X → Fx = Gx) ≡ (λx ∈ X.Fx) = λx ∈ X.Gx

∀XY z.z ∈ (Σx ∈ X.Y x) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Y x ∧ z = (x, y)

∀XY f.f ∈ (Πx ∈ X.Y x) ≡ ∃F.(∀x.x ∈ X → Fx ∈ Y x) ∧ f = λx ∈ X.Fx

∀XFx.x ∈ X → (λx ∈ X.Fx)x = Fx

∀XY fx.f ∈ (Πx ∈ X.Y x) → x ∈ X → fx ∈ Y x ∀F.(λx ∈ 2.Fx) = (F0, F1)

∀XFx.x /∈ X → (λx ∈ X.Fx)x = 0

∀XY.(∀x.x ∈ X → Y x ∈ ℘1) → (Πx ∈ X.Y x) ∈ ℘1

∀X.X ∈ ℘1 → ∀Y.(∀x.x ∈ X → Y x ∈ ℘1) → (Σx ∈ X.Y x) ∈ ℘1

Figure 2. Specification of Pairs and Functions

5. Pairs as Disjoint Unions

We will define the pair (X, Y ) so that

(X, Y ) = {(0, x)|x ∈ X} ∪ {(1, y)|y ∈ Y }.

That is, we will define pairing via disjoint union. Of course, this cannot be the definition
since it already makes use of pairing. To avoid circularity, we use ∈-recursion to define
a function I1. We will later prove (after defining pairing) that I1y = (1, y). From I1 we
can easily define a function I0 which will later have the property I0x = (0, x). Once we
have I1 and I0, we can define pairing as {I0x|x ∈ X} ∪ {I1y|y ∈ Y }.
We define I1 by ∈-recursion as on operator that recursively adjoins 0. Let I1 be the

term R(λXF.{0} ∪ {Fx|x ∈ X}) of type ιι.

Lemma 5.1. ∀X.I1X = {0} ∪ {I1x|x ∈ X}

Proof. This follows from Theorem 3.1 and Lemma 2.1. �

Let I0 be the term {I1x|x ∈ X} of type ιι.
We will need to know I0 and I1 are injective. To this end, we define a one-sided

inverse I− by ∈-recursion. The function I− will be a one-sided inverse to both I0 and
I1 simultaneously. Let I− be the term R(λXF.{Fx|x ∈ X \ {0}}).

Lemma 5.2. ∀X.I−X = {I−x|x ∈ X \ {0}}
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Proof. This follows from Theorem 3.1 and Lemma 2.1. �

Lemma 5.3. We have ∀X.I−(I0X) = X and ∀X.I−(I1X) = X.

Proof. The proof of ∀X.I−(I1X) = X is by ∈-induction using Lemmas 5.1 and 5.2. The
proof of ∀X.I−(I0X) = X uses ∀X.I−(I1X) = X, the definition of I0 and Lemma 5.2.

�

From Lemma 5.3 we can conclude that I0 and I1 are injective functions, as desired.
We also want to prove that I0 and I1 have disjoint images.

Lemma 5.4. ∀XY.I0X 6= I1Y

Proof. It is easy to prove 0 ∈ I1Y and 0 /∈ I0X. �

Before moving on to pairs, we establish the following simple result.

Lemma 5.5. I00 = 0

Proof. This follows immediately from Lemma 2.1 and the definition of I0. �

We now define pairing. Let P be the term

λXY.{I0x|x ∈ X} ∪ {I1y|y ∈ Y }

of type ιιι. We write (s, t) as notation for the term Pst. A number of results follow
easily from the lemma above and the definition of P.

Lemma 5.6. (0, 0) = 0, ∀x.I0x = (0, x) and ∀x.I1x = (1, x).

Due to the equations in Lemma 5.6 we no longer need to consider the functions I0
and I1. (This is why I0 and I1 were not included in the specification in Section 4.) In
fact, we can characterize the set encoding the pair as originally intended.

Lemma 5.7.

∀XY z.z ∈ (X, Y ) ≡ (∃x.x ∈ X ∧ z = (0, x)) ∨ (∃y.y ∈ Y ∧ (1, y))

Using Lemma 5.7 it is easy to prove the following.

Lemma 5.8. We have the following.

∀xy.(0, x) = (0, y) → x = y

∀xy.(1, x) = (1, y) → x = y

∀xy.(0, x) 6= (1, y)

Using Lemmas 5.7 and 5.8 we obtain Lemma 5.9.

Lemma 5.9. We have the following.

∀XY x.(0, x) ∈ (X, Y ) → x ∈ X

∀XY y.(1, y) ∈ (X, Y ) → y ∈ Y

∀xywz.(x, y) ⊆ (w, z) → x ⊆ w

∀xywz.(x, y) ⊆ (w, z) → y ⊆ z

From Lemma 5.9 we can easily prove the following theorem.
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Theorem 5.1. ∀xywz.(x, y) = (w, z) ≡ x = w ∧ y = z.

Note that Theorem 5.1 corresponds to the first required property in Figure 2.

6. Aczel Representation of Functions

We now turn to the representation of functions. GivenX of type ι and a function F of
type ιι, we will define a set λx ∈ X.Fx of type ι which will represent the corresponding
set theory level function. As a set, λx ∈ X.Fx will contain precisely the pairs (x, y)
where y ∈ Fx. We define L to be the term

λXF.
⋃

x∈X

{(x, y)|y ∈ Fx}

of type ι(ιι)ι. We write λx ∈ s.t as notation for the term Ls(λx.t). The following
lemma is clear from the definition.

Lemma 6.1. ∀XFz.z ∈ (λx ∈ X.Fx) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Fx ∧ z = (x, y).

Using Lemma 6.1 and Theorem 5.1 we have the following.

Lemma 6.2. ∀XFxy.(x, y) ∈ (λx ∈ X.Fx) ≡ x ∈ X ∧ y ∈ Fx.

We next define an application operator A. Given an object level function f and a
potential argument x, Afx should be the set of all y such that (x, y) ∈ f . Let A be
the term

λfx.{d(λy.z = (x, y))|z ∈ {z ∈ f |∃y.z = (x, y)}}

of type ιιι. We write st as notation for Ast when s and t are terms of type ι.

Lemma 6.3. ∀fxy.y ∈ fx ≡ (x, y) ∈ f .

Proof. Note that fx is notation for Afx. Let f and x be given. By the axiom of
description and Theorem 5.1, we know ∀y.(x, y) = (x, d(λw.(x, y) = (x, w))) and so

(e) ∀y.d(λw.(x, y) = (x, w)) = y.

We now prove ∀y.y ∈ fx ≡ (x, y) ∈ f .
Suppose y ∈ fx. By the definition of A and the axioms of separation and replace-

ment, there must be some z and v such that z ∈ f , z = (x, v) and y = d(λy.z = (x, y)).
Hence y = d(λy.(x, v) = (x, y)) and so y = v by (e). Since z ∈ f and z = (x, v), we
conclude (x, y) ∈ f .
Suppose (x, y) ∈ f . Clearly (x, y) ∈ {z ∈ f |∃w.(x, y) = (x, w)} by separation. Hence

d(λw.(x, y) = (x, w)) ∈ fx by replacement. By (e) we know y ∈ fx. �

We now have the infrastructure to prove more properties from Figure 2.

Theorem 6.1. We have ∀XFx.x ∈ X → (λx ∈ X.Fx)x = Fx. Furthermore, we have

∀XFx.x /∈ X → (λx ∈ X.Fx)x = 0.

Proof. By Lemmas 6.2 and 6.3, y ∈ (λx ∈ X.Fx)x if and only if (x, y) ∈ (λx ∈ X.Fx)
if and only if x ∈ X ∧ y ∈ Fx. This suffices to prove both results. �

Theorem 6.2. ∀XFG.(∀x.x ∈ X → Fx = Gx) ≡ (λx ∈ X.Fx) = λx ∈ X.Gx.
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Proof. Lemma 6.1 implies one direction. Theorem 6.1 implies the other. �

We can now prove that functions from 2 are ordered pairs.

Theorem 6.3. ∀F.(λz ∈ 2.F z) = (F0, F1).

Proof. Assume u ∈ (λz ∈ 2.F z). By Lemma 6.1 there exist z ∈ 2 and y ∈ Fz such that
u = (z, y). Either z = 0 or z = 1. In either case u ∈ (F0, F1) by Lemma 5.7. Assume
u ∈ (F0, F1). By Lemma 5.7, either u = (0, x) for some x ∈ F0 or u = (1, y) for some
y ∈ F1. In either case u ∈ (λz ∈ 2.F z) by Lemma 6.1. �

We also prove application to 0 and 1 operate as projections on pairs as expected.

Theorem 6.4. We have the following.

∀xy.(x, y)0 = x

∀xy.(x, y)1 = y

∀xyi.i /∈ 2 → (x, y)i = 0

Proof. The first two results follow from Lemmas 5.7, 5.9 and 6.3. For the last result,
assume z ∈ (x, y)i. By Lemma 6.3 (i, z) ∈ (x, y) and so i ∈ 2 by Lemma 5.7. �

7. Sums and Products

Defining dependent sums (sets of pairs) is trivial. Let Σ be L. We write Σx ∈ s.t as
notation for Σs(λx.t). Note that Σx ∈ s.t is the same term as λx ∈ s.t. Lemma 6.1
can now be written as

∀XFz.z ∈ (Σx ∈ X.Fx) ≡ ∃x.x ∈ X ∧ ∃y.y ∈ Fx ∧ z = (x, y)

justifying the property of Σ specified in Figure 2. Lemma 5.6 implies ℘1 is closed under
Σ:

∀X.X ∈ ℘1 → ∀Y.(∀x.x ∈ X → Y x ∈ ℘1) → (Σx ∈ X.Y x) ∈ ℘1.

Defining dependent products (sets of functions) is not quite as easy, but does not
require new ideas. Let Π be the term

λXY.{f ∈ ℘(Σx ∈ X.
⋃

(Y x))|∀x.x ∈ X → fx ∈ Y x}

of type ι(ιι)ι. We write Πx ∈ s.t for Πs(λx.t), or ts when x /∈ Ft. It is straightforward
to verify the following (where Y ∈ Vιι).

∀XY F.(∀x.x ∈ X → Fx ∈ Y x) → (λx ∈ X.Fx) ∈ Πx ∈ X.Y x

∀XY fx.f ∈ (Πx ∈ X.Y x) → x ∈ X → fx ∈ Y x

∀XY f.f ∈ (Πx ∈ X.Y x) → (λx ∈ X.fx) = f

∀XY f.f ∈ (Πx ∈ X.Y x) ≡ ∃F.(∀x.x ∈ X → Fx ∈ Y x) ∧ f = λx ∈ X.Fx

∀XY.(∀x.x ∈ X → Y x ∈ ℘1) → (Πx ∈ X.Y x) ∈ ℘1

Using Theorem 6.3 we have ∀X.X ×X = X2, where X ×X is Σx : X.X, as expected.
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8. Monotonicity

We additionally consider some monotonicity results which are provable in IZF−∞
ω .

Since pairs are disjoint unions and disjoint union is monotone, it is no surprise that
pairing is monotone.

∀XYWZ.X ⊆ W → Y ⊆ Z → (X, Y ) ⊆ (X,Z).

Sets of pairs are also monotone. This is also as one would expect. We express this
as follows (where Z,W ∈ Vιι):

∀XY.X ⊆ Y → (∀ZW.(∀x.x ∈ X → Zx ⊆ Wx) → (Σx ∈ X.Zx) ⊆ Σy ∈ Y.Wy

We now turn to monotonicity results for sets of functions. First we have the following
unsurprising monotonicity result (where A,B ∈ Vιι).

∀XAB.(∀x.x ∈ X → Ax ⊆ Bx) → (Πx ∈ X.Ax) ⊆ Πx ∈ X.Bx

With the usual representation of functions as graphs, one does not expect to obtain
AX ⊆ AY if X ⊆ Y . After all, if X is a proper subset of Y , then members of AX

will be partial functions from Y to A. Given the representation here, partial functions
applied outside their domain will return 0. Hence if 0 ∈ A, then clearly X ⊆ Y implies
AX ⊆ AY classically. To prove this intuitionistically, we will also need to assume that
for members y of Y we have y ∈ X ∨ y /∈ X. The following monotonicity principle for
Π is provable (where A ∈ Vιι).

∀XY A.X ⊆ Y → (∀y.y ∈ Y → y ∈ X ∨ y /∈ X)

→ (∀y.y ∈ Y → y /∈ X → 0 ∈ Ay) → (Πx ∈ X.Ax) ⊆ Πy ∈ Y.Ay.

For the simple case in which A ∈ Vι we have

∀A.0 ∈ A → ∀XY.X ⊆ Y → (∀y.y ∈ Y → y ∈ X ∨ y /∈ X) → AX ⊆ AY .

We also have a monotonocity result for Π in which both the domain and codomain
changes. Here A,B ∈ Vιι.

∀XY AB.(∀x.x ∈ X → Ax ⊆ Bx) → X ⊆ Y → (∀y.y ∈ Y → y ∈ X ∨ y /∈ X)

→ (∀y.y ∈ Y → y /∈ X → 0 ∈ By) → (Πx ∈ X.Ax) ⊆ Πy ∈ Y.By

Also, we have a simpler version with A,B ∈ Vι.

∀XY AB.0 ∈ B → A ⊆ B → X ⊆ Y → (∀y.y ∈ Y → y ∈ X ∨ y /∈ X) → AX ⊆ BY

Since we can prove m ∈ n ∨m /∈ n for finite ordinals, we in particular have

∀A.0 ∈ A → ∀n.Nn → ∀m.m ∈ n → Am ⊆ An

Note that this means in particular that if 0 ∈ A, then

A2 ⊆ A3 ⊆ A4 ⊆ · · ·
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9. Conclusion

We have shown how one can define pairs and functions so that pairs are functions
from 2 and the equationX×X = X{0,1} holds. We conjecture that these representations
of pairs and functions are more convenient in the context of formalized mathematics
than the usual convention of taking pairs to be Kuratowski pairs and functions to be
their graphs. For example, if u is a pair, it is common to write u0 and u1 for the
two components. With the representation here, this subscript notation can simply be
formalized as application of the function u to 0 or 1.
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