
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Effectful Computation in Moggi’s
Calculus with Records and

Subtyping

submitted by

Dieter Brunotte
on October 30, 2006

Supervisor

Prof. Dr. Gert Smolka

Advisor

Dr. Jan Schwinghammer

Reviewers

Prof. Dr. Gert Smolka
Prof. Dr.-Ing. Holger Hermanns

Statement

Hereby I confirm that this thesis is my own work and that I have
documented all sources used.

Saarbrücken, October 30, 2006

Abstract

Many theoretical results about programming languages are stated for
”effect-free” lambda calculus only, or add effects (such as I/O and state) in
an ad-hoc manner. With his computational monads, Moggi presented an
abstract framework that fits a wide range of computational effects. Some
languages, notably object-oriented ones, feature subtyping in addition to
effects.

In my Bachelor thesis I present an extension of Moggi’s computational
monads with subtyping. As an application of the theory we show that
Abadi and Cardelli’s imperative object calculus can be embedded into
our system, in a way that ensures type safety.

2

Contents

1 Introduction 5
1.1 Pure Lambda Calculus . 6
1.2 Lambda Calculus with Effects in ad-hoc Manner 7
1.3 From Basic Lambda Calculus to Monadic Types 9

2 The Calculus 11
2.1 Definition of the Calculus . 11
2.2 Subtype Relation . 12
2.3 Weak Typing Relation . 14
2.4 Reduction Relation . 15

3 Soundness Proofs 19
3.1 Proof of Type Preservation . 19

3.1.1 Inversion . 19
3.1.2 Preservation of Types under Substitution 22
3.1.3 Type Preservation Theorem for Moggi’s Calculus with

Records and Subtyping 24
3.2 Progress of the Calculus . 28

3.2.1 Normalform of the Values 28
3.2.2 Progress Proof . 31

3.3 Strong Typing . 35
3.3.1 Strong Typing Relation 35
3.3.2 Properties of the Strong Typing Relation 36

4 Application: Object Calculus 39
4.1 Extensions in the Monadic Calculus 39
4.2 Object Calculus . 44
4.3 Translation into the Monadic Calculus 46

5 Future Work 51

3

4

1 Introduction

In “pure” lambda calculus one just has variables, abstractions and applica-
tions. For programming languages with effects like I/O-operations, storage,
side-effects, exceptions and so on this is not enough. One way to solve this prob-
lem is to extend the language in an ad-hoc manner with the required features.
There is much literature about ad hoc extensions for pure lambda calculus, for
instance [10].

The drawback of adding some extensions in an ad hoc-manner is that the
language changes, e.g. by adding some new constructs (more detailed examples
follow in this section) and so basic properties of typed lambda calculi must be
proven again. The properties we are interested in are type preservation, progress
and a unique (minimal) type property that is important for type checking.
Note that in general typing requires an environment Γ giving types to the free
variables (not bound by a lambda) of the term.

Type Preservation. This means that for an arbitrary term t for that we can
give a certain type A and if we can evaluate t to some other term t′ then this
term has again type A. So e.g. the evaluation of term with type integer yields
again some term that has typ interger.

Progress. This is a property only for terms typable in the empty environment
(no variable bound to a type). We call them closed terms. We define the values
of the calculus, a subset of terms containing all the terms that cannot be reduced
anymore. Progress states that all closed and typable terms are either values or
can be reduced.

Unique Types. This means we can give any term t only one type. As we
will see subtyping removes that property from typing relation, but we can find a
unique type with a “strong” typing that stands in a subtype relation to all other
types of the term. That is in calculi with subtyping, the unique type property
of simply typed lambda calculus, is replaced by a minimal type property.

The proofs for these properties usually are very similar for extended lambda
calculi. So in the proofs of these properties one often uses the trick to say that
cases for the construct common with the pure lambda calculus are analogues
to that calculus. One of the aims of this thesis is to give a lambda calculus
that can be extended easily with effect features like storage and allows to prove
important properties like preservation and progress in a modular way using the
properties for our calculus.

A problem of effects is that they can change a “global” context such as a
output string. If we have a term allowing 2 different reductions and so depending
on which reduction we evaluate first can change the following evaluation of terms
in 2 different values. Normally, we give an evalution strategie synchronizing the
effects in semantic of the languege (example in Section 1.2). With computational
Monads Moggi had already considered in [6, 9] a way to synchronize effects.
For this purpose he introduced a ”let”-construct. We give examples how this
construct works in Section 1.3.

Most object-oriented programming languages have a feature Moggi’s work
doesn’t consider: Subtyping. Subtyping is a relation between types; one says a

5

type A is subtype of type B if one can use terms of type A where you expect
to get a type B. A simple example are floating point numbers and integers. Of
course, an integer number can always be transformed into a floating point. So
if you e.g. want to add two floating points it is always possible to use an integer
instead of one or two of the floating points when we transform them to floating
points.

More typically for subtyping are record types of object languages when we
want to define similar classes of objects. An example is to consider points in the
plane. The first class which we call point simply contains the two real number
fields x, y giving the coordinates of points. In the second class colored points we
additionally want to have color for a point. Now suppose we have a function
for two objects of class point, e.g. determining the Euclidian distance. For this
function we just need to know the fields x and y. Since the class colored point
has all fields of point, there is no technical reason to forbid using a colored point
instead of a point.

There is already much literature about subtyping for lambda calculi without
monads. Hence, the subtype behaviour of the standard constructs such as func-
tional types is already well-known. One knows that a functional type A1 → A2

is subtype of B1 → B2 if A2 is subtype of B2, but we have the so called con-
travariance for argument types so that B1 must be subtype of A1. More details
in Section 2.2 where we consider Subtyping again, or in literature such as [10].

Here, I consider a lambda calculus featuring both, Moggi’s theory about
computational monads and subtyping. In the remainder of this section I give
some basics of lambda calculi and an introduction of Moggi’s work with compu-
tational monads. In Section 2 I introduce a calculus offering the desired features
whose soundness I prove in Section 3 along with some other properties. A main
characteristic of the calculus is that we can prove the soundness properties in
a emphasised way where the proofs for extended calculi have to be redone only
for the new cases. In Section 4 we will see an example realizing an imperative
object calculus [2].

1.1 Pure Lambda Calculus

We start by looking at the definition of a pure lambda calculus. We define it
in Figure 1 analogous to [10], and start with the simply typed lambda calculus
(and not the untyped one). In contrast to Pierce, we use the capital letters
A,B, C as notation of an arbitrary type, and reserve the letter T as contructor
of the new monadic type. As terms we just have variables, abstractions and
application to create terms. Hence, for the evaluation of terms we need just one
proper reduction, i.e. (λx : A.t′)t → t′[x := t] where t′[x := t] denotes that we
replace all free (not bound by a lambda in term t′) x in t′ by t. Furthermore
we can reduce t1 or t2 of an application term t1t2, but t2 only if t1 is a lambda
term and we may not reduce under lambda.

So far we have given the intuition of the untyped calculus. As one can see in
reduction rules one can interpret lambda as functions. Hence, one can classify
them by what kind of term they are taking as input and what kind of term

6

A ∈ Typ = A → A
t ∈ Ter = x | λx : T.t | tt

Figure 1: ‘Types and terms of “pure” lambda calculus

x : A ∈ Γ
Γ ` x : A

(T-VAR)
Γ, x : A ` t : B

Γ ` λx : A.t : A → B
(T-ABS)

Γ ` t1 : A → B Γ ` t2 : A

Γ ` t1t2 : B
(T-App)

Figure 2: Typing rule for “pure” simply typed lambda calculus

they are returning, and introduce the typing with the type construct A → B
(“taking A, returning B”). In other calculi one still has other type constructs
or constants for further term constructs, but here we just need functional types
to introduce typing for all terms. To define typing recursively we also need a
typing environment Γ to give the variables some type. We give the typing rules
for the simply typed lambda calculus in Figure 2. T-Var just reads the type of
x from Γ. By T-Abs, a λ-abstraction λx : A.t′ has functional type with type
A of variable x as argument type and the result type must be the type of t′

where we type function argument x to A. T-App states that for an application
term t1t2 the subterm t1 must have a functional type that takes something of
the type of t2.

Furthermore, this calculus fulfills the properties stated in the introduction
(can be read in much literature about lambda-calculus like [10]).

1.2 Lambda Calculus with Effects in ad-hoc Manner

After having seen the basic simply typed lambda calculus we will now consider
some examples for extensions with effects, added in an ad-hoc way. The first
example we present is a lambda calculus featuring the effect of output. Then
we continue by an extension with storage.

Example 1. Lambda calculus with output strings
As one can see in Figure 3 we now have an output alphabet Σ containing the

letters to create output strings. Whenever we perform the new operation print

σ ∈ Σ∗

T ∈ Typ = · · · | unit
t ∈ Ter = · · · | print σ | ()

Figure 3: Lambda calculus with output strings

7

Γ ` print σ : unit
(T-PRINT)

Γ ` () : unit
(T-UNIT)

Figure 4: New typing rules for lambda calculus with output string

with a string σ, we add σ at the end of the global output S ∈ Σ, which is a result
of the evaluation of the term. Since we added new form to the calculus, we need
some additional typing and evaluation rules for the new term constructs. It also
is required a new standard type unit to have a type for output operations.

Additionally, we have to be able to observe the output string everywhere.
This we can do by adding an output string to the terms.

S | t → S | t′ if t → t′ in pure calculus
S | print σ → S.σ | ()

Another problem is that in non-deterministic evaluation of lambda-calculus.
We can produce different outputs from the same term and there is no construc-
tion to synchronise the output. The following term makes the problem clear; we
use the sequencing “;”-operater of SML where t1; t2 means we first evaluate t1,
“throw away” the result and finally evaluate t2. As usual this can be simulated
by term (λx : T1.t2)t1 where T1 is the type of t1 and x is a fresh variable.

ε | (λx : unit.x;x)(print σ)

. . . → σ | (λx : unit.x;x)()
→ σ | (); ()
→ σ | ()

. . . → ε | print σ; print σ
→ σ | (); print σ
→ σ | print σ
→ σ.σ | ()

As we can see in the second case we print σ two times, in the other case the
output string is σ. In the next section we will see a solution with monads. In
ad-hoc manner one usually solves this by giving an evaluation strategy such
as deterministic call-by-name (cbn) and call-by-value (cbv). In cbv-evaluation
one evaluates first the function arguments and then performs the application,
as done in the first example with output just σ. In contrast, in cbn the substi-
tution of arguments is done immediately, like in the second example leading to
output σ.σ.

8

Example 2. Side-effects with storage
Here we need a new type constructor ref T for memory cells of type T to-

gether with some new operations and a new unit standard type.

readA : ref A → A
writeA : ref A → A → unit

Similar to the global output string before we have to add an store S for the
evaluation.

S | t → S | t′ if t → t′ in pure calculus
S | readT l → S | Sl
S | readT l t → S[l := t] | ()

Similar problems to output arise in the case of non-deterministic evaluation.

1.3 From Basic Lambda Calculus to Monadic Types

So last subsection we have seen how one can add effects in ad-hoc manner. Now
we see Moggi’s solution with monads for synchronising the effects. Here we
have the additional construct let x ⇐ t1 in t2 in the language. The intuition
of this construct is that all effects of t1 happen before the effects of t2 where
x is substitited by the result of t1. Furthermore to distinguish between com-
putations with and without effects, Moggi introduced a new type constructor
T , the so-called monadic type constructor. The term construct [t] creates a
monadic value out of an arbitrary term t. So all terms with effectful reduction
have the requirement of monadic type and hence the let-construct and the sub-
terms t1, t2 must have a monadic type. The monadic term construct [t] also
stops effectful evalution of t. The only possibility to get the t under [] is with
a new reduction rule for let: if we have done the computations with effects of
t1 one normally gets a term of the form [t]; in the term t2 we then do not sub-
stitute the x by [t], but we substitute by t. Here is a formal notation of this rule.

let x ⇐ [t1] in t2
ε−→ t2[x := t1]

Now we can consider again the example from the last subsection with out-
put strings. Depending on the evaluating strategie (cbv, cbn) we can produce
different output strings with the same term. In Table 1 we give translation func-
tion for both interpretation into the calculus with the let-construct. As one can
see these functions also must be defined for types, but in the example we just
need to translate unit with itself. We also give a rule for the operator “;” in-
stead of using the simulating term since cbn interpretation differ from the SML
interpretation. Note that the result type of print changes to T unit because
evaluation causes an effect. Further examples for this kind of translations and
one for types can be found in [6]. About other practical use of monads there is
much literature, e.g. by Philip Wadler([11], [13] or [12]).

Now we give the translation for the example term with two different output

9

t cbv(t) cbn(t)
x [x] x

λx : A.t′ [λx : cbv(A).cbv(t′)] [λx : T cbn(A).cbn(t′)]
t1t2 let f ⇐ cbv(t1) in let y ⇐ cbv(t2) in f y let f ⇐ cbn(t1) in f cbn(t2)
t1; t2 let z ⇐ cbv(t1) in cbv(t2) let z ⇐ cbn(t1) in cbn(t2)

print σ print σ print σ
() [()] [()]

Table 1: Cbv and Cbn translation

strings and show that the translations produce the same output strings.

t = (λx : unit.x;x)(print σ)
cbv(t) = let f ⇐ [λx : unit.let z ⇐ [x] in [x]] in let y ⇐ (print σ) in f y
cbn(t) = let f ⇐ [λx : Tunit.let z ⇐ x in x] in f (print σ)

ε | cbv(t)

. . . → ε | let y ⇐ (print σ) in (λx : unit.let z ⇐ [x] in [x]) y
→ σ | let y ⇐ [()] in (λx : unit.let z ⇐ [x] in [x]) y
→ σ | (λx : unit.let z ⇐ [x] in [x])()
→ σ | let z ⇐ [()] in [()]
→ σ | [()]

ε | cbn(t)

. . . → ε | (λx : Tunit.let z ⇐ x in x) (print σ)
→ ε | let z ⇐ print σ in print σ
→ σ | let z ⇐ [()] in print σ
→ σ | print σ
→ σ.σ | [()]

10

2 The Calculus

In the last section we have seen the problems of adding extensions with effects
to lambda calculus. We have seen that Moggi found a way to address these with
computational monads, but did not consider the problem of subtyping. So this
chapter we will now introduce a lambda calculus solving the problems.

2.1 Definition of the Calculus

First we give a definition of terms and types of the extended Moggi calculus in
Figure 5. As in every lambda calculus terms can have variables, abstractions
and applications. To synchronise effects we have let-expression as used by Moggi
and the monadic constructor []. We see how synchronisation works when we
consider the reduction rules of the calculus (Section 2.4). Since we want to have
subtyping in the language it makes sense to introduce records because there is
not a problem to use a record which has more fields if you just need a record
with fewer fields. Production rules for subtyping follow in Section 2.2. To
realize the extension of the language in a principal manner, we decided to have
some constants in our language that can be defined on demand. So if you need
some new constructs for any extension, you define Const with some emphasized
constants. If e.g. you want to be able to do some arithmetic operations on
numbers you can add the numbers 0, 1, 2, . . . with type int and operations like
plus with type int → int → int as new constants. As new proper reduction rule
you can define plus i j → i + j. Since we don’t have the type int we can add
this type by defining BasicTypes , the set of basic types, so that it contains a
type int. So adding new types isn’t a problem in our language.

Knowing the terms the most type constructs are defined intuitively. There is
an arrow type (→) for abstractions as in pure lambda calculus. For monads we
have the type constructor T , for records a record type, for subtyping a type Top
which is a supertype (inverse direction of subtype; if A is subtype of B, then B
is a supertype of A) of every other type, and the possibility to add some other
base types or type constructors. We need the type constructor to be able to
create types like referenceces (necassary for our example in Section 4) or Lists.
Note that it is possible to define all type constructs in TC . Top and basic types
would have arity 0, the monadic type constructor T 1, and the arrow with arity
2. Also record types could be simulated for every fixed set of labels {li | i ∈ [n]}
with arity n. (Notation: [n] stands for the set {1, 2 . . . , n} of first n numbers.)

We finish this subsection with a definition of the free variables of the cal-
culus. We will need to know them for some proper reduction rules and some
auxiliary lemmas in the next section. The definition is very intuitive, noting
that λ and monadic let are the only binding constructs.

11

b ∈ BasicTypes
F ∈ TC constant set of type constuctors with an

arity function a : TC → N
A,B ∈ Ty = Top | b | A → B | TA | {li : Ai

i=1...n}
| F A1 . . . Aa(F)

c : A ∈ Const
t ∈ Ter = x | c | λx : A.t | tt | [t] | let x ⇐ t in t |

t.l | {li = ti
i=1...n}

Figure 5: Moggi’s Calculus with records

FV (x) = {x}
FV (c) = {}
FV (λx : A.t) = FV (t)− {x}
FV (t1 t2) = FV (t1) ∪ FV (t2)
FV ([t]) = FV (t)
FV (let x ⇐ t1 in t2) = FV (t1) ∪ (FV (t2)− {x})
FV (t.l) = FV (t)
FV ({li = ti

i=1...n}) =
⋃n

i=1 FV (ti)

2.2 Subtype Relation

Before we consider the typing of the terms we introduce the subtype relation.
The rules for subtyping are defined in Figure 6 and are analogous to [10]. We
start with the general subtype rules and the rule for functional types. The
first rule (S-Top) gives us that Top is a supertype of every type. The other
generell rules tell that every type has itself as subtype (S-Refl) and the subtype
relation is transitive (S-Trans). Probably the most interesting rule is the rule
for functional types (S-Arrow) with the so called contravariance of argument
type. That means if A1 → A2 <: B1 → B2 then we must have B1 <: A1 and
not as one could expect A1 <: B1. This has the following reason: suppose you
have the term fx where f is a function with argument type B1 and x has the
same type; if we now have a function f ′ with type A1 which has subtype of f
one should be able to write f ′x; but to be able to do this f ′ must be able to
handle argument x of type B1 which is only possible iff B1 <: A1.

The next subtype rules are the ones for records analogous to [10]. The
last rule (T-Mon) is the one for the monadic type saying that if a types is
a subtype of another type then their monadic types have the same relation.
In other words, the type constructor T is covariant. Establishing this subtype
relation for monads is one of the aims of this thesis.

We don’t define any subtype rules for type constructors. However, we don’t
allow it here. An investigation of this is left to future work.

12

Standard typing rules for subtyping:

A <: Top
(S-Top)

A <: B B <: C

A <: C
(S-Trans)

A <: A
(S-Refl)

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

(S-Arrow)

Additional subtyping rules for records :

∀i ∈ [n] : Ai <: Bi

{li : Ai
i=1,...,n} <: {li : Bi

i=1,...,n}
(S-RcdDepth)

{li : Ai
i=1,...,n+k} <: {li : Ai

i=1,...,n}
(S-RcdWidth)

{li : Ai
i=1,...,n} is a permutation of {ki : Bi

i=1,...,n}
{li : Ai

i=1,...,n} <: {ki : Bi
i=1,...,n}

(S-RcdPerm)

Subtyping rule for monads :

A <: B

TA <: TB
(S-Mon)

Figure 6: Subtype rules for the calculus

13

Γ, x : A ` x : A
(T-Var)

c : A ∈ Const

Γ ` c : A
(T-Const)

Γ, x : A ` t : B

Γ ` λx : A.t : A → B
(T-Abs)

Γ ` t1 : A → B Γ ` t2 : A

Γ ` t1t2 : B
(T-App)

Γ ` t : A

Γ ` [t] : TA
(T-Mon)

Γ ` t : TA Γ, x : A ` t′ : TB

Γ ` let x ⇐ t in t′ : TB
(T-Let)

∀i ∈ [n] : Γ ` ti : Ai

Γ ` {li = ti
i=1...n} : {li : Ai

i=1...n}
(T-Rcd)

Γ ` t : {li : Ai
i=1...n} j ∈ [n]

Γ ` t.lj : Aj

(T-Proj)

Additional typing rule to use the subtyping:

Γ ` t : A A <: B

Γ ` t : B
(T-Sub)

Figure 7: Typing rules for the calculus

2.3 Weak Typing Relation

We see the definitions of typing rules in Figure 7. Most are well-known and
analogues of the known lamba type rules presented by Pierce in [10]. A new
type rule is T-Const, where the type of a defined constant is just read from the
set Const. So types of constants must be given to type any term with constants.

The rule T-Let for let-expressions requires monadic types for both subterms.
So we have to stay in monadic type.

For subtyping we have the rule T-Sub, which allows to give a term typable
with type A a supertype B. So the “weak” type of a term is not unique, e.g.
with the S-Top rule we can give every typable term the type Top. But in
Section 3.3 we will see that there also is a unique “strong” type of a term t
which is subtype of all possible types of t.

All other type rules are intuitive and known from other lambda calculi, e.g.
T-Mon where we can create a term of monadic type of A by putting a term t
of type A in [t]. Viewing T A as the type of computations yielding values in A,
[t] is a trivial computation that immediately returns t.

14

Effect notation:

α ∈ Eff ::= ∅ | ε
ε ∈ pEff

Proper Reduction rules:

(β) (λx : A.t′)t → t′[x := t]
(η) λx : A.tx → t x /∈ FV (t)
(β.rec) {li = ti

i=1...n}.lj → tj j ∈ [n]
(η.rec) {li = t.li

i=1,...,n} → t

(β.let) let x ⇐ [t] in t′
∅−→ t′[x := t]

(η.let) let x ⇐ t in [x] ∅−→ t

(assoc) let y ⇐ (let x ⇐ t1 in t2)in t3
∅−→ let x ⇐ t1 in(let y ⇐ t2 in t3) x /∈ FV (t3)

Figure 8: Proper Reduction rules and effects

2.4 Reduction Relation

We equip the calculus with a small-step operational semantics, defined using
elementary “proper” reduction rules and “evaluation contexts” in the style of
Felleisen and Wright [14]. In Figure 8 we define the proper reduction rules of
the calculus. The β-rule was already introduced in Section 1.1. The intuition
of η-rule is that we can reproduce any function f by a lambda-abstraction that
just applies its argument variable to f . Similar rules we have for records. β.rec
just states how to get the content of a record field. The idea of η.rec is if every
field of record takes out the content of the same term t with its own label then
t must behave as the original record. Then we have rules with the empty effect
for the let-construct. β.let was introduced in Section 1.3. We expect a term t
of monadic type to finally evaluate to [t′]. Hence, if t is subterm in a let bound
to a variable x then the next step would to take t′ out of [] and replace all x by
t′. So the lefthand side of η.let evalutes to t. As last rule we state assoc which
is a standard equivalence for many kinds of let-constructs.

Notice that this list of rules is not complete since our language offers the
feature to add new reduction rules to the calculus such that we can use e.g. the
new constants in Const (as in the example with integers and the plus operator
in Section 2.1). Since we may have different effects in our language we have
to define what kinds of effects appear (by defing pEff and Eff) and when (on
which reduction) they are generated. So we have the empty effect ∅ and we have
some proper effects which can be defined on demand, analogous to the sets of
constants and basic types. As we can see in Figure 8 not every reduction has an
effect observed on its arrow, so we distinguish between effect-free reduction and
reductions with effect. We call reductions t → t′ effect-free reductions t

ε−→ t′

effectful observing effect ε. Since we want to use effects to synchronize we do
not allow effectful reductions everywhere, i.e. we only may reduce on top-level
(term has left-hand side of a proper reduction rule with effect) or in the first

15

term of a let-expression. Effect-free reductions are allowed everywhere. We
explain more precise when we introduce the reduction contexts below.

An intuitive wish of new constants c ∈ Const with functional type is that
we can reduce well-typed terms of the form c t1 . . . tn whenever they have a
non-functional type. Therefore we require that new proper reduction rules are
added to the language of the form c t1 t2 . . . tn → t′ for constants defined in
Const with functional type, so that we can always reduce terms of the form
c t1 t2 . . . tn without functional type.

If these reductions need the possibility of synchronisation we add a proper
effect on its reduction arrow. But since we want to use our new monadic type for
synchronization, we want to allow effectful reduction only if we have a monadic
type. So if we define an additional reduction rule with effect for any constant c
in Const this constant must have a type of the form A1 → · · · → An → T A, and
the left-hand side of the new proper reduction rule has excactly n arguements.
As we will see below in an example n may be 0.

Fortunately, we prove the main properties of the calculus in Section 3 without
the need that we can alway reduce terms as discribed in the last paragraphs. But
we need some other properties we state when we do these proofs next section.

The empty effect ∅ is used for the standard reduction of let-expressions as
we see them in Figure 8. It is also allowed to define new reduction with let-
expression when e.g. a new monadic construct requires that. Here we also define
a effectful reduction rule for new constants c : T A ∈ Const, so that we always
have a reduction for well-typed terms of the form let x ⇐ c in t′ Mostly, it is
enough to define just one rule with effects, since it is allowed to reduce the c
in the let-term effectful. A simple example is that we have print constants for
arbitrary output strings s, e.g. prints : T{} ∈ Const. Here we can define the
reductions prints

s−→ [{}].
So far, we don’t have any new rules for constants with record type. Intu-

itively, we have to give reduction rules for all labels of the record type. But
knowing all this rules it is easy to find an equivalent record using no constant
of record type.

We realize synchronisation by using different reduction contexts for effect-
free reduction and reductions with effects. Now we define contexts for effect-free
reductions and for reduction with effects. Furthermore, when we talk about con-
texts we use C for a context for effectfree reduction and E for the ones with
effect. Note that every context E is also a context for effect-free reductions.

C ∈ Context = ◦ | Ct | tC | λx : A.C | {li = ti
i=1,...,j−1, lj = C, li = ti

i=j+1,...,n} |
let x ⇐ C in t | let x ⇐ t in C | C.l | [C]

E ∈ EContext = ◦ | let x ⇐ E in t

We have the following context reduction rules to produce further reductions:

t → t′

C[t] ∅−→ C[t′]

t
s−→ t′

E[t] s−→ E[t′]

16

Alternative:

t → t′

C[t] → C[t′]

t → t′

t
∅−→ t′

t
α−→ t′

E[t] α−→ E[t′]

Thus one can perform a reduction with effect only on toplevel or under the
left side of a let expression. That means in a term let x ⇐ t1 in t2 all effects of
t1 are observed before the effects of t2, because we are not allowed to perform
effectful reductions of t2. In contrast, in a term like (λx.t2)t1 in a simply typed
lambda calculus with effects as in Section 1.2 the order in which effects had
appeared had not been predictable.

Contexts C allow effect-free reduction everywhere. So we can do effect-free
reductions that do not need to be synchronised where we want (even below λs),
and if we need a synchronisation we use let expressions and effectful reductions
to do so.

Furthermore, the context rules allow to label every effect-free reduction with
the empty effect ∅.

17

18

3 Soundness Proofs

Last section we have defined a new calculus. Now we want to see that this
calculus is safe, i.e. it has certain properties we will prove this section. The
properties I’m interested in are Type Preservation and Progress. We will also
show that every typable term has an strong type which is a subtype of every
weak type.

3.1 Proof of Type Preservation

We start with the Type Preservation theorem. Like Pierce in [10] we need some
auxiliary lemmas and theorems for this proof. The first two lemmas we proove
are extented versions of Lemmas 15.3.2 and 15.3.3 in [10]. So they hold in the
extended Moggi calculus, but we need some additional properties because we
have more constructs in our language. After that we continue with preservation
under substitution which we need to prove preservation of β-rules, and finally
we show the preservation theorem.

3.1.1 Inversion

Lemma 3.1 (Inversion of the Subtype Relation).

1. If B <: A1 → A2, then B has the form B1 → B2, with A1 <: B1 and
B2 <: A2.

2. If B <: {li : Ai
i=1,...,n}, then B has the form {kj : Bj

j=1...m}, with at
least the labels {li i=1...n} i.e., {li i=1...n} ⊆ {kj

j=1...m} and with Bj <: Ai

for each common label li = kj.

3. If B <: TA then B has the form TB′, and B′ <: A.

Proof. This proof is by induction on the derivation of the subtype relation. It
is not necessary to consider all cases in the lemma, e.g. we will not consider
S-Top. This is because every part of the lemma requires a special form on the
right-hand side of <:. Similarly we need not consider S-Refl because it already
implies the required properties.

1. B <: A1 → A2

• S-TRANS :
We have B <: C and C <: A1 → A2.
By induction, C has form C1 → C2 and A1 <: C1, C2 <: A2.
Hence by induction, also follows B has form B1 → B2, and C1 <: B1

and B2 <: C2.
By S-Trans rule, A1 <: B1 and B2 <: A2.

For S-Arrow the Lemma holds immediately. All other rules do not have
the right form on the right-hand side.

19

2. B <: {li : Ai
i=1,...,n}

• S-TRANS:
We have B <: C and C <: {li : Ai

i=1,...,n}.
By induction, C has form {mk : Ck

k=1...l} and {li i=1...n} ⊆ {mk
k=1...l}

and Ck <: Ai for each common label li = mk.
Again by induction, B has the form {kj : Bj

j=1...m} and {mk
k=1...l} ⊆

{kj
j=1...m} and Bj <: Ck for each common label mk = kj .

Hence, {li i=1...n} ⊆ {kj
j=1...m} and by S-Trans Bj <: Ai for each

common label li = mk = kj .

• S-RCDDEPTH/S-RCDPERM :
The required properties follow directly from the rule.

• S-RCDWIDTH :
The form and label subset property follow directly. Because each
label ki = li has the same types the property Bi <: Ai follows with
S-Refl.

Other rules are not applicable.

3. B <: TA

• S-TRANS :
We have B <: C and C <: TA.
By induction, C has form TC ′ and C ′ <: A.
Hence again by induction, B has form TB′ and B′ <: C ′.
By S-Trans, B′ <: A.

• S-MON :
The required properties follow directly.

For the other rules there is nothing to show.

Lemma 3.2 (Inversion).

1. If Γ ` λx : B1.t
′ : A1 → A2, then A1 <: B1 and Γ, x : B1 ` t′ : A2.

2. If Γ ` {ka = ta
a=1...m} : {li : Ai

i=1...n}, then {li i=1...n} ⊆ {ka
a=1...m}

and Γ ` ta : Ai for each common label ka = li.

3. If Γ ` t′.lj : A then Γ ` t′ : {ki : Ai
i=1,...n} and {ki

i=1,...n} contains the
label lj and Ai <: A for ki = lj.

4. If Γ ` t1t2 : A then ∃A′ : Γ ` t1 : A′ → A, Γ ` t2 : A′.

5. If Γ ` x : B, then for some A we have x : A ∈ Γ and A <: B.

20

6. If Γ ` [t′] : TA , then Γ ` t′ : A.

7. If Γ ` let x ⇐ t′ in t : TA , then Γ ` t′ : TA′ and Γ, x : A′ ` t : TA for
some A′.

Proof. We prove this by a straightforward induction on type derivations. For
every part of this lemma we only need to consider T-SUB and the type rule for
the corresponding term construct; the others are not applicable because of the
form.

1. • case T-ABS :
The hypothesis of the rule are
Γ, x : B1 ` t′ : A2 B1 = A1 B2 = A2

Hence, A1 <: B1 holds by S-Refl.

• case T-SUB :
Γ ` λx : B1.t

′ : C C <: A1 → A2

By Inversion of subtype relation, C has the form C1 → C2 and
A1 <: C1 and C2 <: A2.
By induction, C1 <: B1 and Γ, x : B1 ` t′ : C2.
By S-Trans, A1 <: B1 and by T-Sub Γ, x : B1 ` t′ : A2.

2. • case T-RCD :
∀a ∈ [n] : Γ ` ta : Aa and ka = la and hence, {li i=1...n} = {ka

a=1...m}.
• case T-SUB :

Γ ` {ka = ta
a=1...m} : C C <: {li : Ai

i=1...n}
By inversion of subtype relation, C has the form {mj : Cj

j=1...l} and
{li i=1...n} ⊆ {mj

j=1...l} and Cj <: Ai , whenever mj = li.
By induction, {mj

j=1...l} ⊆ {ka
a=1...m} and Γ ` ta : Cj whenever

ka = mj .
Hence by T-Sub, Γ ` ta : Ai , whenever ka = mj = li .

3. • case T-PROJ :
The required properties are given by the type rule.

• case T-SUB :
Γ ` t′.lj : A′ A′ <: A

By induction, Γ ` t′ : {ki : Ai
i=1,...n} and {ki

i=1,...n} contains the
label lj and Ai <: A′ for ki = lj . And hence by S-Trans, Ai <: A.

4. • case T-APP :
The required properties are given by the typing rule.

• case T-SUB :
Γ ` t1t2 : A′′ A′′ <: A

By induction, there is A′ such that Γ ` t1 : A′ → A′′ and Γ ` t2 : A′.
By subtype rules, A′ → A′′ <: A′ → A. Hence with T-Sub,
Γ ` t1 : A′ → A.

21

5. • case T-VAR
By typing rule x : B ∈ Γ. Here, A = B , hence, A <: B by S-Refl.

• case T-SUB
Γ ` x : A′ A′ <: B

By induction, for some A we have x : A ∈ Γ and A <: A′ , so by
S-Trans A <: B.

6. • case T-MON :
Γ ` t′ : A given by type rule.

• case T-SUB :
Γ ` [t′] : B B <: TA

By inversion of subtype relation, B has the form TB′ and B′ <: A.
By induction, Γ ` t′ : B′. With T-Sub, Γ ` t′ : A.

7. • case T-LET :
Required properties follow directly from type rule.

• case T-SUB :
Γ ` let x ⇐ t′ in t : B B <: TA

By inversion of subtype relation, B has the form TB′ and B′ <: A.
By induction, Γ ` t′ : TA′ and Γ, x : A′ ` t : TB′ for some A′. By
T-Sub, Γ, x : A′ ` t : TA.

3.1.2 Preservation of Types under Substitution

Before we prove the preservation under substitution we state a short lemma
which is easy to proof that we need in the following proof. We don’t proof it,
but we should know it when it is used in proof.

Lemma 3.3 (Strengthening). If Γ, x : B ` t : A and x /∈ FV (t), then Γ ` t : A.

Proof. The proof is by straight-forward induction on type derivation.

Theorem 3.4 (Preservation of types under substitution). If Γ, x : B ` t : A
and Γ ` t′ : B then Γ ` t[x := t′] : A

Proof. We prove the theorem by structural induction on type derivations. The
proof is a big case analysis.

Base cases:(T-VAR/T-CONST)

• case t = x :

We have t[x := t′] = t′. Hence, Γ ` t[x := t′] : B . By inversion of typing
rules, we get B <: A. So we have again Γ ` t[x := t′] : A.

22

• case t = y 6= x(t = c) :

Here t[x := t′] = t = y(= c) . Because x /∈ FV (t) = {y}(= {}), by
strengthening we don’t need the x in the type environment Γ to type t.
Hence, Γ ` y : A (Γ ` c : A).

Induction step:

• case T-ABS :

t = λx′ : A′.t′′ (where x′ /∈ FV (t′), x′ 6= x)

t[x := t′] = λx′ : A′.t′′[x := t′]

A = A′ → A′′ Γ, x : B, x′ : A′ ` t′′ : A′′ for some A′′

By induction hypothesis, Γ, x′ : A′ ` t′′[x := t′] : A′′.

By typing we get Γ ` λx′ : A′.t′′[x := t′] : A .

In case x′ = x we have t[x := t′] = t. Because x does not occur free
in t we don’t need it to type t. Hence, Γ ` t : A.

• case T-APP :

t = t1t2

t[x := t′] = t1[x := t′]t2[x := t′]

Γ, x : B ` t1 : A′ → A Γ, x : B ` t2 : A′ for some A′

By induction, Γ ` t1[x := t′] : A′ → A and Γ ` t2[x := t′] : A′.

By typing, Γ ` t1[x := t′]t2[x := t′] : A.

• case T-MON :

t = [t′′]

t[x := t′] = [t′′[x := t′]]

Γ, x′ : B ` t′′ : A′ A = TA′

By induction, Γ ` t′′[x := t′] : A′.

By typing, Γ ` [t′′[x := t′]] : TA′.

• case T-RCD :

t = {li = ti
i=1...n}

t[x := t′] = {li = ti[x := t′] i=1...n}
∀i ∈ [n] : Γ, x : B ` ti : Ai A = {li : Ai

i=1...n}

By induction, ∀i ∈ [n] : Γ ` ti[x := t′] : Ai.

By typing, Γ ` {li = ti[x := t′] i=1...n} : {li : Ai
i=1...n}.

23

• case T-PROJ :

t = t′′.lj

t[x := t′] = t′′[x := t′].lj
Γ, x : B ` t′′ : {li : Ai

i=1...n} A = Aj j ∈ [n]

By induction, Γ ` t′′[x := t′] : {li : Ai
i=1...n}.

By typing, Γ ` t′′[x := t′].lj : A.

• case T-LET (1):

t = let x′ ⇐ t1 in t2 (where x 6= x′)

t[x := t′] = let x′ ⇐ t1[x := t′] in t2[x := t′]

Γ, x : B ` t1 : TA′ Γ, x : B, x′ : A′ ` t2 : TA′′ A = TA′′

for some A′′

By induction, Γ ` t1[x := t′] : TA′ and Γ, x′ : A′ ` t2[x := t′] : TA′′.

By typing, Γ ` t[x := t′] : TA′′.

• case T-LET (2):

t = let x ⇐ t1 in t2

t[x := t′] = let x ⇐ t1[x := t′] in t2

Γ, x : B ` t1 : TA′′ Γ, x : B, x : A′′ ` t2 : TA′ A = TA′′

By induction, Γ ` t1[x := t′] : TA′′. Because in the second writing the
type B of x is overwritten by type A′′ we don’t need x : B to type t2. So
Γ, x : A′′ ` t2 : TA′.

By typing, Γ ` t[x := t′] : A.

• case T-SUB :

Γ, x : B ` t : A′ and A′ <: A

By induction, Γ ` t[x := t′] : A′.

By typing, we get Γ ` t[x := t′] : A.

3.1.3 Type Preservation Theorem for Moggi’s Calculus with Records
and Subtyping

We prove preservation for the case where there are no additional effectful re-
ductions. However, effect-free reductions are permitted. As already stated in
Section 2 we must assume a type preservation for the new proper reduction rules
without effects, e.g. we must assume for rule p1 → p2 that whenever Γ ` p1 : A
we also must have Γ ` p2 : A. This property usually must be shown for any
new proper reduction rule.

24

We are not able to prove this lemma also for effectful reduction since as we
will see in our example with references in Section 4 the reduction could depent
on a “global” context such as the store. Depending on the state of the store,
an operation deref l to read the content of a certain cell l in store can reduce
to different terms if we perform them for different stores. Hence, for the new
reductions with effect we must reprove preservation in the contexts E. See
Section 4 for an example of this. For all other rules we can apply the following
theorem.

Theorem 3.5 (Preservation). If Γ ` t : A, t → t′ (or t
α−→ t′), then Γ ` t′ : A.

Proof. Again we prove the theorem by induction on type derivations. We per-
form a case analysis.

• cases T-VAR :

Vacoously true, because there does not exist any t′ such that t → t′ .

• case T-CONST :

t = c c : A ∈ Const

Here we may have c → t′ as additional proper reduction rule without
effect. A restriction of these rules is that they must preserve types.

• case T-ABS :

t = λx : A1.t
′′ Γ, x : A1 ` t′′ : A2 A = A1 → A2

– subcase η-reduction :
t′′ = t′x x /∈ FV (t′)
Applying inversion to t′x we get that for some A′, Γ, x : A1 ` t′ : A′ → A2

and Γ, x : A1 ` x : A′, and because x : A1 is in the type environment
we have A1 <: A′ by inversion. So we have A′ → A2 <: A1 → A2,
and so Γ, x : A1 ` t′ : A1 → A2 . Because of the side condition that
x /∈ FV (t′) we can apply strengthening and get Γ ` t′ : A1 → A2.

– subcase C = λx : A.C ′ :
t′′ → t′′′ t′ = λx : A1.t

′′′

By induction, Γ, x : A1 ` t′′′ : A2, hence Γ ` λx : A1.t
′′′ : A1 → A2.

• case T-APP :

t = t1t2 Γ, x : B ` t1 : A′ → A Γ, x : B ` t2 : A′

– subcase C = C ′t :
t1 → t′1 t′ = t′1t2
By induction, Γ ` t′1 : A′ → A.
By typing, Γ ` t′ : A.

25

– subcase C = tC ′ :
t2 → t′2 t′ = t1t

′
2

By induction, Γ ` t′2 : A′.
By typing, Γ ` t′ : A.

– subcase β-reduction :
t1 = λx : A′′.t′1 t′ = t′1[x := t2]
By inversion, A′ <: A′′ and Γ, x : A′ ` t′1 : A

By applying the type preservation under substitution we get Γ ` t′ :
A.

– subcase additional reduction rule for constant :
Here t has the form c t′1 . . . t′nt2. Since we have restricted such addi-
tional rules to fulfill the type preservation property there is nothing
to show.

• case T-MON :

t = [t′′] Γ ` t′′ : A′ A = TA′

Reduction in context C = [C ′] , we have t′′ → t′′′, t′ = [t′′′].

By induction, Γ ` t′′′ : A′.

By typing, Γ ` [t′′′] : TA′.

• case T-LET :

t = let x ⇐ t1 in t2 Γ ` t1 : TA′ Γ, x : A′ ` t2 : TB
A = TB

– subcase C = let x ⇐ C ′ in t2 / E = let x ⇐ E′ in t2 :

t1 → t′1 t1
α−→ t′1 t′ = let x ⇐ t′1 in t2

By induction, Γ ` t′1 : TA′.
By typing, Γ ` t′ : A.

– subcase C = let x ⇐ t1 in C ′ :
t2 → t′2 t′ = let x ⇐ t1 in t′2
By induction, Γ, x : A′ ` t′2 : TB.
By typing, Γ ` t′ : A.

– subcase β.let reduction :
t1 = [t′1] t′ = t2[x := t′1]
By inversion, Γ ` t′1 : A′.
By type preservation under substitution, we get Γ ` t2[x := t′1] : A.

– subcase η.let reduction :
t2 = [x] t′ = t1
We can easily see that TA′ <: TB , (by inversion Γ, x : A′ ` x : B
and A′ <: B, then use S-Mon) hence we can type Γ ` t1 : TB.

26

– subcase assoc-reduction :
t1 = let y ⇐ t3 in t4 y /∈ FV (t2)
t′ = let y ⇐ t3 in(let x ⇐ t4 in t2)
By applying inversion to the inner let t1 we get Γ ` t3 : TA′′ and
Γ, y : A′′ ` t4 : TA′ for some A′′.

Now we can type t′ with the following inference. (*) on the lines
means that this typing is given by any of the assumptions. (Strength)
denotes an application of the strengthening lemma.

Γ ` t3 : TA′′ (*)
Γ, y : A′′ ` t4 : TA′ (*)

Γ, x : A′ ` t2 : TB
(*)

Γ, y : A′′, x : A′ ` t2 : TB
(Strength)

Γ, y : A′′ ` let x ⇐ t4 in t2 : TB
(T-Let)

Γ ` let y ⇐ t3 in(let x ⇐ t4 in t2) : TB
(T-Let)

• case T-RCD :

t = {li : ti
i=1,...,n} A = {li : Ai

i=1,...,n} ∀i ∈ [n] : Γ ` ti : Ai

– subcase C = {li = ti
i=1,...,j−1, lj = C, li = ti

i=j+1,...,n} :

tj → t′j t′ = {li = ti
i=1,...,j−1, lj = t′j , li = ti

i=j+1,...,n}
By induction, Γ ` t′j : Aj .
By typing, Γ ` {li = ti

i=1,...,j−1, lj = t′j , li = ti
i=j+1,...,n} : A.

– subcase η.rec-reduction :
∀i ∈ [n] : ti = t′.li
By inversion Γ ` t′ : B and B has the form {li : Bi

i=1,...,m} contain-
ing at least the labels {li i=1,...,m} and for every label li Bi <: Ai.
Hence, B <: A and so by T-Sub Γ ` t′ : A.

• case T-PROJ :

t = t′′.lj Γ ` t′′ : {li : Ai
i=1,...,n} A = Aj j ∈ [n]

– subcase C = C ′.lj :

t′′ → t′′′ t′ = t′′′.lj
By induction, Γ ` t′′′ : {li : Ai

i=1,...,n}.
By typing, Γ ` t′′′.lj : A.

– subcase β.rec reduction :
t′′ = {ka = ta

a=1,...,m} t′ = th for kh = lj .
By inversion, {li i=1,...,n} ⊆ {ka

a=1,...,m} and Γ ` ti : Aj whenever
li = ka. Let kh = lj . Then t′ = th and Γ ` th : Aj .

27

Remark: This property is only true in this direction. It is possible that
we can give t′ a type that t does not have. Let’s consider the following term
t = (λx : Top.x)t′. Independent of the type of t′, we can give t only the type
Top. But t′ may have any arbitrary subtype of Top different from the type Top.

3.2 Progress of the Calculus

In this section we show the progress property, i.e. we define a set of values which
cannot be reduced anymore and show that all other terms typable in empty type
environment are still reducible.

3.2.1 Normalform of the Values

We start by defining what the values of our calculus are. Normally, values
are closed terms (terms typable in the empty type envirenment) that have no
reduction rule to apply. It turns out that this is complicated for our calculus.
One reason is that we may reduce effect-free under lambdas or on record fields
or we only could reduce there observing effect, so that we simply cannot place
there arbitrary term or value again. These terms under lambda now can have a
variable and hence they aren’t typable anymore in empty type envirenment. But
to prove Progress we must also give some properties about such term typable
in arbitrary type envirenment.

Another problem is that the set of values can depend on the additional re-
duction rules we added to the language. So if we add a rule for c t1 . . . tn
this term should not be a value anymore. For this reason we give a modular
progress proof in the sence that we define values without using new reductions
with effects. If then we want to show progress for a specific calculus with all
reductions, we define the new value set V al′ and show that it equals the set
V al− {t | t α−→}, i.e. every term in V al− V al′ has a reduction. So we give now
the definition of values using to auxilary set of values with nested recursion and
then explain why they are necessary and how they work.

a ∈ V alAPP = x | am | a.l
m ∈ V alMON = a | let x ⇐ m in m | v

v ∈ V al = λx : A.m where m 6= tx or x ∈ FV (t)
| {li = mi

i=1...n} where mi 6= v′.li for some i ∈ [n]
| [m]
| c m1 . . .mn if c m1 . . .mn 6→
| v.l where v 6= {li = mi

i=1,...,n}
| let x ⇐ v in m where v 6= [m] and v 6= let . . .
| v m where v 6= λx : A.m and

v 6= c m1 . . .mn

The set V al is the “real” set of values we want to define. The class V alMON

28

contains terms that maybe still can be reduced, but only by observing an effect.
This class also contains all terms of the other defined classes. These terms we
put in the definition of V al where we only may reduce without observing effects,
e.g. under λ or on record field. This way we exclude terms in V al that still
have possible effect-free reductions where only effectfree reduction is allowed,
and keep the possibility to place there terms that only have reductions observ-
ing effects. Note that all terms in V alMON that aren’t in V al or V alAPP have
a monadic type if they are typable in an arbitray environment.

Since we can have variables in some of the subterms we use an additional
class V alAPP producing such subterms. Not embedding these remaining terms
in V alMON has the advantage that we can forbid terms of monadic type as
functions or as records and it ensures all terms t ∈ V alMON − V al − V alAPP

have a monadic type. And it turns out that we only need to take out one further
construct of V alMON to get only the terms having a reduction with effect so it
gets easier to state an auxiliary Progress Theorem in this section. Also oberve
that all terms of V alAPP are not typable in the empty environment because
they contain free variables.

In V al we still have the constructs v.l, v m and let x ⇐ v in m, one normally
wants to exclude from the set of values. We can do this if we give reduction rules
for all terms of the form c m1 . . . mn without functional type. For v.l, v m this
is also the case if terms c m1 . . . mn with monadic type are not reducible by
some additional proper reduction rule. Lemma 3.8 helps to prove this, because
it shows that we can express such values as C[c m1 . . . mn]. Here we still
need them because some of these reductions from constants have effects and the
theorem we prove here does not take additional effectful reductions in account.

We also state two other useful lemmata: Lemma 3.6 states that we have de-
fined the values so that we can’t reduce anymore, or only with effect in V alMON .
Lemma 3.7 is an auxiliary lemma we need in the progress proof, stating that
values of a certain type have a certain form.

Lemma 3.6. Let t be a term with Γ ` t : A.

1. If t ∈ V alMON , then 6 ∃t′ : t → t′.

2. If t ∈ V al or V alAPP , then 6 ∃t′, α : t → t′ ∨ t
α−→ t′.

Proof. Proof by induction on type derivations.

Lemma 3.7 (Normalform of values). Let v be an value and Γ ` v : A.

1. If Γ ` v : A1 → A2, then it has one of the following forms:

(a) λx : A′.m

(b) c m1 . . .mn where c m1 . . .mn 6→
(c) v.l where v 6= {li = mi

i=1,...,n}
(d) v m where v 6= λx : A.m and v 6= c m1 . . .mn

29

2. If Γ ` v : T A′, then it has one of the following forms:

(a) [m]
(b) let x ⇐ v in m where v 6= [m] and v 6= let . . .

(c) c m1 . . .mn where c m1 . . .mn 6→
(d) v.l where v 6= {li = mi

i=1,...,n}
(e) v m where v 6= λx : A.m and v 6= c m1 . . .mn

3. If Γ ` v : {kj : Ai
j=1...m}, then it has one of the following form

(a) {li = mi
i=1,...,n}

(b) c m1 . . .mn where c m1 . . .mn 6→
(c) v.l where v 6= {li = mi

i=1,...,n}
(d) v m where v 6= λx : A.m and v 6= c m1 . . .mn

Proof. Proof by induction on type derivations.

Lemma 3.8. Let v be a value of the form c m1 . . .mn, v′.l, v′ m or let x ⇐
v′ in m. If Γ ` v : A, then there is a context C produced without using the
context production rules tC and let . . . in C for effect-free contexts and a term
t = c m1 . . . mn with Γ ` t : B such that v = C[t].

Furthermore, if B has the form T B′ then for some type A′, Γ ` v : TA′

and C is either ◦ or let x ⇐ ◦ in m which is also a context E for effectful
reductions.

If B is a functional type, then C = ◦.

As a direct consequence of this lemma for all forms except c m1 . . . mn the
subterm t has a nonfunctional type in Σ. So if we can reduce all terms with
nonfunctional type of the form c m1 . . . mn, we can reduce all terms of the
forms v′.l, v′ m or let x ⇐ v′ in m.

Proof. We prove this by induction on the derivation of the typing relation.

• case T-APP:

– subcase v = c m1 . . .mn

Here, we have C = ◦, t = v and hence, A = B.
– subcase v = v′ m

Γ ` v′ : A′ → A Γ ` m : A′

By induction there is a context C ′ and a term t′ = c m1 . . .mn = t
with Γ ` t : B and v′ = C ′[t′]. Hence, for C = C ′ m we have
v = C[t]. B cannot be a monadic type since then, by induction
v′ had a monadic type, a contradiction. If B would be a funtional
type then C ′ = ◦ and hence, v′ = t′ and so v′ has a form excluded
by definition of values. Because we excluded production rule tC for
effect-free contexts we are not allowed to search for a t in m.

30

• case T-PROJ:

v = v′.lj Γ ` v′ : {li : Ai
i=1,...,n} j ∈ [n]

By induction there is a context C ′ and a term t′ = c m1 . . .mn = t with
Γ ` t : B and v′ = C ′[t′]. Hence, for C = C ′.lj we have v = C[t]. B can’t
be a monadic (functional) type since then, by induction v′ had a monadic
(functional) type, a contradiction.

• case T-LET:

v = let x ⇐ v′in m Γ ` v′ : TA′

By induction there is a context C ′ and a term t′ = c m1 . . .mn = t with
Γ ` t : B and v′ = C ′[t′]. Hence, for C = let x ⇐ C ′in m we have
v = C[t]. Furthermore, if B = T B′, then we know that C is also a
context E′ and hence C is also a context E for effectful reductions. Since
let-expressions for v′ are excluded, it must hold that E′ = ◦. We are not
allowed to search for t in m because lemma forbids use of rule let . . . in C.
Again we can exclude a functional type B, since then v′ had a functional
type, a contradiction.

• case T-SUB:

Γ ` v : A′ A′ <: A

By induction v has the required properties.

The other typing rules are not applicable because they need a special form
for value v that the lemma does not cover.

3.2.2 Progress Proof

Here we prove the Progress Theorem using a modified auxiliary Progress The-
orem which implies the correctness of the original version directly. One modi-
fication of this auxiliary theorem is that we use an arbitrary type environment
Γ since we have also to state properties for the terms under lambdas and after
the “in” of let-expression, which can have free variables. And we have a second
modification that we distinguish between reduction with and without effect.
As already stated we prove the theorem not using additional reductions with
effects. The standard Progress Theorem would be as follows.

Theorem 3.9 (Progress). Let t ∈ Ter and ∅ ` t : A. Then either t ∈ V al, or
∃t′ ∈ Ter, α ∈ pEff : t → t′ ∨ t

α−→ t′.

Proof. The correctness of the Progress Theorem follows directly from the aux-
iliary Progress below. All we need to show is that all terms in V alAPP and
terms of the form let x ⇐ a in m with a ∈ V alAPP , and m ∈ V alMON are
not typable in the empty environment. For V alAPP this is easy to prove by
induction with base case of a variable. For the second form we just have to see
that we only can type our term in empty environment if we can do this with
subterm a ∈ V alAPP .

31

Now we can state and prove the auxilary Progress Theorem.

Theorem 3.10 (Auxiliary Progress). For every term t and every type environ-
ment Γ, if Γ ` t : A , then one of the following statements holds:

1. t ∈ V al or V alAPP , or t has the form let x ⇐ a in m with a ∈ V alAPP ,
and m ∈ V alMON

2. t ∈ V alMON and ∃t′, α : t
α−→ t′

3. ∃t′ : t → t′

Proof. Again we prove the theorem by structural induction on type derivations
and perform a big case analysis. Note that all cases of statement 1 imply that
t ∈ V alMON .

• case T-VAR :

t = x x : A ∈ Γ

Every variable x is in V alAPP .

• case T-ABS :

t = λx : A1.t
′′ Γ, x : A1 ` t′ : A2 A = A1 → A2

1. subcase: t′′ = t′x, x /∈ FV (t′)
Hence, one can reduce t to t′ by η-reduction. So statement 3 holds.

2. subcase: t′′ ∈ V alMON , t′′ 6= t′x or x ∈ FV (t′)
So t ∈ V al by definition and hence statement 1 holds.

3. subcase: t′′ /∈ V alMON

By induction, there is t′′′ such that t′′ → t′′′. Hence λx : A1.t
′′ →

λx : A1.t
′′′.

• case T-APP :

t = t1t2 Γ ` t1 : A′ → A Γ ` t2 : A′ for some type A′

We don’t need to consider the case that t1 is an irreducible let-expression
because they cannot have functional type and so we had an ill-typed term.

1. subcase: t1 ∈ V alAPP , t2 ∈ V alMON

So t ∈ V alAPP by definition.

2. subcase: t1 ∈ V al, t2 ∈ V alMON

By Lemma 3.7 value t1 has one of the following forms:

(a) λx : A′.m
Here, we can apply β-reduction and reduce t → m[x := t2].

(b) c m1 . . .mn where c m1 . . .mn 6→
Either we can reduce now or we have c m1 . . .mn t2 6→ and so
t ∈ V al.

32

(c) v.l where v 6= {li = mi
i=1,...,n}

Here v.l t2 ∈ V al because v.l is not fobidden in the side-condition.
(d) v m where v 6= λx : A.m and v 6= c m1 . . .mn

Again, we have t ∈ V al.

3. subcase: t1 /∈ V alMON

Because t1 is typeable in the type environment Γ one of the three
statements must hold by induction. Since t1 /∈ V alMON there exists
a term t′1 such that t1 → t′1.
Now we can do the reduction t1t2 → t′1t2, so statement 3 holds.

4. subcase: t1 ∈ V alMON , t2 /∈ V alMON

analogous to 2. subcase, reduce to t1t
′
2.

5. subcase t1 ∈ V alMON , t2 ∈ V alMON

Here we have nothing to show because either t1 ∈ V al, V alAPP (al-
ready covered by other cases) or t1 is a let-expression which has
monadic type or Top. But application requires a functional type for
t1.

• case T-RCD :

t = {li = ti
i=1...n} ∀i ∈ [n] : Γ ` ti : Ai A = {li : Ai

i=1,...,n}

1. subcase: ∀i ∈ [n] : ti = t′.li
here we can reduce t → t′ by η.rec-reduction.

2. subcase: ∀i ∈ [n] : ti ∈ V alMON and ∃i ∈ [n] : ti 6= t′.li
By definiton t is already a value and hence statement 1 holds.

3. subcase: ∃j ∈ [n] : tj /∈ V alMON

Since Γ ` tj : Aj , by induction and the fact that tj is not in V alMON

there exists t′j such that tj → t′j .
Now we can do the reduction {li = ti

i=1...n} → {li = ti
i=1,...,j−1, lj =

t′j , li = ti
i=j+1...n}, so statement 3 holds.

• case T-PROJ :

t = t′′.lj Γ ` t′′ : {li : Ai
i=1,...,n} j ∈ [n]

1. subcase t′′ ∈ V alAPP

So t ∈ V alAPP by definition.

2. subcase: t′′ ∈ V al

By Lemma 3.7 t′′ has one of the following form:

(a) {li = mi
i=1,...,n}

Here, t can be reduced with a β.rec-reduction to ma with ka = lj .
So statement 3 holds.

(b) c m1 . . .mn where c m1 . . .mn 6→
t ∈ V al

33

(c) v.l where v 6= {li = mi
i=1,...,n}

t ∈ V al

(d) v m where v 6= λx : A.m and v 6= c m1 . . .mn

t ∈ V al

3. subcase: t′′ /∈ V alMON

By induction there exists a t′′′ such that t′′ → t′′′. So we can perform
the reduction t′′.lj → t′′′.lj . So, here statement 3 holds.

4. subcase t′′ ∈ V alMON

Same argument as for subcase 5 of T-APP. Here we need a record
type instead of a functional type, which also creates a contradiction.

• case T-MON :

t = [t′′] Γ ` t′′ : A′ A = TA′

1. subcase: t′′ ∈ V alMON

By definition t is already a value.

2. subcase: t′′ /∈ V alMON

By induction there is t′′′ such that t′′ → t′′′ hence we can reduce
[t′′] → [t′′′] .

• case T-LET :

t = let x ⇐ t1 in t2 Γ ` t1 : TA′ Γ, x : A′ ` t2 : TA′′

A = TA′′ for some A′

1. subcase: t1 ∈ V alAPP , t2 ∈ V alMON

So t ∈ V alMON by definition.

2. subcase: t1 ∈ V al, t2 ∈ V alMON

By Lemma 3.7 t1 has one of the following forms:

(a) [m]

Here, we can apply the β.let-reduction to get let x ⇐ [m] in N
∅−→

N [x := m] . So statement 2 holds.
(b) let y ⇐ v in m where v 6= [m] and v 6= let . . .

Here, we can perform an assoc reduction and get the term let y ⇐
v in let x ⇐ m in t2. So statement 2 holds.

(c) c m1 . . .mn where c m1 . . .mn 6→
t ∈ V al.

(d) v.l where v 6= {li = mi
i=1,...,n}

t ∈ V al.
(e) v m where v 6= λx : A.m and v 6= c m1 . . .mn

t ∈ V al.

34

3. subcase: t1 has the form let y ⇐ a in m with a ∈ V alAPP ,m ∈
V alMON , t2 ∈ V alMON

t ∈ V alMON is clear. We can do an assoc-reduction.

let x ⇐ (let y ⇐ a in m) in t2
∅−→ let y ⇐ a in let x ⇐ m in t2. So

here also holds statement 2.

4. subcase: t1 ∈ V alMON and ∃t′1, α : t1
α−→ t′1 ,t2 ∈ V alMON

In this case t ∈ V alMON and we have the reduction let x ⇐ t1 in t2
α−→

let x ⇐ t′1 in t2. So statement 2 holds.

5. subcase: t1 /∈ V alMON

By induction, there is t′1 with t1 → t′1 So statement 3 holds with the
reduction let x ⇐ t1 in t2 → let x ⇐ t′1 in t2.

6. subcase: t2 /∈ V alMON

By induction there is t′2 such that t2 → t′2 . Hence we have the
reduction let x ⇐ t1 in t2 → let x ⇐ t1 in t′2 and statement 3 holds.

• case T-SUB :

Γ ` t : A′ A′ <: A

By induction one of the statements holds for t.

3.3 Strong Typing

One problem of the weak typing relation is that terms do not have unique types
which makes it harder to determine the type of a term algorithmically, as even
just check that a given judgement Γ ` t : A is derivable. In this subsection we
will see that there is a unique strong type A for every term t which is a subtype
of all possible weak types, and conversely all supertypes of A are weak types of
t. So if we want to know if a certain type is a weak type of t we can determine
the strong types and test for subtype.

3.3.1 Strong Typing Relation

In Figure 9 we can see the strong typing rules, which derive judgements of
the form Γ `str t : A most rules analogues to the weak typing relation. We
don’t have a rule T-Sub anymore creating different types for the same terms.
Modified is only the rule for applications. This is because we have the possibility
to give the function an argument which has a subtype of the required argument
type and we cannot type the argument to a supertype anymore by a T-Sub
rule. So we solve the problem by simply adding a subtype test to the rule.

35

Γ, x : A `str x : A
(T-VAR)

c : A ∈ Const

Γ `str c : A
(T-Const)

Γ, x : A `str t : B

Γ `str λx : A.t : A → B
(T-Abs)

Γ `str t1 : A → B Γ `str t2 : A′ A′ <: A

Γ `str t1t2 : B
(T-App)

Γ `str t : A

Γ `str [t] : TA
(T-Mon)

Γ `str t1 : TA Γ, x : A `str t2 : TB

Γ `str let x ⇐ t1 in t2 : TB
(T-Let)

∀i ∈ [n] : Γ `str ti : Ai

Γ `str {li = ti
i=1...n} : {li : Ai

i=1...n}
(T-Rcd)

Γ `str t : {li : Ai
i=1...n} j ∈ [n]

Γ `str t.lj : Aj

(T-Proj)

Figure 9: Strong subtype rules

3.3.2 Properties of the Strong Typing Relation

Definition: Γ′ ≤ Γ ⇐⇒ Dom(Γ′) = Dom(Γ) ∧ ∀x ∈ Dom(Γ) : Γ′x <: Γx

Lemma 3.11 (Subsumption property). If Γ ` t : A and Γ′ ≤ Γ and A <: B,
then Γ′ ` t : B .

Proof. By a straightforward induction on typing derivations we can show Γ′ `
t : A. Then by T-Sub follows Γ′ ` t : B.

Lemma 3.12. Γ ` t : A ⇐⇒ ∃B : Γ `str t : B and B <: A.

Proof.
“ ⇐ “ :
We first show that Γ `str t : B ⇒ Γ ` t : B by induction on strong typing

derivation. The required property Γ ` t : A with B <: A follows directly by
T-Sub rule for weak typing.

In the induction proof we only consider the rule for applications because the
other rules have the same form in both typings. These rules can be proven by
applying the induction hypothesis to the premises of the rule and retyping the
same way with the weak typing rule

• case T-APP:

Γ `str t1 : A′ → B Γ `str t2 : A′′ A′′ <: A′

By induction, Γ ` t1 : A′ → B and Γ ` t2 : A′′

By weak T-Sub, Γ ` t2 : A′, and by weak T-App, Γ ` t1t
′
2 : B.

36

“ ⇒ “ :
The proof is by straight forward induction on type derivations.

• case T-VAR :

t = x Γ ` x : A x : A ∈ Γ

So we can type Γ `str x : A and A <: A by S-Refl.

• case T-CONST :

t = c Γ ` c : A c : A ∈ Const

So we can type Γ `str c : A and A <: A by S-Refl.

• case T-ABS :

t = λx : A1.t
′ Γ, x : A1 ` t′ : A2 A = A1 → A2

By induction, there is B2 such that Γ, x : A1 `str t′ : B2 and B2 <: A2.
Hence, Γ `str t : A1 → B2 and by S-Arrow, A1 → B2 <: A1 → A2.

• case T-APP :

t = t1t2 Γ ` t1 : A′ → A Γ ` t2 : A′ for some A′

By induction, there are types B,C such that Γ `str t1 : B and B <: A′ →
A and Γ `str t2 : C and C <: A′ . By inversion of subtype relation, B has
the form B1 → B2 with A′ <: B1 and B2 <: A . By S-Trans, C <: B1,
hence Γ `str t : B2 with B2 <: A.

• case T-MON :

t = [t′] Γ ` t′ : A′ A = TA′ for some A′

By induction, there is a type B such that Γ `str t′ : B and B <: A′. So
Γ `str [t′] : TB and by S-MON, TB <: TA′ .

• case T-LET :

t = let x ⇐ t1 in t2 Γ ` t1 : TB′ Γ, x : A′ ` t2 : TA′

A = TA′

By induction, there is a type C such that Γ `str t1 : C and C <: TB′.
By inversion of the subtype relation, C has the form TC ′ with C ′ <: B′.
Hence, we have Γ, x : C ′ ≤ Γ, x : B′ and so by the subsumption property,
Γ, x : C ′ ` t2 : TA′.

By induction, there is a type B such that Γ `str t2 : B and B <: TA′ .
Hence, Γ `str t : B and B <: A .

• case T-RCD :

t = {li = ti
i=1,...,n} ∀i ∈ [n] : Γ ` ti : Ai

A = {li : Ai
i=1,...,n}

By induction, there are types B1, B2, . . . , Bn such that ∀i ∈ [n] : Γ `str

ti : Bi ∧Bi <: Ai . By S-RcdDepth {li : Bi
i=1,...,n} <: {li : Ai

i=1,...,n},
and by typing, Γ `str t : {li : Bi

i=1,...,n}.

37

• case T-PROJ :

t = t′.lj Γ ` t′ : {li : Ai
i=1,...,n} j ∈ [n] A = Aj

By induction, Γ `str t′ : B and B <: {li : Ai
i=1,...,n}. By inversion of

the subtype relation, B has the form {ka : Ba
a=1,...,m} with at least the

labels {li 1=1,...,n} and Ba <: Ai whenever ka = li.

Let ka = lj , then Γ `str t : Ba and Ba <: Aj .

• case T-SUB :

Γ ` t : C and C <: A

By induction, there is B such that Γ `str t : B with B <: C and by
S-Trans B <: A.

Lemma 3.13 (Uniqueness of strong Types). If Γ `str t : A and Γ `str t : B,
then A = B.

Proof. The proof is a straight-forward induction on type derivations of the
strong typing relation.

38

4 Application: Object Calculus

In this chapter we show an application, considering an imperative object calcu-
lus. First we introduce new constants needed for simulating the object calculus,
and prove in a modular way that the standard soundness properties also hold in
our extended monadic calculus. We introduce a variant of the imperative object
calculus of Abadi & Cardelli in [2, 1, 4, 3], very similar to the one Abadi & Leino
presented in [5] (without the boolean constructs). Then we show how to trans-
late this calculus into the monadic calculus with subtyping and the extension
we now introduce. We show that this encoding respects typing.

4.1 Extensions in the Monadic Calculus

To simulate an object calculus in the monadic language we need to define some
constants to realize the implicit references and a new type contructor ref to
create references of type A. This type constructor ref must be contained in
TC, the set of type constructors with arity 1. In [10] we can read that for
ref A <: ref B we need that A <: B and B <: A. But this is only the case if
B is a permutation on the fields of the record type nested in A. Here we can
also do without additional subtype rules for a type ref A. So we do not get in
conflict with the requirement that no new subtype rules are defined.

Another feature of the imperative object calculus is the implicit recursion
when we call a method field of an object. Hence we need a recursion operator
in the monadic calculus. So it is clear what new constances we need to define
in our constant set Const: We need a fixpoint operator for recursion and the
standard operations to use references. Since constants in Const need a partic-
ular type and these operation are usually type polymorphically depending on
one type we need the constants for every possible type. For simplicity, we define
them in Const one time using an arbitrary type A.

Const = {newA : A → T (refA), updateA : refA → A → T{},
derefA : refA → TA, fixA : (TA → TA) → TA}

Here we indexed every new constant with a type which means that by defining
one constant we have defined one constant for every possible type.

Note that in a calculus with references we can simulate a the fixpoint fixA

for types that have a closed term tA (∅ ` tA : A). For the following translation of
the object calculus we can always construct such a term tA for every translation
of an object type, but for technical reasons it is easier to use a constant. The
term simulating fixA would be as follows:

fixA = λf : TA → TA.let l ⇐ newTA [tA] in let ⇐ updateTA l
(let x ⇐ derefTA l in f x)in let y ⇐ derefTA l in y

Additionally we have to perform storage updates while evaluating. Therefore
we do not only need a store S, but also some proper effects stating which update
operation we perform. Hence, we define the set of proper effects pEff as follows:

39

fixA t
fix−−→ t(fixA t)

newA t
l=t:A−−−→ [l]

updateA lt
!l:=t−−−→ [{}]

derefA l
?l=t−−−→ [t]

Figure 10: Additional proper reduction rules

pEff = {fix, l = t : A, !l := t, ?l = t}

Every proper effect except for fix indicating that we execute a fixpoint oper-
ation stands for a special storage operation. The first one is l = t : A. It adds a
new cell of type A with initial content t to store, accessible over the label l. We
need to give a type because the type of t could depend on the type of some free
variables bound in a type environment or could be a subtype of the required cell
type. The effect !l := t changes the content of cell l to t, ?l = t reads the con-
tent t of cell l. Knowing the intuition of labels we define in Figure 10 additional
reduction rules where all rules have some new proper effects. Furthermore, it is
easy to see that all left-hand sides of the new rules have monadic types.

Furthermore, now terms can have reference labels for that we must be able
to give a type. So we also introduce an environment Σ which gives the reference
labels a type of the form ref A. If we do not differ between variables and labels
we can use a normal variable for a reference label if we make sure that no label
variable is used by the term. This we can do if the l in the effect l = v : A for
creating a new cell does not occur in the evaluated term.

So for typing we must use this Σ instead of the empty environment to type
any term. But typing only works if we have a consistent store. That means
that all labels l in Σ are typed with a type refA and have a value of type A
in the corresponding reference cell in a concrete store. Now we give a formal
definition of top level evaluation and storage consistency in Figure 11. Note
that for reductions without effects or the effect ∅ and fix we may reduce on
top-level without changing S, Σ. Furthermore we use the notation Σ | Γ ` t : A
as an alternative to Σ,Γ ` t : A to state that Σ is the environment for labels
and contains only typings of the form x : refA where x is a label variable.

We still have to prove that the soundness properties Preservation and Pro-
gress hold. We start with Preservation and continue with Progress. For the
new theorems we need to take care of our storage. Fortunately we can use
an analogous formulation to the one Pierce used for his storage extension in
Chapter 13 of [10].

Theorem 4.1 (Preservation of Calculus with Storage and Fixpoint). If Σ | Γ `
t : A, and Σ | Γ ` S, and S | t → S′ | t′ then ∃Σ′ : Σ ⊆ Σ′ ∧ Σ′ | Γ ` t′ : A ∧
Σ′ | Γ ` S′.

Proof. Finally, here is an example for a modular proof. In the cases that we
have an effect-free reduction or a reduction with the empty effect we can argue

40

t
l=t′′:A−−−−→ t′

S | t → S ∪ {(l, t′′)} | t′
l /∈ Dom(S) and l /∈ V ar(t)

t
!l:=t′′−−−−→ t′

S | t → S[l := t′′] | t′
l ∈ Dom(S)

t
?l=t′′−−−−→ t′

S | t → S | t′
v=S(l)

Consistency of storage S in Σ,Γ written as Σ | Γ ` S:
dom(S) = dom(Σ)
∀l : refA ∈ Σ : Σ | Γ ` S(l) : A

Figure 11: Top-level evaluation of storage operations and Consistency of storage

the correctness with the “old” preservation theorem 3.5. Then we prove the
preservation for the new reduction rules, and that this holds in the effectfull
reduction context E.

We know that if we don’t have an effectful reduction with one of the new
proper effects we don’t have storage operations. So we can choose Σ′ = Σ and
S′ = S and have Σ′ | Γ ` S′. The old Preservation theorem gives us that
Σ,Γ ` t′ : A and so we have Σ′ | Γ′ ` t′ : A.

For the new reduction rules with proper effects we reprove by induction on
strong type derivation. The strong type may differ from our weak type A, but
we know that it is a subtype of A. So if we can show that we can weakly type t′

to our new type we directly know that we can weakly type t′ to A. So W.l.o.g.
assume that A is the strong type of t.

• case T-APP:

t = t1t2 Σ | Γ `str t1 : A′ → A Σ | Γ `str t2 : B

B <: A′ for some types A′, B.

– case α = fix :
t1 = fixC Σ | Γ `str fixC : (TC → TC) → TC for some type
C

So A′ = TC → TC , A = TC and B <: TC → TC. By inversion
of subtype relation we know that B has the form B1 → B2 with
TC <: B1 and B2 <: TC.

fix t
fix−−→ t(fix t) S | fix t → S | t(fix t)

S, Σ and Γ remains unchanged, so Σ′ | Γ ` S′ holds. With the strong
subtype rules we can strongly type t(fix t) to B2, and so weakly type
it to TC.

– case α is l = t2 : C :

41

t1 = newC Σ | Γ `str newC : C → T (ref C)

newC t2
l=t2:C−−−−→ t′ = [l] S | newC t2 → S ∪ {(l, t2)} | t′ = [l]

for some fresh label variable l /∈ Dom(S)
So A = T (ref C) ,B <: C and Σ′ = Σ, l : ref C. We can easily see
that in Σ′,Γ we can type l to ref C and so also [l] to T (ref C). Now
it remains to show that Σ′ | Γ ` S′. Since Σ | Γ ` S we know that
for all k : ref A ∈ Σ : Σ | Γ ` S(k) : A. By strengthening and l is
an fresh variable not in FV (S(k)) we know that Σ′ | Γ ` S(k) : A
with S(k) = S′(k). For the new label l we know that S′(l) = t2
was typable in Σ | Γ to type B <: C, so by strengthening we can
Σ′ | Γ ` t2 : C with t2 = S′(l). Hence Σ′ | Γ ` S′.

– case α is !l := t2 :
t1 = updateC l Σ | Γ `str updateC : ref C → C → T{}
Σ | Γ `str l : ref C for some type C

updateC l t2
!l:=t2−−−→ [{}] S | updateC l t2 → S[l := t2] | [{}]

So A = T{} , A′ = C , Σ′ = Σ and S′ = S[x := t2]. Obvious,
Σ′ | Γ ` [{}] : T{}. So it remains to show that Σ′ | Γ ` S′ holds.
For all labels k 6= l with k : ref D ∈ Σ we have S′(k) = S(k) with
Σ ` Γ ` S(k) : D, so we can type Σ′ | Γ ` S′(k) : D. We know
that l has type ref C in Σ, so for t2 = S′(l) we have the typing
Σ′ | Γ ` t2 : C.

– case α is ?l = v :
t1 = derefA t2 = l , B = ref A Σ | Γ `str derefA :
ref A → A

derefA l
?l=v−−−→ v S | derefA l → S | v

Here Σ and S remains unchanged, so Σ′ | Γ ` S′ holds. Since l has
type ref A in Σ we have Σ′ | Γ ` S(l) = t′ : A because of storage
consistency.

• case T-LET :

t = let x ⇐ t1 in t2 Σ | Γ `str t1 : TC Σ | Γ, x : C `str: A
A = TA′ for some C, A′

Because we consider only effectful reduction there is only one case.

t1
s−→ t′1 S | t1 → S′ | t′1

S | let x ⇐ t1 in t2 → S′ | let x ⇐ t′1 in t2

By induction there is Σ ⊆ Σ′ such that Σ′ | Γ ` S′ and Σ′ | Γ ` t′1 : TC.
Hence, by typing Σ′ | Γ ` let x ⇐ t′1 in t2 : A.

Now we continue showing Progress. Our idea for a modular proof was to
define a new value set V al′ for a specific calculus depending on the additional

42

proper reduction rules without effects and show that V al′ = V al − {t | t
α−→}

assuming that all terms t /∈ V al with ∅ ` t : A have a reduction also in our new
store context.

Unfortunately here this way does not work directly. The reason is that now
typing of a term depends on a label environment Σ that gives our labels used
in store a reference type. So we have to state preservation theorem for terms
typeable in environment Σ for labels, but in empty environment for normal
variables.

Another problem is that even with that Σ we have more terms in the value
set. Fortunately we just have one further form of values, namely a variable l used
as reference label with a type of the form ref A contained in the set V alAPP .
So we first can argue with the auxiliary Progress theorem that we have Progress
for terms t on the old value set extended with label variables without our addi-
tional reduction rules whenever Σ | ∅ ` t : A. When we have defined the new
value set V al′, we show that V al′ = (V al ∪ {l | l a variable}) − {t | S | t

α−→}.
Now we can define our new value set V al′.

V al′ = x | λx : A.m | [m] | {li = mi
i=1,...,n} | c | update m

Now we state our Progress theorem analogous to [10].

Theorem 4.2 (Progress of Calculus with Storage and Fixpoint). Let t be a
term with Σ | ∅ ` t : A for any label environment Σ. Either t ∈ V al′ or else
for any store S with Σ | ∅ ` S, there is some term t′ and a store S′ such that
S | t → S′ | t′ or S | t α−→ S′ | t′.

Proof. First we show that t is either in V al ∪ {l} or there is a term t′ such that
t → t′ or t

α−→ t′.
Since Σ | ∅ ` t : A, we have Σ ` t : A and so one of the cases of the auxiliary

Progress theorem must hold. The cases t ∈ V al, t ∈ V alMON ∨ ∃t′ : t
α−→ t′ and

∃t′ : t → t′ fulfill the property. For the case t ∈ V alAPP we have that t is only
typable in Σ in case of t = l where l : ref A ∈ Σ. This we can easily prove by
induction and the fact that terms of the form a m,a.l aren’t typable if a can
only have a reference type. The last case t = let x ⇐ a in m also isn’t typable
since therefore we must be able to type a term of V alAPP to a monadic type.

Because here we didn’t consider the new reduction rules with proper effect
the only effect we can observe is ∅. Hence we can do all considered reductions
also on top-level.

To complete the proof we must show that we can reduce all terms in (V al∪
{l})−V al′. These terms we want to exclude have either the form of an additional
proper reduction rule, or the form v.l, v m or let x ⇐ v in m.

Now we show by applying Lemma 3.8 that all these terms t contain the left-
hand side p1 of some new proper reduction rule p1

α−→ p2 as a subterm and there
is a context E such that t = E[p1]. Then we show depending on the proper
effect that for any store S with Σ | ∅ ` S that there is store S′ and we have the
reduction S | t → S′ | E[p2].

43

Since Σ | ∅ ` t : A, we also have Σ ` t : A. So by Lemma 3.8 we know that for
all values excluded from V al∪{l} there is context C and a term t′′ = c m1 . . .mn

with Σ ` t′′ : B such that t = C[t′′]. Furthermore for the constructs v′.l, v′ m
and let x ⇐ v′ in m of t, type B is nonfunctional. If we consider again our
constants we easily see that t′′ either must have functional or monadic type.
Hence B is monadic, and so C is a context E for effectful reductions.

Since we have defined additional proper reduction rules with effects for all
constants with full arguments and hence, we always have a reduction t′′

α−→ t′′′,
and hence also t = E[t′′] α−→ E[t′′′] = t′ Let S be an arbitary store with Σ | ∅ ` S.
Now we show in a case distinction on the effects that there is a reduction for
S | t.

• α is fix

S | t → S | t′ is always possible.

• α is l = t1 : A

Clearly t′′ = newA t2. Here it is alway possible to choose a label l so
that l /∈ Dom(Σ) and l /∈ FV (t), since we know the term t and and Σ
for typing. Since by consistency of storage Dom(S) = Dom(Σ), we can
reduce S | t → S ∪ {(l, v)} | t′.

• α is !l := t1

Clearly t′′ = update l t1. Since t′′ is typable in Σ applying inversion
(parts 4,5) we get that l is typable in Σ and hence that l ∈ Dom(Σ). By
consistency of storage l is also in Dom(S). Hence S | t → S[l := t1 | t′.

• α is ?l = t1

Clearly t′′ = deref l. With the same argument as last case we have
l ∈ Dom(S). We can alway choose t′′′ = [S(l)] , S(l) = t1 and so we have
the reduction S | t → S | t′.

4.2 Object Calculus

Now we define the object calculus we want to translate in the monadic calculus.
We start with the definitions of types, terms and values.

A,B ∈ Ty ::= [fi : Ai
i=1...n,mj : Bj

j=1...m]
b, o ∈ Obj ::= x | x.f | x.f := y | x.m | [fi = xi

i∈1...n,mj = ς(yj : A)bj
j=1...m]

| let x = o in b

In the object calculus we distinguish like in many object-oriented program-
ming languages between fields and methods. Methods receive the object itself
as argument again, so we have a language with recursion. As one can see we
have for many constructs the restriction that we must use variables instead of

44

This object calculus provides also subtyping with the following subtype rule:

∀j ∈ [m] : Bj <: B′
j

[fi : Ai
i=1...n+l,mj : Bj

j=1...m+k] <: [fi : Ai
i=1...n,mj : B′

j
j=1...m]

Typing rules:

x : A ∈ Γ
Γ ` x : A

(O-Var)
Γ ` x : [fi : Ai

i∈1...n,mj : Bj
j∈1...m]

Γ ` x.fk : Ak

(O-F-Proj)

Γ ` x : [fi : Ai
i∈1...n,mj : Bj

j∈1...m] Γ ` y : Ak

Γ ` x.fk := y : [fi : Ai
i∈1...n,mj : Bj

j∈1...m]
(O-F-Upd)

Γ ` x : [fi : Ai
i∈1...n,mj : Bj

j∈1...m]
Γ ` x.mk : Bk

(O-M-Proj)

∀i ∈ [n] : Γ ` xi : Ai

∀j ∈ [m] : Γ, yi : A ` bj : Bj A = [fi : Ai
i∈1...n,mj : Bj

j∈1...m]
Γ ` [fi = xi

i∈1...n,mj = ς(yi : A)bj
j∈1...m] : A

(O-Obj)

Γ ` o : A′ Γ, x : A′ ` b : A

Γ ` let x = o in b : A
(O-Let)

Γ ` o : A A <: B

Γ ` o : B
(O-Sub)

Figure 12: Subtyping rule and typing rules for the imperative object calculus

arbitrary objects. When we talk about the operational semantics we will see
that this is just a convinience since one could simulate the version with objects
with let-terms, e.g. we can simulate o.f with let x = o in x.f .

First we have a look at the subtyping and typing rules of the object calculus
in Figure 12. As one can see in the subtype rule we allow subtyping in depth
only for methods. This has the reason that we must see the fields as references
that have an update (x.f := y) and a dereferencing (x.f) operation we explain
when we talk about the operational semantics of the object calculus. As it is
well-known, we can’t allow subtyping for references without becoming unsound.
The type rules are also intuitive knowing the semantics of object calculus.

Now we still have to talk about the operational semantics of this imperative
object calculus which is analogous to [5]. One principle is that objects are
handled as references to the real object in a store. So for any term of the form

45

[fi = xi
i∈1...n,mj = ς(yi : A)bj

j=1...m] we create an object with the fields fi,
i ∈ [n] and the fields mj , j ∈ [m] in the store with corresponding initial values
and return a reference to this object. Furthermore, we have operations for the
fields. The operation x.f just returns the value of field f of the object the
variable x is bound to. The update operation x.f := y replaces the field f of
the object x with the object bound on y, returning again x. Methods can only
be called and not be updated so that we can allow there the subtyping. When
a method field mj with value ς(yj)bj is called on object x then we evaluate the
body bj binding the variably yi on the value x. As last construct we have a
let-construct let x = o in b. Here we first evaluate o bind the value of o to the
variable x and then we evaluate the body b.

4.3 Translation into the Monadic Calculus

We can give a translation of the object calculus into the monadic calculus. We
start with the rule for types using the notation A∗ for the translation of type
A.

[fi : Ai
i=1...n,mj : Bj

j=1...m]∗ = {fi : ref A∗
i

i=1...n,mj : T B∗
j

j=1...m}

Observe that here the base case is that of an empty object type []∗ = {}. Also
notice that the translation of any object type is a record type. Furthermore we
are now able to extend the translation for type envirenments:

∅∗ = ∅
(Γ, x : A)∗ = Γ∗, x∗ : A∗

Now we translate objects from the inperative object calculus into the monadic
calculs. Note that all variable z, self must be fresh.

x∗ = [x]
x.f∗ = deref x.f
x.f := y∗ = let ⇐ update x.f y in [x]
x.m∗ = x.m
[fi = xi

i∈1...n,mj = let z1 ⇐ new x1 in
= s(yi : A)bj

j∈1...m]∗ . . .
let zn ⇐ new xn in
fix(λself : T A∗.[{fi = zi

i∈1...n,
mj = let yi ⇐ self in b∗j)

j∈1...m}]
let x = o in b∗ = let x ⇐ o∗ in b∗

To convince us of the correctness of the translation we must interpret a record
as the reference on the object. Since method fields are constant and we cannot
update them per side-effect it doesn’t matter if we write them directly in the
field or in a reference cell. For the other fields we assign a reference cell that

46

won’t be changed anymore, so knowing the references for the fields we can con-
struct the “reference” for any object directly (assigning in the translation for
[fi = xi

i∈1...n,mj = ς(yi : A)bj
j=1...m], other constructs do not create objects).

Since we don’t have the possibility to hide the argument for self application of
methods in typing we translate the body and give them a variable self as argu-
ment. To realize self application we use fix and put the record in the body of a
function with self as argument. To avoid evaluation of method bodies before the
method is called, we use a let construct instead of an abstraction with argument
self. So method fields have a monadic type.

Since we work much with reference operation which have monadic type we
must use let constructs to be able to evaluate and hence we must give the
translation a monadic type. This is also the reason why we put variables in
monadic constructor []. The remaining operations are intuitive.

The idea of this translation comes from [8], where a similar translation of
imperative objects into a lambda calculus with state was considered, in the
context of a ”denotational” semantics. The use of a monadically typed target
language appears to be new, but we conjecture that correctness of the translation
can be established in our case, too. Here, we show only correctness with respect
to typing. To prove the correctness we need also to show that translation of
types keeps the subtype relation and an inversion lemma for variables (without
proof) and the weakening.

Lemma 4.3 (Preservation of Subtype relation). If A <: B then A∗ <: B∗.

Proof. Proof by induction on the derivation of subtype relation.

By subtype rule, we have A = [fi : Ai
i=1...n+l,mj : B′

i
j=1...m+k] and ∀j ∈

[m] : B′
j <: Bj . Hence by induction, we have ∀j ∈ [m] : B′∗

j <: B∗
j . Since

by S-Refl ∀i ∈ [n] : ref A∗
i <: ref A∗

i , we have by S-RcdDepth that
{fi : ref A∗

i
i=1...n,mj : B∗

i
j=1...m} <: {fi : ref A∗

i
i=1...n,mj : B∗

i
j=1...m}.

By S-RcdWidth, we get {fi : ref A∗
i

i=1...n+l,mj : B′∗
i

j=1...m+k} <: {fi :
ref A∗

i
i=1...n,mj : B′∗

i
j=1...m}. With S-Trans, we get A∗ = {fi : ref A∗

i
i=1...n+l,mj :

B∗
i

j=1...m+k} <: {fi : ref A∗
i

i=1...n,mj : B∗
i

j=1...m} = B∗.

Lemma 4.4. If Γ ` x : A, then there is a type A′ with A′ <: A and x : A′ ∈ Γ.
Hence, we have Γ∗ ` x : A∗.

Lemma 4.5 (Weakening). If x /∈ FV (t), Dom(Γ) and Γ ` t : A, then Γ, x :
B ` t : A.

Proof. The proof by straightforward induction on type derivation.

Lemma 4.6 (Type correctness of translation). If Γ ` o : A in the object calcu-
lus, then Γ∗ ` o∗ : T A∗ in the monadic language.

Proof. We prove this by induction of type derivation for objects.

47

• case O-VAR:

o = x x : A ∈ Γ

o∗ = [x]

By definition of translation of Γ we can easily see that x : A∗ ∈ Γ∗. Hence,
Γ∗ ` x : A∗ and so by T-Mon Γ∗ ` [x] : TA∗.

• case O-F-PROJ:

o = x.fk Γ ` x : [fi : Ai
i∈1...n,mj : Bj

j∈1...m] A = Ak

o∗ = deref x.f

By Lemma 4.4, Γ∗ ` x : {fi : ref A∗
i

i∈1...n,mj : B∗
j

j∈1...m}. Hence
Γ∗ ` x.fk : ref A∗

k and so Γ∗ ` o∗ : TA∗
k.

• case O-F-UPD:

o = x.fk := y Γ ` x : [fi : Ai
i∈1...n,mj : Bj

j∈1...m](= A)
Γ ` y : Ak

o∗ = let z ⇐ updateA∗
k

x.fk y in [x] z fresh

By Lemma 4.4, Γ∗ ` x : A∗ and Γ∗ ` y : A∗
k. So we can type Γ∗ `

updateA∗
k

x.fk y : T{}. By weakening and z /∈ FV (x), Γ∗, z : {} ` x : A∗

and by T-Mon, Γ∗, z : {} ` [x] : TA∗. By T-Let, Γ∗ ` o∗ : TA∗.

• case O-M-PROJ:

o = x.mk Γ ` x : [fi : Ai
i∈1...n,mj : Bj

j∈1...m] A = Bk

o∗ = x.mk

By Lemma 4.4, Γ∗ ` x : {fi : ref A∗
i

i∈1...n,mj : B∗
j

j∈1...m}. Hence
Γ∗ ` x.mk : ref A∗

k and so Γ∗ ` o∗ : TA∗
k.

• case O-OBJ:

o = [fi = xi
i∈1...n,mj = s(yi : A)bj

j∈1...m] ∀i ∈ [n] : Γ ` xi : Ai

∀j ∈ [m] : Γ, yi : A ` bj : Bj A = [fi : Ai
i∈1...n,mj : Bj

j∈1...m]

o∗ = let z1 ⇐ newA∗
1

x1 in . . . let zn ⇐ newA∗
n

xn in fixA∗(λself :
T A∗.[{fi = zi

i∈1...n,mj = let yi ⇐ self in b∗j)

By Lemma 4.4, ∀i ∈ [n] : Γ∗ ` xi : A∗
i and so Γ∗ ` newA∗

i
xi :

T (ref A∗
i). By weakening and all zi are fresh, we have ∀i ∈ [n] : Γ∗, z1 :

ref A∗
1, . . . zi−1 : A∗

i−1 ` newA∗
i

xi : T (ref A∗
i).

By nested application of T-Let, one gets Γ∗ ` o∗ : TA∗ if Γ∗, z1 :
ref A∗

1, . . . zn : A∗
n ` fixA∗(λself : T A∗.[{fi = zi

i∈1...n,mj = let yi ⇐
self in b∗j) : A. After applications of T-App, T-Abs and T-Mon it
remains to show Γ∗, z1 : ref A∗

1, . . . zn : ref A∗
n, self : TA∗ ` {fi =

zi
i∈1...n,mj = let yi ⇐ self in b∗j) : A∗.

By applying T-Rcd, it remains to prove that ∀j ∈ [m] : Γ∗, z1 : ref A∗
1, . . . zn :

ref A∗
n, self : TA∗ ` let yi ⇐ self in b∗j : TB∗

j . And hence, one can see
that this is the case if Γ∗, z1 : ref A∗

1, . . . zn : ref A∗
n, self : TA∗, yi : A∗ `

48

b∗j : TB∗
j . By induction, we get Γ∗, yi : A∗ ` b∗j : TB∗

j , the previous form
we get by applying weakening and zi fresh.

• case O-LET:

o = let x = o′ in b Γ ` o′ : B Γ, x : B ` b : A

o∗ = let x ⇐ o′∗ in b∗

By induction, Γ∗ ` o′∗ : B∗ and Γ∗, x : B∗ ` b∗ : A∗. By T-Let,
Γ∗ ` o∗ : TA∗.

• case O-SUB:

Γ ` o : B B <: A

By induction, Γ∗ ` o∗ : TB∗. By Lemma 4.3 B∗ <: A∗ and hence by
S-Mon, TB∗ <: TA∗ and by T-Sub, Γ∗ ` o∗ : TA∗.

49

50

5 Future Work

So far, we have seen a monadic calculus with subtyping that can easily be ex-
tended. For this calculus we have proven the properties Type Preservation,
Progress and the minimal (“strong”) type property. In the example of embed-
ding a object calculus into the monadic calculus in Section 4, we have seen that
for some extensions we can reprove the properties in a modular way using the
correctness of these properties for the unextended calculus. But the work of
combing computational monads and subtyping isn’t complete yet.

One task left is to investigate the calculus without the restriction not to
define new subtype rules, e.g. it is not yet possible to establish a subtype relation
between integers and floating points as discribed in the Introduction. For other
type constructors as ref from the example in Section 4 it is often reasonable
to establish a subtype rule as T-Mon for the monadic type constructor T . A
simple example for a type constructor with a covariant subtype rule is List. As
one cannot change a list element per side effect in the standard semantics we
don’t need contravariance as for references.

The example of embedding an object calculus into the monadic calculus
is not complete since we only proved the type correctness of the translation.
Therefore we have to define a particular operational semantic for the object
calculus. Since both semantic, the one for the object calculus and the one for
the extended monadic calculus with references, depend on a global store, we also
need to extend the translation for the state of the store. Then, we must show
that whenever we can evaluate a particular object o in the object calculus we
can do an equivalent evaluation for the translation of o in the extended monadic
calculus.

References and fixpoint operator aren’t the only possible extension for the
monadic calculus. Many of them had already been investigated for monadic
calculi without subtyping. There is much literature about such extensions as
exceptions ([7]) or non-determinism, for instance, by Moggie and Wadler in
[6] and [13]. These examples must be considered again for the new monadic
calculus.

As a last task left, there is extension of the calculus with type polymorhism.
This can’t be embedded by defining the sets in the definition of calculus. Some
theory about type polymorphism for non-monadic calculi can be found in Part
5 of [10]. So here we must extend the language of the calculus and reprove the
basic properties.

References

[1] M. Abadi and L. Cardelli. An imperative object calculus. Theory and
Practice of Object Systems, 1(3):151–166, 1995.

[2] M. Abadi and L. Cardelli. A theory of objects. Springer-Verlag, New York,
1996.

51

[3] M. Abadi and L. Cardelli. A theory of primitive objects. In Interna-
tional Conference on Functional Programming, pages 63–74, Baltimore,
Sept. 1998. ACM.

[4] M. Abadi, L. Cardelli, and R. Viswanathan. An interpretation of objects
and object types. In POPL, pages 396–409, 1996.

[5] M. Abadi and K. R. M. Leino. A logic of object-oriented programs. Tech-
nical Report 161, Digital Equipment Corporation, Systems Research Cen-
ter, 130 Lytton Avenue, Palo Alto, CA 94301, 1998. Order from src-
report@src.dec.com.

[6] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In G. Barthe,
P. Dybjer, L. Pinto, and J. Saraiva, editors, APPSEM, volume 2395 of
Lecture Notes in Computer Science, pages 42–122. Springer, 2000.

[7] N. Benton and A. Kennedy. Exceptional syntax. J. Funct. Program,
11(4):395–410, 2001.

[8] S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented
languages. In C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language Design,
pages 464–495. MIT Press, 1994.

[9] E. Moggi. Notions of computation and monads. Information and Compu-
tation, 93(1):55–92, 1991.

[10] B. C. Pierce. Types and Programming languages. MIT Press, 2002.

[11] P. Wadler. The essence of functional programming. In POPL, pages 1–14,
1992.

[12] P. Wadler. Monads for functional programming. In J. Jeuring and E. Mei-
jer, editors, Advanced Functional Programming, volume 925 of LNCS.
Springer-Verlag, 1995.

[13] P. Wadler. The marriage of effects and monads. In International Conference
on Functional Programming, pages 63–74, Baltimore, Sept. 1998. ACM.

[14] A. K. Wright and M. Felleisen. A syntactic approach to type soundness.
Inf. Comput, 115(1):38–94, Nov. 1994.

52

