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We present a cut-free tableau system for a version of Church’s simple type

theory with primitive equality. The system is formulated with an abstract

normalization operator that completely hides the details of lambda con-

version. We prove completeness of the system relative to Henkin models.

The proof constructs Henkin models using the novel notion of a value sys-

tem.

1 Introduction

Church’s type theory [11] is a basic formulation of higher-order logic. Henkin [13]

found a natural class of models for which Church’s Hilbert-style proof system

turned out to be complete. Equality, originally expressed with higher-order quan-

tification, was later identified as the primary primitive of the theory [14, 3, 1]. In

this paper we consider simple type theory with primitive equality but without de-

scriptions or choice. We call this system ESTT for equational simple type theory.

The semantics of ESTT is given by Henkin models with equality.

Modern proof theory started with Gentzen’s [12] invention of a cut-free

proof system for first-order logic. While Gentzen proved a cut-elimination the-

orem for his system, Smullyan [18] found an elegant technique (abstract con-

sistency classes) for proving the completeness of cut-free first-order systems.

Smullyan [18] found it advantageous to work with a refutation-oriented variant

of Gentzen’s sequent sytems [12] known as tableau systems [6, 15, 18].

The development of complete cut-free proof systems for simple type the-

ory turned out to be hard. In 1953, Takeuti [23] introduced a sequent calculus

for a lambda-free relational type theory without equality and conjectured that
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cut elimination holds for this system. Gentzen’s [12] inductive proof of cut-

elimination for first-order sequent systems does not generalize to the higher-

order case since instances of formulas may be more complex than the formula

itself. Moreover, Henkin’s [13] completeness proof cannot be adapted for cut-free

systems. Takeuti’s conjecture was answered positively by Tait [20] for second-

order logic, by Takahashi [21] and Prawitz [17] for higher-order logic without

extensionality, and by Takahashi [22] for higher-order logic with extensionality.

Building on the possible-values technique of Takahashi [21] and Prawitz [17],

Takeuti [24] finally proves Henkin completeness of a cut-free sequent calculus

with extensionality.

The first cut-elimination result for a calculus similar to Church’s type theory

was obtained by Andrews [2] in 1971. Andrews considers elementary type theory

(Church’s type theory without equality, extensionality, infinity, and choice) and

proves that a cut-free sequent calculus is complete relative to a Hilbert-style

proof system. Andrews’ proof employs both the possible-values technique [21,

17] and the abstract consistency technique [18].

None of the cut-free calculi discussed above has equality as a primitive. Fol-

lowing Leibniz, one can define equality of a and b to hold whenever a and b
satisfy the same properties. While this yields equality in standard models (full

function spaces), there are Henkin models where this is not case [3]. In fact,

none of the papers mentioned above contains a construction that is guarenteed

to produce a Henkin model where Leibniz equality comes out as semantic equal-

ity. In addition to the model-theoretic failure, defined equality also destroys the

cut-freeness of a proof system. As shown in [5] any use of Leibniz equality to

say two terms are equal provides for the simulation of cut. Hence calculi that

define equality as Leibniz equality cannot claim to provide cut-free equational

reasoning.

The first completeness proof for a cut-free proof system relative to Henkin

models with equality was given by Brown in his 2004 doctoral thesis [7] (later

published as a book [8]). Brown proves the Henkin completeness of a novel one-

sided sequent calculus with primitive equality. His model construction starts

with Andrews’ [2] non-extensional possible-values relations and then obtains a

structure isomorphic to a Henkin model by taking a quotient with respect to a

partial equivalence relation. Finally, abstract consistency classes [18, 2] are used

to obtain the completeness result. The equality-based decomposition rules of

Brown’s sequent calculus have commonalities with the unification rules of the

systems of Kohlhase [16] and Benzmüller [4]. Note, however, that the complete-

ness proofs of Kohlhase and Benzmüller assume the presence of cut.

In this paper we improve and greatly simplify Brown’s result [8]. For the

proof system we switch to a cut-free tableau system that employs an abstract
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normalization operator. With the normalization operator we hide the details of

lambda conversion from the tableau system and most of the completeness proof.

For the completeness proof we use the new notion of a value system to directly

construct surjective Henkin models. Value systems are logical relations [19] pro-

viding a relational semantics for simply-typed lambda calculus. The inspiration

for value systems came from the possible-values relations used in [8, 10, 9]. In

contrast to Henkin models, which obtain values for terms by induction on terms,

value systems obtain values for terms by induction on types. Induction on types,

which is crucial for our proofs, has the advantage of hiding the presence of the

lambda binder. As a result, only a single lemma of our completeness proof deals

explicitly with lambda abstractions and substitutions.

In previous work [10, 9] we study subsystems of the tableau system given

in this paper and prove completeness results with respect to standard models.

In [10] we show that the tableau system decides the lambda-free fragment of

ESTT that restricts equations to base types. In [9] we show that the tableau

system is complete with respect to standard models for the fragment of ESTT

that restricts equations to base and first-order types (equations at functional

types are expressed as quantified equations at base types). The normalization

operator first appears in [9].

The paper is organized as follows. First we review simply typed lambda cal-

culus and state the required properties of the normalization operator. We then

introduce value systems and show how they can be used to obtain Henkin inter-

pretations. From then on we can ignore the presence of the lambda binder. Next

we introduce the type of truth values, the logical constants, the respective logical

interpretations, and the tableau system. We then define evident branches as sets

of normal formulas that are closed under the tableau rules and do not contain ⊥
and prove that every evident branch has a model. The model is obtained with a

value system that takes so-called discriminants [10] as basic values. Based on the

notion of evidence, we then define abstract consistency and obtain the complete-

ness result as usual. We also prove compactness and the existence of countable

models.

2 Basic Definitions

We assume a countable set of base types (β). Types (σ , τ , μ) are defined in-

ductively: (1) every base type is a type; (2) if σ and τ are types, then στ is a

type. We assume a countable set of names (x, y), where every name comes with

a unique type, and where for every type there are infinitely many names of this

type. Terms (s, t, u, v) are defined inductively: (1) every name is a term; (2) if s
is a term of type τμ and t is a term of type τ , then st is a term of type μ; (3) if x
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is a name of type σ and t is a term of type τ , then λx.t is a term of type στ . We

write s : σ to say that s is a term of type σ . Moreover, we write Λσ for the set

of all terms of type σ . We assume that the set of types and the set of terms are

disjoint.

A frame is a function D that maps every type to a nonempty set such that

D(στ) is a set of total functions fromDσ toDτ for all types σ , τ (i.e.,D(στ) ⊆
(Dσ → Dτ)). An interpretation into a frame D is a function I that extends D
(i.e., D ⊆ I) and maps ever name x : σ to an element of Dσ (i.e, Ix ∈ Dσ ).

If I is an interpretation into a frame D, x : σ is a name, and a ∈ Dσ , then Ixa
denotes the interpretation into D that agrees everywhere with I but possibly

on x where it yields a. For every frame D we define a function ˆ that for every

interpretation I into D yields a function Î that for some terms s : σ returns an

element of Dσ . The definition is by induction on terms.

Îx := Ix
Î(st) := fa if Îs = f and Ît = a

Î(λx.s) := f if λx.s : στ , f ∈ D(στ), and ∀a ∈ Dσ : Îxas = fa

We call Î the evaluation function of I . A Henkin interpretation is an interpre-

tation whose evaluation function is defined on all terms. An interpretation I is

surjective if for every type σ and every value a ∈ Iσ there exists a term s : σ
such that Îs = a.

Proposition 2.1 Let I be a Henkin interpretation, x : σ , and a ∈ Iσ . Then Ixa is

a Henkin interpretation.

Proposition 2.2 If I is a surjective interpretation, then Iσ is a countable set for

every type σ .

We assume a normalization operator [] that provides for lambda conversion.

The normalization operator [] must be a type preserving total function from

terms to terms. We call [s] the normal form of s and say that s is normal if

[s] = s. One possible normalization operator is a function that for every term s
return a β-normal term that can be obtained from s by β-reduction. We will not

commit to a particular normalization operator but state explicitly the properties

we require for our results. To start, we require the following properties:

N1 [[s]] = [s]
N2 [[s]t] = [st]
N3 [xs1 . . . sn] = x[s1] . . . [sn] if xs1 . . . sn : β and n ≥ 0

N4 Î[s] = Îs if I is a Henkin interpretation
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Proposition 2.3 xs1 . . . sn : β is normal iff s1, . . . , sn are normal.

For the proofs of Lemma 3.3 and Theorem 3.4 we need further properties

of the normalization operator that can only be expressed with substitutions. A

substitution is a type preserving partial function from names to terms. If θ is

a substitution, x is a name, and s is a term that has the same type as x, we

write θxs for the substitution that agrees everywhere with θ but possibly on x
where it yields s. We assume that every substitution θ can be extended to a

type preserving total function θ̂ from terms to terms such that the following

conditions hold:

S1 θ̂x = if x ∈ Domθ then θx else x

S2 θ̂(st) = (θ̂s)(θ̂t)
S3 [(θ̂(λx.s))t] = [θ̂xt s]
S4 [�̂s] = [s]
Note that � (the empty set) is the substitution that is undefined on every name.

3 Value Systems

We introduce value systems as a tool for constructing surjective Henkin inter-

pretations. Value systems are logical relations inspired by the possible-values

relations used in [8, 10, 9].

A value system is a function � that maps every base type β to a binary rela-

tion �β such that Dom (�β) ⊆ Λβ and s�βa iff [s]�βa. For every value system �
we define by induction on types:

Dσ := Ran (�σ )

�στ := { (s, f ) ∈ Λστ × (Dσ →Dτ) | ∀(t, a) ∈ �σ : (st, fa) ∈ �τ }

Note thatD(στ) ⊆ (Dσ →Dτ) for all types στ . We usually drop the type index

in s �σ a and read s � a as s can be a or a is a possible value for s.

Proposition 3.1 For every value system: s �σ a iff [s] �σ a.

Proof By induction on σ . For base types the claim holds by the definition of

value systems. Let σ = τμ.

Suppose s�τμ a. Let t�τ b. Then st�μab. By inductive hypothesis [st]�μab.

Thus [[s]t] �μ ab by N2. By inductive hypothesis [s]t �μ ab. Hence [s] �τμ a.

Suppose [s] �τμ a. Let t �τ b. Then [s]t �μ ab. By inductive hypothesis

[[s]t] �μ ab. Thus [st] �μ ab by N2. By inductive hypothesis st �μ ab. Hence

s �τμ a. �
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A value system � is functional if �β is a functional relation for every base

type β.

Proposition 3.2 If � is functional, then �σ is a functional relation for every

type σ .

Proof By induction on σ . For σ = β, the claim is trivial. Let σ = τμ and

s�τμf , g. We show f = g. Let a ∈ Dτ . Then t�τa for some t. Now st�μfa, ga.

By inductive hypothesis fa = ga. �

A value system � is total if x ∈ Dom�σ for every name x : σ . An interpreta-

tion I is admissible for a value system � if Iσ = Dσ for all types σ and x � Ix
for all names x. Note that every total value system has admissible interpreta-

tions. We will show that admissible interpretations are Henkin interpretations

that evaluate terms to possible values.

Lemma 3.3 Let I be an interpretation that is admissible for a value system �
and θ be a substitution such that θx � Ix for all x ∈ Domθ. Then s ∈ Dom Î
and θ̂s � Îs for every term s.

Proof By induction on s. Let s be a term. Case analysis.

s = x. The claim holds by assumption and S1.

s = tu. Then t ∈ Dom Î , θ̂t � Ît, u ∈ Dom Î, and θ̂u � Îu by inductive

hypothesis. Thus s ∈ Dom Î and θ̂s = (θ̂t)(θ̂u) � (Ît)(Îu) = Îs using S2.

s = λx.t and x : σ . Let u �σ a. We show s ∈ Dom Î and (θ̂s)u � (Îs)a. By

inductive hypothesis we have t ∈ Dom Îxa and θ̂xut � Îxat. Since the choice of a
was unconstrained we have s ∈ Dom Î. Now [(θ̂s)u] = [θ̂xut] � Îxat = (Îs)a
using S3 and Proposition 3.1. Thus (θ̂s)u � (Îs)a by Proposition 3.1. �

Theorem 3.4 Let I be an interpretation that is admissible for a value system �.

Then I is a Henkin interpretation such that s � Îs for all terms s. Furthermore,

I is surjective if � is functional.

Proof Follows from Lemma 3.3 with Proposition 3.1 and S4. The second claim

follows with Proposition 3.2. �

4 Equational Simple Type Theory

We fix a base type o for the truth values and two names ⊥ : o and → : ooo for

false and implication. Moreover, we fix for every type σ a name =σ : σσo for

the identity predicate for σ . An interpretation I is logical if Io = {0,1}, I⊥ = 0,
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T→
s → t

¬s | t T¬→
¬(s → t)

s , ¬t

T¬
x , ¬x
⊥ Tmat

xs1 . . . sn , ¬xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

T≠
x ≠α x

⊥ Tdec

xs1 . . . sn ≠α xt1 . . . tn
s1 ≠ t1 | · · · | sn ≠ tn

Tcon

s =α t , u ≠α v
s ≠ u , t ≠ u | s ≠ v , t ≠ v

Tbq

s =o t
s , t | ¬s , ¬t Tbe

s ≠o t

s , ¬t | ¬s , t

Tfq

s =στ t
[su] = [tu] u normal Tfe

s ≠στ t

[sx] ≠ [tx]
x fresh

Figure 1: Tableau rules

I(→) is the implication function, and I(=σ ) is the identity predicate for σ . We

refer to the base types different from o as sorts, to the names ⊥, → and =σ as

logical constants, and to all other names as variables. From now on x will range

over variables. Moreover, c will range over logical constants and α will range

over sorts.

A formula is a term of type o. We employ infix notation for formulas obtained

with→ and =σ and often write equations s =σ t without the type index. We write

� for ⊥ → ⊥ and ¬s for s→⊥. Moreover, we write s ≠ t for s=t → ⊥ and speak of

a disequation. Note that quantified formulas∀x.s can be expressed as equations

(λx.s) = (λx.�).
A logical Henkin interpretation I satifies a formula s if Îs = 1. A model of

a set of formulas A is a logical Henkin interpretation that satisfies every for-

mula s ∈ A. A set of formulas is satisfiable if it has a model.

A branch is a set of normal formulas. The tableau system T operates on

finite branches and employs the rules show in Figure 1. The side condition

“x fresh” of rule Tfe requires that x does not occur in the branch the rule is

applied to. We impose the following restrictions:

1. We only admit rule instances A/A1 . . .An where ⊥ ∉ A and A ⊊ Ai for all
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¬(pf → p(λx.¬¬fx))
pf , ¬p(λx.¬¬fx)
f ≠ (λx.¬¬fx)
fx ≠ ¬¬fx

fx, ¬¬¬fx
¬fx, �
x ≠ x
⊥

¬fx, ¬¬fx
fx, �
x ≠ x
⊥

Rules used: T¬→, Tmat, Tfe, Tbe, T¬→, Tmat, T≠

Figure 2: Tableau refuting ¬(pf → p(λx.¬¬fx)) where p : (αo)o and f : αo

i ∈ {1, . . . , n}.
2. Tfe can only be applied to a disequation (s≠t) ∈ A if there is no name x such

that ([sx] ≠ [tx]) ∈ A.

The set of refutable branches is defined inductively: (1) every finite branch A
such that ⊥ ∈ A is refutable; (2) if A/A1 . . .An is an instance of a rule of T and

A1, . . . , An are refutable, then A is refutable. Figure 2 shows a refutation in T .

A remark on the names of the rules: Tmat is called Mating Rule, Tdec Decom-

position Rule, Tcon Confrontation Rule, Tbq Boolean Equality Rule, Tbe Boolean

Extensionality Rule, Tfq Functional Equality Rule, and Tfe Functional Extension-

ality Rule.

Proposition 4.1 (Soundness) Every refutable branch is unsatisfiable.

Proof Let A/A1 . . .An be an instance of a rule of T such that A is satisfiable. It

suffices to show that one of the branches A1, . . . , An is satisfiable. Straightfor-

ward. �

We will show that the tableau system T is complete, that is, can refute every

finite unsatisfiable branch. The rules of T are designed such that we obtain a

strong completeness result. For practical purposes one can of course strengthen

T¬ to s,¬s
⊥ and T≠ to s≠s

⊥ .

Every formula can be expressed by just using the identities =σ as logical

constants [1]. If we apply the tableau rules to such formulas, disequations and

negated formulas of the form ¬xs1 . . . sn are introduced, but no proper implica-

tions s → t where t is different from ⊥. Hence the implication rules T→ and T¬→
are not needed for branches that don’t employ ⊥ and →.
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E⊥ ⊥ is not in E.

E→ If s → t is in E, then ¬s or t is in E.

E¬→ If ¬(s → t) is in E, then s and ¬t are in E.

E¬ If ¬x is in E, then x is not in E.

Emat If xs1 . . . sn and ¬xt1 . . . tn are in E where n ≥ 1,

then si ≠ ti is in E for some i ∈ {1, . . . , n}.
E≠ If x ≠α y is in E, then x and y are different variables.

Edec If xs1 . . . sn ≠α xt1 . . . tn is in E where n ≥ 1,

then si ≠ ti is in E for some i ∈ {1, . . . , n}.
Econ If s =α t and u ≠α v are in E,

then either s ≠ u and t ≠ u are in E or s ≠ v and t ≠ v are in E.

Ebq If s =o t is in E, then either s and t are in E or ¬s and ¬t are in E.

Ebe If s ≠o t is in E, then either s and ¬t are in E or ¬s and t are in E.

Efq If s =στ t is in E, then [su] = [tu] is in E for every normal u ∈ Λσ .

Efe If s ≠στ t is in E, then [sx] ≠ [tx] is in E for some variable x.

Figure 3: Evidence conditions

5 Evidence

A branch E is evident if it satisfies the evidence conditions in Figure 3. The

evidence conditions correspond to the tableau rules and are designed such that

every ⊥-free branch that is closed under the tableau rules is evident. We will

show that evident branches are satisfiable.

Proposition 5.1 If E is an evident branch and ¬¬s ∈ E, then s ∈ E.

Proof Follows with E¬→. �

A branch E is complete if for every normal formula s either s or ¬s is in E.

The cut-freeness of T shows in the fact that there are many evident sets that are

not complete. For instance, {pf , ¬p(λx.¬fx), f ≠ λx.¬fx, fx ≠ ¬fx, ¬fx}
is an incomplete evident branch if p : (σo)o.

5.1 Discriminants

Given an evident branch E, we will construct a value system whose admissible

logical interpretations are models of E. We start by defining the values for the
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sorts, which we call discriminants. Discriminants first appeared in [10].

Let E be a fixed evident branch in the following. We call a term s : α dis-

criminating if there is some term t such that either s ≠α t or t ≠α s is in E. An

α-discriminant is a maximal set a of discriminating terms of type α such that

there is no disequation s≠t ∈ E such that s, t ∈ a. We write s
t if E contains the

disequation s≠t or t≠s.

Example 5.2 Suppose E = {x≠y, x≠z, y≠z} and x,y, z : α. Then there are 3

α-discriminants: {x}, {y}, {z}. �

Example 5.3 Suppose E = {an ≠α bn | n ∈ N } where the an and bn are

pairwise distinct constants. Then E is evident and there are uncountably many

α-discriminants. �

Proposition 5.4 If E contains exactly n disequations at α, then there are at

most 2n α-discriminants. If E contains no disequation at α, then � is the only

α-discriminant.

Proposition 5.5 Let a and b be different discriminants. Then:

1. a and b are separated by a disequation in E, that is, there exist terms s ∈ a
and t ∈ b such that s
t.

2. a and b are not connected by an equation in E, that is, there exist no terms

s ∈ a and t ∈ b such that (s=t) ∈ E.

Proof The first claim follows by contradiction. Suppose there are no terms s ∈ a
and t ∈ b such that s
t. Let s ∈ a. Then s ∈ b since b is a maximal set

of discriminating terms. Thus a ⊆ b and hence a = b since a is maximal.

Contradiction.

The second claim also follows by contradiction. Suppose there is an equation

(s1=s2) ∈ E such that s1 ∈ a and s2 ∈ b. By the first claim we have terms s ∈ a
and t ∈ b such that s
t. By Econ we have s1
s or s2
t. Contradiction since a
and b are discriminants. �

5.2 Compatibility

For our proofs we need an auxiliary notion for evident branches that we call com-

patibility. Let E be a fixed evident branch in the following. We define relations

‖σ ⊆ Λσ ×Λσ by induction on types:

s ‖o t :⇐⇒ {[s],¬[t]} �⊆ E and {¬[s], [t]} �⊆ E
s ‖α t :⇐⇒ not [s]
[t]

s ‖στ t :⇐⇒ su ‖τ tv whenever u ‖σ v
We say that s and t are compatible if s ‖ t.
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Lemma 5.6 (Compatibility)

For n ≥ 0 and all terms s, t, xs1 . . . sn, xt1 . . . tn of type σ :

1. Not both s ‖σ t and [s]
[t].

2. Either xs1 . . . sn ‖σ xt1 . . . tn or [si]
[ti] for some i ∈ {1, . . . , n}.

Proof By induction on σ . Case analysis.

σ = o. Claim (1) follows with Ebe. Claim (2) follows with N3, E¬, and Emat.

σ = α. Claim (1) is trivial. Claim (2) follows with N3, E≠, and Edec.

σ = τμ. We show (1) by contradiction. Suppose s ‖σ t and [s]
[t]. By Efe

[[s]x]
[[t]x] for some variable x. By inductive hypothesis (2) we have x ‖τ x.

Hence sx ‖μ tx. Contradiction by inductive hypothesis (1) and N2.

To show (2), suppose xs1 . . . sn �σ xt1 . . . tn. Then there exist terms such

that u ‖τ v and xs1 . . . snu �μ xt1 . . . tnv . By inductive hypothesis (1) we know

that [u]
[v] does not hold. Hence [si]
[ti] for some i ∈ {1, . . . , n} by inductive

hypothesis (2). �

6 Model Existence

Let E be a fixed evident branch. We define a value system � for E:

s �o 0 :⇐⇒ s ∈ Λo and [s] ∉ E

s �o 1 :⇐⇒ s ∈ Λo and ¬[s] ∉ E
s �α a :⇐⇒ s ∈ Λα, a is an α-discriminant, and [s] ∈ a if [s] is discriminating

Note that N1 ensures the property s �β a iff [s] �β a.

Proposition 6.1 ⊥�0 0, ��0 1, and Do = {0,1}.

Proof Follows with N3, E⊥, and Proposition 5.1. �

Lemma 6.2 A logical interpretation is a model of E if it is admissible for �.

Proof Let I be a logical interpretation that is admissible for �, and let s ∈ E. By

Theorem 3.4 we know that I is a Henkin interpretation and that s �o Îs. Thus

Îs ≠ 0 since s ∈ E. Hence Îs = 1. �

It remains to show that � admits logical interpretations. First we show that

all sets Dσ are nonempty. To do so, we prove that compatible equi-typed terms

have a common value. A set T of equi-typed terms is compatible if s ‖ t for all

terms s, t ∈ T . We write T �σ a if T ⊆ Λσ , a ∈ Dσ , and t � a for every t ∈ T .
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Lemma 6.3 (Common Value) Let T ⊆ Λσ . Then T is compatible if and only if

there exists a value a such that T �σ a.

Proof By induction on σ .

σ = α, ⇒. Let T be compatible. Then there exists an α-discriminant a that

contains all the discriminating terms in { [t] | t ∈ T }. The claim follows since

T � a.

σ = α, ⇐. Suppose T �a and T is not compatible. Then there are terms s, t ∈ T
such that ([s]≠[t]) ∈ E. Thus [s] and [t] cannot be both in a. This contradicts

s, t ∈ T � a since [s] and [t] are discriminating.

σ = o, ⇒. By contraposition. Suppose T � 0 and T � 1. Then there are terms

s, t ∈ T such that [s],¬[t] ∈ E. Thus s � t. Hence T is not compatible.

σ = o, ⇐. By contraposition. Suppose s �o t for s, t ∈ T . Then [s],¬[t] ∈ E
without loss of generality. Hence s � 0 and t � 1. Thus T � 0 and T � 1.

σ = τμ, ⇒. Let T be compatible. We define Ta := { ts | t ∈ T , s �τ a } for

every value a ∈ Iτ and show that Ta is compatible. Let t1, t2 ∈ T and s1, s2 �τ a.

It suffices to show t1s1 ‖ t2s2. By the inductive hypothesis s1 ‖τ s2. Since T is

compatible, t1 ‖ t2. Hence t1s1 ‖ t2s2.

By the inductive hypothesis we now know that for every a ∈ Iτ there is a

b ∈ Iμ such that Ta �μ b. Hence there is a function f ∈ Iσ such that Ta �μ fa
for every a ∈ Iτ . Thus T �σ f .

σ = τμ, ⇐. Let T �σ f and s, t ∈ T . We show s ‖σ t. Let u ‖τ v . It suffices to

show su ‖μ tv . By the inductive hypothesis u,v �τ a for some value a. Hence

su, tv �μ fa. Thus su ‖μ tv by the inductive hypothesis. �

Lemma 6.4 (Admissibility) For every variable x : σ there is some a ∈ Dσ such

that x � a. In particular, Dσ is a nonempty set for every type σ .

Proof Let x : σ be a variable. By Lemma 5.6 (2) we know x ‖σ x. Hence {x} is

compatible. By Lemma 6.3 there exists a value a such that x �σ a. The claim

follows since a ∈ Dσ by definition of Dσ . �

Lemma 6.5 (Functionality) If s �σ a, t �σ b, and (s=t) ∈ E , then a = b.

Proof By contradiction and induction on σ . Assume s �σ a, t �σ b, (s=t) ∈ E,

and a ≠ b. Case analysis.

σ = o. By Ebq either s, t ∈ E or ¬s,¬t ∈ E. Hence a and b are either both 1

or both 0. Contradiction.
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σ = α. Since a ≠ b, there must be discriminating terms of type α. Since

(s=t) ∈ E, we know by N3 and Econ that s and t are normal and discriminating.

Hence s ∈ a and t ∈ b. Contradiction by Proposition 5.5 (2).

σ = τμ. Since a ≠ b, there is some c ∈ Dτ such that ac �= bc. By the

definition of Dτ and Lemma 3.1 there is a normal term u such that u �τ c.

Hence su�ac and tu�bc. By Lemma 3.1 [su]�μ ac and [tu]�μ bc. By Efq the

equation [su] = [tu] is in E. Contradiction by the inductive hypothesis. �

We now define the canonical interpretations for the logical constants:

L⊥ := 0

L(→) := λa∈Do. λb∈Do. if a=1 then b else 1

L(=σ ) := λa∈Dσ. λb∈Dσ. if a=b then 1 else 0

Lemma 6.6 (Logical Constants) c �Lc for every logical constant c.

Proof ⊥ � L⊥ holds by E⊥ and N3. We show (→) � L(→) by contradiction. Let

s �o a, t �o b, and (s→t) � L(→)ab. Case analysis.

• a = 1 and b = 0. Then ¬[s], [t] ∉ E and [s→t] ∈ E. Contradiction by N3

and E→.

• a = 0 or b = 1. Then [s] ∉ E or ¬[t] ∉ E, and ¬[s→t] ∈ E. Contradiction by

N3 and E¬→.

Finally, we show (=σ )�L(=σ ) by contradiction. Let s �σ a, t�σ b, and (s=σ t) �
L(=σ )ab. Case analysis.

• a = b. Then [s]
[t] by N3 and s, t�a. Thus s ‖ t by Lemma 6.3. Contradiction

by Lemma 5.6 (1).

• a ≠ b. Then ([s]=[t]) ∈ E by N3. Hence a = b by Lemmas 3.1 and 6.5.

Contradiction. �

Theorem 6.7 (Model Existence) Every evident branch is satisfiable. Moreover,

every complete evident branch has a surjective model, and every finite evident

branch has a finite model.

Proof Let E be an evident branch and � be the value system for E. By Propo-

sition 6.1, Lemma 6.4, and Lemma 6.6 we have a logical interpretation I that is

admissible for �. By Lemma 6.2 I is a model of E.

Let E be complete. By Theorem 3.4 we know that I is surjective if � is func-

tional. Let s �β a and s �β b. We show a = b. By Proposition 3.1 we can assume

that s is normal. Thus s=s is normal by N3. Since I is a model of E, we know

that the formula s≠s is not in E. Since E is complete, we know by N3 that s=s is

in E. By Lemma 6.5 we have a = b.

If E is finite, Iα = Dα is finite by Proposition 5.4. �
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C⊥ ⊥ is not in A.

C→ If s → t is in A, then A∪ {¬s} or A∪ {t} is in Γ .

C¬→ If ¬(s → t) is in A, then A∪ {s,¬t} is in Γ .

C¬ If ¬x is in A, then x is not in A.

Cmat If xs1 . . . sn is in A and ¬xt1 . . . tn is in A where n ≥ 1,

then A∪ {si ≠ ti} is in Γ for some i ∈ {1, . . . , n}.
C≠ If x ≠α y is in A, then x and y are different variables.

Cdec If xs1 . . . sn ≠α xt1 . . . tn is in A where n ≥ 1,

then A∪ {si ≠ ti} is in Γ for some i ∈ {1, . . . , n}.
Ccon If s =α t and u ≠α v are in A,

then either A∪ {s ≠ u, t ≠ u} or A∪ {s ≠ v, t ≠ v} is in Γ .

Cbq If s =o t is in A, then either A∪ {s, t} or A∪ {¬s,¬t} is in Γ .

Cbe If s ≠o t is in A, then either A∪ {s,¬t} or A∪ {¬s, t} is in Γ .

Cfq If s =στ t is in A,

then A∪ {[su] ≠ [tu]} is in Γ for every normal u ∈ Λσ .

Cfe If s ≠στ t is in A, then A∪ {[sx] ≠ [tx]} is in Γ for some variable x.

Figure 4: Abstract consistency conditions (must hold for every A ∈ Γ )

7 Abstract Consistency

We now extend the model existence result for evident branches to abstract

consistency classes, following the corresponding development for first-order

logic [18].

An abstract consistency class is a set Γ of branches such that every branch

A ∈ Γ satisfies the conditions in Figure 4. An abstract consistency class Γ is

complete if for every branch A ∈ Γ and every normal formula s either A∪{s} or

A∪ {¬s} is in Γ .

Proposition 7.1 Let A be a branch. Then A is evident if and only if {A} is an

abstract consistency class. Moreover, A is a complete evident branch if and only

if {A} is a complete abstract consistency class.

Lemma 7.2 (Extension Lemma) Let Γ be an abstract consistency class and A ∈ Γ .
Then there exists an evident branch E such that A ⊆ E. Moreover, if Γ is complete,

a complete evident branch E exists such that A ⊆ E.
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Proof Let u0, u1, u2, . . . be an enumeration of all normal formulas. We construct

a sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · of branches such that every An ∈ Γ . Let A0 := A.

We define An+1 by cases. If there is no B ∈ Γ such that An ∪ {un} ⊆ B, then let

An+1 := An. Otherwise, choose some B ∈ Γ such that An∪{un} ⊆ B. We consider

two subcases.

1. If un is of the form s ≠στ t, then choose An+1 to be B∪{[sx] ≠ [tx]} ∈ Γ for

some variable x. This is possible since Γ satisfies Cfe.

2. If un is not of this form, then let An+1 be B.

Let E :=
⋃
n∈N

An. We show that E satisfies the evidence conditions.

E⊥ If ⊥ is in E, then ⊥ is in An for some n, contradicting C⊥.

E→ Assume s → t is in E. Let n,m be such that un = s and um = t. Let r ≥ n,m
be such that s → t is in Ar . By C→, Ar ∪ {¬s} ∈ Γ or Ar ∪ {t} ∈ Γ . In the first

case, An ∪ {¬s} ⊆ Ar ∪ {¬s} ∈ Γ , and so ¬s ∈ An+1 ⊆ E. In the second case,

Am ∪ {t} ⊆ Ar ∪ {t} ∈ Γ , and so t ∈ Am+1 ⊆ E. Hence either ¬s or t is in E.

E¬→ Assume ¬(s → t) is in E. Let n,m be such that un = s and um = t. Let

r ≥ n,m be such that ¬(s → t) is in Ar . By C¬→, Ar ∪ {s,¬t} ∈ Γ . Since

An ∪ {s} ⊆ Ar ∪ {s, t}, we have s ∈ An+1 ⊆ E. Since Am ∪ {¬t} ⊆ Ar ∪ {s, t},
we have ¬t ∈ Am+1 ⊆ E.

E¬ If ¬x and x are in E, then ¬x and x are in An for some n, contradicting C¬.

Emat Assume xs1 . . . sn and ¬xt1 . . . tn are in E for some n ≥ 1. For each i ∈
{1, . . . , n}, let mi be such that umi is si ≠ ti. Let r ≥ m1, . . . ,mn be such

that xs1 . . . sn and ¬xt1 . . . tn are in Ar . By Cmat there is some i ∈ {1, . . . , n}
such that Ar ∪ {si ≠ ti} ∈ Γ . Since Ami ∪ {si ≠ ti} ⊆ Ar ∪ {si ≠ ti}, we have

(si ≠ ti) ∈ Ami+1 ⊆ E.

E≠ If x≠α x is in E, then x≠α x is in An for some n, contradicting C≠.

Edec Assume xs1 . . . sn ≠α xt1 . . . tn is in E for some n ≥ 1. For each i ∈
{1, . . . , n}, let mi be such that umi is si ≠ ti. Let r ≥ m1, . . . ,mn be such

that xs1 . . . sn ≠α xt1 . . . tn is in Ar . By Cdec there is some i ∈ {1, . . . , n} such

that Ar ∪ {si ≠ ti} ∈ Γ . Since Ami ∪ {si ≠ ti} ⊆ Ar ∪ {si ≠ ti}, we have

(si ≠ ti) ∈ Ami+1 ⊆ E.

Econ Assume s =α t and u ≠α v are in E. Let n,m, j, k be such that un is

s ≠ u, um is t ≠ u, uj is s ≠ v and uk is t ≠ v . Let r ≥ n,m, j, k be

such that s =α t and u ≠α v are in Ar . By Ccon either Ar ∪ {s ≠ u, t ≠ u}
or Ar ∪ {s ≠ v, t ≠ v} is in Γ . Assume Ar ∪ {s ≠ u, t ≠ u} is in Γ . Since

An ∪ {s ≠ u} ⊆ Ar ∪ {s ≠ u, t ≠ u}, we have s ≠ u ∈ An+1 ⊆ E. Since

Am ∪ {t ≠ u} ⊆ Ar ∪ {s ≠ u, t ≠ u}, we have t ≠ u ∈ Am+1 ⊆ E. Next assume

Ar ∪ {s ≠ v, t ≠ v} is in Γ . Since Aj ∪ {s ≠ v} ⊆ Ar ∪ {s ≠ v, t ≠ v}, we

have s ≠ v ∈ Aj+1 ⊆ E. Since Ak ∪ {t ≠ v} ⊆ Ar ∪ {s ≠ v, t ≠ v}, we have
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t ≠ v ∈ Ak+1 ⊆ E.

Ebq Assume s =o t is in E. Let n,m, j, k be such that un = s, um = t, uj = ¬s
and uk = ¬t. Let r ≥ n,m, j, k be such that s =o t is in Ar . By Cbq either

Ar ∪{s, t} or Ar ∪{¬s,¬t} is in Γ . Assume Ar ∪{s, t} is in Γ . Since An∪{s} ⊆
Ar ∪ {s, t}, we have s ∈ E. Since Am ∪ {t} ⊆ Ar ∪ {s, t}, we have t ∈ E. Next

assume Ar ∪{¬s,¬t} is in Γ . Since Aj∪{¬s} ⊆ Ar ∪{¬s,¬t}, we have ¬s ∈ E.

Since Ak ∪ {¬t} ⊆ Ar ∪ {¬s,¬t}, we have ¬t ∈ E.

Ebe Assume s ≠o t is in E. Let n,m, j, k be such that un = s, um = t, uj = ¬s
and uk = ¬t. Let r ≥ n,m, j, k be such that s ≠o t is in Ar . By Cbe either

Ar∪{s,¬t} or Ar∪{¬s, t} is in Γ . Assume Ar∪{s,¬t} is in Γ . Since An∪{s} ⊆
Ar ∪ {s,¬t}, we have s ∈ E. Since Ak ∪ {¬t} ⊆ Ar ∪ {s,¬t}, we have ¬t ∈ E.

Next assume Ar ∪ {¬s, t} is in Γ . Since Aj ∪ {¬s} ⊆ Ar ∪ {¬s, t}, we have

¬s ∈ E. Since Am ∪ {t} ⊆ Ar ∪ {¬s, t}, we have t ∈ E.

Efq Assume s =στ t is in E and u ∈ Λσ is normal. Let n be such that un is

[su] =τ [tu]. Let r ≥ n be such that s =στ t is in Ar . By Cfq we know

Ar ∪ {[su] =τ [tu]} is in Γ . Hence [su] =τ [tu] is in An+1 and also in E.

Efe Assume s ≠στ t is in E. Let n be such that un is s ≠στ t. Let r ≥ n be such

that s ≠στ t is in Ar . Since An ∪ {un} ⊆ Ar , there is some variable x such

that [sx] ≠τ [tx] is in An+1 ⊆ E.

It remains to show that E is complete if Γ is complete. Let Γ be complete and s
be a normal formula. We show that s or ¬s is in E. Let m, n be such that um = s
and un = ¬s. We consider m < n. (The case m > n is symmetric.) If s ∈ An, we

have s ∈ E. If s ∉ An, then An ∪ {s} is not in Γ . Hence An ∪ {¬s} is in Γ since Γ
is complete. Hence ¬s ∈ An+1 ⊆ E. �

Theorem 7.3 (Model Existence) Every member of an abstract consistency class

has a model, which is surjective if the consistency class is complete.

Proof Let A ∈ Γ where Γ is an abstract consistency class. By Lemma 7.2 we have

a evident set E such that A ⊆ E, where E is complete if Γ is complete. The claim

follows with Theorem 6.7. �

8 Completeness

It is now straightforward to prove the completeness of the tableau system T .

Let ΓT be the set of all finite branches that are not refutable.

Lemma 8.1 ΓT is an abstract consistency class.

Proof We have to show that ΓT satisfies the abstract consistency conditions.
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C⊥ Suppose ⊥ ∈ A ∈ ΓT . Then A is refutable. Contradiction.

C→ Let s → t ∈ A ∈ ΓT . Suppose A ∪ {¬s} and A ∪ {t} are not in ΓT . Then

A∪{¬s} and A∪{t} are refutable. Hence A can be refuted using T→. Contra-

diction.

C¬→ Assume ¬(s → t) is in A and A∪ {s,¬t} ∉ ΓT . Then we can refute A using

T¬→.

C¬ Suppose ¬x,x ∈ A ∈ ΓT . Then we can refute A using T¬. Contradiction.

Cmat Assume {xs1 . . . sn,¬xt1 . . . tn} ⊆ A and A ∪ {si ≠ ti} ∉ ΓT for all i ∈
{1, . . . , n}. Then we can refute A using Tmat.

C≠ If (x ≠α x) ∈ A, then we can refute A using T≠.

Cdec Assume xs1 . . . sn ≠α xt1 . . . tn is in A and A ∪ {si ≠ ti} ∉ ΓT for all i ∈
{1, . . . , n}. Then we can refute A using Tdec.

Ccon Assume s =α t and u ≠α v are in A but A ∪ {s ≠ u, t ≠ u} and A ∪
{s ≠ v, t ≠ v} are not in ΓT . Then we can refute A using Tcon.

Cbq Assume s =o t is in A, A∪ {s, t} ∉ ΓT and A∪ {¬s,¬t} ∉ ΓT . Then we can

refute A using Tbq.

Cbe Assume s ≠o t is in A, A∪ {s,¬t} ∉ ΓT and A∪ {¬s, t} ∉ ΓT . Then we can

refute A using Tbe.

Cfq Let (s =στ t) ∈ A ∈ ΓT . Suppose A ∪ {[su]=[tu]} ∉ ΓT for some normal

u ∈ Λσ . Then A∪ {[su]=[tu]} is refutable and so A is refutable by Tfq.

Cfe Let (s≠στt) ∈ A ∈ ΓT . Suppose A ∪ {[sx]≠[tx]} ∉ ΓT for every variable

x : σ . Then A∪{[sx]≠[tx]} is refutable for every x : σ . Hence A is refutable

using Tfe and the finiteness of A. Contradiction. �

Theorem 8.2 (Completeness) Every unsatisfiable finite branch is refutable.

Proof By contradiction. Let A be an unsatisfiable finite branch that is not

refutable. Then A ∈ ΓT and henceA is satisfiable by Lemma 8.1 and Theorem 6.7.

Contradiction. �

9 Compactness and Countable Models

It is known [13, 1] that equational type theory is compact and has the countable-

model property. We use the opportunity and show how these properties follow

with the results we already have. It is only for the existence of countable models

that we make use of complete evident sets and complete abstract consistency

classes.

17



A branch A is sufficiently pure if for every type σ there are infinitely many

variables of type σ that do not occur in any formula of A. Let ΓC be the set of all

sufficiently pure branches A such that every finite subset of A is satisfiable. We

write ⊆f for the finite subset relation.

Lemma 9.1 Let A ∈ ΓC and B1, . . . , Bn be finite branches such that A∪Bi ∉ ΓC for

all i ∈ {1, . . . , n}. Then there exists a finite branch A′ ⊆f A such that A′ ∪ Bi is

unsatisfiable for all i ∈ {1, . . . , n}.

Proof By the assumption, we have for every i ∈ {1, . . . , n} a finite and unsatis-

fiable branch Ci ⊆ A ∪ Bi. The branch A′ := (C1 ∪ · · · ∪ Cn) ∩ A satisfies the

claim. �

Lemma 9.2 ΓC is a complete abstract consistency class.

Proof We verify the abstract consistency conditions using Lemma 9.1 tacitly.

C⊥ We cannot have ⊥ ∈ A since {⊥} would be an unsatisfiable finite subset.

C→ Assume s → t is in A, A ∪ {¬s} ∉ ΓC and A ∪ {t} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {¬s} and A′ ∪ {t} are unsatisfiable. There is a model

of A′ ∪ {s → t} ⊆f A. This is also a model of either A′ ∪ {¬s} or A′ ∪ {t},
contradicting our choice of A′.

C¬→ Assume ¬(s → t) is in A and A∪ {s,¬t} ∉ ΓC. There is some A′ ⊆f A such

that A′ ∪ {s,¬t} is unsatisfiable. There is a model of A′ ∪ {¬(s → t)} ⊆f A.

This is also a model of A′ ∪ {s,¬t}, contradicting our choice of A′.

C¬ We cannot have {¬x,x} ⊆ A since this would be an unsatisfiable finite sub-

set.

Cmat Assume xs1 . . . sn and ¬xt1 . . . tn are in A and A ∪ {si ≠ ti} ∉ ΓC for all

i ∈ {1, . . . , n}. There is some A′ ⊆f A such that A′ ∪ {si ≠ ti} is unsatisfiable

for all i ∈ {1, . . . , n}. There is a model I of A′ ∪ {xs1 . . . sn,¬xt1 . . . tn} ⊆f A.

Since Î(xs1 . . . sn) ≠ Î(xt1 . . . tn), we must have Î(si) ≠ Î(ti) for some i ∈
{1, . . . , n}. Thus I models A′ ∪ {si ≠ ti}, contradicting our choice of A′.

C≠ We cannot have (x ≠α x) ∈ A since {x ≠ x} would be an unsatisfiable finite

subset.

Cdec Assume xs1 . . . sn ≠α xt1 . . . tn is in A and A ∪ {si ≠ ti} ∉ ΓC for all i ∈
{1, . . . , n}. There is some A′ ⊆f A such that A′ ∪ {si ≠ ti} is unsatisfiable for

all i ∈ {1, . . . , n}. There is a model I of A′ ∪ {xs1 . . . sn ≠α xt1 . . . tn} ⊆f A.

Since Î(xs1 . . . sn) ≠ Î(xt1 . . . tn), we must have Î(si) ≠ Î(ti) for some i ∈
{1, . . . , n}. Thus I models A′ ∪ {si ≠ ti}, contradicting our choice of A′.

Ccon Assume s =α t and u ≠α v are in A, A ∪ {s ≠ u, t ≠ u} ∉ ΓC and

A ∪ {s ≠ v, t ≠ v} ∉ ΓC. There is some A′ ⊆f A such that A′ ∪ {s ≠ u, t ≠
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u} and A′ ∪ {s ≠ v, t ≠ v} are unsatisfiable. There is a model I of

A′ ∪ {s = t, u ≠ v} ⊆f A. Since Î(s) = Î(t) and Î(u) ≠ Î(v), we either have

Î(s) ≠ Î(u) and Î(t) ≠ Î(u) or Î(s) ≠ Î(v) and Î(t) ≠ Î(v). Hence I models

either A′ ∪ {s ≠ u, t ≠ u} and A′ ∪ {s ≠ v, t ≠ v}, contradicting our choice of

A′.

Cbq Assume s =o t is in A, A∪ {s, t} ∉ ΓC and A∪ {¬s,¬t} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {s, t} and A′ ∪ {¬s,¬t} are unsatisfiable. There is a

model of A′∪{s =o t} ⊆f A. This is also a model of A′∪{s, t} or A′∪{¬s,¬t}.
Cbe Assume s ≠o t is in A, A∪ {s,¬t} ∉ ΓC and A∪ {¬s, t} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {s,¬t} and A′ ∪ {¬s, t} are unsatisfiable. There is a

model of A′∪{s ≠o t} ⊆f A. This is also a model of A′∪{s,¬t} or A′∪{¬s, t}.
Cfq Assume s =στ t is in A but A ∪ {[su] =τ [tu]} is not in ΓC for some

normal u ∈ Λσ . There is some A′ ⊆f A such that A′ ∪ {[su] = [tu]} is

unsatisfiable. There is a model I of A′ ∪ {s = t} ⊆f A. Since Î(s) = Î(t), we

know Î([su]) = Î(su) = Î(s)Î(u) = Î(t)Î(u) = Î(tu) = Î([tu]) using N4.

Hence I is a model of A′ ∪ {[su] = [tu]}, a contradiction.

Cfe Assume s ≠στ t is in A. Since A is sufficiently pure, there is a variable x : σ
which does not occur in A. Assume A ∪ {[sx] ≠ [tx]} ∉ ΓC. There is some

A′ ⊆f A such that A′ ∪ {[sx] ≠ [tx]} is unsatisfiable. There is a model I of

A′ ∪ {s ≠ t} ⊆f A. Since Î(s) ≠ Î(t), there must be some a ∈ Iσ such that

Î(s)a ≠ Î(t)a. Since x does not occur in A, we know Îxa (sx) ≠ Îxa (tx) and Ixa
is a model of A′. Since Îxa ([sx]) = Îxa (sx) by N4 and Îxa ([tx]) = Îxa (tx), we

conclude Ixa is a model of A′ ∪ {[sx] ≠ [tx]}, contradicting our choice of A′.

We show the completeness of ΓC by contradiction. Let A ∈ ΓC and s be a normal

formula such that A∪ {s} and A∪ {¬s} are not in ΓC. Then there exists A′ ⊆f A
such that A′ ∪ {s} and A′ ∪ {¬s} are unsatisfiable. Contradiction since A′ is

satisfiable. �

Theorem 9.3 Let A be a branch such that every finite subset of A is satisfiable.

Then A has a countable model.

Proof Without loss of generality we assume A is sufficiently pure. Then A ∈ ΓC.

Hence A has a countable model by Lemma 9.2 and Theorem 7.3. �

10 Conclusion

Equational simple type theory (ESTT) is an elegant and expressive generalization

of first-order logic. Like first-order logic, ESTT comes with a natural notion of

model for which complete deduction systems exist. Unfortunately, the proof

theory of ESTT is not well developed. A cut-free alternative to the Hilbert system
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of Andrews [1] only appeared in 2004 [7]. In this paper we formulate the sequent

system of [7] as a cut-free tableau system and give a much simplified complete-

ness proof. Our main innovation are the notions of value system and abstract

normalization operator.
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