
Extended First-Order Logic

Chad E. Brown and Gert Smolka

Saarland University

June 5, 2009

We consider the EFO fragment of simple type theory, which restricts quan-

tification and equality to base types but retains lambda abstractions and

higher-order variables. We show that this fragment enjoys the character-

istic properties of first-order logic: complete proof systems, compactness,

and countable models. We obtain these results with an analytic tableau

system and a concomitant model existence lemma. All results are with

respect to standard models. The tableau system is well-suited for proof

search and yields decision procedures for substantial fragments of EFO.

1 Introduction

First-order logic can be considered as a natural fragment of Church’s type the-

ory [1]. In this paper we exhibit a larger fragment of type theory, called EFO,

that still enjoys the characteristic properties of first-order logic: complete proof

systems, compactness, and countable models. EFO restricts quantification and

equality to base types but retains lambda abstractions and higher-order vari-

ables. Like type theory, EFO has a type o of truth values and admits functions

that take truth values to individuals. Such functions are not available in first-

order logic. A typical example is a conditional C : oιιι taking a truth value and

two individuals as arguments and returning one of the individuals. Here is a

valid EFO formula that specifies the conditional and states one of its properties:

(∀xy. C⊥xy = y ∧ C�xy = x) → C(x=y)xy = y

The starting point for EFO is an analytic tableau system derived from Brown’s

Henkin-complete cut-free one-sided sequent calculus for extensional type the-

ory [2]. The tableau system is well-suited for proof search and yields decision

procedures and the finite model property for three substantial fragments of EFO:

lambda-free formulas (e.g., pa → pb → p(a∧b)), Bernays-Schönfinkel-Ramsey
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formulas [4], and equations between pure lambda terms (terms not involving

type o). The decidability and finite model results are mostly known, but it is

remarkable that we obtain them with a single tableau system.

The proofs of the main results follow the usual development of first-order

logic [9, 5], which applies the abstract consistency technique to a model exis-

tence lemma for the tableau system (Hintikka’s Lemma). Due to the presence

of higher-order variables and lambda abstractions, the proof of the EFO model

existence lemma is much harder than it is for first-order logic. We employ the

possible-values technique [8], which has been used in [2] to obtain Henkin mod-

els, and in [3] to obtain standard models. We generalize the model existence

theorem such that we can obtain countable models using the abstract consis-

tency technique.

In a preceding paper [3], we develop a tableau-based decision procedure for

the quantifier- and lambda-free fragment of EFO and introduce the possible-

values-based construction of standard models. In this paper we extend the model

construction to first-order quantification and lambda abstraction. We introduce

a novel subterm restriction for the universal quantifier and employ an abstract

normalization operator, both essential for proof search and decision procedures.

2 Basic Definitions

Types (σ , τ , μ) are obtained with the grammar τ ::= o | ι | ττ . The elements of o
are the two truth values, ι is interpreted as a nonempty set, and a function type

στ is interpreted as the set of all total functions from σ to τ . For simplicity, we

provide only one sort ι. Everything generalizes to countably many sorts.

We distinguish between two kinds of names, called constants and variables.

Every name comes with a type. We assume that there are only countably many

names, and that for every type there are infinitely many variables of this type.

If not said otherwise, the letter a ranges over names, c over constants, and x
and y over variables.

Terms (s, t, u, v) are obtained with the grammar t ::= a | tt | λx.t where an

application st is only admitted if s : τμ and t : τ for some types τ and μ. Terms

of type o are called formulas. A term is lambda-free if it does not contain a

subterm that is a lambda abstraction. We use N s to denote the set of all names

that have a free occurrence in the term s.
We assume that ⊥ : o, ¬ : oo, ∧ : ooo, =σ : σσo, and ∀σ : (σo)o are

constants for all types σ . We write ∀x.s for ∀σ (λx.s). An interpretation is a

function I that is defined on all types and all names and satisfies the following

conditions:

• Io = {0,1}
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• I(στ) is the set of all total functions from Iσ to Iτ
• I⊥ = 0

• I(¬), I(∧), I(=σ ), and I(∀σ ) are the standard interpretations of the respec-

tive logical constants.

We write Îs for the value the term s evaluates to under the interpretation I . We

say that an interpretation I is countable [finite] if Iι is countable [finite]. An

interpretation I is a model of a set A of formulas if Îs = 1 for every formula

s ∈ A. A set of formulas is satisfiable if it has a model.

The constants ⊥, ¬, ∧, =ι, and ∀ι are called EFO constants. An EFO term is a

term that contains no other constants but EFO constants. We write EFOσ for the

set of all EFO terms of type σ . For simplicity, we work with a restricted set of

EFO constants. Everything generalizes to the remaining propositional constants,

the identity =o, and the existential quantifier ∃ι.

3 Normalization

We assume a normalization operator [] that provides for lambda conversion.

The normalization operator [] must be a type preserving total function from

terms to terms. We call [s] the normal form of s and say that s is normal if

[s] = s.
There are several possibilities for the normalization operator []: β-, long β-,

or βη-normal form, all possibly with standardized bound variables [7]. We will

not commit to a particular operator but state explicitly the properties we require

for our results. To start, we require the following properties:

N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [as1 . . . sn] = a[s1] . . . [sn] if the type of as1 . . . sn is o or ι

N4 Î[s] = Îs
Note that a ranges over names and I ranges over interpretations. N3 also applies

for n = 0.

Proposition 3.1 A term as1 . . . sn of type o or ι is normal iff s1, . . . , sn are normal.

Proof Follows from N3. �

We need further properties of the normalization operator that can only be

expressed with substitutions. A substitution is a type preserving partial function

from variables to terms. If θ is a substitution, x is a variable, and s is a term

that has the same type as x, we use θxs to denote the substitution that agrees
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T¬
s , ¬s
⊥ T¬¬

¬¬s
s

T∧
s ∧ t
s , t

T¬∧
¬(s ∧ t)
¬s | ¬t

T∀
∀ιs
[st]

t : ι T¬∀
¬∀ιs
¬[sx] x : ι fresh

Tmat

xs1 . . . sn , ¬xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

Tdec

xs1 . . . sn ≠ι xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

T≠
s ≠ s

⊥ Tbe

s ≠o t

s , ¬t | ¬s , t Tfe

s ≠στ t

[sx] ≠ [tx]
x : σ fresh

Tcon

s =ι t , u ≠ι v
s ≠ u, t ≠ u | s ≠ v, t ≠ v

Figure 1: Tableau system T

everywhere with θ but possibly on x where it yields s. We assume that every

substitution θ can be extended to a type preserving total function θ̂ from terms

to terms such that the following conditions hold:

S1 θ̂a = if a ∈ Domθ then θa else a

S2 θ̂(st) = (θ̂s)(θ̂t)
S3 [(θ̂(λx.s))t] = [θ̂xt s]
S4 [	̂s] = [s]
S5 N [s] ⊆N s and N (θ̂s) ⊆ ⋃{N (θ̂a) | a ∈N s }
Note that a ranges over names and that 	 (the empty set) is the substitution that

is undefined on every variable.

4 Tableau System

The results of this paper originate with the tableau system T shown in Figure 1.

The rules in the first two lines of Figure 1 are the familiar rules from first-order

logic. The rules in the third and fourth line deal with embedded formulas. The

mating rule Tmat decomposes complementary atomic formulas by introducing

disequations that confront corresponding subterms. Disequations can be fur-

ther decomposed with Tdec. Embedded formulas are eventually raised to the

top level by Rule Tbe, which incorporates Boolean extensionality. Rule Tfe in-
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corporates functional extensionality. It reduces disequations at functional types

to disequations at lower types. The confrontation rule Tcon deals with positive

equations at type ι. A discussion of the confrontation rule can be found in [3].

The tableau rules are such that they add normal formulas if they are applied to

normal formulas.

Example 4.1 The following tableau refutes the formula pf ∧ ¬p(λx.¬¬fx)
where p : (ιo)o and f : ιo.

pf ∧¬p(λx.¬¬fx)
pf , ¬p(λx.¬¬fx)
f ≠ (λx.¬¬fx)
fx ≠ ¬¬fx

fx, ¬¬¬fx
¬fx
⊥

¬fx, ¬¬fx
⊥

The rules used are T∧, Tmat, Tfe, Tbe, T¬¬, and T¬. �

5 Evidence

A quasi-EFO formula is a disequation s ≠σ t such that s and t are EFO terms and

σ ≠ ι. Note that the rules Tmat and Tdec may yield quasi-EFO formulas when

they are applied to EFO formulas. A branch is a set of normal formulas s such

that s is either EFO or quasi-EFO.

A term s : ι is discriminating in a branch A if A contains a disequation s≠t
or t≠s for some term t. We use DA to denote the set of all terms that are

discriminating in a branch A.

Proposition 5.1 Let A be a branch. Then all terms in DA are normal.

Proof Follows with N3 since a branch contains only normal formulas. �

A branch E is evident if it satisfies the evidence conditions in Figure 2. The

evidence conditions correspond to the tableau rules and are designed such that

a branch that is closed under the tableau rules and does not contain ⊥ is evident.

Note that the evidence conditions require less than the tableau rules:

1. E¬ is restricted to variables.

2. E∀ requires less instances than T∀ admits.

3. E¬∀ admits all EFO terms as witnesses.

4. E≠ is restricted to type ι.
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E⊥ ⊥ is not in E.

E¬ If ¬x is in E, then x is not in E.

E¬¬ If ¬¬s is in E, then s is in E.

E∧ If s ∧ t is in E, then s and t are in E.

E¬∧ If ¬(s ∧ t) is in E, then ¬s or ¬t is in E.

E∀ If ∀ιs is in E, then [st] is in E for all t ∈ DE,

and [st] is in E for some t ∈ EFOι.

E¬∀ If ¬∀ιs is in E, then ¬[st] is in E for some t ∈ EFOι.

Emat If xs1 . . . sn and ¬xt1 . . . tn are in E where n ≥ 1,

then si ≠ ti is in E for some i ∈ {1, . . . , n}.
Edec If xs1 . . . sn ≠ι xt1 . . . tn is in E where n ≥ 1,

then si ≠ ti is in E for some i ∈ {1, . . . , n}.
E≠ If s ≠ι t is in E, then s and t are different.

Ebe If s ≠o t is in E, then either s and ¬t are in E or ¬s and t are in E.

Efe If s ≠στ t is in E, then [sx] ≠ [tx] is in E for some variable x.

Econ If s =ι t and u ≠ι v are in E,

then either s ≠ u and t ≠ u are in E or s ≠ v and t ≠ v are in E.

Figure 2: Evidence conditions

In § 7 we will show that every evident branch is satisfiable. In § 9 we will prove

the completeness of a tableau system R that restricts the rule T∀ as suggested

by the evidence condition E∀.

Example 5.2 Let p : (ιιι)o. The following branch is evident.

p(λxy.x), ¬p(λxy.y), (λxy.x) ≠ (λxy.y), (λy.x) ≠ (λy.y), x ≠ y �

Example 5.3 Let f : ιo and g : oι be variables. The branch

f(g(∀ιf )), ¬f(g(∀ιf )), g(∀ιf ) ≠ι g(∀ιf ), ∀ιf ≠o ∀ιf , ∀ιf , ¬∀ιf

is unsatisfiable and satisfies all evidence conditions but E≠. Note that the mating

rule does not apply to ∀ιf and ¬∀ιf since ∀ι is a constant and not a variable. �
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6 Carriers

A carrier for an evident branch E consists of a set D and a relation 
ι ⊆ EFOι×D
such that certain conditions are satisfied. We will show that every evident branch

has carriers, and that for every carrier (D,
ι) for an evident branch E we can

obtain a model I of E such that Iι = D and s 
ι Îs for all s ∈ EFOι. We call 
ι
a possible-values relation and read s 
ι a as s can be a. Given s 
ι a, we say

that a is a possible value for s.
We assume that some evident branch E is given. We say that a set T ⊆ EFOι is

compatible if there are no terms s, t ∈ T such that ([s]≠[t]) ∈ E. We write s�t
if E contains the disequation s≠t or t≠s.

Let a non-empty set D and a relation 
ι ⊆ EFOι × D be given. For T ⊆ EFOι
and a ∈ D we write T 
ι a if t 
ι a for every t ∈ T . For all terms s, t ∈ EFOι, all

values a, b ∈ D, and every set T ⊆ EFOι we require the following properties:

B1 s 
ι a iff [s] 
ι a.

B2 T compatible iff T 
ι a for some a ∈ D.

B3 If (s=ιt) ∈ E and s 
ι a and t 
ι b, then a = b.

B4 For every a ∈ D either t 
ι a for some t ∈ DE or t 
ι a for every t ∈ EFOι.

Given an evident branch E, a carrier for E is a pair (D,
ι) as specified above.

6.1 Quotient-Based Carriers

A branch A is complete if for all s, t ∈ EFOι either [s=t] is in A or [s≠t] is in A.

We will show that complete evident branches have countable carriers that can

be obtained as quotients of EFOι with respect to the equations contained in the

branch.

Let E be a complete evident branch in the following. We write s ∼ t if s and t
are EFO terms of type ι and [s=ιt] ∈ E. We define s̃ := { t | t ∼ s } for s ∈ EFOι.

Proposition 6.1 For all s, t ∈ EFOι: s � t iff [s≠t] ∈ E.

Proof One direction is obvious, the other follows with N3. �

Proposition 6.2 ∼ is an equivalence relation on EFOι.

Proof We show symmetry by contradiction. Let s ∼ t and assume t � s. Then

[s=t] and [t≠s] are in E. By N3 we know that [s]=[t] and [t]≠[s] are in E.

By Econ either [t]≠[t] or [s]≠[s] is in E. Contradiction by E≠. Reflexivity and

transitivity follow with similar arguments. �

Proposition 6.3 Let T ⊆ EFOι. Then T is compatible iff s ∼ t for all s, t ∈ T .
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Proof By definition and N3, T is compatible if [s≠t] �∈ E for all s, t ∈ T . The

claim follows with Proposition 6.1. �

Lemma 6.4 Every complete evident branch has a countable carrier.

Proof Let E be a complete evident branch. We define:

D := { s̃ | s ∈ EFOι }
s 
ι t̃ :⇐⇒ s ∼ t

We will show that (D,
ι) is a carrier for E. Note that 
ι is well-defined since ∼
is an equivalence relation. D is countable since EFOι is countable.

B1. We have to show that s ∼ t iff [s] ∼ t. This follows with N3 and N1 since

s ∼ t iff [s=t] ∈ E and [s] ∼ t iff [[s]=t] ∈ E.

B2. If T is empty, B2 holds vacuously. Otherwise, let t ∈ T . Then T is compatible

iff s ∼ t for all s ∈ T by Propositions 6.3 and 6.2. Hence T is compatible iff s 
ι t̃
for all s ∈ T . The claim follows.

B3. Let s=ιt in E and s 
ι ũ and t 
ι ṽ . Since s=t is normal, we have s ∼ t. By

definition of 
ι we have s ∼ u and t ∼ v . Hence ũ = ṽ since ∼ is an equivalence

relation.

B4. If DE is empty, then s 
ι t̃ for all s, t ∈ EFOι and hence the claim holds.

Otherwise, let DE be nonempty. We show the claim by contradiction. Suppose

there is a term t ∈ EFOι such that s �ι t̃ for all s ∈ DE. Then [s≠t] ∈ E for

all s ∈ DE by Proposition 6.1. Since DE is nonempty, we have [t] ∈ DE by N3.

Thus ([t]≠[t]) ∈ E by N3. Contradiction by E≠. �

6.2 Discriminant-Based Carriers

We will now show that every evident branch has a carrier. Let an evident branch E
be given. We will call a term discriminating if it is discriminating in E. A discrim-

inant is a maximal set a of discriminating terms such that there is no disequation

s≠t ∈ E such that s, t ∈ a. We will construct a carrier for E whose values are the

discriminants.

Example 6.5 Suppose E = {x≠y, x≠z, y≠z} and x,y, z : ι. Then there are 3

discriminants: {x}, {y}, {z}. �

Example 6.6 Suppose E = {x≠f(fx), fx≠f(f(fx))} and f : ιι. Then there

are 4 discriminants: {x, fx}, {x, f(f(fx))}, {f(fx), fx}, {f(fx), f(f(fx))}.�
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Example 6.7 Suppose E = {an ≠ι bn | n ∈ N } where the an and bn are pairwise

distinct constants. Then E is evident and there are uncountably many discrimi-

nants. �

Proposition 6.8 If E contains exactly n disequations at ι, then there are at

most 2n discriminants. If E contains no disequation at ι, then 	 is the only

discriminant.

Proposition 6.9 Let a and b be different discriminants. Then:

1. a and b are separated by a disequation in E, that is, there exist terms s ∈ a
and t ∈ b such that s�t.

2. a and b are not connected by an equation in E, that is, there exist no terms

s ∈ a and t ∈ b such that (s=t) ∈ E.

Proof The first claim follows by contradiction. Suppose there are no terms s ∈ a
and t ∈ b such that s�t. Let s ∈ a. Then s ∈ b since b is a maximal compatible

set of discriminating terms. Thus a ⊆ b and hence a = b since a is maximal.

Contradiction.

The second claim also follows by contradiction. Suppose there is an equation

(s1=s2) ∈ E such that s1 ∈ a and s2 ∈ b. By the first claim we have terms s ∈ a
and t ∈ b such that s�t. By Econ we have s1�s or s2�t. Contradiction since a
and b are discriminants. �

Lemma 6.10 Every (finite) evident branch has a (finite) carrier.

Proof Let E be an evident branch. We define:

D := set of all discriminants

s 
ι a :⇐⇒ ([s] discriminating �⇒ [s] ∈ a)

We will show that (D,
ι) is a carrier for E. By Proposition 6.8 we know that D is

finite if E is finite.

B1. Holds by N1.

For the remaining carrier conditions we distinguish two cases. If DE = 	, then 	
is the only discriminant and B2, B3, and B4 are easily verified. Otherwise, let

DE ≠ 	.

B2⇒. Let T be compatible. Then there exists a discriminant a that contains all

the discriminating terms in { [t] | t ∈ T }. The claim follows since T 
 a.

B2⇐. By contradiction. Suppose T 
 a and T is not compatible. Then there are

terms s, t ∈ T such that ([s]≠[t]) ∈ E. Thus [s] and [t] cannot be both in a.

This contradicts s, t ∈ T 
 a since [s] and [t] are discriminating.
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B3. Let (s=t) ∈ E and s 
ι a and t 
ι b. We show a = b. Since there are

discriminating terms, E contains at least one disequation at type ι, and hence s
and t are discriminating by Econ. By N3 s and t are normal and hence s ∈ a and

t ∈ b. Now a = b by Proposition 6.9 (2).

B4. Since there are discriminating terms, we know by E≠ that every discriminant

contains at least one discriminating term. Since discriminating terms are normal,

we have the claim. �

7 Model Existence

We will now show that every evident branch has a model.

Lemma 7.1 (Model Existence) Let (D,
ι) be a carrier for an evident branch E.

Then E has a model I such that Iι = D.

We start the proof of Lemma 7.1. Let (D,
ι) be a carrier for an evident

branch E. For the rest of the proof we only consider interpretations I such that

Iι = D.

7.1 Possible Values

To obtain a model of E, we need suitable values for all variables. We address this

problem by defining possible-values relations 
σ ⊆ EFOσ×Iσ for all types σ ≠ ι:

s 
o 0 :⇐⇒ [s] ∉ E

s 
o 1 :⇐⇒ ¬[s] ∉ E
s 
στ f :⇐⇒ st 
τ fa whenever t 
σ a

Note that we already have a possible-values relation for ι and that the definition

of the possible values relations for functional types is by induction on types.

Also note that if s is an EFO formula such that [s] ∉ E and ¬[s] ∉ E, then both 0

and 1 are possible values for s. We will show that every EFO term has a possible

value and that we obtain a model of E if we define Ix as a possible value for x
for every variable x.

Proposition 7.2 Let s ∈ EFOσ and a ∈ Iσ . Then s 
σ a ⇐⇒ [s] 
σ a.

Proof By induction on σ . For o the claim follows with N1. For ι the claim follows

with B1. Let σ = τμ.

Suppose s 
σ a. Let t
τ b. Then st
μ ab. By inductive hypothesis [st]
μ ab.

Thus [[s]t] 
μ ab by N2. By inductive hypothesis [s]t 
μ ab. Hence [s] 
σ a.
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Suppose [s] 
σ a. Let t 
τ b. Then [s]t 
μ ab. By inductive hypothesis

[[s]t] 
μ ab. Thus [st] 
μ ab by N2. By inductive hypothesis st 
μ ab. Hence

s 
σ a. �

Lemma 7.3 For every EFO constant c: c 
 Ic.

Proof

c = ⊥. The claim follows by E⊥ and N3.

c = ¬. Assume s 
o a. We show ¬s 
 I(¬)a by contradiction. Suppose ¬s �
I(¬)a. Case analysis.

a = 0. Then [s] ∉ E and ¬[¬s] ∈ E. Thus ¬¬[s] ∈ E by N3. Hence [s] ∈ E by

E¬¬. Contradiction.

a = 1. Then ¬[s] ∉ E and [¬s] ∈ E. Contradiction by N3.

c = ∧. Assume s 
o a and t 
o b. We show s ∧ t 
 I(∧)ab by contradiction.

Suppose s ∧ t � I(∧)ab. Case analysis.

a = b = 1. Then ¬[s],¬[t] ∉ E and ¬[s ∧ t] ∈ E. Contradiction by N3 and

E¬∧.

a = 0 or b = 0. Then [s] ∉ E or [t] ∉ E, and [s ∧ t] ∈ E. Contradiction by N3

and E∧.

c = (=ι). Assume s 
ι a and t 
ι b. We show (s=t) 
 I(=ι)ab by contradiction.

Suppose (s=t) � I(=ι)ab. Case analysis.

a = b. Then ¬[s=t] ∈ E and s, t
ιa. By B2 {s, t} is compatible. Contradiction

by N3.

a ≠ b. Then ([s]=[t]) ∈ E by N3. Hence a = b by B1 and B3. Contradiction.

c = ∀ι. Assume s 
ιo f . We show ∀ι s 
o I∀ι f by contradiction. Suppose ∀ι s �o
I∀ι f . Case analysis.

I∀ι f = 0. Then ∀ι[s] ∈ E by N3 and fa = 0 for some value a. By E∀ and B4

there exists a term t such that [[s]t] ∈ E and t 
ι a. Thus st 
 fa = 0 and

hence [st] ∉ E. Contradiction by N2.

I∀ι f = 1. Then ¬∀ι[s] ∈ E by N3. By E¬∀ we have ¬[[s]t] ∈ E for some term

t ∈ EFOι. By E≠ and B2 we have t 
 a for some value a. Now st 
 fa = 1.

Thus ¬[st] ∉ E. Contradiction by N2. �

We call an interpretation I admissible if it satisfies x
Ix for every variable x.

We will show that admissible interpretations exist and that every admissible in-

terpretation is a model of E.

Lemma 7.4 (Admissibility) Let I be admissible and θ be a substitution such that

θx 
 Ix for all x ∈ Domθ. Then θ̂s 
 Îs for every EFO term s.
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Proof By induction on s. Let s be an EFO term. By assumption, θx is EFO for all

x ∈ Domθ. Hence θ̂s is EFO by S5. Case analysis.

s = a. If a ∈ Domθ, the claim holds by assumption. If a ∉ Domθ, then θ̂s = a
by S1. If a is a constant, the claim holds by Lemma 7.3. If a is a variable, the

claim holds by assumption.

s = tu. Then θ̂s = (θ̂t)(θ̂u) by S2. Now θ̂t 
 Ît and θ̂u 
 Îu by the inductive

hypothesis. Now θ̂s = (θ̂t)(θ̂u) 
 (Ît)(Îu) = Îs.
s = λx.t and x : σ . Moreover, let u 
σ a. We show (θ̂s)u 
 (Îs)a. By Proposi-

tion 7.2 it suffices to show [(θ̂s)u] 
 (Îs)a. We have [(θ̂s)u] = [θ̂xut] by S3 and

(Îs)a = Îxat where Ixa denotes the interpretation that agrees everywhere with I
but possibly on x where it yields a. By inductive hypothesis we have θ̂xut 
 Îxat.
The claim follows with Proposition 7.2. �

7.2 Compatibility

It remains to show that there is an admissible interpretation and that every ad-

missible interpretation is a model of E. For this purpose we define compatibility

relations ‖σ ⊆ EFOσ × EFOσ for all types:

s ‖o t :⇐⇒ {[s],¬[t]} �⊆ E and {¬[s], [t]} �⊆ E
s ‖ι t :⇐⇒ not [s]�[t]

s ‖στ t :⇐⇒ su ‖τ tv whenever u ‖σ v

Note that the definition of the compatibility relations for functional types is by

induction on types. We say that s and t are compatible if s ‖ t. A set T of equi-

typed terms is compatible if s ‖ t for all terms s, t ∈ T . If T ⊆ EFOσ , we write

T 
 a if a is a common possible value for all terms s ∈ T . We will show that a

set of equi-typed terms is compatible if and only if all its terms have a common

possible value.

Proposition 7.5 The compatibility relations ‖σ are symmetric.

The compatibility relations are also reflexive. Showing this fact will take some

effort. We first show x ‖ x for all variables x. For the induction to go through

we strengthen the hypothesis.

Lemma 7.6 (Reflexivity) For every type σ and all EFO terms s, t, xs1 . . . sn,

xt1 . . . tn of type σ with n ≥ 0:

1. Not both s ‖σ t and [s]�[t].

2. Either xs1 . . . sn ‖σ xt1 . . . tn or [si]�[ti] for some i ∈ {1, . . . , n}.
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Proof By mutual induction on σ . The base cases for Claim (1) follow by contra-

diction. For σ = o Ebe is needed. The base cases for Claim (2) follow with N3,

Emat, Edec, E¬, and E≠. We now show the claims for σ = τμ.

1. By contradiction. Suppose s ‖σ t and [s]�[t]. By Efe [[s]x]�[[t]x] for some

variable x. By inductive hypothesis (2) we have x ‖τ x. Hence sx ‖μ tx.

Contradiction by inductive hypothesis (1) and N2.

2. Suppose xs1 . . . sn 	σ xt1 . . . tn. Then there exist terms such that u ‖τ v and

xs1 . . . snu 	μ xt1 . . . tnv . By inductive hypothesis (1) we know that [u]�[v]
does not hold. Hence [si]�[ti] for some i ∈ {1, . . . , n} by inductive hypothe-

ses (2). �

Lemma 7.7 (Common Value) Let T ⊆ EFOσ . Then T is compatible if and only if

there exists a value a such that T 
σ a.

Proof By induction on σ . For σ = ι the claim is identical with B2.

σ = o, ⇒. By contraposition. Suppose T � 0 and T � 1. Then there are terms

s, t ∈ T such that [s],¬[t] ∈ E. Thus s 	 t. Hence T is not compatible.

σ = o, ⇐. By contraposition. Suppose s 	o t for s, t ∈ T . Then [s],¬[t] ∈ E
without loss of generality. Hence s � 0 and t � 1. Thus T � 0 and T � 1.

σ = τμ, ⇒. Let T be compatible. We define Ta := { ts | t ∈ T , s 
τ a } for

every value a ∈ Iτ and show that Ta is compatible. Let t1, t2 ∈ T and s1, s2 
τ a.

It suffices to show t1s1 ‖ t2s2. By the inductive hypothesis s1 ‖τ s2. Since T is

compatible, t1 ‖ t2. Hence t1s1 ‖ t2s2.

By the inductive hypothesis we now know that for every a ∈ Iτ there is a

b ∈ Iμ such that Ta 
μ b. Hence there is a function f ∈ Iσ such that Ta 
μ fa
for every a ∈ Iτ . Thus T 
σ f .

σ = τμ, ⇐. Let T 
σ f and s, t ∈ T . We show s ‖σ t. Let u ‖τ v . It suffices to

show su ‖μ tv . By the inductive hypothesis u,v 
τ a for some value a. Hence

su, tv 
μ fa. Thus su ‖μ tv by the inductive hypothesis. �

Lemma 7.8 Every admissible interpretation is a model of E.

Proof Let I be an admissible interpretation and s ∈ E. We show Îs = 1. Case

analysis.

Suppose s is a normal EFO term. Then s = [s] = [	̂s] by S4 and s � 0.

Moreover, 	̂s 
 Îs by Lemma 7.4 and s 
 Îs by Lemma 7.2. Hence Îs = 1.

Suppose s = (t≠u) where t and u are normal EFO terms. Then t = [t] = [	̂t]
and u = [u] = [	̂u] by S4. We prove the claim by contradiction. Suppose Îs = 0.

Then Ît = Îu. Thus 	̂t, 	̂u
 Ît by Lemma 7.4 and t, u
 Ît by Lemma 7.2. Hence
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t ‖ u by Lemma 7.7. Thus not [t]�[u] by Lemma 7.6 (1). Contradiction since

([t]≠[u]) ∈ E. �

We can now prove Lemma 7.1. By Lemma 7.6 (2) we know x ‖ x for every

variable x. Hence there exists an admissible interpretation I by Lemma 7.7. By

Lemma 7.8 we know that I is a model of E. This finishes the proof of Lemma 7.1.

Theorem 7.9 (Finite Model Existence)

Every finite evident branch has a finite model.

Proof Follows with Lemmas 6.10 and 7.1. �

Lemma 7.10 (Model Existence) Let E be an evident branch. Then E has a model.

Moreover, E has a countable model if E is complete.

Proof Follows with Lemmas 6.10, 7.1, and 6.4. �

8 Abstract Consistency

To obtain our main results, we boost the model existence lemma with the ab-

stract consistency technique. Everything works out smoothly.

An abstract consistency class is a set Γ of branches such that every branch

A ∈ Γ satisfies the conditions in Figure 3. An abstract consistency class Γ is

complete if for every A ∈ Γ and all s, t ∈ EFOι either A ∪ {[s=t]} is in Γ or

A∪ {[s≠t]} is in Γ .

Proposition 8.1 Let A be a branch. Then A is evident if and only if {A} is an

abstract consistency class. Moreover, A is a complete evident branch if and only

if {A} is a complete abstract consistency class.

Lemma 8.2 (Extension Lemma) Let Γ be an abstract consistency class and A ∈ Γ .
Then there exists an evident branch E such that A ⊆ E. Moreover, if Γ is complete,

a complete evident branch E exists such that A ⊆ E.

Proof Let u0, u1, u2, . . . be an enumeration of all formulas that can occur on a

branch. We construct a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that

every An ∈ Γ . Let A0 := A. We define An+1 by cases. If there is no B ∈ Γ such

that An ∪ {un} ⊆ B, then let An+1 := An. Otherwise, choose some B ∈ Γ such

that An ∪ {un} ⊆ B. We consider four subcases.

1. If un is of the form ∀ιs, then choose An+1 to be B ∪ {[st]} ∈ Γ for some

t ∈ EFOι. This is possible since Γ satisfies C∀.
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C⊥ ⊥ is not in A.

C¬ If ¬x is in A, then x is not in A.

C¬¬ If ¬¬s is in A, then A∪ {s} is in Γ .

C∧ If s ∧ t is in A, then A∪ {s, t} is in Γ .

C¬∧ If ¬(s ∧ t) is in A, then A∪ {¬s} or A∪ {¬t} is in Γ .

C∀ If ∀ιs is in A, then A∪ {[st]} is in Γ for all t ∈ DA,

and A∪ {[st]} is in Γ for some t ∈ EFOι

C¬∀ If ¬∀ιs is in A, then A∪ {¬[st]} is in Γ for some t ∈ EFOι.

Cmat If xs1 . . . sn is in A and ¬xt1 . . . tn is in A where n ≥ 1,

then A∪ {si ≠ ti} is in Γ for some i ∈ {1, . . . , n}.
Cdec If xs1 . . . sn ≠ι xt1 . . . tn is in A where n ≥ 1,

then A∪ {si ≠ ti} is in Γ for some i ∈ {1, . . . , n}.
C≠ If s ≠ι t is in A, then s and t are different.

Cbe If s ≠o t is in A, then either A∪ {s,¬t} or A∪ {¬s, t} is in Γ .

Cfe If s ≠στ t is in A, then A∪ {[sx] ≠ [tx]} is in Γ for some variable x.

Ccon If s =ι t and u ≠ι v are in A,

then either A∪ {s ≠ u, t ≠ u} or A∪ {s ≠ v, t ≠ v} is in Γ .

Figure 3: Abstract consistency conditions (must hold for every A ∈ Γ )

2. If un is of the form ¬∀ιs, then choose An+1 to be B ∪ {¬[st]} ∈ Γ for some

t ∈ EFOι. This is possible since Γ satisfies C¬∀.

3. If un is of the form s ≠στ t, then choose An+1 to be B∪{[sx] ≠ [tx]} ∈ Γ for

some variable x. This is possible since Γ satisfies Cfe.

4. If un has none of these forms, then let An+1 be B.

Let E :=
⋃
n∈N

An. Note that DE =
⋃
n∈N

DAn. We show that E is evident.

E⊥ If ⊥ is in E, then ⊥ is in An for some n, contradicting C⊥.

E¬ If ¬x and x are in E, then ¬x and x are in An for some n, contradicting C¬.

E≠ If s≠ιs is in E, then s≠ιs is in An for some n, contradicting C≠.

E¬¬ Assume ¬¬s is in E. Let n be such that un = s and r ≥ n be such that ¬¬s
is in Ar . Since An ∪ {s} ⊆ Ar ∪ {s} ∈ Γ (using C¬¬), we have s ∈ An+1 ⊆ E.

E∧ Assume s∧ t is in E. Let n,m be such that un = s and um = t. Let r ≥ n,m
be such that s ∧ t is in Ar . By C∧, Ar ∪{s, t} ∈ Γ . Since An ∪{s} ⊆ Ar ∪{s, t},

15



we have s ∈ An+1 ⊆ E. Since Am ∪ {t} ⊆ Ar ∪ {s, t}, we have t ∈ Am+1 ⊆ E.

E¬∧ Assume ¬(s ∧ t) is in E. Let n,m be such that un = s and um = t. Let

r ≥ n,m be such that ¬(s∧t) is in Ar . By C¬∧, Ar∪{¬s} ∈ Γ or Ar∪{¬t} ∈ Γ .
In the first case, An ∪ {¬s} ⊆ Ar ∪ {¬s} ∈ Γ , and so ¬s ∈ An+1 ⊆ E. In the

second case, Am∪{¬t} ⊆ Ar ∪{¬t} ∈ Γ , and so ¬t ∈ Am+1 ⊆ E. Hence either

¬s or ¬t is in E.

E∀ Assume ∀ιs is in E. Case analysis.

DE = 	. Let n be such that un = ∀ιs. Let r ≥ n be such that ∀ιs is in Ar .

By C∀ there is some t such that Ar ∪ {[st]} is in Γ . Hence [st] ∈ An+1 ⊆ E
for some t.

DE ≠ 	. Let t ∈ DE. We show [st] ∈ E. Let n be such that un = [st]. Let

r ≥ n be such that∀ιs is in Ar and t ∈ DAr . By C∀ we haveAr∪{[st]} ∈ Γ .
Since An ∪ {un} ⊆ Ar ∪ {[st]}, we have [st] = un ∈ An+1 ⊆ E.

E¬∀ Assume ¬∀ιs is in E. Let n be such that un = ¬∀ιs. Let r ≥ n be such

that ¬∀ιs is in Ar . By C¬∀ we know Ar ∪ {¬[st]} ∈ Γ for some t. Hence

¬[st] ∈ An+1 ⊆ E for some t.

Emat Assume xs1 . . . sn and ¬xt1 . . . tn are in E for some n ≥ 1. For each i ∈
{1, . . . , n}, let mi be such that umi is si ≠ ti. Let r ≥ m1, . . . ,mn be such

that xs1 . . . sn and ¬xt1 . . . tn are in Ar . By Cmat there is some i ∈ {1, . . . , n}
such that Ar ∪ {si ≠ ti} ∈ Γ . Since An ∪ {si ≠ ti} ⊆ Ar ∪ {si ≠ ti}, we have

(si ≠ ti) ∈ An+1 ⊆ E.

Edec Assume xs1 . . . sn ≠ι xt1 . . . tn is in E for some n ≥ 1. For each i ∈
{1, . . . , n}, let mi be such that umi is si ≠ ti. Let r ≥ m1, . . . ,mn be such

that xs1 . . . sn ≠ι xt1 . . . tn is in Ar . By Cdec there is some i ∈ {1, . . . , n} such

that Ar ∪ {si ≠ ti} ∈ Γ . Since An ∪ {si ≠ ti} ⊆ Ar ∪ {si ≠ ti}, we have

(si ≠ ti) ∈ An+1 ⊆ E.

Ebe Assume s ≠o t is in E. Let n,m, j, k be such that un = s, um = t, uj = ¬s
and uk = ¬t. Let r ≥ n,m, j, k be such that s ≠o t is in Ar . By Cbe either

Ar∪{s,¬t} or Ar∪{¬s, t} is in Γ . Assume Ar∪{s,¬t} is in Γ . Since An∪{s} ⊆
Ar ∪ {s,¬t}, we have s ∈ E. Since Ak ∪ {¬t} ⊆ Ar ∪ {s,¬t}, we have ¬t ∈ E.

Next assume Ar ∪ {¬s, t} is in Γ . Since Aj ∪ {¬s} ⊆ Ar ∪ {¬s, t}, we have

¬s ∈ E. Since Am ∪ {t} ⊆ Ar ∪ {¬s, t}, we have t ∈ E.

Efe Assume s ≠στ t is in E. Let n be such that un is s ≠στ t. Let r ≥ n be such

that s ≠στ t is in Ar . Since An ∪ {un} ⊆ Ar , there is some variable x such

that [sx] ≠τ [tx] is in An+1 ⊆ E.

Econ Assume s =ι t and u ≠ι v are in E. Let n,m, j, k be such that un is

s ≠ u, um is t ≠ u, uj is s ≠ v and uk is t ≠ v . Let r ≥ n,m, j, k be

such that s =ι t and u ≠ι v are in Ar . By Ccon either Ar ∪ {s ≠ u, t ≠ u}
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or Ar ∪ {s ≠ v, t ≠ v} is in Γ . Assume Ar ∪ {s ≠ u, t ≠ u} is in Γ . Since

An ∪ {s ≠ u} ⊆ Ar ∪ {s ≠ u, t ≠ u}, we have s ≠ u ∈ An+1 ⊆ E. Since

Am ∪ {t ≠ u} ⊆ Ar ∪ {s ≠ u, t ≠ u}, we have t ≠ u ∈ Am+1 ⊆ E. Next assume

Ar ∪ {s ≠ v, t ≠ v} is in Γ . Since Aj ∪ {s ≠ v} ⊆ Ar ∪ {s ≠ v, t ≠ v}, we

have s ≠ v ∈ Aj+1 ⊆ E. Since Ak ∪ {t ≠ v} ⊆ Ar ∪ {s ≠ v, t ≠ v}, we have

t ≠ v ∈ Ak+1 ⊆ E.

It remains to show that E is complete if Γ is complete. Let Γ be complete and

s, t ∈ EFOι. We show that [s = t] or [s ≠ t] is in E. Let m, n be such that

um = [s=t] and un = [s≠t]. We consider m < n, the case m > n is symmetric.

If [s=t] ∈ An, we have [s=t] ∈ E. If [s=t] ∉ An, then An ∪ {[s=t]} is not in Γ .
Hence An ∪ {[s ≠ t]} is in Γ since Γ is complete. Hence [s ≠ t] ∈ An+1 ⊆ E. �

9 Completeness

We will now show that the tableau system T is complete. In fact, we will show

the completeness of a tableau system R that is obtained from T by restricting

the applicability of some of the rules. We consider R since it provides for more

focused proof search and also yields a decision procedure for three substantial

fragments of EFO. R is obtained from T by restricting the applicability of the

rules T∀, T¬∀, and Tfe as follows:

• T∀ can only be applied to ∀ιs ∈ A with a term t ∈ EFOι if either t ∈ DA or

the following conditions are satisfied:

1. DA = 	 and t is a variable.

2. t ∈NA or NA = 	.

3. There is no u ∈ EFOι such that [su] ∈ A.

• T¬∀ can only be applied to ¬∀ιs ∈ A if there is no t ∈ EFOι such that

¬[st] ∈ A.

• Tfe can only be applied to an equation (s=στt) ∈ A if there is no variable

x : σ such that ([sx]=[tx]) ∈ A.

We use R∀, R¬∀, and Rfe to refer to the restrictions of T∀, T¬∀, and Tfe,

respectively. Note that R∀ provides a novel subterm restriction that may be

useful for proof search. We say a branch A is refutable if it can be refuted

with R. Let ΓT be the set of all finite branches that are not refutable.

Lemma 9.1 ΓT is an abstract consistency class.

Proof We have to show that ΓT satisfies the abstract consistency conditions. We

prove some of the conditions, the verification of the remaining conditions is

straightforward.
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C⊥ Suppose ⊥ ∈ A ∈ ΓT . Then A is refutable. Contradiction.

C¬ Suppose ¬x,x ∈ A ∈ ΓT . Then we can refute A using T¬. Contradiction.

C¬∧ Let ¬(s ∧ t) ∈ A ∈ ΓT . Suppose A ∪ {¬s} and A ∪ {¬t} are not in ΓT .

Then A∪{¬s} and A∪{¬t} are refutable. Hence A can be refuted using T¬∧.

Contradiction.

C∀ Let ∀ιs ∈ A ∈ ΓT . Suppose A∪{[st]} ∉ ΓT for some t ∈ DA or A∪{[st]} ∉
ΓT for all t ∈ EFOι. Then A∪{[st]} is refutable for some t ∈ DA or A∪{[st]}
is refutable for all t ∈ EFOι. Hence A can be refuted using T∀.

C¬∀ Let ¬∀ιs ∈ A ∈ ΓT . Suppose A ∪ {¬[st]} ∉ ΓT for every t ∈ EFOι. Then

A ∪ {¬[st]} is refutable for every t ∈ EFOι. Hence A is refutable using T¬∀
and the finiteness of A. Contradiction.

Cfe Let (s≠στt) ∈ A ∈ ΓT . Suppose A ∪ {[sx]≠[tx]} ∉ ΓT for every variable

x : σ . Then A∪{[sx]≠[tx]} is refutable for every x : σ . Hence A is refutable

using Tfe and the finiteness of A. Contradiction. �

Theorem 9.2 (Completeness)

T and R can refute every unsatisfiable finite branch.

Proof It suffice to show the claim for R. We prove the claim by contradiction.

Let A be an unsatisfiable finite branch that is not refutable. Then A ∈ ΓT and

hence A is satisfiable by Lemmas 9.1, 8.2, and 7.10. �

10 Compactness and Countable Models

A branch A is sufficiently pure if for every type σ there are infinitely many

variables of type σ that do not occur in any formula of A. Let ΓC be the set of all

sufficiently pure branches A such that every finite subset of A is satisfiable. We

write ⊆f for the finite subset relation.

Lemma 10.1 Let A ∈ ΓC and B1, . . . , Bn be finite branches such that A ∪ Bi ∉ ΓC
for all i ∈ {1, . . . , n}. Then there exists a finite branch A′ ⊆f A such that A′ ∪ Bi
is unsatisfiable for all i ∈ {1, . . . , n}.

Proof By the assumption, we have for every i ∈ {1, . . . , n} a finite and unsatis-

fiable branch Ci ⊆ A ∪ Bi. The branch A′ := (C1 ∪ · · · ∪ Cn) ∩ A satisfies the

claim. �

Lemma 10.2 ΓC is a complete abstract consistency class.

Proof We verify the abstract consistency conditions as follows. Lemma 10.1 is

used tacitly.
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C⊥ We cannot have ⊥ ∈ A since {⊥} would be an unsatisfiable finite subset.

C¬ We cannot have {¬x,x} ⊆ A since this would be an unsatisfiable finite sub-

set.

C≠ We cannot have (s ≠ι s) ∈ A since {s ≠ s} would be an unsatisfiable finite

subset.

C¬¬ Assume ¬¬s ∈ A and A ∪ {s} ∉ ΓC. There is a finite subset A′ ⊆f A such

that A′ ∪ {s} is unsatisfiable. There is a model of A′ ∪ {¬¬s} ⊆f A. This is

also a model of A′ ∪ {s}, contradicting our choice of A′.

C∧ Assume s ∧ t is in A and A ∪ {s, t} ∉ ΓC. There is some A′ ⊆f A such that

A′ ∪ {s, t} is unsatisfiable. There is a model of A′ ∪ {s ∧ t} ⊆f A. This is also

a model of A′ ∪ {s, t}, contradicting our choice of A′.

C¬∧ Assume ¬(s ∧ t) is in A, A ∪ {¬s} ∉ ΓC and A ∪ {¬t} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {¬s} and A′ ∪ {¬t} are unsatisfiable. There is a model

of A′ ∪ {¬(s ∧ t)} ⊆f A. This is also a model of either A′ ∪ {¬s} or A′ ∪ {¬t},
contradicting our choice of A′.

Cmat Assume xs1 . . . sn and ¬xt1 . . . tn are in A and A ∪ {si ≠ ti} ∉ ΓC for all

i ∈ {1, . . . , n}. There is some A′ ⊆f A such that A′ ∪ {si ≠ ti} is unsatisfiable

for all i ∈ {1, . . . , n}. There is a model I of A′ ∪ {xs1 . . . sn,¬xt1 . . . tn} ⊆f A.

Since Î(xs1 . . . sn) ≠ Î(xt1 . . . tn), we must have Î(si) ≠ Î(ti) for some i ∈
{1, . . . , n}. Thus I models A′ ∪ {si ≠ ti}, contradicting our choice of A′.

Cdec Assume xs1 . . . sn ≠ι xt1 . . . tn is in A and A ∪ {si ≠ ti} ∉ ΓC for all i ∈
{1, . . . , n}. There is some A′ ⊆f A such that A′ ∪ {si ≠ ti} is unsatisfiable for

all i ∈ {1, . . . , n}. There is a model I of A′ ∪ {xs1 . . . sn ≠ι xt1 . . . tn} ⊆f A.

Since Î(xs1 . . . sn) ≠ Î(xt1 . . . tn), we must have Î(si) ≠ Î(ti) for some i ∈
{1, . . . , n}. Thus I models A′ ∪ {si ≠ ti}, contradicting our choice of A′.

Cbe Assume s ≠o t is in A, A∪ {s,¬t} ∉ ΓC and A∪ {¬s, t} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {s,¬t} and A′ ∪ {¬s, t} are unsatisfiable. There is a

model of A′∪{s ≠o t} ⊆f A. This is also a model of A′∪{s,¬t} or A′∪{¬s, t}.
Cfe Assume s ≠στ t is in A. Since A is sufficiently pure, there is a variable x : σ

which does not occur in A. Assume A ∪ {[sx] ≠ [tx]} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {[sx] ≠ [tx]} is unsatisfiable. There is a model I of

A′ ∪ {s ≠ t} ⊆f A. Since Î(s) ≠ Î(t), there must be some a ∈ Iσ such that

Î(s)a ≠ Î(t)a. Since x does not occur in A, we know Îxa (sx) ≠ Îxa (tx) and Ixa
is a model of A′. Since Îxa ([sx]) = Îxa (sx) by N4 and Îxa ([tx]) = Îxa (tx), we

conclude Ixa is a model of A′ ∪ {[sx] ≠ [tx]}, contradicting our choice of A′.

Ccon Assume s =ι t and u ≠ι v are in A, A ∪ {s ≠ u, t ≠ u} ∉ ΓC and A ∪ {s ≠
v, t ≠ v} ∉ ΓC. There is some A′ ⊆f A such that A′ ∪ {s ≠ u, t ≠ u} and

A′ ∪ {s ≠ v, t ≠ v} are unsatisfiable. There is a model I of A′ ∪ {s = t, u ≠
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v} ⊆f A. Since Î(s) = Î(t) and Î(u) ≠ Î(v), we either have Î(s) ≠ Î(u)
and Î(t) ≠ Î(u) or Î(s) ≠ Î(v) and Î(t) ≠ Î(v). Hence I models either

A′ ∪ {s ≠ u, t ≠ u} and A′ ∪ {s ≠ v, t ≠ v}, contradicting our choice of A′.

C∀ Assume ∀ιs is in A and A ∪ {[st]} ∉ ΓC for some t ∈ EFOι. There is

some A′ ⊆f A such that A′ ∪ {[st]} is unsatisfiable. There is a model I of

A′ ∪ {∀ιs} ⊆f A. Note that Î([st]) = Î(st) = Î(s)(Î(t)) = 1 using N4. Hence I
is a model of A′ ∪ {[st]}, contradicting our choice of A′.

C¬∀ Assume ¬∀ιs is in A. Since A is sufficiently pure, there is a variable xι
which does not occur in A. Assume A ∪ {¬[sx]} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {¬[sx]} is unsatisfiable. There is a model I of

A′ ∪ {¬∀ιs} ⊆f A. There is some a ∈ Iι such that Î(s)a = 0. Since x does not

occur in A, we know Îxa (s)a = Î(s)a = 0 and Ixa is a model of A′. Note that

Îxa ([sx]) = Îxa (sx) = Îxa (s)a = 0 using N4. Hence I is a model of A′∪{¬[sx]},
contradicting our choice of A′.

We show the completeness of ΓC by contradiction. Let A ∈ ΓC and s, t ∈ EFOι
such that A ∪ {[s=t]} and A ∪ {[s≠t]} are not in ΓC. Then there exists A′ ⊆f A
such that A′ ∪ {[s=t]} and A′ ∪ {[s≠t]} are unsatisfiable. Contradiction by N4

since A′ is satisfiable. �

Theorem 10.3 (Compactness)

A branch is satisfiable if each of its finite subsets is satisfiable.

Proof Let A be a branch such that every finite subset of A is satisfiable. Without

loss of generality we assume A is sufficiently pure. Then A ∈ ΓC. Hence A is

satisfiable by Lemmas 10.2, 8.2, and 7.10. �

Theorem 10.4 (Countable Models)

Every satisfiable branch has a countable model.

Proof Let A be a satisfiable branch. Without loss of generality we assume that A
is sufficiently pure. Hence A ∈ ΓC. By Lemmas 10.2 and 8.2 we have a complete

evident set E such that A ⊆ E. By Lemma 7.10 we have a countable model for E
and hence for A. �

Theorem 10.5 (Countable Model Existence)

Every evident branch has a countable model.

Proof Let E be an evident branch. By Lemma 7.10 we know that E is satisfiable.

By Theorem 10.4 we know that E has a countable model. �
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11 Decidability

The tableau system R defined in § 9 yields a procedure that decides the satisfia-

bility of three substantial fragments of EFO. Starting with the initial branch, the

procedure applies tableau rules until it reaches a branch that contains ⊥ or can-

not be extended with the tableau rules. The procedure returns “satisfiable” if it

arrives at a terminal branch that does not contain ⊥, and “unsatisfiable” if it finds

a refutation. There are branches on which the procedure does not terminate (e.g.,

{∀ιx. fx≠x}). We first establish the partial correctness of the procedure.

Proposition 11.1 (Verification Soundness) Let A be a finite branch that does not

contain ⊥ and cannot be extended with R. Then A is evident and has a finite

model.

Proof The evidence of a branch as specified is easily verified. The existence of a

finite model follows with Theorem 7.9. �

Proposition 11.2 (Refutation Soundness)

Every refutable branch is unsatisfiable.

Proof Let the branches A1, . . . , An be obtained from a satisfiable branch A by

application of a rule of R. It suffices to show that one of the branches A1, . . . , An
is satisfiable. For T¬ this follows from the fact that the implication x ∧¬x → ⊥
is valid. For T¬∧ the validity of ¬(x ∧ y) → ¬x ∨ ¬y suffices, and for Tfe the

validity of f≠g → ∃x.fx≠gx does the job. The soundness of the other rules

follows with similar arguments. �

For the termination of the procedure we consider the relation A → A′ that

holds if A and A′ are branches such that ⊥ ∉ A ⊊ A′ and A′ can be obtained

from A by applying a rule ofR. We say thatR terminates on a set Δ of branches

if there is no infinite derivation A→ A′ → A′′ → · · · such that A ∈ Δ.

Proposition 11.3 Let R terminate on a set Δ of finite branches. Then satisfiabil-

ity of the branches in Δ is decidable and every satisfiable branch in Δ has a finite

model.

Proof Follows with Propositions 11.2 and 11.1 and Theorem 7.9. �

The decision procedure depends on the normalization operator employed

with R. A normalization operator that yields β-normal forms provides for all

termination results proven in this section. Note that the tableau system applies

the normalization operator only to applications st where s and t are both normal

and t has type ι if it is not a variable. Hence at most one β-reduction is needed
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for normalization if s and t are β-normal. Moreover, no α-renaming is needed

if the bound variables are chosen differently from the free variables. For clarity,

we continue to work with an abstract normalization operator and state a further

condition:

N5 The least relation � on terms such that

1. as1 . . . sn � si if i ∈ {1, . . . , n}
2. s � [sx] if s : στ and x : σ

terminates on normal terms.

11.1 Pure Disequations

A type is pure if it does not contain o. A term is pure if the type of every name

occurring in it (bound or unbound) is pure. An equation s = t or disequation

s ≠ t is pure if s and t are pure terms.

Proposition 11.4 (Pure Termination) Let the normalization operator satisfy N5.

Then R terminates on finite branches containing only pure disequations.

Proof Let A→ A1 → A2 → ·· · be a possibly infinite derivation that issues from a

finite branch containing only pure disequations. Then no other rules but possibly

Tdec,Rfe, and T≠ apply and thus no Ai contains a formula that is not ⊥ or a pure

disequations (using S5). Using N5 it follows that the derivation is finite. �

We now know that the validity of pure equations is decidable, and that the in-

validity of pure equations can be demonstrated with finite interpretations (Propo-

sition 11.1). Both results are well-known [6, 10], but it is remarkable that we

obtain them with different proofs and as a byproduct.

Example 11.5 R does not terminate on branches that contain pure equations

and pure disequations. We assume the typing F : (ιι)ι and f : ιιι.

F(λx.F(fx)) = a, F(fa) ≠ a initial branch

F(λx.F(fx)) ≠ F(fa), a ≠ F(fa) Tcon

(λx.F(fx)) ≠ fa Tdec

F(fb) ≠ fab Rfe

F(λx.F(fx)) ≠ F(fb), a ≠ F(fb) Tcon

. . .

The non-termination depends on the fact that the positive equation is not first-

order. We can prove termination if we constrain the positive equations to be

first-order, that is, to contain only variables whose type has the form ι . . . ι. This
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restriction yields Rfe non-applicable. Admitting quantifier-free formulas with

variables whose types have the form σ1 . . .σno where n ≥ 0 and σ1, . . . , σn are

pure types also preserves termination. �

11.2 Bernays-Schönfinkel-Ramsey Formulas

It is well-known that satisfiability of Bernays-Schönfinkel-Ramsey formulas (first-

order ∃∗∀∗-prenex formulas without functions) is decidable and the fragment

has the finite model property [4]. We reobtain this result by showing that R
terminates for the respective fragment. We call a type BSR if it is ι or o or has

the form ι . . . ιo. We call an EFO formula s BSR if it satisfies two conditions:

1. The type of every variable that occurs in s is BSR.

2. ∀ι does not occur below a negation in s.

For simplicity, our BSR formulas don’t provide for outer existential quantifica-

tion. We need one more condition for the normalization operator:

N6 If s : ιo is BSR and x : ι, then [sx] is BSR.

Proposition 11.6 (BSR Termination) Let the normalization operator satisfy N5

and N6. Then R terminates on finite branches containing only BSR formulas.

Proof Let A→ A1 → A2 → ·· · be a possibly infinite derivation that issues from a

finite branch containing only BSR formulas. ThenR¬∀ andRfe are not applicable

and all Ai contain only BSR formulas (using N6). Furthermore, at most one new

variable is introduced. Since all terms of type ι are variables, there is only a finite

supply. Using N5 it follows that the derivation is finite. �

11.3 Lambda-Free Formulas

In [3] we study lambda- and quantifier-free EFO and show that the concomitant

subsystem ofR terminates on finite branches. The result extends to lambda-free

branches containing quantifiers (e.g., {∀ιf}).

Proposition 11.7 (Lambda-Free Termination) Let the normalization operator

satisfy [s] = s for every lambda-free EFO term s. Then R terminates on finite

lambda-free branches.

Proof An application of Rfe disables a disequation s≠στt and introduces new

subterms as follows: a variable x : σ , two terms sx : τ and tx : τ , and two

formulas sx=tx and sx≠tx. Since the types of the new subterms are smaller

than the type of s and t, and the new subterms introduced by the other rules

always have type o or ι, no derivation can employ Rfe infinitely often.
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Let A → A1 → A2 → ·· · be a possibly infinite derivation that issues from

a finite lambda-free branch and does not employ Rfe. It suffices to show that

the derivation is finite. Observe that no new subterms of the form ∀ιs are intro-

duced. Hence only finitely many new subterms of type ι are introduced. Conse-

quently, only finitely many new subterms of type o are introduced. Hence the

derivation is finite. �

12 Conclusion

In this paper we have shown that the EFO fragment of Church’s type theory en-

joys the characteristic properties of first-order logic. We have devised a complete

tableau system that comes with a new treatment of equality (confrontation) and

a novel subterm restriction for the universal quantifier (discriminating terms).

The tableau system decides lambda-free formulas, Bernays-Schönfinkel-Ramsey

formulas, and equations between pure lambda terms.
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