GLIVENKO AND KURODA FOR SIMPLE TYPE
THEORY

CHAD E. BROWN AND CHRISTINE RIZKALLAH

ABSTRACT. Glivenko’s theorem states that an arbitrary proposi-
tional formula is classically provable if and only if its double nega-
tion is intuitionistically provable. The result does not extend to
full first-order predicate logic, but does extend to first-order pred-
icate logic without the universal quantifier. A recent paper by
Zdanowski shows that Glivenko’s theorem also holds for second-
order propositional logic without the universal quantifier. We
prove that Glivenko’s theorem extends to some versions of simple
type theory without the universal quantifier. Moreover we prove
that Kuroda’s negative translation, which is known to embed clas-
sical first-order logic into intuitionistic first-order logic, extends to
the same versions of simple type theory. We also prove that the
Glivenko property fails for simple type theory once a weak form of
functional extensionality is included.

1. INTRODUCTION

Glivenko’s theorem states that an arbitrary propositional formula s
is classically provable if and only if —=—s is intuitionistically provable [8].
Glivenko’s theorem does not extend to first-order predicate logic, but
does extend to first-order predicate logic without V quantifiers [11]. A
recent paper by Zdanowski [15] shows that Glivenko’s theorem also
holds for second-order propositional logic without the V quantifier. In
this paper we consider how Glivenko’s result extends to simple type
theories in the style of Church [4]. Such simple type theories are also
referred to as higher-order logics.

A related result by Kuroda states that a first-order formula s is clas-
sically provable if and only if ==’ is intuitionistically provable, where
s’ is obtained from s by adding double negations beneath each universal
quantifier. The mapping from s to =—s’ is known as the Kuroda nega-
tive translation [11]. The Kuroda negative translation embeds classical
first-order logic into intuitionistic first-order logic. Kuroda’s transla-
tion extends in a natural way to higher-order formulas. We determine
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when this extension embeds the classical version of a simple type theory
into the corresponding intuitionistic version.

There are other logical transformations that translate classical first-
order logic into intuitionistic first-order logic including the Kolmogorov
negative translation [10] and the Gddel-Gentzen negative translation |7,
9]. Unlike the Kuroda negative translation, the Kolmogorov and the
Godel-Gentzen negative translations do not extend in a natural way to
higher-order logic. In both cases, propositional atoms are not mapped
to themselves but to their double negations. In higher order logic a
propositional atom may be a variable. If a translation adds a double
negation to such variables, then the translation will not respect (-
equivalence.

For the first part of the paper we consider simple type theory without
extensionality. We prove the Glivenko and Kuroda results extend to
the non-extensional case. We then consider simple type theory with
the possible addition of three forms of extensionality: propositional
extensionality, n-extensionality and &-extensionality. It turns out that
the Glivenko and Kuroda results continue to hold if we include either
propositional extensionality or n-extensionality (or both). Note that
this implies the V quantifier cannot be defined from the other logical
constants in the intuitionistic versions of simple type theory without &-
extensionality. On the other hand, it is well-known that all the logical
constants (including V) can be defined from equality if one has all three
forms of extensionality (see [2, 12]). Consequently, the Glivenko result
fails in the presence of all three forms of extensionality. In fact, we
prove the Glivenko result fails in each of the versions of simple type
theory with &-extensionality. To summarize, the Glivenko property
holds for simple type theory without V and without &-extensionality,
but does not hold for simple type theory with V or with £-extensionality.
Furthermore, the Kuroda translation preserves provability for simple
type theory without &-extensionality, but not for simple type theory
with &-extensionality.

In Section 2 we give a short presentation of simply typed A-calculus.
In Section 3 we present natural deduction calculi for a few variants
of simple type theory. We prove the Kuroda and Glivenko results in
Section 4. In Section 5 we consider what happens when extensionality
principles are included.

2. SIMPLY TYPED LAMBDA CALCULUS

We describe simply typed A-calculus in the style of Church [4]. The
set of types is given inductively: o and ¢ are types and o7 is a type
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whenever ¢ and 7 are types. The types o (the type of propositions)
and ¢ (the type of individuals) are called base types. Types of the form
ot are called function types. We use ¢ and T to range over types.

For each type o, let N, be an infinite set of names of type o. Some
of the names are logical constants:

e | is a logical constant in N,

e A, Vand — are (distinct) logical constants in Nog,.

e For each o, =, is a logical constant in N,4,.

e For each o, ¥, and 3, are (distinct) logical constants in Nge)o.

The remaining names are variables . Let C, be the set of logical con-
stants of type o and V, be the (infinite) set of all variables of type o.
Let N =U,N,,C=1,Cr and V =J, V,.

For any C' C C we define a family of sets of terms AS for each type
o by induction.

e For every z € V,, v € AC.

e For every c € C', c € AY.

e For every z € V, and s € AS, (Az.s) € AC_.

e For every s € A and t € AY, (st) € AC".
We defined AS relative to a set of logical constants. There are two
particular sets of logical constants of interest in this paper: the full set
C of logical constants and the set

C™:=C\ {V,|o is a type}

omitting the V-quantifier. To simplify notation, we define A, to be AS
and A to be AS . Note that AS C A, for any ¢’ C C. An element of
A, is called a term of type 0. A term is an element of | J_ A,. Terms of
the form (Az.s) are called A-abstractions. Terms of the form (st) are
called applications. A formula is a term of type o. Such formulas are
sometimes called higher-order formulas.

We write —s for ((— s)L). We write stu for (st)u, except that —st
means —(st). We use the infix notation s At, sVt, s — tand s =, t
as shorthand for Ast, Vst, — st and =, st, respectively. Note that —s
is s > L. We write Vz : o.s and 3z : 0.5 for V,(Az.s) and 3,(A\x.s),
respectively. We may also omit the type entirely from a quantified
formula or equation and write Vx.s, dz.s or s = t when the types are
clear in context.

When s is a term, w € N, and t is a term of type o, then s¥ is
defined to be the result of substituting ¢ for w in s via a capture-
avoiding substitution. A term of the form (Ax.s)t is called a [-redex
with S-reduct sf. We say s [-reduces to t (and write s —5 t) if a
subterm of s is a [-redex such that t is the result of replacing this
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subterm by its S-reduct. We define s ~4 t to be the least equivalence
relation containing —3. When s ~g ¢ holds, we say s and ¢ are (-
equivalent.

3. NATURAL DEDUCTION CALCULI

By a simple type theory we mean simply typed A-terms with a no-
tion of provability. Another phrase used in the literature for such a
language and notion of provability is higher-order logic. In this section
we define three notions of provability via natural deduction: classical
non-extensional simple type theory (sometimes called elementary type
theory [1]), classical non-extensional simple type theory without V, and
intuitionistic non-extensional simple type theory. All the natural de-
duction rules we will need to define these calculi are given in Figure 1.

o I' Fx s (where I' is a finite subset of A, and s € A,) holds when
derivable using all the rules in Figure 1.

o I' H s (where I is a finite subset of A; and s € A ) holds when
derivable using all the rules in Figure 1 (restricted to terms in
A~) except NI, and NE.

e I't; s (where I' is a finite subset of A, and s € A,) holds when
derivable using all the rules in Figure 1 except N..

4. GLIVENKO AND KURODA FOR NON-EXTENSIONAL SIMPLE TYPE
THEORY

We prove Glivenko’s theorem extends to non-extensional simple type
theory without the V quantifier. Extensionality is handled separately in
the next section. Furthermore, we provide a translation from classical
simple type theory into intuitionistic simple type theory (see [13]). This
translation turns out to be an extension of Kuroda’s negative trans-
lation to simple type theory. Finally, we give an example illustrating
Glivenko does not extend to full simple type theory (with V). This is
not surprising since it does not extend to full first-order logic either.

We first discuss whether the Kolmogorov and the Godel-Gentzen
negative translations extend to higher-order logic. Assume that when
a translation W is extended to higher-order logic it translates W(st) as
U(s)U(t) and ¥(Az.s) as Ax.U(s). In other words, assume the trans-
lation is compositional with respect to application and A-abstraction.
Under this assumption, there is no [-respecting extension of the Kol-
mogorov and the Godel-Gentzen negative translations to higher-order
logic. We provide an example showing that they do not respect (-
equivalence. Let p be a variable of type 0. The result of translating
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FIGURE 1. Natural deduction rules

p using either of the translations is ——p [5]. Consider the two (-
equivalent terms (Ap.p)p and p. The translations of these two terms
are (Ap.——p)(——p) and ——p, respectively. The resulting terms are not
[b-equivalent. The reason for this is that the translations double negate
the atoms in a formula.

We now introduce a lemma which provides some helpful formulas
that we will make use of later on.

Lemma 4.1. The following are derivable. Their derivation is left as
an exercise for the reader.

() kLl —1

(2) Fy Ypg.(p = ==q) = ~=(p = q)

(3) Fuy Vpg.m=p = ==(p = q) = =g

(4) Fy Ypg.m=p = ==g = —=(p A q)
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(5) ks Vpg.—~=(p A q) = —=p

(6) ks Vpg.—=(p A q) = =g

(7) ks ¥pg.—=p = ==(p V q)

(8) ks ¥pg.——q — ==(pVq)

(9) Fy Vpipeq.—=(p1 V p2) = (p1 = 7)) = (p2 = ——q) = g
10) k5 Vp.p — ——p

11) by Yoy Vp.—=(z =, y) = —(pz) = =~ (py)

12) F; VpVr.——=(px) — ——3ep

13) F; Vpg.—m—3,p — (VYr.pxr — ——q) — ¢

14) F; Vp.—~—==p — —p

We prove that if a higher-order formula s with no V quantifiers is
classically provable using the rules in =, then —=—s is intuitionistically
provable using the rules in F7.

Theorem 4.2. For all finite I' C A and s € A, if I' = s, then
r |_J -8,

Proof. We prove the theorem by induction on the derivation of I' 5 s.
Recall that the rules N, and N can be used for a derivation in ; but
not for a derivation in k5. Conversely, N, can be used for a derivation
in 5 but not for a derivation in .

We first show the base cases of the induction, namely the case that
the derivation of I' =5 s consists of exactly one step, either the Ny, rule
or the NL rule. If either one of the two rules is applied, we assume
I' F s and know I' -; =—s by the applied rule and by Lemma 4.1(10)
(along with N¥, NZ  and Njp).

We consider the case that the derivation of I' - s ends with the
NZ rule. By the inductive hypothesis, we know I' F; ——=3,¢ and
[ty ;5 —=s. We have T' ; Vy.ty — ——s using NZ, and N{. Us-
ing Lemma 4.1(13) (along with N, N& N,, and Nj) , we obtain
'y —t.

If the derivation of I' F, s ends with the N, rule. Then, by the
inductive hypothesis we have I'ys — 1 F; ==L and hence I',s —
1 F; L by Lemma 4.1(1). Thus I' k7 =—s directly using NZ,.

Moreover, the other cases of the induction step hold similarly. Namely,
N¥ follows from Lemma 4.1(1), N/, from Lemma 4.1(2), NZ from
Lemma 4.1(3), N4 from Lemma 4.1(4), N&* from Lemma 4.1(5), N&#
from Lemma 4.1(6), NI* from Lemma 4.1(7), NI from Lemma 4.1(8),
NZ from Lemma 4.1(9), N from Lemma 4.1(11), and NJ from
Lemma 4.1(12). The N, case is obvious, and the Ny case follows
from the fact that if s ~g ¢, then ==s ~3 =—t. 0
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We now define a translation ® from general higher-order formulas to
formulas not containing V quantifiers.

Definition 4.3. We define ® : A — A~ by recursion as follows.

O(x) = =z for variables
O(c) = ¢ forceC™
O(V,) = Ap:o—Jdz.-pr wherep € Vy, and x €V,
O(st) = D(s)D(1)
O(Az.s) = Az.D(s)

We call ® compositional since it respects application and \-abstraction.
For T' C A we write ®(T") to mean {®(t)|t € T'}.

Note that —3x.—px is intuitionistically equivalent to Vz.——pz. There-
fore, the translation taking a formula s to ——®(s) is equivalent to
Kuroda’s negative translation [11] in the sense of the equivalence de-
fined in [5].

We now prove that if a general higher-order formula s is classically
provable using the rules in kg, then its translation ®(s) which does
not have V quantifiers is provable using the rules in F.

Lemma 4.4. For all finite I' C A, and s € A, if I’ Fg s, then
O(I) Fy (s).

Proof. We prove the theorem by induction on the derivation of I' Fx s.
We consider the interesting cases where the derivation ends with the
N or N& rule. We also consider the rules N£ and N4. Similar to
those two cases, for all the other cases the same rule that was used to
derive I' F s can be used to derive ®(I") F5 ®(s).

In the NI case, we assume I' kg sy where y ¢ NT UNs. By the
induction hypothesis we have ®(I') F; ®(sy). We need to prove that
O(I') Fi ©(V,s). Since @ is compositional, we know ®(sy) = D(s)y
and y ¢ NO(T')UN®(s). Without loss of generality assume x ¢ N's, by
definition of ® and the fact that it is compositional we know ®(V,s) ~5
—=3z.=®(s)z. By Ng and N, it suffices to show ®(T'), Jz.=P(s)z 5 L.
Since y ¢ NO(T') UN®(s) UN (Fz.~P(s)z) UN L, by N¥ and Ny, it
is enough to show ®(I'), 3z.=P(s)z, ~P(s)y F5 L. This we can ob-
tain easily by using NZ and the fact that ®(T'), Jz.=®(s)z, ~P(s)y Fx
®(s)y. This fact we know by applying the IN,, rule to the induction
hypothesis.

For the N rule, by the inductive hypothesis we have ®(T') %
®(V,s) and show O(I") F P(st). Without loss of generality, assume
x ¢ N's, by the induction hypothesis and the definition of ® we have
(Af.mFx.—f2)®(s) which is S-equivalent to —=3z.—(P(s)z). By N, we
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can obtain ®(I'), ~®(st) F —Jz.~(P(s)r). Hence by using N. and
NZ it is enough show ®(T), =®(st) Fp Jz.~(P(s)z). This can be
obtained by applying the N rule with the term ®(¢) then the N, rule.

For NE we know ®(T') Fr ®(s =, t) and ®(T") 5 ®(us) by the
inductive hypothesis and show ®(I') F ®(ut). Using the definition
of ® and the fact that it is compositional we know that ®(s =, t) =
D(s) =, O(t), P(us) = P(u)P(s), and ®(ut) = P(u)P(t). Hence we
have ®(T') 5 ®(u)®(t) by applying the NZ rule.

In the N case we have ®(T") 5 ®(st) by the inductive hypothesis
and want to show that ®(I') F, ®(3,s). Using the definition of ®
and the fact that it is compositional we know that ®(st) = ®(s)P(¢),
and that ®(3,s) = 3,P(s). Thus using the assumption, we obtain
®(T) Fx 3,P(s) by applying the N with the term ®(¢). O

From Theorem 4.2 and Lemma 4.4 we can directly infer that Kuroda’s
negative translation extends to higher-order formulas moreover, that
Glivenko’s theorem extends to higher-order formulas with no V quan-
tifiers.

Theorem 4.5 (Kuroda). For all finite ' C A, and s € A,, if I Fg s,
then ®(I") F; =—=d(s).

Proof. Apply Theorem 4.2 and Lemma 4.4. O

Corollary 4.6 (Glivenko). For all finite ' C A, and s € A, if I' g
s, then I' Fj —=s.

Proof. Apply Theorem 4.5 noting that ®(I') = I" and ®(s) = s since
I'CA, and s € A,. O

We now prove that the following does not hold: For all finite I' C A,
and s € A,, I' Fg s implies I' F; =—s. We prove it does not hold
by giving a formula s for which I' Fx s and T" t/; ——s. Namely, we
consider the formula Vz.fx V - fx where f is a variable of type to and
x is a variable of type ¢.

Lemma 4.7. Let f be a variable of type 1o and x be a variable of type
L.
Vy——Ve. fo VvV -fx

Proof. Note that =—Vx.fx V = fx is a first-order formula. A first-order
Kripke counter-model is given in Chapter 4 of [6]. In category theoretic
terms, the counter-model is given by interpreting ¢ as a presheaf I over
w (ordered by <) where In := {1,...,n+ 1} and f is interpreted as
the presheaf fn :={1,...,n} (both with the obvious inclusion maps).
Since every presheaf category is a topos and hence a model of intuition-
istic higher-order logic (see [12]), we also know Ff; =—Vz.fzV-fz. O
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Theorem 4.8 (Failure of Glivenko with V). There exists s € A, such
that Fx s and H; —=s.

Proof. Let f be a variable of type to and x be a variable of type ¢. The
statement Fx Va.fzr V —fx is easily derivable using the N. rule. By
Lemma 4.7 we know t/; =—Vx.fz V - fx. O

5. EXTENSIONALITY

There are different extensionality properties one may or may not
include in simple type theory. Four such properties are explored in [3].
We briefly review these properties.

n: n-extensionality is the property that every element of a function
type is a A-abstraction. The property can be expressed as a set of for-
mulas Vf : o7.f =, Ax.fx where o, 7 range over types. An equivalent
formulation is to use 7-conversion. If z is not free in s, then the term
Az.sx is called an n-redex with n-reduct s. We say s n-reduces to t (and
write s —, t) if a subterm of s is an n-redex such that ¢ is the result
of replacing this subterm by its n-reduct. We define s ~, ¢ to be the
least equivalence relation containing —,,.

& E-extensionality is the property that two A-abstractions are equal
if their bodies always have the same value. The property can be ex-
pressed as a set of formulas Vf : o7.¥g : or.(Vx : o.fx =, gx) —
(Ax.fz) =5 (Az.gx) Where o, T range over types.

f: Functional extensionality is the property that two functions are
equal if they are equal on all arguments. The property can be expressed
as a set of formulas Vf : o7.Vg : o7.(Vx : 0.fx =, gx) — [ =,, g where
o, T range over types.

b: Boolean extensionality is the property that there are only two
elements of type o.

In this paper we also consider a fifth form of extensionality.

p: Propositional extensionality is the property that two elements of
type o are equal if they are equivalent. The property can be expressed
as the formula Vp : oVgq:0.(p = q) = (¢ > p) > p=gq.

In a classical setting, Boolean extensionality and propositional ex-
tensionality are equivalent. Hence we can use b and p interchangeably
for classical simple type theory. In particular, in all the results of [3]
b can be replaced by p. Furthermore, the assumption of Boolean ex-
tensionality in the intuitionistic setting forces the logic to be classical.
Since our goal is to relate the intuitionistic and classical versions of sim-
ple type theory, only propositional extensionality will be considered in
this paper.
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FIGURE 2. Extensionality rules

In [3] it is proven that functional extensionality is exactly the com-
bination of n-extensionality and £-extensionality. Thus there are eight
versions of classical simple type theory relative to extensionality prin-
ciples. In [3] the eight possibilities are named using the indexes (3, (7,
BE, Bf, By, Bnp, BEp and [fp (except b was used instead of p). For each
« € 10, Bn. BE. Bf, Bp. Bnp. BEp, Bfp} an appropriate class of models O,

is defined and a corresponding (sound and complete) classical natural
deduction calculus MR, is given in [3]. In the context of the present
paper, we can obtain such natural deduction calculi by adding some
or all of the additional extensionality rules given in Figure 2. We can
also define an intuitionistic natural deduction calculus for each * in the
same way. Each of these defines a variant of simple type theory.

o I' 5. s (where I' is a finite subset of A, and s € A,) holds when
derivable using all the rules in Figure 1 and the rules indicated
by * in Figure 2. For example, if *x is Snp, then we include the
rules N,, and N, from Figure 2.

o I'F3- s (where I'is a finite subset of A, and s € A') holds when
derivable using the rules in Figure 2 indicated by * (restrict to
terms in A7) and all the rules in Figure 1 (restricted to terms
in A7) except NI, and NZ.

o ['% s (where I is a finite subset of A, and s € A,) holds when
derivable using the rules in Figure 2 indicated by * and all the
rules in Figure 1 except N..

Deﬁnition 51 L@t * € {B?Bﬁ?ﬁfaﬁf? ﬁpaﬁnp7ﬁ€p7ﬁfp} be given. We
say * satisfies the Kuroda property if for every finite ' C A, and

s € N, if T Fj s, then ®(T") F% ——=P(s). We say * satisfies the
Glivenko property if for every finite ' C A, and s € A, if I' Fj; s,
then I' F% —=s.
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We now prove that each case without £-extensionality satisfies the
Kuroda and Glivenko properties. This implies the universal quantifier
cannot be defined from the other logical constants in simple type theory
without £-extensionality.

Theorem 5.2 (Kuroda and Glivenko without &-extensionality). For
each x € {3, Bn, Bp, Bnp}, * has the Kuroda property and the Glivenko

property.

Proof. Theorem 4.5 and Corollary 4.6 mean precisely that 5 has both
properties. One can prove the Kuroda property for * by proving the
obvious modification of Theorem 4.2 and Lemma 4.4. In particular,
one can prove that for all finite I' C AJ and s € A, if I' Fjo s,
then I' % ——s by induction on the derivation of I' ;- s. There are
possibly two new cases to consider. First, the N, case follows from the
fact that if s ~, t, then ==s ~, =—=t. Second, the N, case follows from

the derivability of
=P VD 0Ng z0.(p = —=q) = (¢ = ~mp) = (p = q)
The Glivenko property for * follows from the Kuroda property. U

Finally, we prove the failure of the Kuroda and Glivenko properties
in the presence of ¢-extensionality.

Theorem 5.3 (Failure of Kuroda and Glivenko with £-extensionality).
For
each x € {BE, Bf, BEP, Bfp}, * has neither the Kuroda nor the Glivenko

property.

Proof. Tt suffices to prove * does not have the Glivenko property. Let
f be a variable of type to and let T be the formula L — L. Let s be
the formula

(A\e.T) #, (Az.feV—ofx) = 2T # (fe V- fo)

Note that s does not use the logical constant V, and so s € A;. We
prove two claims:

(1) 5 s.

(2) FP (=) = =—(Vo.fz V — fx).

Note that |7(§fp —=Vz. feV - fr. The proof of this fact is the same as the
proof of Lemma 4.7 since every topos is a model of intuitionistic higher-
order logic with functional and propositional extensionality. Using the
second claim we conclude I =—s. Consequently, * does not have the
Glivenko property.
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First, we prove % s. Using N, and N, it is enough to prove I' F% L
where I' contains exactly the two formulas

(Ax.T) #, (Az.fe Vv -fx) and =32 T # (fz V - fz).
Clearly we have
O,T # (feVafr) by 3T # (fa Vv -fx)
using N, and Ni. By N£ and Nj, we have
VT # (feVvofe) by L
and so by N, we have I' Fj, T = (fz V ~fx). By N¢ (or Nj and Np)

we have
C'He A T) =, (A\z.fa vV —fx).
Using NZ and Nj, we have I' H3 L as desired.

Finally, we prove Fo¥ (==s) — ——(Vz.fz V ~fz). It suffices to
prove I’ I—gfp 1 where T' contains exactly the two formulas ——s and
~Vz.foV-fz. Using Ny, NZ and N7, it is enough to prove I', s H7° 1.
We argue that ', s I—g‘cp (Ax.T) # (Az.fz VvV —fx) in the following steps.

S, Az ) = (Az.fe V fx y an h-
DDs,(OT)=(\a.f fz) Fo® T by N2 and N

S, (Ax.T) = (Ax.fx V fx z. 1 )x by and (1).
2) T, s, A\e.T) = . f fr) FP (\z.T)x by N4 and

(3) T,s,(\e.T) = (\a.fo V ~fx) P (A\z.fz vV ~fz)z by Nj,, NE
and (2).

(4) T,s, Az.T) = (\z.fo V ~fx) Fi® fz v =fz by Ng and (3).
(5) I'ys,(A\x.T) = (Az.fz V - fx) I—?fp Va.fx V —fz by N and (4).
(6) T,s,(Az.T) = (A\z.fz V —fz) Fi® L by N, NE and (5).

(7) T,s " (\z.T) # (Az.fz V —~fz) by N, and (6).

Since s is (A\x.T) #,, (Az.fx) = J2.T # fr we know
I, s '_gfp . T # (fz V- fz)

by N, and NZ. By N¥ is now suffices to prove
[ys, T # (fxV—fx) l—gfp L.



GLIVENKO AND KURODA FOR SIMPLE TYPE THEORY 13

By N;, N, and NZ% it suffices to prove
T # (foV-fz) FP T = (fz v - fz).

We prove this in the following steps.
(1) F% T by N., and N,

(2) T # (fx v ~fa), fe H5P fov —fz by NIF.

(3) T # (fev—fz), fo FP T = (fav-fz) by Ny, N, (1) and (2).
(4) T # (fxV—fz), fr Fi® L by Ny, NE and (3).

(5) T # (fxV—fz) F¥ = fz by N7, and (4).

(6) T # (foV—fz) F¥ fov —fz by NIF and (5).

(7)) T# (fxV—fx) l—gfp T = (fx V~fz) by Ny, Ny, (1) and (6).
O

Since the versions of simple type theory with &-extensionality do not
satisfy the Glivenko property, it is possible that universal quantifiers
can be defined from the other logical constants in the intuitionistic set-
ting. Andrews [2] defines V,, as Af.f = A\x.T (where T is a provable
formula) in a classical simple type theory with full extensionality. It
is easy to check that the term provides an appropriate definition of
universal quantification in an intuitionistic version of simple type the-
ory with functional and propositional extensionality (8fp). In fact, a
similar definition is given in an intuitionistic simple type theory with
functional and propositional extensionality in [12]. One can modify the
definition to be Af.(Az.fx) = Az.T and obtain a definition of ¥, in the
intuitionistic simple type theory for 8¢p.! This leaves open the pos-
sibility that universal quantifiers are definable from the other logical
constants in the two remaining intuitionistic simple type theories for
B¢ and Bf. We leave the resolution of this question for future work.

'Florian Rabe recently pointed out that 7 is not needed to define V,, in a private
communication.
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6. CONCLUSION

We have proven that the Glivenko result (for formulas without V)
and the Kuroda translation extend to simple type theory without &-
extensionality. As a consequence, V is not definable from the other
logical constants in the absence of £-extensionality. Also, we have
proven that the results do not extend to simple type theory once &-
extensionality is included.

[1]
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