
A Virtual Machine for Multi-Language Execution

Thorsten Brunklaus
Programming Systems Lab

Saarland University
Postfach 15 11 50

66041 Saarbrücken, Germany

brunklaus@ps.uni-sb.de

Leif Kornstaedt
Programming Systems Lab

Saarland University
Postfach 15 11 50

66041 Saarbrücken, Germany

kornstaedt@ps.uni-sb.de

ABSTRACT
This paper presents the architecture of a virtual machine
designed specifically for the execution of multiple languages,
which we call Seam. The architecture consists of a number
of generic components, usable by all languages, and of a
number of interfaces for which implementations have to be
provided by language implementors. Our contribution is
the identification of the generic services and the clean design
for the parameterization over their language-specific aspects.
The goal of Seam is to provide both for ample reuse and
simple language implementation, concerning both compilers
and runtime1 components, and to be a platform for language
interoperation. We have implemented a prototype version of
Seam and validated it with two language implementations.
We present a full running implementation of Alice and a
näıve implementation of a Java Virtual Machine running on
Seam. The paper presents first implementation effort and
performance results for the prototype.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture;
D.2.12 [Software Engineering]: Interoperability

General Terms
Design, Languages

Keywords
Virtual Machines, Interoperability, Pickling

1. INTRODUCTION
Practice of programming language implementation has in
the last years shown an increasing interest in reusable virtual
machine technology. Language implementors write compil-
ers that target existing virtual machines, for example for

1We use the spelling “runtime” to stand for the runtime
environment in which programs are executed, as opposed to
“run-time” for the things that happen while programs run.

MLj [2] or Active Oberon [9]. Virtual machine providers
design and standardize virtual machines as targets for lan-
guage implementors; examples are the Java Virtual Machine
(JVM) [15] or Microsoft’s .NET Common Language Run-
time (CLR) [30].

The reasons for this trend are obvious. Language imple-
mentors want to spare themselves the effort to reimplement
runtime services like memory management or operating sys-
tem interfacing. Targeting an existing runtime environment
yields easy reuse of available libraries, and a path to interop-
eration with other languages. From the perspective of the
virtual machine provider, a reusable runtime environment
opens up a market for tools, such as debuggers, profilers, or
integrated development environments.

Performance and elegance of existing approaches have re-
mained unsatisfying, however—either because the virtual
machines have not been designed for generality, or because
they remained inadequate for some language paradigms [5,
3, 33, 13, 6]. Criticism includes missing support for tail calls,
overhead of defining data as classes and representing it as
objects, or restrictive type systems of code verifiers.

This paper presents Seam (the Simple Extensible Abstract
Machine), a virtual machine designed specifically for the ex-
ecution of multiple languages. Our goal was to provide a vir-
tual machine for language implementors who want to reuse
technology, have a common ground on which to interoper-
ate with other languages, and nevertheless implement their
language faithfully—without having to extend or modify it
to make it match with the virtual machine. Seam is an at-
tempt to reconcile the four seemingly contradicting goals of
simplicity of a language’s compiler, ease of implementation
of a language’s runtime, ease of interoperability with other
languages, and language specification fidelity.

The design of Seam was driven by the key idea to assess
every runtime service by its generality: If we can define a
service with an interface generic enough to be adequate for
very many languages, Seam provides this service under that
interface; where some service does not appear to have a ge-
neric incarnation, we instead parameterize over the service.
As it turns out, a broad range of services can be provided,
the effort for implementing a new language is greatly re-
duced, and language implementations gain in elegance. We
have validated these claims with a complete implementation
of Alice [1]—an extension of SML [19] providing for concur-

rency, data-flow synchronization and laziness—, and with a
prototype implementation of a JVM on top of Seam.

This paper is structured as follows. First, Section 2 presents
Seam’s architecture, describing the design of the generic
components and of the parameterization interfaces. Sec-
tion 3 introduces generic synchronization support. Section 4
details how language implements can target Seam. We ad-
dress interoperability between languages in Section 5. Sec-
tion 6 demonstrates the expressivity of Seam’s architecture
with the design of a generic persistence facility for Seam
languages. We present and evaluate our prototype imple-
mentation in Section 7. Section 8 concludes the paper with
an outlook on future work.

2. VIRTUAL MACHINE ARCHITECTURE
A virtual machine, or VM, consists of a number of compo-
nents. The store provides a model of data representation
and memory management. The scheduler coordinates the
execution of concurrent threads. The execution unit actu-
ally executes code. The I/O subsystem abstracts away the
interface to the operating system’s input and output chan-
nels.

In traditional virtual machines designed for a single lan-
guage, the design of these components is tuned to the lan-
guage in question. For example, a virtual machine for an
object-oriented language would represent data structures in
the store as objects; object types (class definitions) then
drive services such as garbage collection. The scheduler
would directly implement the concurrency and synchroniza-
tion semantics of the language. The execution unit would
only know code representations for the particular language,
for example a byte code with opcodes implementing the el-
ementary language concepts, and so forth.

Seam differs from this approach, in that it strictly sepa-
rated language-independent services and language-specific
bindings to those services. Where possible, Seam provides
generic components valid for all languages. Where this is not
feasible, Seam is parameterized, making language-specific
implementations of those components possible. The follow-
ing sections describe the realization of each of the above-
mentioned components in Seam in turn.

2.1 Store
Seam’s abstract store implements a simple data graph: The
basic node types are integers, chunks (raw byte data of ar-
bitrary length) and blocks consisting of a number of ordered
directed edges to other nodes. The data graph is an arbi-
trary directed graph with sharing and cycles. When con-
figurable allocation thresholds are reached, the store sets
a flag in Seam’s global status register to request that its
garbage collection operation be invoked. Garbage collection
frees memory taken up by unreachable nodes in the graph,
given a root set of nodes in the graph. To accomodate for
advanced garbage collection techniques, the interface distin-
guishes between initializing and reconnecting edges (which
are different operations in the presence of, for instance, a
generational garbage collector).

The data graph has been designed to be as simple as possi-
ble: By conceptually separating the abstract store and the

representation of language data structures, we avoid pre-
mature commitment to any particular language. Instead,
language implementors model language data structures in
terms of the data graph. Also, all control structures used
within the virtual machine (task stacks, threads, and the
scheduler’s queue of runnable threads) need to be encoded
in the data graph. To enable discriminating between various
internal control structures and user-defined data structures,
all blocks are tagged by integer labels, of which some will
be reserved in latter sections.

Related Work. Other virtual machines represent spe-
cialized and complex data in their store. In Mozart [31,
17] for instance, the store not only knows about Oz’s rich
data structures, but also about threads, task stacks, and
computation spaces [24]. Mozart’s store is generic in that
its foreign function interface allows the implementation of
user-defined data types (so-called extensions) in C++ [16],
for which specialized garbage-collection and cloning routines
have to be specified. Extensions are considerably less effi-
cient than Mozart’s built-in data structures and as such are
no valid basis to support other languages on the Mozart VM.

The JVM and the .NET CLR represent objects in their
store. The garbage collector has to know about class defi-
nitions for typing nodes in the store, and thus has to know
about static and instance fields and inheritance. Experi-
ence has shown that an object-oriented store is not suitable
for efficient implementation of functional languages, as it
imposes too large an overhead for the numerous small al-
locations typically performed by functional programs [5, 3,
33, 13].

2.2 Scheduler
Seam supports concurrent execution of multiple threads in
the traditional way: A thread is a control structure that
maintains a stack of activation records or frames. Each
frame corresponds to a task to be executed; execution of
a task can cause the frame to be modified or popped or
new frames to be pushed. The scheduler coordinates exe-
cution of multiple threads, which it maintains in a queue.
When the scheduler becomes active, it fetches a thread from
the queue and passes it to the worker. The worker obtains
the topmost frame from the thread’s stack and executes it
(see Section 2.3 for details). The worker returns control
to the scheduler when a preemption condition is signalled,
for which the worker periodically checks. The preemption
condition is met when one of the flags in the global status
register is set. A timer periodically sets a flag in the sta-
tus register to implement preemptive scheduling (time slic-
ing). When control returns to the scheduler, the preempted
thread is enqueued again, the actions requested through the
flags of the global status register are performed and the next
thread is dequeued.

2.3 Execution Unit
As illustrated by the downfall of UNCOL [27], it is next to
impossible to design a single intermediate language to acco-
modate all programming languages. As a consequence, we
do not define a concrete execution unit in Seam. Instead, all
control structures interpreted by the execution unit are pa-
rameterized over the actual execution unit. Seam defines an
abstract task manager interface, which comprises the neces-

sary functions for interpreting stack frames: This includes
executing a task, handling exceptions (or raising them to
the next stack frame), and clearing no-longer-needed ref-
erences to store nodes from stack frames prior to garbage
collection. We chose per-frame parameterization (instead of
per-thread): Stack frames store a reference to the associated
task manager in their first slot; operations on stack frames
retrieve the actual task manager and delegate to it. This
implies that the computation within a single thread can be
carried out by several task managers in conjunction.

Accordingly, we need a generic way to create stack frames, as
a function application does (or a procedure call, or a method
invocation). Seam therefore defines an abstract task cre-
ator interface to perform stack frame creation. A first-class
computation (a function closure, procedure, or method) is
a pair of code and environment. In our representation, it is
a block whose first subnode stores the code, while the re-
maining subnodes store the environment. Code in turn is
a block whose first subnode is the task creator implementa-
tion, while the remaining subnodes are the code representa-
tion as defined by the task creator. A global register bank
provides for passing arguments. We obtain a generic way
to execute a task, regardless of the language in which it is
implemented.

The downside of parameterizing stack frames and first-class
computations is the extra indirection (virtual call) this im-
plies. This overhead can be eliminated, however, when a
language implementor knows that the same task manager/
task creator is associated with the caller and the callee in an
invocation (“intra-language invocation”). In practice, lan-
guage implementors can then make performance gracefully
degrading with increasing use of cross-language calls. One
implementation that does this is described in Section 7.2.

Related Work. Traditional virtual machines define a sin-
gle worker and a single type of frame. The Mozart VM only
knows about frames corresponding to Oz byte code; special
tasks as for calling built-ins, releasing locks or handling ex-
ceptions are encoded by internal instructions camouflaged
in a look-alike Oz byte code frame. The .NET CLR defines
a single code representation, called IL (Intermediate Lan-
guage), which—although much more expressive than JVM
byte code—is very much influenced by the object-oriented
paradigm as implemented by all of the Microsoft languages
C# [29], Visual Basic.NET, and Managed C++.

Vmgen [8], despite its name, generates just an interpreter,
and can be used to complement our approach—to actually
generate a task manager implementation. The XVM ap-
proach [10] discusses bridging between virtual and physi-
cal machines, and considers extensibility with regard to this
bridging. The Virtual Virtual Machine, or VVM [21], is
designed for safe dynamic reconfiguration of systems. Its
understanding of extensibility is to lift virtual machine com-
ponents to the application level.

2.4 I/O Subsystem
Seam’s input/output subsystem corresponds to what is more
or less standard in virtual machines: It provides primitives
for interacting with files, pipes, and sockets. When a thread
cannot immediately perform an I/O operation due to data

inavailability, its execution has to be temporarily suspended
so that other threads can be executed until data becomes
available.

This means that a thread can be in one of several states: We
say it is runnable when it resides in the scheduler’s thread
queue. When it is being executed, it is running. While a
thread is waiting until an I/O operation can be performed,
it is blocked. When the last task has been popped from a
thread’s stack, the thread becomes terminated.

The scheduler periodically polls I/O channels to eventually
make blocked threads runnable again. When the thread
queue is empty and there are still blocked threads, the sched-
uler enters an idle loop, blocking the whole process until a
thread can be made runnable again. If the thread queue is
empty and no thread is waiting for I/O, the virtual machine
terminates. On some operating systems, a separate system
thread can be used to wait for I/O and signal data avail-
ability asynchronously, by setting a flag in the global status
register to avoid polling.

The next section addresses a more general case of thread
synchronization and reduces the I/O special case to it.

3. CONCURRENCY WITH TRANSIENTS
Concurrent systems need a synchronization and communica-
tion facility to enable cooperation between threads. Seam
provides for data-flow synchronization and laziness in the
form of transients.

A transient is a placeholder for a value which is not yet
known. When the value becomes known, the transient is re-
placed by the value. Computations that find a transient in
place of a value block until the value becomes known. Tran-
sients come in several flavors, of which we describe two in
this paper. A future is a transient which can be explicitly re-
placed by its value. Every future stores a queue of blocked
threads to reschedule when it is replaced. A by-need is a
transient associated with a first-class computation (see Sec-
tion 2.3). When a thread requires the value of a by-need, the
by-need turns into a future (on which the requesting thread
blocks), while simultaneously a new runnable thread is cre-
ated with two tasks on its stack: one to explicitly replace the
future, and on top of it a task created from the first-class
computation. In other words, the first-class computation
is executed at most once. By-needs are used to implement
lazy (that is, demand-driven) computations.2 Further kinds
of transients are supported by the implementation, which
we will not present here.

The introduction of transients affects the virtual machine’s
components as follows. The store represents transients as
blocks whose label denotes the kind of transient. Further-
more, a reserved label, internal to the store, is used to rep-
resent references. A replaced transient updates its label in
place to become a reference, and stores an edge to the node
the transient was replaced with. The garbage collector elim-

2A variant of by-needs is imaginable which would simply
push the two tasks on the requesting thread, to dispense
with the overhead of explicit thread creation. The difference
is observable only in languages which have a notion of a first-
class thread with identity.

inates references. The store has two APIs: One to use on
nodes that can be transients, which handles replaced tran-
sients transparently (by following reference chains) and tests
for transients, and another to use on nodes where it is stati-
cally known that they can never be transients (where precon-
ditions assert that the nodes effectively are no transients or
references). Thus, internal control structures and languages
that do not support transients (or only in special contexts)
are not penalized by Seam’s support for transients. This de-
sign makes performance gracefully degrading with increasing
use of transients.

The scheduler is extended to the handle different kinds of
transients when they are requested by computations. The
thread needs to be removed from the runnable queue, and
maybe a new thread is created.

The task manager implementations making up the execu-
tion unit need to use the corresponding store API, depend-
ing on whether they wish to handle transients or not, and
to notify the scheduler of transient requests.

The I/O subsystem actually builds on transients to handle
blocking on I/O. This implies a single mechanism to block
and wake up threads, which has a straightforward and ele-
gant formulation.

Related Work. The transients supported by Seam are
the implementation basis for futures as supported by Alice,
and as explored in a formal calculus [20]. Transients can be
used to express data-flow synchronization, logic variables as
found in logic programming languages such as Oz [26], and
laziness as found in Haskell [11]. By-needs are closely related
to thunks as used in the implementation of lazy functional
languages.

4. LANGUAGE IMPLEMENTATION
A language implementor targeting Seam reuses the generic
infrastructure as shown in Figure 1, by providing the com-
ponents which the infrastructure parameterizes over. This
set of components makes up what we call a language layer.
This section outlines what it means in practice to implement
a language layer.

Data Representation. The store provides an expressive,
but low-level model of data representation. Language imple-
mentors need a high-level interface to their data structures
for conciseness and for making representation invariants ex-
plicit. The abstract store currently provides the data graph
nodes in the form of classes and objects. A high-level inter-
face to a specific language’s data structures would specialize
the store node classes to define data layout and high-level
types for subnodes. Virtual functions can be simulated by
assigning distinct integer labels to blocks and using them for
dispatch.

Code Representation. Seam makes no assumption as
to how code is represented. Language implementors must
therefore define their own code representation. If code is
to be subject to garbage collection, it must be encapsulated
within store nodes.3 For instance, byte code and native code

3An alternative is to store code outside the garbage-collected

can be wrapped into a store chunk.4

Task Manager. To actually execute code, language imple-
mentors implement the task manager interface. They first
define a stack frame layout. Arbitrary layouts are possible,
to represent an activation record as required by the language
(the implicit first subnode storing the actual task manager
is hidden by Seam’s interface). Stack frames can be of arbi-
trary size. An interpreter has to be implemented to operate
on code representation and stack frame layout.

Task Creator. To actually allocate a stack frame with the
layout defined above, the task creator interface has to be
implemented. First-class computations as defined by Seam
store the task creator along with the represented computa-
tion’s environment, whose layout can to be chosen by the
language implementor.

Language Primitives. Finally, the language implemen-
tor provides the primitives required by the language and its
accompanying standard libraries. One possibility is to rep-
resent each primitive by an instruction in the code (or, in
the case of native code, to inline or directly call it, for in-
stance, as a C function). The second alternative is to wrap
each primitives up as a first-class computation with its indi-
vidual task creator and task manager. This case is handled
by Seam’s generic interoperability features discussed in the
next section.

5. INTEROPERABILITY
Both for language implementors and for language users, in-
teroperability is a desirable feature. Language implemen-
tors can use interoperability to reuse existing technology,
originally intended for another language, to facilitate their
implementation task. Language users benefit from interop-
erability because it enables them to write mixed-language
applications: They can “use the right tool for each task”.

A prerequisite of language interoperation is a common un-
derstanding of the idioms with which languages are meant to
interoperate. The more idioms are shared between language
implementations, the simpler interoperability becomes for
the language implementor—provided the effort required to
abide to those idioms is low.

Seam provides a common unterstanding of a number of id-
ioms that programming language designers seem to widely
agree upon. In particular, Seam defines generic first-class
computations and their invocation by means of the task
creator and task manager interfaces. Seam’s global argu-
ment register bank provides a uniform way to pass argu-
ments and return values. An argument count register en-
ables variable-argument functions as featured by Lisp or C,
as well as conversion between one-argument and multiple-
argument functions as typically performed in ML implemen-
tations. A common light-weight concurrency model along
with generic synchronization primitives in the form of tran-
sients enables mixed-language concurrent applications, in-

store. Our current implementation provides weak maps [7],
whose finalization mechanism can then be used to explicitly
free memory taken up by code.
4If the store uses a relocating garbage collector, then of
course native code must be position-independent.

Figure 1: Virtual Machine Architecture Overview

defines

PC Env

Argument Bank

Runnable Queue

.

.

.

Store

re
fe

re
nc

es

"Activation

"Interpreter"

"Activation
Record
Creation

Procedure"

Task Manager

Task Creator

Layers
Language

Stack Frame
Threads

CodeFirst−class Computation

Admin Data

Record"

"Environment" "Instructions"

im
pl

em
en

t

SRArg Ctr

cluding automatic data-flow synchronization and laziness.
Seam’s I/O subsystem makes it possible to share input and
output channels. All this is based on a single store which
represents data specific to all languages in a unified data
graph.

Of course, this is just the technical side of interoperation.
On the semantic side, language implementors have to take
care of compatibility themselves, such as matching num-
ber and order of arguments when performing cross-language
calls. It is the responsibility of language implementors to
provide for data representation conversion and marshaling.
As such, real interoperability still implies pairwise matching
up of languages. Improving this situation is the subject of
future work.

From our experiments so far, this interoperability concept
also forms a valid basis on which to build a foreign-function
(resp. native method) interface. This is further discussed in
Section 7.

Related Work. .NET’s Common Language Specification
(CLS) [18] defines a very rich set of idioms that languages
are encouraged to share. The standard Microsoft set for lan-
guage implementations to call themselves CLS-compliant is
very high—so high that it incurs a performance cost for lan-
guages that do not match the CLS closely enough. It can
be argued that this cost only has to be paid at interopera-
tion boundaries, but actual applications may want to cross
these boundaries with arbitrarily fine granularity. Moreover,
distinguishing inter- and intra-language calls increases the
complexity of the language’s compiler, which in the extreme
has to support two distinct data representations and call-
ing conventions and has to convert between them. A picky
observer of the evolution from Visual Basic 6 to Visual Ba-
sic.NET could rather regard it as a concealed effort to make
Visual Basic CLS-compliant.

6. PICKLING AS A GENERIC SERVICE
Seam’s parameterization over task managers is very expres-
sive. To demonstrate this, we present the generic pickling
and unpickling service Seam provides—in a way that makes
them configurable by language implementors. Providing ser-
vices like pickling is interesting for turning Seam into a mid-
dleware instead of just a virtual machine. Note that pickling
is a basis for other openness services, like components and
distribution, as exemplified by Mozart [31].

This section is structured as follows. After introducing ter-
minology for pickling, we identify the different types of nodes
that require treatment during pickling. We outline the basic
process, then incrementally refine it to handle the different
types of nodes.

Terminology. Pickling (also called serialization) is the
process of externalizing a data graph to a sequence of bytes,
called a pickle. Pickles are used for persistence (when stored
on a file) or for communicating data between distributed
computation sites (when transferred to another process).
The process of reconstructing store nodes from a pickle is
called unpickling (or deserialization). The reconstructed
graph must be isomorphic to the graph as it existed at time
of pickling, in particular, have the same sharing between the
nodes contained in the pickle (including cycles).

Node Types. Different types of data require different
treatments during pickling. We can identify the following
four per-node pickling semantics:

Cloneable Nodes. Some nodes need to be cloned, for in-
stance if they represent stateless data. Stateful data
structures can be cloned as well, resulting in a snap-
shot of the state the data structure was in at the time
of pickling.

Translated Nodes. Other types of nodes need to be trans-
formed, for instance into a platform-independent rep-
resentation. Conversely, unpickling may construct a
platform-specific representation.

Resource Nodes. Still other types of nodes have no mean-
ingful external representation, for instance, if they rep-
resent resources pertinent to the local computation site
(such as operating system handles to open files or to
graphical windows). Such nodes cannot be pickled.

Transient Nodes. Last but not least, transients have to
be considered. Pickling a future may not make sense,
since a clone constructed by unpickling would not have
an associated computation to eventually replace it.

For pickling to be a generic service, it has to distinguish
all of these node types, and language implementors must
be able to associate the appropriate pickling semantics with
their data structures.

Basic Process. The basic pickling procedure for clon-
able nodes consists of a depth-first traversal of the data
graph, starting from a root node, and producing a byte
sequence from which an isomorphic graph may be recon-
structed. Seam provides a pickler that builds on Seam’s
infrastructure. We define a task manager to perform the
traversal. Its task is invoked with the output byte buffer
as argument, and the activation record stores a reference to
the node to visit. In the process, nodes that are encoun-
tered more than once need to be recognized. Remember-
ing nodes requires a mapping from nodes to offsets in the
serialized representation. This mapping is therefore sup-
plied as an argument to the task. The task then consists
of writing a serialized representation of the node (its kind,
label, and number of edges) and of pushing new tasks for
the subnodes—unless the node is already contained in the
mapping, in which case a reference to that node is written.

The unpickling process is similar. We define a task manager
to perform a single unpickling task. An unpickling task con-
sists of a node that requires its edges to be initialized, and
the number of the edge to initialize next. Its arguments
are the input byte sequence and a mapping of offsets in the
byte sequence to nodes, to reconstruct sharing. The task
manager reads a node specification from the input byte se-
quence and constructs the corresponding node, then initial-
izes the parent’s edge specified in the stack frame, updating
the stack frame to advance to the parent’s next edge (if any)
and pushing new tasks for initializing subnodes.

Expressing the pickler and unpickler as task managers makes
them concurrent (that is, preemptable). Their state is au-
tomatically saved along with the task stack and arguments
when a thread switch occurs.

Note that if code is modeled as ordinary store nodes, it
automatically becomes part of pickles of higher-order data
structures.

Translation. The process outlined above deals only with
cloneable data. We now extend this process to deal with
translated nodes.

Externalized data is often intended for cross-platform infor-
mation interchange, while data in the store is intended for
computations. These differing goals require different repre-
sentations. We call the externalized representation an ab-
stract representation, as opposed to the concrete representa-
tion used for computation. When a concrete representation
is to be externalized, it needs to be abstracted; conversely,
when an abstract representation is read in, it needs to be
instantiated. Each language defines its own abstract and
concrete representations, and we want pickles to be able to
represent mixed-language data graphs. For this reason, the
abstraction and instantiation functions need to have point-
wise definitions—that is, one definition for each type in every
language.

These concepts are introduced in the design by defining con-
crete and abstract representations as well as abstraction and
instantiation functions in Seam. Concrete and abstract rep-
resentations are store data structures. For most nodes, ab-
straction and instantiation are the identity function. We

introduce one new specialized store block to each kind of
representation. Instantiated nodes are nodes on which the
abstraction function is not the identity, but user-supplied.
Conversely, abstract nodes are the nodes on which the in-
stantiation function is user-supplied. Both instantiated and
concrete nodes are store blocks with reserved integer labels.
The first subnode of an instantiated node is a handler that
can be queried for the abstract representation, as a function
of the other subnodes. The result can be any store node,
but will typically be an abstract node. The first subnode
of an abstract node is the type identifier for an instantia-
tion function, which expects the abstract node as argument
and returns the concrete representation—typically a con-
crete node.

Operationally, these nodes are treated as follows. When the
pickler encounters an instantiated node, it queries the han-
dler for the abstract representation and processes it in place
of the original node. The unpickler is parameterized over
a mapping from type identifiers to instantiation functions.
When it has reconstructed an abstract node from the pickle,
it applies the instantiation function specified by the node’s
type identifier, and inserts the returned concrete representa-
tion into the constructed graph instead of the abstract node.
The mapping table is extended with language-specific type
identifiers when the corresponding language layer is initial-
ized.

One typical data structure for which there exist both ab-
stract and concrete representations is code. The abstract
representation might be a byte code, while the concrete
representation might be native code. This offers a simple
scheme to implement demand-driven run-time compilation:
The instantiation function for code can return a by-need,
which, when requested, causes the run-time compiler to be
run. Representing code as instantiated nodes is the only
modification we need to make to the generic components in
order to make abstraction work.

Resources. Nodes that represent resources are not allowed
to be pickled, in other words, they have no abstract repre-
sentation. It is logical, therefore, to represent resource nodes
as instantiated nodes with a handler that returns an error
value instead of a store node. The pickler checks for this
error value and, if found, raises an exception.

Transients. Since we do not want transients to be written
to a pickle, we simply let the pickler request them. This
means that the pickling thread can block in the middle of
writing a pickle. This is fine since the pickler is preempt-
able (the state is saved due to the explicit representation of
pickling tasks on the thread’s stack). We say that pickling is
incremental—when the pickling thread is woken up, it con-
tinues with the node that the transient was replaced with,
and needs not start again from scratch.

Related Work. Pickling is related to serialization as found
in other programming systems, for instance in the Java 2
Platform [28]. In contrast to our approach, Java’s approach
does not support including code in serialized data; deseri-
alization instead links to classes referenced by identifiers in
the serialized representation. Java’s serialization is highly
configurable and can handle all of the node kinds we have

described above, although in a less principled manner. An
application of Java serialization to achieve similar semantics
as Alice’s pickling, which corresponds to what is described
above, has been implemented for DML [25]. Java’s serializa-
tion specification is a lot more complex, however, than the
one we propose.

7. PROTOTYPE
In this section, we present our prototype implementation of
Seam in C++ and the language layers built on top of it.
Section 7.1 discusses implementation aspects of the generic
virtual machine services. The design is validated by two
language layers built on top of it: A complete implemen-
tation of the Alice programming language is described in
Section 7.2 and a low-effort implementation of a Java Vir-
tual Machine is presented in Section 7.3. We conclude with
a performance evaluation in Section 7.4.

7.1 Generic Services
Store. The store implements the data graph described in
Section 2.1. Our tagging scheme and heap layout are in-
spired by that described by Leroy [14]. We use tagged point-
ers as the type of store nodes, with one tag bit serving to
distinguish between 31-bit integers and pointers to heap-
allocated data structures. Pointers have an additional tag
bit, so we can distinguish pointers to transients from point-
ers to blocks or chunks without requiring a memory access.
This improves efficiency of transient tests and of dereferenc-
ing.

In addition, the store provides two built-in collection types:
weak maps [7], which provide for finalization, and generic
maps, whose keys can be arbitrary (non-transient) store
nodes. Both require special handling in the garbage col-
lector. Nodes in weak maps are finalized when the garbage
collector determines that the last reference (excluding that
from the weak map) has become garbage. Generic maps are
based on hashing, using token equality and address-of as
hash function. Thus, they have to be rehashed after every
garbage collection.

Our store implements a generational copying garbage col-
lector with Cheney-style scanning and Ungar remembered
sets [34]. Scanning eliminates reference nodes, that is, tran-
sients that have already been replaced.

Execution Unit. The task manager and task creator in-
terfaces are defined as abstract C++ classes. They define
a small number of virtual functions that language imple-
mentors must provide in derived classes. Pointers to task
manager and task creator objects are represented as integer
nodes in the store, using casts.

Pickling. As described in Section 6, the pickler maintains a
mapping from visited nodes to offsets in the emitted pickle.
A well-known technique is to destructively mark nodes as
visited in the heap, similar to forward pointers as used by
garbage collectors. This technique is not applicable for in-
cremental pickling, which can be interrupted to run other
threads, which may operate on the same data structures.
Our implementation therefore represents this mapping as a
generic map. Checking for sharing is then constant time,

Table 1: Component Size Overview

Component #LOC Subcomponent #LOC
Generic 11500 Store 3500

Pickling 1650
Alice 12300 Run-time Compiler 3400

Interpreter 1100
Primitives 5750

Java 8500 Primitives 1500

which makes pickling linear in the number of nodes despite
its concurrency.

Implementation Effort. The implementation effort of our
prototype system, measured in lines of C++ code, is shown
in Table 1. The left column shows the total size of the
implementation layers, while the right column details how
much of the code pertains to which subcomponent. The
numbers show that our implementation is very compact.

Related work. Java serialization, too, is concurrent and
needs to represent visited nodes explicitly. Java provides a
method to compute a first-class hash value for each object,
sometimes implemented by representing it in the same field
as the object’s lock (which would then be an index into an
array of locks). Where Java sacrifices space for every hashed
object once and for all, we only pay the price for hashing
during the lifetime of the generic map.

7.2 Alice-on-SEAM
Alice is an extension of SML for concurrent open program-
ming [1]. It features transients in the form of lazy futures
(that is, Seam’s by-needs), concurrent futures (Seam fu-
tures), holes for top-down construction of data structures
and failed futures for signaling failed computations, by rais-
ing exceptions upon request. Alice has a component system
which builds on pickling: A component is a pickled triple
of import specification, export specification, and a function
that, when applied, evaluates the declarations in the body of
the component. The component manager, which is itself im-
plemented in Alice, type-checks and links components, and
does so lazily via the use of lazy futures. The component
manager is bootstrapped by a boot linker provided in the
Alice language layer. A stand-alone Alice application is a
component that executes the application as a side-effect of
its evaluation.

Transients are allowed in data structures of all Alice types,
and the primitive operations of the language implicitly syn-
chronize, such as pattern matching or procedure application.
This is similar to Oz [26]. Accordingly, practically all of the
Alice language layer uses the transient-aware store API.

The representation of Alice code is designed for compilation
rather than interpretation. It has, in its abstract represen-
tation, the form of a direct acyclic graph (loops are trans-
lated to recursion) whose nodes are the “instructions”. The
code is in static single assignment form. We implemented
two concrete representations and according task managers
for code execution: The first concrete representation corre-
sponds to the abstract representation, and the task manager
interprets the instruction graph. The second one is native

code: The instantiation function returns a by-need, which,
when requested, runs a run-time native code compiler. The
compiler allocates registers using linear scan register alloca-
tion [22] and emits position-independent machine code into
store chunks using GNU Lightning [4]. The corresponding
task manager bridges between C++ and the generated na-
tive code. Run-time compilation recognizes intra-language
calls of functions in the closure of the compiled code, and
optimizes them to remove the indirection imposed by task
creators. Native code performance is superior to the inter-
preter by about a factor of three.

Our Alice implementation provides a foreign function inter-
face along the lines of what has been outlined in Section 5.
A dedicated task creator and task manager handles the invo-
cation of foreign functions. Foreign functions can be higher-
order and call back into Alice. If a foreign function calls an
Alice function in non-tail position, it needs to define a task
manager to push a continuation implemented in C++.

7.3 Java-on-SEAM
The Java-on-Seam implementation consists of three main
components: the class file parser, the class loader and the
byte code interpreter.

Class file parsing is implemented as an atomic operation.
The class file is read into a chunk and a symbolic type repre-
sentation is constructed from it. Used types are represented
as symbolic references in the constant pool. We support only
class files as specified by the JVM specification [15]; we in-
tend to support pickled classes in the future.

Type loading is performed by the class loader, which in-
vokes the class file parser to obtain and verify the symbolic
type representation. Verificiation is not yet implemented
and thus always succeeds. The type is prepared, that is, a
concrete type is constructed from the symbolic representa-
tion, with a run-time constant pool consisting of concrete
references.

The byte code interpreter executes Java byte code. Meth-
ods are first-class computations whose environment is the
run-time constant pool. Method activation records are al-
located on the task stacks provided by Seam. Currently,
the instructions are implemented näıvely following the JVM
specification. Thus, every static field access, static method
invocation and object creation has to acquire the class lock,
and check wether the class object has yet been initialized. If
not, the static initializer is run. Thread-reentrant locks are
implemented as first-class values based on futures—waiting
for a lock corresponds to Seam’s concept of blocking. Be-
fore a static method call, a special task manager is pushed
to release the class lock when the method returns.

The JVM specification gives implementations some freedom
in the timing of type loading and linking, but requires that
each class or interface must be initialized on its first active
use [32]. Our implementation is fully lazy in that loading
and linking are postponed until the first active use of a type.
To achieve this, preparation creates the references in the
run-time constant pool as by-needs. When the by-need is
requested by, say, a method invocation, this triggers method
lookup, which in turn triggers (if not yet performed) class

loading.

As the JVM specification does not impose any particular
binary data layout, Java types and objects are straightfor-
wardly mapped onto store blocks. We try to represent Java
integral types as store integers. Since store integers are only
31 bits in size, long integers must be boxed in a store chunk.
A compilation option for experiments represents Java’s 32-
bit integers as 31 bits, losing one bit. All floating point
values are also boxed.

Table 1 again summarizes the implementation effort of the
JVM language layer. We want to mention that it took only
three person-weeks to complete.

7.4 Performance Evaluation
This section experimentally assesses the performance results
of our current implementation. The performance results in
this section were obtained on a Sony GRX316MP with a
1600MHz Pentium 4 processor running Windows XP. The
system has 512MB of main memory.

We evaluate the system with benchmarks Scheidhauer used
to evaluate the Mozart VM [23]. We run them on four differ-
ent systems. Two of these are Alice-on-Seam and Java-on-
Seam as presented above. The Alice compiler has a second
backend, which emits Oz byte code for the Mozart VM [12].5

Alice-on-Mozart becomes our third test system. Last but
not least, we use the JVM shipped with Sun’s Java 2 SDK
1.4.1 (named Java-on-SDK in the following). We compiled
the Java benchmarks with javac from Sun’s SDK. We ran
Alice-on-Seam with our simple run-time compiler, whose
quality we deem to be roughly equivalent to optimized byte
code. All other systems used interpreters, that is, the JIT-
ter was turned off in Java-on-SDK. No other configuration
or tuning was done.

We focus on three common cases: recursive computation
with simple integer arithmetic, concurrent computation with
data-flow synchronization, and symbolic computation. We
report the minimum time obtained from eight runs of each
benchmark on each system, with a preceeding dry run to
hide startup effects such as lazy component resp. type link-
ing. Table 2 shows the results. We emphasize that these are
preliminary results.

Recursion. fib(31) and tak(24, 16, 8) are standard bench-
marks. Java-on-SDK performs best: It is 3.8 resp. 1.6 times
faster than Alice-on-Mozart. Java-on-Seam performs worst,
taking twice resp. four times as long as Alice-on-Mozart.

The reason for Seam’s bad performance is that these bench-
marks actually exhibit a worst-case behaviour of the cur-
rent implementation. We represent stacks as arrays of ref-
erences to activation records. Like all data, these are allo-
cated on the heap. In real applications, which perform com-
putations between function applications, the generational
garbage collector releases space consumed by obsolete stack
frames early enough, sparing us any special treatment of
stacks. In contrast, fib and tak suffer from heavy allocation

5Alice on Mozart performs roughly within 30 percent as well
as Oz on Mozart.

Table 2: Benchmark Results (in milliseconds)

fib tak mkthread concfib nrev deriv
Alice-on-Mozart 1061 580 451 180 1341 390
Alice-on-Seam 2203 1522 250 60 1652 551
Java-on-SDK 280 360 24045 10475 1792 1642
Java-on-Seam 2123 2234 451 100 12307 4807

and frequent garbage collections: The youngest generation
is rapidly filled, and this requires either a minor collection
or more memory to be made available to the youngest gen-
eration. In both cases, the overall performance of the VM
suffers.

We see several solutions. The Mozart VM circumvents this
problem by using free lists for environments, which enable
for explicit deallocation and reuse. Another solution would
be to flatten task stacks, that is, represent the activation
records inline instead of as separate nodes. To prevent
frequent allocation of large blocks this would incur, stacks
should then be handled specially in the store.

Concurrency. Languages intended for open programming
such as Java and Alice need to support concurrency and
synchronization efficiently. mkthread sequentially creates
100,000 threads executing the empty computation and waits
for their termination. concfib computes the Fibonacci num-
ber of 20, creating a thread for every recursive call. This dif-
fers from fib in that a large number of threads are runnable
at the same time. The Alice implementation exploits Al-
ice’s implicit data-flow synchronization, whereas the Java
implementation uses the Thread methods start and join.

Alice-on-Seam is two to three times faster than Alice-on-
Mozart, and outperforms Java-on-SDK by more than one
order of magnitude. To the best of our knowledge, Java-
on-SDK does no longer support configurability of green and
native threads; presumably those threads are heavy-weight
system threads. Java-on-Seam benefits from Seam’s light-
weight threads.

Symbolic Computation. nrev allocates a list with 5000
elements and näıvely reverses this list using ‘append’. deriv
computes 30 times the 6th symbolic derivation of (1

x
)3. Both

benchmarks actually perform some work on algebraic data
types between two recursion steps, thereby producing lots
of temporary heap allocation. This can be considered the
average case for many applications.

Alice-on-Mozart performs best, closely followed within 20 to
40 percent by Alice-on-Seam. This result indicates that our
design decision to not handle stacks specially is adequate.
Moreover, it evidences that our Seam prototype is compet-
itive with a highly optimized virtual machine specifically
designed for a single language.

Java-on-SDK performs worse than Alice-on-Seam, ranging
from 8 percent slower for nrev up to 3 times as slow for
deriv : Object allocation is obviously expensive on the JVM.
The bad performance of deriv indicates that virtual method
invocation, the Java idiom corresponding the Alice’s pattern
matching, is expensive.

Large Applications. We have tested a large application
on Alice-on-Seam, namely the Alice compiler recompiling
itself and the system libraries. Performance is competitive
with Alice-on-Mozart.

8. FUTURE WORK
We have presented a the architecture of a generic virtual
machine that is extensible to become a specialized runtime
environment for many languages. We have demonstrated
the validity of the approach by implementing two language
layers on top of it, one for the functional concurrent language
Alice, the other for a complete Java Virtual Machine.

We have identified a number of areas worthy of future re-
search. For one, we will strive to improve the system’s effi-
ciency. Another goal is to improve interoperability. Pairwise
matching-up of languages, as is still necessary now, can be
improved by proposing a Seam-based “common language
specification”, as Microsoft did for .NET. In particular, we
would like to suggest a common representation for program
components, to obviate the need for implementing language-
specific component managers or class loaders, an to provide
a generic way to establish references to program components
implemented in different languages.

9. ACKNOWLEDGMENTS
Seam was developed in a follow-up project to Mozart [31],
and as such owes much to the numerous developers of and
contributors to the Mozart VM. The authors would like to
thank Ulrike Becker-Kornstaedt for her comments on this
paper. The Alice language layer is a joint work of the whole
Alice Project—we want to mention Andreas Rossberg in
particular for his work on the compiler frontend and for the
numerous discussions. Our thanks go to Christian Schulte
for the distinction of abstract and concrete representations
in pickling, and for having brought up the name STEAM
(Simple Tiny Extensible Abstract Machine). Thanks also
go to Guido Tack for his helpful comments on the paper.

10. REFERENCES
[1] The Alice programming language. Web Site at the

Programming Systems Lab, Universität des
Saarlandes, 2002. http://www.ps.uni-sb.de/alice/.

[2] N. Benton, A. Kennedy, and G. Russell. Compiling
Standard ML to Java bytecodes. In Proceedings of the
3rd International Conference on Functional
Programming (ICFP), pages 129–140, Baltimore,
Maryland, Sept. 1999. ACM Press.

[3] P. Bertelsen. Compiling SML to Java bytecode.
Master’s thesis, Department of Information
Technology, Technical University of Denmark, Jan.
1998.

[4] P. Bonzini. GNU Lightning, 1.0 edition, 2002.
http://www.gnu.org/software/lightning/.

[5] P. Bothner. Kawa: Compiling Scheme to Java. In Lisp
Users Conference (“Lisp in the Mainstream”),
Berkeley, California, Nov. 1998.

[6] T. Dowd, F. Henderson, and P. Ross. Compiling
Mercury to the .NET Common Language Runtime. In
Electronic Notes in Theoretical Computer Science,
volume 59.1, pages 70–85. Elsevier Science Publishers,
2001.

[7] R. K. Dybvig, C. Bruggemann, and D. Eby. Guardians
in a generation-based garbage collector. In Proceedings
of the Conference on Programming Language Design
and Implementation (PLDI), pages 207–216,
Albuquerque, New Mexico, June 1993. ACM Press.

[8] M. A. Ertl, D. Gregg, A. Krall, and B. Paysan.
Vmgen—a generator of efficient virtual machine
interpreters. Software–Practice and Experience,
32(3):265–294, 2002.

[9] J. Gutknecht. Active Oberon for .NET: An exercise in
object model mapping. In Electronic Notes in
Theoretical Computer Science, volume 59.1, pages
120–138. Elsevier Science Publishers, 2001.

[10] T. L. Harris. Extensible Virtual Machines. PhD thesis,
Churchill College, University of Cambridge, Dec. 2001.

[11] P. Hudak, S. L. Peyton Jones, and P. Wadler. Report
on the programming language Haskell. In SIGPLAN
Notices, volume 27(5), May 1992.

[12] L. Kornstaedt. Alice in the land of Oz—an
interoperability-based implementation of a functional
language on top of a relational language. In Electronic
Notes in Theoretical Computer Science, volume 59.1,
pages 18–33. Elsevier Science Publishers, 2001.

[13] T. X. Le. Berlioz: Compiling Oz to Java bytecode.
Master’s dissertation, National University of
Singapore, 2001.

[14] X. Leroy. The ZINC experiment: An economical
implementation of the ML language. Technical Report
RT-0117, INRIA, Feb. 1990.

[15] T. Lindholm and F. Yellin. The Java(TM) Virtual
Machine Specification. Addison Wesley, 2nd edition,
Apr. 1999.

[16] M. Mehl, T. Müller, C. Schulte, and R. Scheidhauer.
Interfacing to C and C++, 1.2.4 edition, 1998. Mozart
Online Documentation.

[17] M. Mehl, R. Scheidhauer, and C. Schulte. An abstract
machine for Oz. In Proceedings of PLILP’95, LNCS,
Utrecht, The Netherlands, 1995. Springer-Verlag.

[18] Microsoft. What is the Common Language
Specification? Online Documentation, 2001. http://
msdn.microsoft.com/library/en-us/cpguide/html/

cpconwhatiscommonlanguagespecification.asp.

[19] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). The MIT
Press, 1997.

[20] J. Niehren, J. Schwinghammer, and G. Smolka.
Concurrent computation in a lambda calculus with
futures. Programming Systems Lab, Universität des
Saarlandes, June 2002.

[21] I. Piumarta, B. Folliot, L. Seinturier, and
C. Baillarguet. Highly configurable operating systems:
The VVM approach. In Proceedings of the 3rd ECOOP
Workshop on Object-Orientation and Operating
Systems (OOOSWS), Cannes, France, June 2000.

[22] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21(5):895–913, 1999.

[23] R. Scheidhauer. Design, Implementierung und
Evaluierung einer virtuellen Maschine für Oz.
Doctoral dissertation, Fachbereich Informatik,
Universität des Saarlandes, Dec. 1998.

[24] C. Schulte. Programming Constraint Services.
Doctoral dissertation, Universität des Saarlandes,
Naturwissenschaftlich-Technische Fakultät I,
Fachrichtung Informatik, Saarbrücken, Germany, 2000.

[25] D. Simon. An implementation of the programming
language DML in Java: Runtime environment.
Diplomarbeit, Fachbereich Informatik, Universität des
Saarlandes, Feb. 2000.

[26] G. Smolka. The Oz programming model. In J. van
Leeuwen, editor, Computer Science Today, Lecture
Notes in Computer Science, Vol. 1000, pages 324–343.
Springer-Verlag, Berlin, 1995.

[27] T. B. Steel. A first version of UNCOL. In Proceedings
of the Western Joint Computer Conference, pages
371–377, 1961.

[28] Sun Microsystems, Inc. Java 2 SDK Documentation:
Object Serialization, 1.4.1 edition, 2002. http://java.
sun.com/j2se/1.4.1/docs/guide/serialization/.

[29] TC39/TG2. C# language specification. Technical
report, ECMA, 2001. To appear as ECMA-334.

[30] TC39/TG2. Common Language Infrastructure (CLI).
Technical report, ECMA, 2001. To appear as
ECMA-335.

[31] The Mozart Consortium. Mozart Oz 1.2.4. Web Site,
Sept. 2002. http://www.mozart-oz.org/.

[32] B. Venners. Inside the Java Virtual Machine.
McGraw-Hill, 2nd edition, Jan. 2000.

[33] A. Walter. An implementation of the programming
language DML in Java: Compiler. Diplomarbeit,
Fachbereich Informatik, Universität des Saarlandes,
Feb. 2000.

[34] P. R. Wilson. Uniprocessor garbage collection
techniques. In Proceedings of the International
Workshop on Memory Management, number 637 in
Lecture Notes in Computer Science, Saint-Malo,
France, Sept. 1992. Springer-Verlag.

