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ABSTRACT
This paper discusses designs for integrating services in gen-
eral and open programming services in particular into vir-
tual machines. We draw on our experience with two sys-
tems. The first is Mozart, a programming system imple-
menting the language Oz. Mozart’s virtual machine pro-
vides a rich set of services for open programming, such as
concurrency, persistence of data and code, components with
dynamic linking, and distribution. The second system is
Alice, which is at the same time a statically-typed variant
of Oz, and an extension of Standard ML for open program-
ming. Our design proposals for open programming services
culminate in the definition of a virtual machine called Seam,
which we claim to be simple, efficient, and extensible. We
substantiate these claims with preliminary performance re-
sults.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies; D.2.11
[Software Engineering]: Software Architecture

General Terms
Design, Languages

Keywords
Virtual Machines, Experience Report, Lessons Learned

1. INTRODUCTION
Mozart [14] is an open programming system implementing
the programming language Oz. Oz is a rich multi-paradigm
language supporting the idioms of logic, concurrent, func-
tional, and object-oriented programming. Mozart is based
on a virtual machine that provides services required for open
programming. By this, we mean features that make an appli-
cation able to interact in non-trivial ways with other appli-
cations or application fragments that were unknown at the

time of implementing the application. Open programming
features include persistence, components with lazy dynamic
linking, and distribution.

This paper presents our insights to the design of services
and their integration into virtual machines in general, and
of services for open programming in particular. This re-
search was motivated by experience gained in two projects.
The first is the implementation of the Mozart virtual ma-
chine [12, 9]. It started as a modification of the Warren
Abstract Machine [1], but its first approach not even fore-
saw garbage collection. While early versions were founded
on a clean model [10], the virtual machine wildly grew as
it tried to keep pace with quickly changing requirements.
We and our fellow implementors often needed to re-think
design decisions in order to accomodate new features, and
occasionally faced design problems that could not be solved
satisfyingly in the existing system.

The other project is the design and implementation of a
new language called Alice [2]. Conceptually, Alice is at the
same time a statically-typed variant of Oz, and an extension
of Standard ML [11] incorporating open programming fea-
tures à la Oz. The first Alice prototype was implemented by
translation to Mozart bytecode [7], with the additional goal
that both languages interoperate gracefully. In the course
of building the prototype, we were able to take a new view-
point on the Mozart virtual machine. This raised the wish
for an improved virtual machine, with a more rational ap-
proach to services, and more generally suited to support
other programming languages than Oz.

In this paper, we assess the implementation of the Mozart
virtual machine, focusing on the domain of open program-
ming. We identify which design decisions have proven them-
selves and which turned out to be hard to maintain or hard
to extend. We complement this critique by presenting a re-
vised design that addresses Mozart’s shortcomings and em-
phasizes simplicity, efficiency, genericity, and extensibility.
We have implemented this design in a virtual machine called
Seam [4]. We have a running prototype of Seam that can
execute full Alice. Performance of Alice on Seam is roughly
comparable to that of Alice on Mozart.

This paper is structured as follows. In Section 2, we describe
which language features we consider essential to enable open
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programming and why. Section 3 gives a high-level overview
of programming systems and virtual machines, and presents
principles for service design. We take a closer look at the
core components of the Mozart virtual machine in Section 4,
to provide a good infrastructure for services. Section 5 ex-
amines our open programming services. We describe what
from our experience has proven itself and what has not, and
from this experience present revised design decisions where
appropriate. Section 6 summarizes the current status of
Seam and presents a promising evaluation of our prototype.
Section 7 concludes the paper.

2. LANGUAGE FEATURES FOR
OPEN PROGRAMMING

The emphasis in open programming lies on two things: in-
teraction, and being dynamic. For example, a Web browser
supporting plug-ins to extend its functionality (for instance
to handle new content types) at run-time is open, a Web
server allowing new handlers for specific resources to be
added and replaced dynamically is open, and a compute
server that allows clients to submit arbitrary program frag-
ments as compute requests is open.

The following language and system features that we consider
essential for open programming have emerged from Oz and
Mozart. Alice implements these same features, although in
the context of a statically-typed programming language.

Concurrency dramatically simplifies the handling of mul-
tiple simultaneous connections, such as to files, graphical
windows, clients, servers, or peers. To make it possible for
a number of concurrent threads to cooperate, programming
systems have to provide synchronization primitives.

Dynamic linking is the composition at run-time of pro-
gram fragments known as components, and provides for con-
figurability and extensibility. In Oz and Alice, dynamic
linking is performed by module managers (resp. component
managers). A single running system can have arbitrarily
many module managers—in other words, it can link com-
ponents in separate, configurable namespaces. This pro-
vides for sandboxing. Component names are represented
as Uniform Resource Identifiers (URIs) [3], are available as
first-class entities and can be computed at run-time. This
enables, for instance, the realization of plug-ins and late
registration of handlers. Components can automatically be
downloaded from Web servers via HTTP.

Persistence (or pickling, or serialization) of language enti-
ties provides a means to define file types (file formats) and
communication protocols by means of expressive language-
level data structures, instead of just bits and bytes. In par-
ticular, Oz and Alice offer persistence of graph-structured
language data, maintaining coreferences and cycles.

Mobile code denotes the ability to transfer first-class pro-
cedures, that is, closures together with their code, to other
processes. A receiving process neither needs to know the
code beforehand, nor does it need to be able to locate it
upon reception of the closure. Mobile code makes it possi-
ble to define higher-order communication protocols and en-
ables implementation of expressive mobile agents. In Oz and
Alice, mobile code is obtained simply by defining pickling
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to operate on arbitrary higher-order data structures (data
structures containing first-class procedures).

Network-transparent distribution makes it irrelevant
to inter-connected computations whether they operate on
local or remote data. A distribution subsystem manages
automatic establishment of connections and exchange of lan-
guage data structures. The previously named language fea-
tures already allow the implementation of simple distribu-
tion support at the language level. If we require network
transparency on more data types than are supported by
pickling, or other distribution behaviours than cloning (for
example, stationary procedures with a remote procedure
call), then this requires additional support of the virtual
machine. We do not in this paper consider Mozart’s distri-
bution layer in detail.

Linguistic reflection gives a programming system the abil-
ity to generate new program fragments and incorporate them
into the ongoing computation [13]. This requires a language-
level interface to the compiler. Linguistic reflection serves
to accomodate user interaction and configuration using the
high-level language. Examples are evaluation of queries in a
command shell, an interactive top-level, or a source-level de-
bugger, or implementation of PHP- or ASP-like Web server
“pages” with dynamic recompilation.

3. ARCHITECTURE OF PROGRAMMING
SYSTEMS

A programming system for a (high-level) language com-
prises, besides a compiler and a run-time system for the
language, libraries and tools for developing applications, as
depicted in Figure 1. One central feature of open program-
ming is dynamic exchange of data and code. For this reason,
the user of the high-level language has no way to access the
features of the underlying hardware and operating system
but through abstractions. In other words, the programming
system defines a virtual machine that provides a system-
independent view of the concrete machine, and programs
targeting the virtual machine can run on any concrete ma-
chine for which an implementation of the virtual machine
exists.

The virtual machine needs to be implemented in a language
that is close to the underlying concrete machine in order to
implement the abstract interface. Using C or C++ allows to
easily port the virtual machine to a variety of architectures.
In the following, we will speak of the low-level language when
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we mean the language in which the virtual machine is im-
plemented.

Since the user-visible tools and libraries are often complex,
they are usually implemented in part in the low-level lan-
guage and in part in the high-level language. The interface
between the high-level and low-level parts consists of a num-
ber of primitives. We call a service of the virtual machine
the set of primitives required to implement a language-level
feature.

Only the virtual machine and its services need to be ported
when targeting a new platform. It is therefore desirable
to keep these as small as possible. Typically, only when
a feature is well-understood can one define a good virtual
machine service for it—one that is small while allowing an
efficient implementation of the feature.

In Section 3.1, we describe the structure of the core virtual
machine. Section 3.2 describes different ways how services
can be added to the core virtual machine, and their draw-
backs and advantages.

3.1 The Core Virtual Machine
The core virtual machine consists of a number of compo-
nents. The store provides a model of data representation
and memory management. The scheduler coordinates the
execution of concurrent threads. The execution unit actu-
ally executes code. The I/O subsystem abstracts away the
interface to the operating system’s input and output chan-
nels.

Store. The data structures used by computations reside in
the store. Conceptually, the store represents a graph of data
nodes; the implementation of the store manages allocation
of these nodes and their layout in computer memory. During
program execution, a number of these nodes is directly ref-
erenced from the program’s environment. The set of these
nodes called the root set. Since nodes in the store need not
be explicitly deallocated, memory needs to be reclaimed pe-
riodically according to a given policy, by a process called
garbage collection. Garbage collections can take place at
specified points during program execution called synchro-
nization points. The memory occupied by all nodes not
reachable directly or indirectly through edges of the store
graph is made available for allocation again.

Scheduler. Concurrency is supported through interleaved
execution of several threads, each of which maintains its own
task stack. The scheduler maintains a queue of threads
which are passed to the execution unit for execution in a
round-robin fashion. The threads in the queue are said to
be runnable; while a thread is being executed by the ex-
ecution unit, we say it is running. At each synchroniza-
tion point, the execution unit will preempt execution of
the current thread if a flag in the status register becomes
set. The status register is a vector of flags, each of which
signals an asynchronously raised condition which requires
synchronous handling, that is, while no thread is being exe-
cuted. One of the status register flags is periodically set by
a timer to achieve time-slicing for fair preemptive scheduling
of threads. Another status register flag is set by the store
to signal the need for a garbage collection.

Execution Unit. Programs are compiled to bytecode and
are executed by an interpreter. A procedure call creates
an activation record for the called procedure. Activation
records are managed in a task stack.

Concurrent I/O and Synchronization. An input/output
subsystem abstracts the details of the handling of commu-
nication channels with the environment of the virtual ma-
chine process, which may be specific to the operating system.
When a thread waits for an input/output channel to become
ready, it is said to be blocked. Runnable threads continue
to be executed while other threads are blocked. When in-
put/output channels become ready, the threads waiting for
them become runnable again, that is, they are enqueued in
the scheduler’s thread queue again.

Communication between concurrent threads requires syn-
chronization, and thus can also lead to blocking of threads.
Specifically, Mozart provides for logic variables and futures
for synchronization.

3.2 Architecture of Services
As outlined above, the virtual machine provides a number
of services on top of its core components. We want to distin-
guish between two design principles for services that differ
in how a service relates to the core.

We say a service is a stand-alone service if its realization is
independent of the core virtual machine, and it provides its
own infrastructure for memory management and execution
control. Computation within the service is atomic from the
scheduler’s point of view. Only the computation’s results
are communicated to the store.

In contrast, an integrated service reuses the core virtual ma-
chine as its infrastructure. In particular, the service allo-
cates its data structures in the store and its computations
execute under fine-grained control of the scheduler.

The following paragraphs discuss advantages and disadvan-
tages of using stand-alone vs. integrated services.

Stand-alone Services. Designing a service to be stand-
alone offers several advantages. The designer of a stand-
alone service can use the data representation best suited for
the service, instead of being constrained by the virtual ma-
chine’s store. This allows for optimal efficiency and expres-
sivity. Stand-alone services can use any external libraries,
reducing design and implementation effort. Finally, it is easy
to add new or experimental services to the virtual machine
as stand-alone services, because they can be implemented
independently (even when they are not yet deeply under-
stood).

On the other hand, it is difficult for stand-alone services to
interoperate with other services on the virtual machine in
a fine-grained way. For instance, stand-alone services are
atomic, that is, they do not interoperate with the core vir-
tual machine’s concurrency features. One way out is to split
the service into a number of (atomic) sub-services, so that
each has a short runtime and does not interfere noticeably
with preemptive scheduling. Such a partition may be hard
to find, or increase complexity.
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Another disadvantage of stand-alone services is that they
may increase total size of low-level code, because each carries
a full implementation of its own infrastructure. This may
result in maintenance and consistency problems.

Integrated Services. Reusing the core infrastructure ob-
viates the need of infrastructure duplication for each service.
Most importantly, automatic memory management comes
for free with reuse of the store. Integrated services inter-
operate with the core virtual machine’s concurrency model.
The resulting implementation may be smaller (if the service
had good potential for reuse) and may be perceived as more
elegant, because it focuses on implementing the service itself
and not some infrastructure.

The difficulty with designing an integrated service is that the
service’s data and control structures need to be modeled in
terms of what the core virtual machine offers. For instance,
data needs to be allocated as store nodes, possibly resulting
in less efficient representations because of the overhead in-
herent to store nodes. Resources need to be wrapped into
store nodes and handled by finalization (we call any entity
that is not fully managed by the store a resource, for example
an area of heap-allocated memory outside the store). In par-
ticular, the implementor may suffer from wrapping overhead
with any external libraries he may want to use, since any
data managed by the external library are resources. Some
libraries may even not be usable at all in the implementation
of an integrated service, because they may be fundamentally
incompatible with the core virtual machine (for instance, if
a library function can block the process, then it is not com-
patible with the virtual machine’s idea of concurrency).

4. DESIGN OF CORE COMPONENTS
Development of the Mozart virtual machine started shortly
after the design of the Oz language. Oz then had none of the
open programming features except for (at the time, implicit
and fine-grained) concurrency. The virtual machine imple-
mentation tried to keep pace with the fast development of
Oz and many services were at first only experimental. For
these reasons, most services are stand-alone. Now that the
open programming features are well-understood, we want
to investigate how they can be redesigned as integrated ser-
vices. Efficiency and genericity of the core components is
especially important for integrated services. This section
takes a closer look at some of the core components to make
them easier to use and reuse by services.

4.1 Store and Data Representation
Mozart’s Approach. Since Oz is a dynamically-typed lan-
guage, run-time type tests are frequent and need to be ef-
ficient. Mozart’s store therefore uses a two-level tagging
scheme. Pointers are tagged with three- to four-bit primary
tags that allow the distinction of the data types occurring
most frequently, such as logic variables, list components,
atoms, or records. A designated primary tag delegates node
type representation to a 16-bit secondary tag stored in a
header word in the heap-allocated node. A designated sec-
ondary tag stands for an extension node, a wrapper for cus-
tom data types managed by means of user-defined virtual
functions.

The store is managed by a stop-and-copy garbage collector.

Each node type is defined by a C++ class with (non-virtual)
methods for copying nodes, marking them, storing forward
pointers, and recursing on the contained pointers to other
nodes.

Experience. In Mozart, the only design criteria for data
structures were compactness and efficiency. Thus, from the
perspective of memory management, the nodes have an ad-
hoc definition. As a consequence, that allowed only for a
simple, recursively-defined garbage collector that consumes
C++ stack space. Classic techniques such as Cheney-style
scanning [15] were not possible because nodes are not self-
describing with respect to embedded pointers. Oz classes
are Oz data structures, and therefore suffer from the lack of
generational garbage collection. To compensate, class cre-
ation was optimized to trade time for space efficiency, and
the system libraries minimize use of classes or precompute
them.

Due to the ad-hoc definition of node types, every modifica-
tion to the representation of data structures or introduction
of a new node type requires re-thinking and adapting mem-
ory management. Even users defining extension nodes are
burdened with memory management issues.

The complex tagging scheme, whose two-level organization
is visible to all clients using store, is hard to modify. Over-
hauling it to extend the address space from 512 MB (full of
platform dependencies) to the full range of 32-bit addresses
has been a daunting task; now Mozart pays the penalty of
aligning all store nodes to double-words. More by luck than
by design, the most frequent of the nodes identified by pri-
mary tags fit into multiples of two words. A port to 64-bit
architectures is still outstanding.

Revised Design. Seam aims for a reusable store. Its uni-
form nodes à la ZINC [8] are generic, thus easy to use: Each
node is either tagged as an integer or as a heap block. The
header word present in all heap blocks specifies size and a
second-level tag, and all component words are tagged. Thus,
heap blocks are self-describing and can be treated uniformly,
allowing for a simple, Cheney-style garbage collector, and
making the implementation of techniques such as genera-
tional garbage collection maintainable. In summary, this
makes reuse of the store attractive. New data types sim-
ply identify themselves using the second-level tag, thus they
are cheap, easy to introduce, and do not need to care about
memory management: This is essential for successful reuse.
Porting this scheme to 64-bit architectures is straightfor-
ward. There is a single but : The additional header word
imposes an overhead on small blocks, for instance for list
components.

4.2 Code Representation
Mozart’s Approach. Code in the Mozart virtual machine
is a bytecode1 with a register-based instruction set strongly
inspired by that of the Warren Abstract Machine (WAM) [1].
Self-modifying instructions perform specialization with re-
spect to actual values of constants unknown at compile time.

1Conforming to common use, we use the term bytecode to
stand for the representation of intermediate languages used
in platform-independent object files, even if opcodes and
operands are not encoded as sequences of bytes.
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Until Version 2, Oz had implicit concurrency—this made
environment trimming as performed in the WAM imprac-
tical, which is why register liveness information is needed
for accurate garbage collection. Liveness information is not
represented explicitly, however: It is computed at run-time
as required and cached.

Experience. The register-based bytecode, together with a
language that implicitly initializes program variables with
unbound logic variables, led to a number of hard-to-find
compiler bugs: Incorrect allocation of registers almost al-
ways led to deadlocks that manifest themselves arbitrarily
late. A stack-based bytecode would have made the compiler
(and maybe the interpreter) significantly simpler; especially
since we never intended to have native code compilation,
where it is argued that a stack-based bytecode is at a dis-
advantage.

Although the compiler knows accurate liveness information
for the code it generates, it just throws it away: To com-
pensate, during garbage collection, liveness analysis must
again be performed for procedures that have a live activation
record. Mozart uses a non-linear liveness analysis algorithm
that only computes an approximation and not accurate data.
This precludes compiler optimizations such as dead code
elimination after calls to built-ins statically known never to
return (such as for raising exceptions). Since liveness infor-
mation is performed during garbage collection, no Oz data
structures may be used (the store is not in a state that would
allow it). Instead, analysis data is managed manually using
C++ heap allocation.

Revised Design. Seam’s bytecode is designed for efficient
run-time compilation. This provides a reusable infrastruc-
ture for optimizations that may be required by services, as
can be seen later. The bytecode is in static single assign-
ment (SSA) form, which can easily be mapped to either
stack-based or register-based architectures, and is the ba-
sis for many optimization techniques. Instead of the pro-
gram counter progressing in sequence, each instruction car-
ries an explicit reference to its successor. In other words,
instructions span a directed acyclic graph—acyclic because
the compiler transforms loops into tail-recursive procedures,
and procedure calls are always made through identifiers. It is
therefore not necessary to reconstruct an intermediate graph
representation for run-time code generation.

4.3 Concurrency
Mozart’s Approach. Mozart implements threads in the
virtual machine instead of using native threads managed by
the operating system, and minimizes them in terms of space
(especially concerning their stack). New threads are created
by a built-in procedure that expects as a nullary first-class
procedure the computation to execute. Furthermore, the
implementation guarantees fairness, which is typically not
offered by operating system threads.

Experience. Light-weight threads were a success, because
they made heavily concurrent designs possible: Instead of re-
stricting concurrency to where it is absolutely needed, con-
currency can be employed as a full-fledged design mecha-
nism.

Defining thread creation on first-class procedures introduced
a subtle form of memory leak. The instruction set manages
its environment in three register banks, namely temporary
“X” registers, local “Y” registers, and the closure (G reg-
isters). Liveness analysis is only performed on X registers.
In particular, G registers are always kept live, because it
must be assumed that the closure can be applied again and
again (which, in thread creations, is usually not the case).
A common open programming idiom is to create a stream
of values (that is, a non-terminated list that grows concur-
rently) and to spawn a separate thread to iterate over them.
This often leads to situations where the head of the list is
kept live in a Y or G register, and therefore, no part of the
list ever becomes garbage.

Revised Design. Threads with strong guarantees, namely
their light weight and fairness, may provide a useful infras-
tructure for services, and are therefore kept in Seam. The
bytecode’s SSA form with accurate liveness information for
the local environment avoids one kind of memory leak. Hav-
ing an explicit thread creation instruction in the bytecode
eliminates the other kind of memory leak, since no closure
needs to be constructed.

5. SUPPORT FOR OPEN PROGRAMMING
This section is structured by language features. For each
language feature except for concurrency, which is provided
as a core component, we describe the supporting virtual
machine service offered by Mozart, and revise its design.

5.1 Dynamic Linking
To discuss dynamic linking, we first define what a compo-
nent is and how components are linked. We then examine
how components are located at run-time, followed by opti-
mizations to make component-based programming efficient.

5.1.1 Components and Linking
Mozart’s Approach. In Mozart, a component is an Oz
record consisting of an import specification, an export spec-
ification, and its body [6]. Linking consists of applying the
unary procedure to a record of the imported modules. The
body actually evaluates the component and returns the ex-
ported module. Static and (lazy) dynamic linking use iden-
tical principles. Linking is performed by a component man-
ager implemented in Oz [5].

Experience. Representing components as values of the
high-level language had major advantages. The tools op-
erating on components are simple to implement in the high-
level language; besides the component manager, this in-
cludes a static linker. The virtual machine needs no support
for components except for loading a component. Built-in op-
erations of the virtual machine are nicely integrated into this
model as built-in components. Also, booting the virtual ma-
chine becomes simple: Mozart boots from a component that
has no imports except for a procedure that provides access
to the built-in components. The boot component initializes
the full-fledged component manager, and starts an applica-
tion (also a component). Typical programming systems for
high-level languages, in contrast, boot from a heap image.
The heap image needs to be prepared by some magic outside
the high-level language. Heap images do not provide a basis
for the construction of a component system.
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Revised Design. The design above has proven itself, and
it already maximizes reuse of the core, so we do not see a
need to revise it.

5.1.2 Locating Components
Mozart’s Approach. In Mozart, components and other
resources are denoted by URIs [3]. At run-time, a resource
URI needs to be localized, for example, via a HTTP down-
load, to an actual file from which the resource contents can
be obtained. Localization consists of rewriting the abstract
URI to a concrete URL (Uniform Resource Locator), and
accessing the resulting URL. Rewriting is implemented in
Oz, but downloading in C++, so that it can also be used
for the boot component.

Experience. The implementation of downloading in the
low-level language, as opposed to the high-level language, is
complex (it needs to resort to processes or system threads)
and hard to extend. FTP and HTTP download duplicates
input/output handling and, to be compatible with concur-
rency, requires a separate process (under Unix) resp. sys-
tem thread (under Windows). The feature that required a
low-level implementation, namely downloading of the boot
component, never actually proved useful.

Revised Design. In our revised design, we restrict the URI
of the boot component to directly point to a local file. We
therefore need no low-level implementation of downloading.
Instead, everything is designed for an implementation in
the high-level language and uses the standard input/output
primitives—in other words, is completely based on reuse of
the core.

5.1.3 Optimizations
Mozart’s Approach. Components were introduced into
Oz after the virtual machine’s bytecode was already defined
and optimized. Many of the optimizations, such as first-
order procedure application and the above-mentioned self-
modifying instructions, only apply at the top-level of a pro-
gram and not within procedures. To compensate for the per-
formance loss induced because component bodies are pro-
cedures, component bodies are marked as procedures that
require instantiation at the time of application. Instantia-
tion consists of copying the code of the procedure, replacing
placeholders for the values they define (closures and names)
by fresh values. This re-enables optimizations, for instance,
higher-order applications are turned into first-order applica-
tions again.

Experience. Code instantiation optimizes intra-module
calls, therefore produces good results for coarse-grained com-
ponents. Any optimization to recover has to be explicitly
foreseen by the instruction set, and the choice of optimiza-
tions covered (actually, only two) was ad-hoc. For instance,
inter-module calls (as are frequent in the presence of fine-
grained modularization) are not accounted for.

Revised Design. Mozart’s optimization correctly iden-
tifies specialization as a (subordinate) service. In Seam,
which by design features run-time compilation, specializa-
tion is integrated with the run-time compiler, and can per-
form optimizations more general than what the instruction
set can express. Self-modifying instructions as in Mozart

become unnecessary. Currently, the decision of when to
specialize is made by the offline compiler and encoded as
an alternative closure creation instruction.

5.2 Persistence
Pickling consists of performing a depth-first traversal of a
graph in the store, and generating a linear representation
from it (a pickle). Unpickling is the process of recreating
a graph from the linear representation. The components
discussed in Section 5.1 are stored on files using pickling.

Mozart’s Approach. The pickler performs two traversals
of the graph. First, all nodes are recorded in a hash table
to detect the sharing present in the graph, and it is tested
whether the graph contains any nodes not allowed in pickles.
If it does, an exception is raised. The second traversal per-
forms the actual pickling. The hash table used for sharing
detection hashes nodes on their address. After a garbage
collection (which modifies node addresses), the table needs
to be re-hashed. Graph traversal is iterative, managing its
own stack of yet-to-be-visited nodes. The unpickler consists
of a builder featuring operations for the top-down construc-
tion of data structures, and of an interpreter reading the
linear representation and invoking builder methods accord-
ingly. The builder internally maintains a stack of partially
initialized nodes, which are filled up using a similar tech-
nique to S-pointers in the WAM.

Experience. Mozart provides an abstract graph traversal
algorithm as a C++ class. The algorithm is instantiated
by overriding 22 type-specific processing methods. Because
Mozart nodes are not uniform, every node type has its own
traversal routine, and these do not use a consistent pol-
icy: The children of some compound nodes are traversed
left-to-right, others right-to-left. Sharing detection is left to
the subclasses (because, for instance, performance is better
when the two-pass pickler only actually tests for sharing in
its first pass); accordingly, macros for handling sharing are
expanded on average 13 times per pass. To make matters
worse, there are two types of sharing detection: The first
pass performs sharing detection on Oz nodes (labeling only
shared nodes), the second pass performs sharing detection
on manually managed C++ objects (all labeled).

For top-down construction, all picklable node types require
extra constructors and accessors to make late initialization
possible. Since constructors have not been designed consis-
tently for this purpose, the builder implements a mixture
of top-down and bottom-up construction to compensate.
S-pointers are not sufficient to model late initialization in
all cases, therefore the builder’s stack can hold 40 types of
task. (Some tasks are duplicated because sharing is not
represented generically in pickles—instead, we have tags for
labeled and unlabeled nodes).

The traversals and the builder are reused by marshaling
and unmarshaling respectively, used in Mozart’s distribution
protocols. Their designs have not been separated thoroughly
enough though: Pickling handles logic variables (they are
disallowed) and futures (they cause blocking) inconsistently,
and two kinds of unpicklable nodes are artificially distin-
guished in exceptions (irrevelant and confusing to the user).
On the plus side, all the infrastructure to make pickling and
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unpickling concurrent is there, because marshaling and un-
marshaling needed to be made suspendable. Pickling and
unpickling just do not use this infrastructure—they are al-
ways atomic.

Revised Design. Seam actually implements pickling and
unpickling as embedded virtual machines. Many of Mozart’s
problems are simply absent because Seam’s store has uni-
form node types. Seam uses an instruction set in the pickle
that constructs graphs bottom-up, which in practice degen-
erates less (for instance, lists do not need special optimiza-
tion).

5.3 Mobile Code
Mozart’s Approach. Mozart code is made mobile sim-
ply by allowing first-class procedures in pickles. Mozart
therefore has to distinguish between an internal one and an
external code representation, and pickling/unpickling con-
vert between them. For instance, external code uses integer
opcodes, while internally we use threaded code (a pointer
to the instruction’s implementation replaces the integer op-
code). Mobile code requires garbage collection of code to
prevent space leaks. Mozart code is allocated in the C++
heap in so-called “code areas”. Closures on the Oz heap
carry a reference to a code area, and code areas can refer-
ence values on the Oz heap as immediate operands. Mozart
therefore has one garbage collection algorithm for each kind
of heap. Code garbage collection is non-copying and uses
explicit deallocation. The policy is to couple every fifth Oz
heap garbage collection with a code garbage collection.

Experience. The unit of allocation is the code area. Every
unpickled procedure occupies a code area. Because nested
procedures are contained within the same code area, this
means that often, Mozart cannot deallocate the whole code
area, rendering code garbage collection useless. It does work
if mobile code is not used to transfer components but just
small computations.

Bidirectional links between data and code require complex
handling in the pickler and unpickler. Also, the garbage
collector has to be careful to remove immediate operands
from the root set when deallocating a code area.

Mozart’s member selection instruction makes the accessed
module explicit, meaning that the whole module is reach-
able (and therefore pickled or transferred) instead of just
those of its members that are actually used. Mozart’s sys-
tem components therefore often begin with a sequence of
shortcut declarations of the form A = M.a.

Revised Design. Seam represents code as a regular lan-
guage data structure, rendering immediate arguments and
code garbage collection trivial. Conversion to internal rep-
resentation is rationalized by the run-time compiler, but
keeps the external representation around for eventual pick-
ling. Note that also the internal code must be aware of
possibly being moved by the garbage collector. The mem-
ber selection problem is rather an Oz problem—Alice fixes
this by making all module accesses lazy. They can thus be
hoisted to the top-level without changing the semantics.

5.4 Linguistic Reflection

Table 1: Component Size Comparison (LOC)

Component Mozart SEAM
Store/Data Representation 18050 3500
Pickling 11250 1650
Execution Unit 6100 3400
Assembler 1600 10

Mozart’s Approach. Mozart’s compiler is implemented in
Oz and is available as an Oz component. Its interface allows
to set a first-class environment and to compile code, repre-
sented as a string or an abstract syntax tree, relative to this
environment. The compiler generates a list of Oz records,
each record’s label representing an instruction’s opcode and
the subtrees specifying the operands. A built-in assembler
implemented in C++ traverses the instruction list, and fills
a new code area with the corresponding bytecode, returning
a nullary procedure. Application of the nullary procedure
causes the code to be executed.

Experience. We pay the price of having one more code
representation in the system, that of an Oz list of instruc-
tions, and thus one more place to adapt when the instruction
set is modified (which has happened often). The alternative
would have been for the compiler to produce a pickle in-
stead of assembling into the heap. However, since not all
data structures can be pickled, this would have restricted
the values that could be contained in the compilation envi-
ronment.

Revised Design. We keep the property that the compiler
is available as a standard component and generates code
into the heap. Since Seam has an external code represen-
tation in the form of a high-level language data structure
anyway, assembling becomes trivial in the revised design: It
is reduced to creation of a closure from first-class code.

6. IMPLEMENTATION STATUS OF SEAM
We have a running prototype of Seam which implements
full Alice, which roughly can be regarded as Oz with Types.
Seam validates the consistency of the revised design from
the previous sections. We find evidence that the goals of
simplicity and compactness are fulfilled, by comparing the
respective sizes of Mozart and Seam components. Table 1
presents sizes measured in lines of code (LOC).

Table 2 shows the results of some standard benchmarks
from [12] run on Seam and Mozart. We report the minimum
time obtained from eight runs on a Sony GRX316MP with
a 1600MHz Pentium 4 processor and 512MB main mem-
ory, running Windows XP. Benchmarks cover symbolic com-
putation involving recursion and simple integer arithmetic
(näıve reverse, deriv), creation and termination of 100,000
threads (mkthread), and concurrent computation (concfib).
Seam lies within 20% of Mozart’s performance for sequential
computations—very promising for a prototype, if we keep in
mind that a lot of tuning has been done for Mozart.

A second benchmark suite evaluates pickling and unpickling
efficiency of long integer lists (list), large components con-
taining mostly code and little sharing (component), and sig-
nature representations with many coreferences (types). As
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Table 2: Benchmark Results (in milliseconds)

näıve reverse deriv mkthread concfib
Alice-on-Mozart 1341 390 451 180
Alice-on-Seam 1652 551 250 60

Table 3: Pickling Results (in milliseconds)

list component types
save load save load save load

Alice-on-Mozart 220 30 1692 110 1191 60
Alice-on-Seam 200 20 1151 70 331 30

shown in Table 3, Seam beats Mozart on all benchmarks.

More details can be found in [4]. The current prototype
implementation is available on request.

7. CONCLUSIONS
This paper has examined the architecture and implemen-
tation of open programming systems. We identified a core
virtual machine encapsulating platform-specific aspects, and
a clearly separated set of services. Services can either be
implemented stand-alone, or integrated into the core virtual
machine. We examined the realization of core and services in
Mozart and found that Mozart’s services are mostly stand-
alone. Based on our experience with Mozart’s approach, we
proposed revised designs in the form of a virtual machine
called Seam that clearly favors integrated services. Com-
parisons indicate that the Seam design is superior to that
of Mozart with respect to both implementation effort and
performance.
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