
Terminating Tableaux
for the Basic Fragment of

Simple Type Theory

Chad E. Brown and Gert Smolka

Saarland University

February 2, 2009
(revised April 21, 2009)

To appear in Tableaux 2009, LNCS, Springer

We consider the basic fragment of simple type theory, which restricts equa-

tions to base types and disallows lambda abstractions and quantifiers. We

show that this fragment has the finite model property and that satisfiabil-

ity can be decided with a terminating tableau system. Both results are with

respect to standard models.

1 Introduction

We are interested in higher-order fragments of classical simple type theory [1, 6]

for which it is decidable whether a formula is satisfied by a standard model. Only

few such fragments are known:

• The propositional fragment, which is obtained by admitting no other base

type but the type of truth values. In this case decidability follows from the

fact that all types are interpreted as finite sets.

• The fragment consisting of disequations s ≠ t where s and t are pure terms

that do not involve the type of truth values. The decidability follows from the

completeness of lambda conversion [8].

• The fragments that correspond to propositional modal logics with inductive

expressivity, for instance PDL [7] and the propositional μ-calculus [10].

In this paper we will show that the fragment of simple type theory that restricts

equations to base types and disallows lambda abstraction and quantification is

1

decidable. We call the formulas of this fragment basic. Here are examples of

unsatisfiable basic formulas:

1. h(h⊥=h¬⊥) ≠ h⊥ h : oι

2. h(f(f(fx))) ≠ h(fx) x : o, f : oo, h : oι

3. x≠y ∧ gx=y ∧ gy=x ∧ f(f(fx))=g(fx) a,x,y : o, f , g : oo

4. x≠y ∧ gx=y ∧ gy=x ∧ pg ∧¬p(¬) x,y : o, g : oo, p : (oo)o

5. qfx ∧ f(fx) ∧ f(qfx)≠fx x : o, f : oo, q : (oo)oo

None of the formulas is a formula of standard first-order logic. Seen from the

perspective of first-order logic, basic formulas are quantifier-free formulas where

terms can be formulas and predicates and functions can be higher-order.

Most of the above formulas are out of the reach of the automated tactics of

Isabelle [12] and the higher-order provers TPS [2] and LEO-II [4]. We hope that

the techniques of this paper will contribute to better auto tactics for higher-order

proof assistants.

Our decision procedure comes in the form of a terminating tableau system,

which is a subsystem of a tableau system for full extensional type theory. The

extended system is the dual of a Henkin-complete cut-free one-sided sequent

calculus devised by Brown [5], which has been the starting point for the research

reported in this paper. The most difficult part of the correctness proof for the

terminating system is a model existence theorem, which we establish with the

possible-values technique. The possible-values technique originated with cut

elimination proofs [14, 13] and has been used by Brown [5] to obtain Henkin

models. We seem to be the first to obtain standard models with the possible-

values technique.

2 Basic Definitions

Types (σ , τ , μ) are obtained with the grammar σ ::= ι | o | σσ . The elements

of o are the two truth values, ι is interpreted as a nonempty set, and a function

type στ is interpreted as the set of all total functions from σ to τ .

We assume a countable set of parameters (x), where every parameter comes

with a unique type, and where for every type there are infinitely many parameters

of this type. We employ the logical constants ⊥ : o, ¬ : oo, ∧ : ooo and =σ : σσo,

where there is a logical constant =σ for every type σ . The logical constants take

their standard interpretation. Terms (s, t, u, v) are defined inductively such that

every term has a unique type: (1) every parameter is a term; (2) every logical

constant is a term; (3) if s is a term of type τμ and t is a term of type τ , then st
is a term of type μ; (4) if x is a name of type σ and t is a term of type τ , then

λx.t is a term of type στ . We write s : σ to say that s is a term of type σ . If T is

2

a set of terms, Tσ denotes the set of all terms that are in T and have type σ .

The logical constants =σ are called identities, and terms of type o are called

formulas. Formulas of the form s =σ t are called equations, and formulas of

the form ¬(s =σ t) are called disequations. We write disequations as s ≠σ t. We

usually write equations and disequations without the type index σ .

A term is basic if it contains no other identity but =ι. We write Λσ for the

set of all basic terms of type σ . A formula is normal if it is a basic formula or a

disequation s ≠ t where s and t are basic terms. A normal set is a set of normal

formulas.

The definition of normal formulas is asymmetric in that equations are re-

stricted to type ι while disequations s ≠σ t are allowed at any type σ . The

reason for this asymmetry is that the tableau system uses disequations as inter-

nal workhorse. Since s≠t and ps ∧ ¬pt are equisatisfiable if p is fresh, normal

formulas are not more expressive than basic formulas.

The definition of basic formulas can be extended with further propositional

connectives including =o. Since they can be expressed with the connectives we

already have, this does not buy new expressivity.

For simplicity we provide only one base type ι different from o. Everything

generalizes to countably many base types.

3 Tableau System

Figure 1 shows the rules of a terminating tableau system B that decides the satis-

fiability of finite normal sets. For the application constraint of Rule fe we supply

the following definition. A disequation s ≠στ t is evident in A if there exist n ≥ 1

basic terms u1, . . . , un such that su1 . . .un ≠ tu1 . . .un or tu1 . . .un ≠ su1 . . .un
is in A. The names of the rules are derived as follows: mat for Mating, fe for

functional extensionality, be for Boolean extensionality, dec for decomposition,

and con for confrontation.

The rules in the first line of Figure 1 are the usual tableau rules deciding

propositional logic. They also decide quantifier-free first-order logic without

equality. In contrast to classical first-order logic, type theory allows embedded

formulas, for instance p(¬x) where p : oo and x : o. The rules mat, dec and be

handle embedded formulas. mat decomposes “atomic” formulas into disequa-

tions, which are further decomposed with dec. Embedded formulas are then fed

back to the propositional rules by be, as demonstrated by the following example.

3

bot¬
s , ¬s
⊥ dn

¬¬s
s

and
s ∧ t
s , t

and¬
¬(s ∧ t)
¬s | ¬t

mat
xs1 . . . sn , ¬xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

dec
xs1 . . . sn ≠ι xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

bot≠
s ≠ s

⊥ be
s ≠o t

s , ¬t | ¬s , t

fe
s ≠στ t

sx ≠ tx
x : σ fresh and s≠t not evident in A

sym
s =ι t
t = s con

s =ι t , u ≠ι v
s ≠ u | t ≠ v

A is the normal set to which the rule is applied
x fresh means that x does not occur in A

mat and dec assume n ≥ 1

Figure 1: Tableau system B

Example 3.1 The following tableau refutes an unsatisfiable normal set with em-

bedded formulas.

p(fx(¬¬y)), ¬p(fxy)
mat

fx(¬¬y) ≠ fxy
dec

x ≠ x
bot≠
⊥

¬¬y ≠ y
be

¬¬y, ¬y
bot¬
⊥

¬¬¬y, y
dn

¬y
bot¬
⊥

The types of the parameters are p : ιo, f : ιoι, x : ι, and y : o. �

4

Example 3.2 Rules sym and con handle positive equations at ι. This is demon-

strated by the following refutation.

a = b, fa = gb, fb ≠ ga
con

fa ≠ fb
dec

a ≠ b
bot¬
⊥

gb ≠ ga
dec

b ≠ a
sym

b = a
bot¬
⊥

The types of the parameters are a, b : ι and f , g : ιι. �

The confrontation rule con does not exist in first-order systems. First-order

systems typically employ the replacement rule

rep
s =ι t , C[s]

C[t]

Example 3.2 can also be refuted with the replacement rule instead of the con-

frontation rule. However, the confrontation rule is more powerful than the re-

placement rule since it supports the decomposition needed for embedded for-

mulas. This is illustrated by the next example, which cannot be refuted with the

replacement rule.

Example 3.3 Consider the normal set

fa = gb, f ′a = g′c, f ′′b = g′′c
fb ≠ ga, f ′c ≠ g′a, f ′′c ≠ g′′b

with the typing a, b : o and f , g, f ′, g′, f ′′, g′′ : oι. The replacement rule rep

cannot be applied to the set. The confrontation rule con can be applied to 3

confrontation pairs. Application of dec now yields 8 sets that all contain the

unsatisfiable set

a ≠ b, a ≠ c, b ≠ c

up to symmetry. This set can be refuted with be and bot¬. Thus the initial set

can be refuted with B. �

It remains to illustrate the use of the functional extensionality rule fe. fe is

only needed if higher-order parameters are present.

5

Example 3.4 The following tableau has two branches both of which contain the

refutable set {a ≠ b, a ≠ c, b ≠ c}. Thus the set in the first line is refutable.

a ≠ b, fa, fb, ga, gb, pf , ¬pg
mat

f ≠ g
fe

fc ≠ gc
be

fc, ¬gc
mat

a ≠ c
mat

b ≠ c

¬fc, gc
mat

a ≠ c
mat

b ≠ c

Note the crucial use of the functional extensionality rule fe. The types of the

parameters are a, b, c : o, f , g : oo and p : (oo)o. �

In summary we can now say that B extends the classical propositional sys-

tem with the rules mat, dec, bot≠, be, fe and con to account for embedded

formulas. mat and dec decompose formulas that are atomic for the classical

rules. This way be can finally lift embedded formulas to the top level. To deal

with equality, the traditional replacement rule is replaced by the confrontation

rule. All rules so far are already needed for first-order normal formulas. For

higher-order parameters a single rule fe incorporating functional extensionality

is needed.

The only higher-order tableau system we could find in the literature is the cal-

culus of Kohlhase [9]. Kohlhase’s calculus does not have equality, but there are

unification constraints that play the role of our top level disequations. For uni-

fication constraints Kohlhase has rules that are similiar to mat, dec, fe, and be.

Our tableau rules also have similarities with the rules in Benzmüller’s [3] higher-

order RUE-resolution calculus, which employs primitive equality. In particular,

the RUE calculus allows resolution of positive equations against negative equa-

tions (which play the role of unification constraints). Combining this form of

resolution with decomposition, one obtains a rule

C ∨ s = t D ∨u �= v
C ∨D ∨ s �= u∨ t �= v

which is essentially the same as our confrontation rule con.

6

4 Soundness and Termination

The rules in Figure 1 apply to normal sets and produce one or several normal

sets by adding normal formulas. More precisely, if a rule applies to a normal

set A, it yields n ≥ 1 normal sets A1, . . . , An called alternatives such that A ⊆ Ai
for all i ∈ {1, . . . , n}. If n ≥ 2, the rule applied is called branching. To obtain a

terminating system, we admit only applications where ⊥ ∉ A and the alternatives

A1, . . . , An are all proper supersets of A (i.e., A ⊊ Ai). The tableau system B is

sound if for every application of a rule the set A is satisfiable if and only if one

of the alternatives A1, . . . , An is satisfiable. For the termination of B we consider

the relation A → A′ on normal sets that holds if and only if A′ can be obtained

as an alternative by a rule that applies to A. We say that B terminates if this

relation terminates on finite normal sets. Finally, we call a normal set A evident

if ⊥ ∉ A and no rule of B applies to A. We will show the following:

• B is sound.

• B terminates on finite normal sets.

• Evident sets are satisfiable, and finite evident sets are finitely satisfiable.

Together, soundness, termination and model existence yield a decision proce-

dure for the satisfiability of finite normal sets.

Proposition 4.1 (Soundness) B is sound.

Proof Let A1, . . . , An be obtained from A by application of a rule. It suffices to

show that for every model of A there exists an interpretation that is a model of at

least one of the alternatives A1, . . . , An. For bot¬ this follows from the fact that

the implication x∧¬x → ⊥ is valid. For and¬ the validity of ¬(x∧y) → ¬x∨¬y
suffices, and for fe the validity of f≠g → ∃x.fx≠gx does the job. Note that

this is in fact equivalent to functional extensionality (∀x.fx=gx) → f=g. The

soundness of the other rules follows with similar arguments. �

For the termination proof we distinguish between Rule fe and the other rules.

fe is special in that it introduces new parameters. We first show that the sub-

system B0 of B obtained by removing fe terminates. The proof will exhibit an

upper bound function U from sets of terms to sets of terms such that the fol-

lowing holds for every derivation A1 → ·· · → An in B0:

1. UA1 = · · · = UAn
2. UAi is a finite set such that Ai ⊆ UAi for all i = 1, . . . , n.

Since A1 ⊊ · · · ⊊ An, the bound function suffices for termination of B0.

Let T range over sets of terms. We define the bound function as UT :=
C(S(ET)) where the functions S (subterms), E (elements) and C (compounds)

are defined as follows:

7

• ET is the least set of terms such that:

1. ⊥ ∈ ET
2. If (s =ι t) ∈ T , then s, t ∈ ET .

3. If (s ≠ t) ∈ T , then s, t ∈ ET .

4. If ¬s ∈ T and s is not an equation, then s ∈ ET .

5. If s ∈ T and s is neither a negated term nor an equation, then s ∈ ET .

• ST is the set of all subterms of the terms in T .

• CT is the least set of terms such that:

1. T ⊆ CT .

2. If s, t ∈ T ι, then (s =ι t) ∈ CT .

3. If s, t ∈ Tσ , then (s ≠ t) ∈ CT .

4. If s ∈ To, then ¬s ∈ CT .

All three functions are monotone functions from set of terms to set of terms that

preserve finiteness. The following properties are easy to verify:

1. If A→ A′ in B0, then S(EA) = S(EA′).
2. T ⊆ C(ET) ⊆ C(S(ET)).
Hence U has the required properties and B0 terminates.

We now extend the termination result to B. We define the power of A as the

multiset that contains for each function type σ as many copies of σ as there are

2-element subsets {s, t} ⊆ (S(EA))σ such that s ≠ t is not evident in A. It is not

difficult to verify the following for normal sets A:

1. Application of Rule fe decreases the power of A.

2. Application of a rule other than fe does not increase the power of A.

Hence we have proved the termination of B.

Proposition 4.2 (Termination) B terminates.

5 Model Existence

Recall that an evident set is a normal set that does not contain ⊥ and to which

no rule of B can add a formula.

Theorem 5.1 (Model Existence) Every evident set has a model, and every finite

evident set has a finite model.

Before proving the theorem we state two important consequences.

Corollary 5.2 The tableau system B constitutes a decision procedure for the

satisfiability of normal formulas.

8

Proof Follows from Theorem 5.1 since B is sound and terminating. �

Corollary 5.3 Normal formulas have the finite model property.

Proof Let s be a satisfiable normal formula. Since B is sound and terminating,

we can obtain a finite evident set E that contains s. Now Theorem 5.1 gives us a

finite model of E and hence of s. �

We now begin the proof of the model existence theorem. Let E be an evident

set. We will construct a model I of E that is finite if E is finite. We arrange the

following:

• Io := {0,1}
• I(στ) := set of all total functions from Iσ to Iτ
• I⊥ := 0

• I(¬), I(∧), and I(=σ) are defined as usual.

It remains to define I for the type ι and the parameters.

Discriminants

We prepare the definition of Iι. We write s�t if E contains s≠t or t≠s. A term

s ∈ Λι is discriminating if there is a term t such that s�t. We write Δ for the set

of all discriminating terms. A discriminant is a maximal subset D ⊆ Δ such that

for all s�t either s ∉ D or t ∉ D. We define Iι to be the set of all discriminants.

• Iι := {D | D is a discriminant }

Example 5.4 Suppose E = {x≠y, x≠z, y≠z} and x,y, z : ι. Then there are 3

discriminants: {x}, {y}, {z}. �

Example 5.5 Suppose E = {x≠f(fx), fx≠f(f(fx))} and f : ιι. Then there

are 4 discriminants: {x, fx}, {x, f(f(fx))}, {f(fx), fx}, {f(fx), f(f(fx))}.�

Proposition 5.6 If E contains exactly n disequations at ι, then there are at

most 2n discriminants. If E contains no disequation at ι, then � is the only

discriminant.

Proposition 5.7 Let D1 and D2 be different discriminants. Then:

1. D1 and D2 are separated by a disequation in E, that is, there exist terms

t1 ∈ D1 and t2 ∈ D2 such that t1�t2.

2. D1 and D2 are not connected by an equation in E, that is, there exist no terms

t1 ∈ D1 and t2 ∈ D2 such that (t1=t2) ∈ E.

9

Proof The first claim follows by contradiction. Suppose there are no terms

t1 ∈ D1 and t2 ∈ D2 such that t1�t2. Let t ∈ D1. Then t ∈ D2 since D2 is a

maximal compatible set of discriminating terms. Thus D1 ⊆ D2. A symmetric

argument yields D2 ⊆ D1. Contradiction.

The second claim also follows by contradiction. Suppose there is an equation

(s1=s2) ∈ E such that s1 ∈ D1 and s2 ∈ D2. By the first claim we have terms

t1 ∈ D1 and t2 ∈ D2 such that t1�t2. Since E is closed under con, we have s1�t1
or s2�t2. Contradiction since D1 and D2 are discriminants. �

Possible Values

It remains to define I for the parameters. Given the presence of higher-order

parameters this is not straightforward. We base the definition on a family of

relations �σ ⊆ Λσ × Iσ defined by induction on types:

s �o 0 :⇐⇒ s ∉ E

s �o 1 :⇐⇒ ¬s ∉ E
s �ι D :⇐⇒ s ∈ [D]
s �στ f :⇐⇒ st �τ fa whenever t �σ a

[D] := D ∪ { s ∈ Λι | s not discriminating }

We read s � a as “s can be a” or “a is a possible value for s”. Note that if s is a

basic formula such that s ∉ E and ¬s ∉ E, then both 0 and 1 are possible values

for s. We will show that every basic term has a possible value and that we obtain

a model of E if we define Ix as a possible value for x for every parameter x.

Such a model will satisfy s � Îs for every basic term s. Note that Îs denotes the

value the term s evaluates to in the model I .

Example 5.8 Suppose E = {x≠f(fx), fx≠f(f(fx))} and f : ιι. The following

graph shows the discriminants and the possible pairs for possible values of f .

x, fx x, f (f (fx))

fx, f (fx) f(fx), f (f (fx))

There are 2 possible values for x. To obtain a possible value for f , we must

choose for every node exactly one departing edge. Hence there are 4 possible

values for f . For each choice of a value for x and f we obtain a model of E.

Altogether we obtain 8 models this way. Four of the obtained models have a

junk value at ι (i.e., a value that is not denoted by a basic term). From the models

10

with a junk value we can obtain three-valued models. There is no two-valued

model. �

Compatibility

We define a family of relations ‖σ ⊆ Λσ ×Λσ by induction on types:

s ‖o t :⇐⇒ {s,¬t} �⊆ E and {¬s, t} �⊆ E
s ‖ι t :⇐⇒ not s�t

s ‖στ t :⇐⇒ su ‖τ tv whenever u ‖σ v

We say that s and t are compatible if s ‖ t. A set T of terms is compatible if s ‖ t
for all terms s, t ∈ T . If T ⊆ Λσ , we write T � a if a is a common possible value

for all terms s ∈ T . We will show that a set of equi-typed terms is compatible if

and only if all its terms have a common possible value.

Proposition 5.9 The compatibility relations ‖σ are symmetric.

The compatibility relations are also reflexive. Showing this fact will take some

effort. For the induction to go through we will strengthen the hypothesis. First

we prove the following lemma.

Lemma 5.10 Let s be a basic term. Then:

1. If s : o, then s ‖ s.
2. If s = cs1 . . . sn and c is a logical constant, then s ‖ s.

Proof The first claim follows by contradiction. Suppose s �o s. Then s,¬s ∈ E,

contradicting the assumption that E is evident.

Given that the first claim holds, for the second claim it suffices to consider

terms of the forms ¬, ∧, =ι, (∧)t, and (=ι)t. In all cases the claim follows by

contradiction. We show =ι ‖ =ι. The other cases are similar.

Suppose =ι � =ι. Then there exist terms such that s1 ‖ι s2, t1 ‖ι t2, and

s1=ιt1 �o s2=ιt2. Then either s1=t1 and s2≠t2 are both in E or s1≠t1 and s2=t2
are both in E. Since E is closed under con, we have either s1�s2 (contradicting

s1 ‖ s2) or t1�t2 (contradicting t1 ‖ t2). �

Lemma 5.11 (Reflexivity) For every type σ and all basic terms s, t, xs1 . . . sn,

xt1 . . . tn of type σ :

1. We never have both s ‖σ t and s�t.

2. We always have either xs1 . . . sn ‖σ xt1 . . . tn or si�ti for some i ∈ {1, . . . , n}.
3. We always have s ‖σ s.

11

Proof By mutual induction on σ . The base cases for Claim (1) follow easily from

the definition of compatibility and closure of E under be. The base cases for

Claim (2) use closure of E under mat and dec, and the base cases for Claim (3)

use closure of E under bot¬ and bot≠. Next we show the claims for σ = τμ.

1. By contradiction. Suppose s ‖σ t and s�t. Since E is closed under fe there

exist n ≥ 1 terms u1, . . . , un such that su1 . . .un�tu1 . . .un. By inductive hy-

pothesis (3) we have ui ‖ ui for i = 1, . . . , n. Hence su1 . . .un ‖ tu1 . . .un since

s ‖σ t. This contradicts inductive hypothesis (1) since su1 . . .un�tu1 . . .un.

2. Suppose xs1 . . . sn �σ xt1 . . . tn. Then there exist terms u ‖τ v such that

xs1 . . . snu �μ xt1 . . . tnv . By inductive hypotheses (2) and (1) we have si�ti for

some i ∈ {1, . . . , n}.
3. Suppose s �σ s. By Lemma 5.10 we have s = xs1 . . . sn. By Claim (2), which we

have already established for σ , we have si�si for some i ∈ {1, . . . , n}. Contradic-

tion since E is closed under bot≠. �

Lemma 5.12 (Common Value) Let T ⊆ Λσ . Then T is compatible if and only if

there exists a value a such that T �σ a.

Proof By induction on σ .

σ = o, ⇒. By contraposition. Suppose T � 0 and T � 1. Then there are terms

s, t ∈ T such that s,¬t ∈ E. Thus s � t. Hence T is not compatible.

σ = o, ⇐. By contraposition. Suppose s �o t for s, t ∈ T . Then s,¬t ∈ E without

loss of generality. Hence s � 0 and t � 1. Thus T � 0 and T � 1.

σ = ι, ⇒. Let T be compatible. Then there exists a discriminant D that contains

all the discriminating terms in T . Thus T �D.

σ = ι, ⇐. By contradiction. Suppose T � D and T is not compatible. Then

there are terms s, t ∈ T such that s�t. Thus s and t cannot be both in D. This

contradicts s, t ∈ T �D.

σ = τμ, ⇒. Let T be compatible. We define Ta := { ts | t ∈ T , s �τ a } for

every value a ∈ Iτ and show that Ta is compatible. Let t1, t2 ∈ T and s1, s2 �τ a.

It suffices to show t1s1 ‖ t2s2. By the inductive hypothesis s1 ‖τ s2. Since T is

compatible, t1 ‖ t2. Hence t1s1 ‖ t2s2.

By the inductive hypothesis we now know that for every a ∈ Iτ there is a

b ∈ Iμ such that Ta �μ b. Hence there is a function f ∈ Iσ such that Ta �μ fa.

Thus T �σ f .

σ = τμ, ⇐. Let T �σ f and s, t ∈ T . We show s ‖σ t. Let u ‖τ v . It suffices to

show su ‖μ tv . By the inductive hypothesis u,v �τ a for some value a. Hence

su, tv �μ fa. Thus su ‖μ tv by the inductive hypothesis. �

12

By Lemmas 5.11 and 5.12 we have a possible value for every parameter x
(since x ‖ x). Hence we can define Ix such that x�Ix for all parameters x. This

completes the definition of the interpretation I .

Lemma 5.13 (Admissibility) For all basic terms s: s � Îs.

Proof By induction on s. Let s be a basic term.

If s = x is a parameter, we haven chosen Ix such that x � Ix.

If s = tu is an application, we have t� Ît and u� Îu by the inductive hypothesis.

Hence tu � (Ît)(Îu) = Î(tu).
Let s = (∧). Assume t1�oa and t2�ob. We show t1∧t2�I(∧)ab by contradiction.

Suppose t1 ∧ t2 � I(∧)ab. Case analysis.

1. a = b = 1. Then ¬t1,¬t2 ∉ E and ¬(t1 ∧ t2) ∈ E. Contradiction since E is

closed under and¬.

2. a = 0 or b = 0. Then t1 ∉ E or t2 ∉ E, and (t1 ∧ t2) ∈ E. Contradiction since E
is closed under and.

Let s = (=ι). Assume t1 �ι D1 and t2 �ι D2. We show (t1 = t2) �o I(=ι)D1D2 by

contradiction. Suppose (t1 = t2) �o I(=ι)D1D2. Case analysis.

1. D1 = D2. Then (t1 ≠ t2) ∈ E. Hence t1, t2 are discriminating and thus t1 ∈ D1

and t2 ∈ D2 = D1. Contradiction by the definition of discriminants.

2. D1 ≠ D2. Then (t1 = t2) ∈ E. Contradiction by Proposition 5.7 (2).

The case s = ¬ follows with the closure of E under dn. The case s = ⊥ is

straightforward. �

Lemma 5.14 For all formulas s ∈ E: Îs = 1.

Proof Let s ∈ E. Then s is either basic or a disequation between basic terms.

Suppose s is basic. By Lemma 5.13, s � Îs. On the other hand, s � 0 since

s ∈ E. Hence Îs = 1.

Suppose s = (s1≠s2) where s1 and s2 are basic. Then s1�s2. Assume Îs1 = Îs2.

Then s1, s2� Îs1 by Lemma 5.13 and hence s1 ‖ s2 by Lemma 5.12. Contradiction

by Lemma 5.11 (1) since s1�s2. �

This completes the proof of Theorem 5.1.

6 Extensions

A Henkin-complete cut-free tableau system T for extensional type theory can be

obtained as the dual of Brown’s one-sided sequent system [5]. Our system B is

13

in fact a subsystem of this system. B contains all the distinctive rules of T (mat,

dec, con). In the following, we consider the additional rules of T and discuss

their impact on termination.

General Equality

B restricts equality to the base type ι. If we admit all identities in basic terms,

two additional rules are needed:

eqb
s =o t

s , t | ¬s , ¬t eqf
s =στ t
su = tu

Rule eqf destroys termination. However, we can preserve termination if we re-

strict eqf such that umust be a term that already occurs as a subterm. It is open

whether the resulting system is complete.

Lambda Abstraction

B disallows lambda abstractions. If we admit lambda abstractions in basic terms,

an additional rule incorporating β-reduction is needed:

beta
s

t
t is obtainable from s by β-reduction

Example 6.1 B extended with beta can prove the η-law:

(λx.fx) ≠ f initial formula

(λx.fx)a ≠ fa fe

fa ≠ fa beta

⊥ bot≠
�

Example 6.2 B extended with beta does not terminate:

p(λx.p(fx)), ¬p(fa) initial formulas x,a : σ, f : σσo, p : (σo)o

(λx.p(fx)) ≠ fa mat

(λx.p(fx))b ≠ fab fe

p(fb) ≠ fab beta

¬p(fb), fab be

(λx.p(fx)) ≠ fb mat

. . .

Note that σ can be any type. The problem are the new parameters introduced

by fe and the disequations introduced by mat. There seems to be no easy fix.

For σ = ι the initial formulas do have a finite model: Iι = Io, If = λxy.y ,

Ip(λx.x) = 0, Ip(λx.0) = 1. �

14

Quantifiers

The extension of B with general equality and lambda abstraction can express

quantification and thus already covers full simple type theory. If desired, quan-

tification can be directly accounted for by additional logical constants. For uni-

versal quantification, we may have the constants ∀σ : (σo)o and the rules

all
∀σ s
st

t : σ all¬
¬∀σ s
¬sx x : σ fresh

7 Conclusion

We have presented a terminating tableau system that decides satisfiability of

basic formulas with respect to standard models. This contributes a new decid-

ability and completeness result for higher-order logic with standard semantics.

Our model existence proof relies on the possible-values technique, which for the

first time is used to construct standard models. We are confident that our re-

sults can be extended. On the one side, the addition of equations at functional

types may preserve decidability. On the other side, the addition of first-order

quantifiers may preserve completeness.

Besides theoretical curiosity, there is a practical interest behind our research.

We feel that the decision technique presented in this paper will lead to stronger

auto tactics for interactive theorem provers. Even with a naive implementation,

our decision technique can decide many problems that are out of the reach of

current systems. As is, decomposition and confrontation may cause combina-

torial explosion. An idea for further research is the integration of congruence

closure techniques [11], which could efficiently replace most applications of the

branching confrontation rule.

References

[1] Peter B. Andrews. Classical type theory. In Alan Robinson and Andrei

Voronkov, editors, Handbook of Automated Reasoning, volume 2, chap-

ter 15, pages 965–1007. Elsevier Science, 2001.

[2] Peter B. Andrews and Chad E. Brown. TPS: A hybrid automatic-interactive

system for developing proofs. Journal of Applied Logic, 4(4):367–395, 2006.

[3] Christoph Benzmüller. Extensional higher-order paramodulation and RUE-

resolution. In Proceedings of the 16th International Conference on Auto-

mated Deduction, volume 1632 of LNAI, pages 399–413. Springer-Verlag,

1999.

15

[4] Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud Fietzke.

LEO-II — A cooperative automatic theorem prover for higher-order logic. In

Fourth International Joint Conference on Automated Reasoning (IJCAR’08),

volume 5195 of LNAI. Springer, 2008.

[5] Chad E. Brown. Automated Reasoning in Higher-Order Logic: Set Compre-

hension and Extensionality in Church’s Type Theory. College Publications,

2007.

[6] William M. Farmer. The seven virtues of simple type theory. J. Appl. Log.,

6(3):267–286, 2008.

[7] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of

regular programs. Journal of Computer and System Sciences, 18:194–211,

1979.

[8] Harvey Friedman. Equality between functionals. In R. Parikh, editor, Proc.

Logic Colloquium 1972-73, volume 453 of Lectures Notes in Mathematics,

pages 22–37. Springer, 1975.

[9] Michael Kohlhase. Higher-order tableaux. In Peter Baumgartner, Reiner

Hähnle, and Joachim Posegga, editors, TABLEAUX, volume 918 of LNCS,

pages 294–309. Springer, 1995.

[10] Dexter Kozen. Results on the propositional μ-calculus. Theoretical Com-

puter Science, 27:333–354, 1983.

[11] Greg Nelson and Derek C. Oppen. Fast decision procedures based on con-

gruence closure. J. ACM, 27(2):356–364, 1980.

[12] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —

A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,

2002.

[13] Dag Prawitz. Hauptsatz for higher order logic. J. Symb. Log., 33:452–457,

1968.

[14] Moto-o Takahashi. A proof of cut-elimination theorem in simple type theory.

Journal of the Mathematical Society of Japan, 19:399–410, 1967.

16

	Introduction
	Basic Definitions
	Tableau System
	Soundness and Termination
	Model Existence
	Extensions
	Conclusion

