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Abstract

The semantics of constraint logic programming languages with coroutining
facilities (“freeze,” suspension, residuation, etc.) cannot be fully declarative;
thus, an operational semantics has to be taken as the defining one. We
give a formal operational semantics for a Prolog-like language with cut and
entailment-based conditional. The difficulty here is to present the semantics
in a form that abstracts away inessential details and highlights the interac-
tion between language constructs. Our approach is derived from those used
for concurrent calculi. We use abstract syntax trees, congruence laws and
rewrite rules to define the semantics. A computation step is modeled as the
application of a rewrite rule to an abstract syntax tree modulo structural
congruence. This semantics serves as a defining tool for the language design-
er and as the interface between the language designer and implementor; it
allows the programmer to check his intuition with a formal execution mod-
el and it gives him a performance measure for the execution of programs.
We have used the semantics to make precise, for the first time, the critical
interaction between sequential execution (including backtracking and cut
pruning) and coroutining. In particular we exhibit cases where this inter-
action can lead to indeterministic results (i.e., to non-predictable program
execution).

1 Introduction

The logical semantics (“ E=F") which has been given for logic program-
ming languages [7, 6] has been one reason for their success. It presents these
languages as executable specification languages. The declarative semantics
becomes practically useful when, for example, programming search prob-
lems. These languages are, however, mainly used as programming languages



which have declarative as well as purely operational functionalities (such as
the ordering of goals, the cut operator, and facilities for coroutining which
appear in one form or another! in most CLP- or Prolog-Systems. Also, it
is well known that the formal correspondence between declarative and op-
erational semantics is lost even for the “pure” subset of practical language
implementations. Thus, the semantics cannot be fully declarative, and we
have to take an operational semantics as the defining one.

To achieve the definition of an operational semantics is not difficult in
principle; one need only formalize an interpreter. The difficulty is to present
the semantics in a form that abstract away inessential details and high-
lights the interaction between language constructs. The work in [3] gives
the operational semantics of “freeze,” but on a very low-level; for exam-
ple, it formalizes the stepwise search through the list of frozen goals. Such
a low-level approach seems suitable for specifying and comparing language
implementations, but not so much for designing and specifying the languages
themselves. On a very high-level, declarative and operational semantics for
comitted-choice languages have been given by Maher in [8], who captured
guard satisfaction as constraint entailment. Similar in spirit is the work
in [14] which considers a logic programming language with don’t-know choice
and guarded rules.

In this paper, we give a short, simple and formally precise description
of the operational semantics of logic programs with coroutining facilities.
In comparison with [3], our semantics is high-level. In contrast to [3], it
treats constraint handling logically . In contrast to [8, 14], our semantics
accounts for order (of goals and alternatives), cut and eager wakening and ig-
nores declarative semantics. Our approach is based on abstract-tree rewriting
which appeared in a revised representation of the w-calculus [9] and was em-
ployed in [15, 16] to formulate calculi for higher-order concurrent constraint
programming model. The abstract-tree rewriting model proves particularly
useful for constraint programming since constraint propagation and simplifi-
cation (for testing satisfiability as well as entailment) can be accommodated
elegantly by means of the congruence on trees. This congruence is defined us-
ing the logical meaning of constraints. Thus, we model constraints logically,
as is standard in CLP.

The next section introduces our general approach. Section 3 introduces
the notions of constraints and predicate definitions and applications and con-
siders simple programs, which are built up with the operators “&” and “;”.
Sections 4, 5 and 6 consider programs obtained by adding an operator, either
“re?” or “47, to simple programs. Section 7 considers the combination of
all five operators. The article ends with a conclusion section.

2 The Approach

The ingredients of our semantics are (cf., Figure 1): BNF style rules to
define the abstract syntax, reduction rules (“ — ) for the operational and

'For example: “freeze,” suspension, residuation (negated constraints also introduce an
implicit form of coroutining); cf. [5, 10, 11, 4, 1]).



congruence laws (“=7) for the declarative aspects.

The execution of a program is seen as a sequence of state transitions. The
states are modeled by formulae (“continuations”) which are represented as
trees as usual. A computation step is modeled as the application of a rewrite
rule to an abstract syntax tree modulo structural congruence. Formally,
the reduction relation “ = ” modeling the direct state transitions is an
extension of the relation — given by the reduction rules, namely

CL=Cl, Gy =Y C—s

for any context C (of the form defined in the corresponding definition) and
configurations C', C7, Ca, Ch. A context is a “tree with a hole;” C[C] denotes
the tree obtained from C by putting the tree C into the hole. For example, for
the contexts defined in Figure 1 we define o[C'] = C and (e; C")[C] = C'; C'.

The trees are made abstract by a congruence. The idea is that congruent
trees describe the same state. Formally, the relation = is the congruence
generated by the congruence laws.?

The purpose of congruences is twofold: (1) They serve to make trees
sufficiently abstract to suitably model states. For example, Ey A (E2 A Fs)
and (Fy A E2) A Fs are different trees; by making them congruent one can
talk about the list of conjuncts written as Fq A E3 A Es. (2) They serve to
describe the effect of a functionality of the language on a high level (i.e.,
declaratively): Instead of modeling the effect through transitions between
certain states, one identifies these states through the congruence. For exam-
ple, we describe the effect of unification by a congruence law (Simplification).
The implementation of the language has to ensure that these “hidden” tran-
sitions are possible when needed.

3 Simple Programs (“&” and “;”)

We will motivate and explain the definition for the execution of simple pro-
grams in Figure 1 at hand of an example. We take the definition of the length
predicate, length([],zero). length([HT]succ(N)) :- length(T,N). —
and, hereby indicating how the systematic translation from concrete into
abstract syntax works, translate it to the following syntactic formula.?

length(z,n) < ( (2 = nil An = zero);
((z = cons(y, z) An = succ(m)) &length(z,m)) )

We say that the predicate length(z,n) is defined by an expression E which

is composed of sub-expression with the symbols “;” (read: “Sequential Or”)
2This means, = is the least equivalence relation which respects the congruence laws
and the rule: If t; = ¢} and t» = ¢}, then t; oty = ¢t ot for binary tree-composing

symbols o, and accordingly for ternary ones.

*This is not yet a logical definition; i.e., the symbol “<” does, for now, not have the
logical reading “if and only if.” We omit the account of existential quantification until
Section 6.



SYNTAX

Expressions E = ¢ | pT | Fi & Fy | Py By
Configurations (' = @:F | — | Ch; Cy
Contexts C = o | c;C

REDUCTION RULES

Application pipi& B — iz =y& & F if py & Ep in program,
Elaboration V(pg:E)NV(py < Ey) =0

Constraint pror& B — poANetE i AFenpgr o Lo AT
Elaboration SN — if AEpAp & L

Or Elaboration @: (L5 By) & 8 — (¢ E1&B) 5 (piby& )
CONGRUENCE LAWS

Sequential And  ({ EFzpressions}, &, T) is a monoid.

Sequential Or  ({ Configurations}, ;, —) is a monoid.

Simplification w1 = @o if AE ¢ & e

Figure 1: Simple Programs (“&” and “;”)

and “&” (read: “Sequential And”). The atomic sub-expressions are either
applications pz (here: length(z, m)) or constraints ¢ (here: x = cons(y, z) A
n = succ(m)). Constraints are themselves composed of atomic constraints
with the symbol “A” (read: “Logical And”).*

In order to motivate the use of two “And” symbols now, we note
that the difference between the two expressions z = f(y,a) Ay = a and
r = f(y,a) &y = a corresponds to the difference between X=f(a,a) and
X=f(Y,a), Y=ain Prolog syntax.® In connection with coroutines, this differ-
ence has an operational significance (if the constraint y = « fails, coroutines
may be fired in the second case, but not in the first; cf., Section 5).

The semantics is formally parametrized with a constraint system, which
defines the syntax and the interpretation of the particular class of first-order
logic formulae that we consider ‘constraints’. The constraint system consists
of a signature (a set of first-order function symbols f and predicate symbols
r) and a consistent first-order theory A. The theory can be given as the set
of all sentences valid in a given structure; e.g., of finite trees. The abstract
syntax of constraints ¢ is given below (the symbols — and T stand for the
false and true constants).

Constraints ¢ == r(Z) | 2=y | a=f(y) | = | T | pr A2 | Jap

“We use Z as an abbreviation for a tuple of pairwise different variables.
5The formally correct expression corresponding to X=f (a,a) is Aydz(z = f(y,z) Ay =
anz=a).



The semantics uses the test of satisfiability of constraints (“A | ¢ <+ —=").5

For modeling states, we use formulae called configurations C' which are,
for now, of the form ¢:FE | i.e., composed of a constraint store ¢ (a con-
straint) and a continuation E/ (an expression) by a symbol “:” (read: “Colon
And”). The initial state is modeled as the configuration constituted by the
“empty constraint store” T (standing for the true constraint) and the query
expression; for example, if the query is length([alZ],N), prime(N)?, as

T : (2 =cons(y,z) Ny =a) &length(z,n) &« prime(n)
—~

constraint store continuation

Concluding the introduction of syntax, we recapitulate that we have in total
three “And” symbols: “:” for constituting configurations, “A” to compose
constraints, and “&” to compose expressions (which constitute continuations
and the body of predicate definitions).

All state transitions must be authorized by a reduction rule. Since the
first &-conjunct in the continuation is a constraint, we apply the Constraint
Elaboration rule to obtain the successor state of the initial state:

TA(z=cons(y,z) Ny =a) : length(z,n)&prime(n).

constraint store continuation

Now, the first &-conjunct in the continuation is an atom, and we apply the
Unfolding rule.

The first &-conjunct in the continuation being a ;-disjunction, we next
apply the Or-Elaboration rule. Then, the configuration modeling the suc-
cessor state is composed of two configurations by the “;”-symbol. Each of
the two has a copy of the constraint store and of the remaining conjuncts in
the continuation.

Until now, states were represented by configurations of the form ¢ : F,
and we could apply the reduction rules on these configurations in the empty
context (which is noted “e”). Now, the configuration is of the form C'; C".
Here, o; (' is the context of C'. Hence, we may apply a reduction rule on
C'; if this application yields €, then the configuration C'; C’ reduces to the
configuration C”; C’. This means that the reduction of an “;”-disjunction
is realized by rewriting the first configuration-disjunct.

Here, since the first &-conjunct in the continuation is a constraint which
is incompatible with the constraint store, the first continuation-disjunct re-
duces, by applying the Constraint-Elaboration rule, to the configuration —
(the fail-configuration). Hence, we obtain the successor state modeled by
a configuration of the form — :(C'. Since the Sequential-Or congruence law
postulates in particular that —; C' = C (“— is a neutral element for “;”-
composing configuration-disjuncts”), the configuration C' models the same
state.

In the example, the constraints correspond to the term equations in Prolog. They
are interpreted over the logical structure A of finite trees. Here, The signature does not
contain any predicate symbols r.



In order to illustrate how we model constraint simplification declaratively
(instead of using unification), we consider one more transition. Application
of the Constraint-Elaboration rule yields the state which is modeled by the
configuration:

x = cons(y,z) Ay = aAx = cons(y,z) An = succ(m) :length(z, m) & prime(n)

and which is modeled also by the following configuration which is congruent
according to the Simplification congruence law.”

(x = cons(y,z) Ay = aAn = succ(m)):length(z, m) & prime(n).

To recapitulate and to compare with SLD-resolution, we model Leftmost-
Selection through the form of the reduction rules and through the Sequential-
And congruence laws (which say that an &-conjunction of expressions in a
continuation forms an ordered sequence; i.e., the operator “&” is not com-
mutative). We model the Topmost Selection rule through the definition of
contexts and through the Sequential-Or congruence laws (i.e., “;” is not a
commutative operator on configuration-disjuncts).® We model Success by
the fact that the continuation of the first configuration-disjunct in a config-
uration is equal to T. That is, the configuration is of the form ¢ : T ; C.
A transition sequence coming to a state modeled by such a configuration
terminates in this state.” We model Failure by the fact that a configuration
reduces to the fail-configuration — if the first &-conjunct in the continua-
tion is a constraint which is is logically inconsistent with the constraint store.
The fail-configuration may be the first configuration-disjunct in a configu-
ration modeling an execution state. Then omitting the —-disjunct yields a
congruent configuration which models the same state. This is how we model
Backtracking.

4 The Cut (“!”)

We introduce the semantics defined in Figure 2, for Horn clauses with the
addition of the cut operator (and still without the account of “37).

p(t1):- qi.
p(t2):- g21, !, 922, g23.
p(t3):- g3.
p(t4):- qg4.

"The Simplification congruence law does not inflict on the reduction relation (since the
Constraint Elaboration rule depends directly on the logical meaning of constraints). It is
used for modeling the effect of the constraint solver. It will be used also in Section 6 for
modeling the lifetime of local variables.

8The Sequential-Or congruence laws are formulated only for configurations. The Or-
Elaboration rule implies, however, that one can apply them also to expressions without
changing the semantics; i.e., an “;”-disjunction of expressions may also written as their
ordered sequence.

°We model the behavior of Edinburgh-style Prolog where further solutions have
to be requested explicitly. Request of further solution amounts to failing the first
alternative/configuration.



SYNTAX

Expressions o= o | pT | Fi & Fy | Fiy By | '(E, Fi, Eg)
Configurations C = p: B | - | Ch; Oy | !(Cl, F, 02)
Contexts C = o | c;C | '(C, F, C)

REDUCTION RULES
Cut Elaboration ¢@:!(Fo, Fy, Fo) &« B — ((¢: Eo), (E1& L), (¢: L& E))
Cut Failure (-, B,C) — C

Cut Success We: T3 Ch),E,Cy) — ¢ F

Figure 2: The Cut (“!”)

We translate the above predicate definition in concrete Prolog syntax with
cut into the following one in abstract syntax:

plz) oz =tleql); Na=12&q¢21, ¢22&¢23, 2 =t3&q3; 2 =td & qd))

clause before/ goals before/  after cut clauses after cut

which uses expressions of the form !(E, Ey, E3) , i.e., composed of three sub-
expressions (F, the cut-guard; Fy and Fs, the first and second alternatives)
by the symbol “I” (read: “cut”). This symbol cannot given a logical meaning
which corresponds to its operational semantics.

The translation above gives an idea on how such a translation can be
done systematically. It is given for the first time in [13] for replacing cut by
DEC-10 Prolog’s if-then-else operator (which is implemented unsoundly).

We will now define the operational semantics of cut-expressions. If an
execution state is modeled by a configuration where the first conjunct in the
continuation is a cut-expression, then the Cut-Elaboration rule is applied.1®
The successor state is modeled in the extended-syntax configurations, name-
ly by a configuration of the form !(Cy, F,C3) composed of a configuration
(' (the guard-configuration), an expression F (the guard-continuation) and
another configuration Cy (the alternative configuration) by the “!” symbol.

The definition of contexts yields that in order to model the next suc-
cessor state, one reduces the guard-configuration; i.e., the reduction of
a cut-configuration takes place in the guard-configuration. The guard-
configuration can itself reduce into a cut-configuration, and so forth.

In the case where the guard-configuration in a cut-configuration has
failed, i.e., the execution state is modeled by a cut-configuration of the
form !(—, E,C'), we apply the Cut-Failure rule to derive the successor state.
It is modeled by the alternative configuration C'. In the case where the

“To obtain an intuition of the Cut-Elaboration rule, ¢ : !(Eo, E1, E2)& E —
We @ Eo),(E1&E), (¢ @ Ex&E)), reformulate the Or-Elaboration rule to ¢ :
(Eo&El;EQ)&E — (gOZEo&El&E);(gOZEQ&E).



Expressions o= o | pT | Fi & Fy | Fiy By | ?(QO, P, Eg)
Pools P = ?(997 E17 EQ) | T | P1 A P2
Configurations C = P:p:F | — | Ch; Cy

REDUCTION RULES

Cond Elaboration P:¢:?(po, B1, Es) &« B — PA?(po, F1, FE3) 0 E
Cond Success PN T, B Ey) i — Prp:Fi& F

Cond Failure PN =, B, Ey) i B — Prp:Fy& F

Control Cond Success and Cond Failure have priority.

CONGRUENCE LAWS
Parallel And ({Pools}, A, T) is a commutative monoid.

Relative Simp.lification ?(991, P, Eg) il = ?(992, P, Eg) tp B
if A @i Ap e o

Figure 3: Coroutining (“?”)

guard-configuration has succeeded, i.e., the execution state is modeled by a
cut-configuration of the form !((¢: T ; Cy), £, C3), we apply the Cut-Success
rule to derive the successor state. It is modeled by ¢: F, i.e., the first dis-
junct of the guard-configuration with the guard-continuation. The second
disjunct C7 of the guard-configuration and the alternative configuration C5
are put away with. This is how we model “pruning parts of the search tree.”

5 Coroutining (“7”)

Given the syntax of expressions as in Section 3 (c¢f., in Figure 1), we will
extend it with conditional expressions. For now (cf., Figure 3), these are
expressions of the form 7(p, Fy, Fy) composed of a constraint ¢ (the guard)
and expressions F (the then-expression) and F (the else-expression) by the
ternary symbol “?” (read: “cond”). The logical meaning is “if ¢ then Fj
else F5” which is “oA F1 V —p A E3.” Conditional expressions can be used
to express negated constraints: —p is logically equivalent to ?(¢, —, T).

As an example, we give a new definition of the length predicate (cf.
the guarded Horn clause length(z,n) :— x = nil | n = zero), again omitting
existential quantification:

length(z,n) < ?(z = nil, n = zero,
x = cons(y, z) An = succ(m)) &length(z, m)

The operational semantics of conditional expressions can be described as fol-
lows: For each encountered (i.e., elaborated) cond-expression 7(¢, Fq, E3),



test whether the constraint store entails or disentails ¢. If yes, execute Fj
or Fs, respectively (“fire” or “trigger the coroutine”). Otherwise, suspend
and repeat the test (“resume”) after a modification of the constraint store
(i.e., after a constraint elaboration).

The operational semantics outlined above implements the “freeze” op-
erator of Prolog-1I. For example, freeze(X,p(X)) corresponds to 7(z =
a,p(x),p(z)) where a can be any constant.

We will now formalize this operational semantics, so that it: (1) is sound
with respect to the logical semantics, (2) reflects the suspension/resumption
mechanism, (3) accounts for multiple suspensions, (4) models the trigger
condition declaratively, and (5) accounts for the incrementality and locality
(to each guard) of the possibly often repeated entailment and disentailment
tests.

We introduce a new syntact entity, the pool, which becomes another
constituent of configurations, besides the constraint store and the contin-
uation. The pool of a configuration modeling some state describes which
cond-expressions have been encountered (i.e., elaborated) but not yet fired
so far. Thanks to the Paralled-And congruence laws, these cond-expressions
form an unordered list, i.e., a multiset. This is important because this mod-
els the fact that the tests resume on all suspensions at the same time, and
there is no a priori order on the coroutines that can be fired.

The initial state of an execution is now modeled by a configuration with
an empty pool, i.e., equal to T (and with an empty constraint store, as
before).

In a first version, the three reduction rules for cond-expressions are the
following.

Cond Elab. P:p: 1, B1, Ey) &« E — PA?(p1, Fh, Ea) i F
Cond Success  PA7?(p1, F1, E2):p:F — Prp:Fi&F if AEp— ¢
Cond Failure  PA7?(p1, 1, E2) o F — Prp:Fye B if AlEg@— g

In order to reflect that the resumption of the tests happens after each
modification of the constraint store and the coroutine is triggered as soon as
possible, we add an applicability condition to all reduction rules other than
Cond Success or Failure. This condition says that neither the Success nor
the Cond Failure rule are applicable. The condition can, of course, also be
formulated locally to each rule. Namely, as: The configuration to be reduced
is not congruent to a configuration of the form PA7?(p1, -, _):p: - where
AEg—pror AEp— —p.

The semantics given so far satisfies the first four points raised above,
but not point (5). The questions open are: Can the trigger condition (i.e.,
entailment or disentailment) be tested locally, i.e., by looking only at the
particular cond-expression? Can this test be done incrementally?

From now on, we will assume that the constraint system can implement
Relative Simplification [2], which simplifies a constraint ¢, relative to a con-
straint ¢ to a constraint ¢y such that (1) the conjunction of ¢ with ¢y is
equivalent to the conjunction with ¢q, (2) if ¢ entails Jz¢y, then Iz, is



equivalent to true,!t and (3) if ¢ disentails o1, then ¢ is the false constraint;
€.,

AEoNer & o Npy;

AEe—dre; iff AETrp, & T

AEg¢——TJze iff go=—.

Relative Simplification yields incremental and local, sound and complete
tests of entailment and disentailment.

We now add Relative Simplification congruence law and replace the Cond
Success and Failure rules by the new versions given in Figure 3. This com-
pletes modeling the execution of coroutines.

To come back to the point raised in Section 3 on the difference between
1 A @ and 1 & w9, we can now construct an example and use the for-
mal semantics to show that in the one case a suspended cond-expression
is fired (possibly leading to an infinite loop) and in the other it is not.
Take the definition p(z) <> ?(z = f(y,a),p(x),—) and the initial states
T:Tip@)e(z = fly,z2)) Az =0>0)and T:T:pz)er = f(y,2)&z = b
(corresponding to the queries p(X), X=£(Y¥,b) and p(X), X=£(Y,Z), Z=b,
respectively).

To indicate a source of non-confluence, one can construct an example
where the order chosen for the firing of two competing suspended cond-
expressions yields two different behaviors (e.g., one leading to an infinite loop
and the other not). This is due to the fact that, in our semantics, both cond-
expressions are moved from the (“concurrent”) pool to the (“sequential”)
continuation where they are ordered by their composition with “&”.'2 Take
the definitions p(z) <> ?(z = a,p(z), —) and ¢(z) <> ?(2 = a,—, —) and the
initial state T:T :p(x) & ¢(x) & & = a. Execution may lead to either of the
states T:(z =a):—&p(z) or T:(z =a):p(z) & —.

We will discuss the interaction of cut and coroutining in Section 7.

6 Existential quantification (“3”)

The logically correct version of the definition of the length predicate in Sec-
tion 3 (when < means “if and only if”) has to quantify the variable y in a
constraint and the variables z and m in an expression:

length(z,n) <> (z = nil A n = zero) ;
(Fz3m (Fy(z = cons(y, 2)) A n = succ(m) &length(z, m))))

expression being quantified

The previous version of the Unfolding rule tacitly assumes that the program
always contains an appropriate version of the definition of the predicate
being unfolded. We did not model that such a version is obtained, for each
unfolding, by consistent renaming of all variables occurring in the definition.

1 As a special case: If ¢ entails o1, then ¢, is equivalent to true.
120mne may, of course, design a semantics with a different, more fair execution strategy
for coroutines.

10



SYNTAX

Expressions o= o | pT | Fi & Fy | Fiy By | dzF
Configurations C = p:F | — | Ch; Oy | dz C'
Contexts C = o | c;C | JaC

CONGRURNCE LAWS
Quantifier Exchange daxdyl = dydel, dadyC = dydalC
Quantifier Renaming €7 = (5 if (] and C5 equal up to a-renaming
Quantifier Mobility — Jz(¢:L; C) = (Jzp): £; J2C if 2 ¢ V(E)

Figure 4: Existential quantification (“3”)

Also, in the semantics present so far, the new variables introduced by the
unfolding are visible everywhere and never disappear again. This is not a
complete modeling of the actual operational semantics.

From now on, having extended the syntax of expressions with “3” (¢f.,
Figure 4), we may assume that the expression defining a predicate pz does
not have any free variables other than the ones in the tuple z. Hence,
the new form of the Unfolding rule does not add any free variables to the
configuration to which it is applied. Its applicability condition z Ny =
(to avoid capturing between the actual parameters z and the formal ones
y) can be satisfied (with the Quantifier Renaming congruence law) if Z is in
the scope of an existential quantifier; hence, it is sufficient to require that
the free variables in the query (initial configuration) do not occur in the
program.

A quantified expression cannot be elaborated directly. The scope of the
quantified variables has to be extended first (by application of the Quantifier
Elaboration law). This is possible only if they can not be captured, i.e.,
come into the scope of a different quantifier. In order to extend the scope
of variables that have the same name as others, they have to be renamed
first (by application of the Quantifier Renaming law). After the scope of
the quantified variables has been extended (“the quantifier is pulled out”),
i.€., the whole configuration instead of just the expression is quantified, the
configuration can be reduced thanks to the definition of contexts.

Finally, the scope of a variable in an expression can be reduced to any
sub-expression that contains all its occurrences (“the quantifier is pulled
in”). This could be modeled by congruence laws of the form 3z (17 0T3) =
(Jz T1) o Ty where & ¢ V(Ty), for any trees 11 and 15 of any syntactic en-
tity and any composition symbol o. In fact, the Quantifier Mobility law in
the version given here suffices for our semantics, together with the Quan-
tifier Exchange law. The Simplification law then takes care of removing
quantifiers of redundant (“auxiliary”) variables (such as in 3z 2 = nil A ¢
where 2 € V(¢)) and of removing variables which do no longer appear in a
configuration, since Jzp = ¢ if 2 € V(p).

11



This is how we account for the introduction of variables as well as for
their scope (i.e., their visibility and life-time), namely through congruence
laws which reflect laws for logical quantification.

7 The complete semantics

The addition of the features discussed in the previous three sections to the
base case discussed in Section 3 yields the semantics defined in Figure 5. Two
of these feature combinations need to be discussed. We leave the discussion
of the combination of “d” and “7” to the full version of this paper.

Cut and Coroutining The complete semantics accounts in particular for
the interaction between cut- and cond-expressions. Here, we must remove
some ambiguities that are often left open in language specifications or man-
uals. There are two interesting cases, namely (1) where a suspension lies in
the scope of a cut, and (2) where a suspension calls a cut upon triggering.

Our formalization of the semantics defines (i.e., specifies through the
form of the Cut Success and Failure rules) that a cut ignores suspensions
for its decision. More precisely, if a cut is reached at a moment of execution
where a coroutine is suspending, then a potential failure of this co-routine
is not anticipated but the cut is executed as if the co-routine did not exist.
(It is crucial, of course, that this coroutine can indeed not be fired; this
is assured by the additional applicability condition on all rules other than
Cond Success and Failure expressing that these two rules have priority.)

In the second case it seems better to leave the specification open and
admit non-confluence of terminating executions.!> We recall that we postu-
late that “A” is a commutative composition symbol over cond-expressions in
the Paralled-And congruence law, and thus do not fix the order of reactiva-
tions of competing suspensions. In the case where a reactivation leads to the
call of an order-dependent control-operator such as the cut, its decision and
the subsequent program execution are no longer determined before-hand.
One can easily construct an example where two coroutines are fired one
after the other and where one of the two calls a cut whose decision is influ-
enced by the other. Take the definitions p(z,y) < ?(2 = a,y = b, —) and
¢ X,Y) e z=0a(r),T,-),—) and r(y) < (y = a;y = b) and the ini-
tial state T: T :p(x,y) &q(z,y) &z = a. Its execution leads to either of the
two states T:z =a,y =b: !(r(y), T,—)or T:z =a:!(r(y), T&y =b,—)
and from there to T : 2 = a,y = b: T or to —, respectively. We mod-
el this indeterminism by the fact that our abstract-tree-rewriting system is
non-confluent when such a case is admitted.

8 Conclusion and Future Work

We have presented a formal definition of the operational semantics of con-
straint logic programs with coroutining. What is it good for? We will list a

12 At the end of Section 5 we mentioned non-confluence even in absence of the cut.
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Expressions
Pools
Configurations

Contexts

Application Elab.

Constraint Elab.

Or Elaboration
Cut Elaboration
Cut Failure

Cut Success
Cond Elab.

Cond Success

Cond Failure

Control

Sequential And
Sequential Or
Parallel And
Simplification

Relative Simp.

Quantifier Elab.
Q. Exchange

Q. Renaming

Q. Mobility

SYNTAX
Ei=@|pe| E1&FE2 | By Eo|(E, B, E2) | 7%, ¢, E1, E2) | 2 E
P =220, E1,E2) | T|PLA Py

Cu=Pip:E| L]|Cy; Co | F2C |NCy, E,Cy)
Cio=e|C;C|C,E,C)|TxC

REDUCTION RULES

P:ip:pt& F 1= P:p: gzt =y& F1)& E
if py & E; in program, xNy =0

Pipipi& E L5 Piphpr B il A bpApr &L, o1 T
1— 1 if AEpApr &L

P:ip:(E1; E2)&E 1 (Pip:F1& E); (Pip:Ea& E)
P:p: By, B, Ea)&FE 15 (Pip:Ey E1& E,Pip:Ey& E)
(L EC) I» C

W(P:p:T;C),E,Cy) 1> Pip:E

P:o: (8,00, B, E2) & E 1= PA? (% 9o, B, E2):¢: E

PA? &, 01, B, F2):i¢p: B 1> Pip:3e(p1 & F1)&
if A3z

PAN &, LB Ee):p:F 1> Pip:Ey& B
Cond Success and Cond Failure have priority.
CONGRUENCE LAWS

({Expressions}, &, T) is a monoid.

({ Configurations}, ;, 1) is a monoid.
({Pools}, A, T) is a commutative monoid.
1 = o if A & s

Nz, 01, B1, Ea) i B = &, 92, E1, Ea) ¢ B

if ARE@iAp &g
P:p:JxE1& Fy = (P E1& Fy) if 2 g V(P:p: Ey)
JzdyE = FydeE, FJzeIyC = Jydz=C
C; = Oy if C and (5 equal up to a-renaming.
x(P:p:FE;C) = P:3ep:E; JeC if ¢ ¢ V(P)UV(E)

Figure 5: The Complete Semantics
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few benefits.

(1) By modeling program execution through reduction rules and through
congruence laws, we have been able to state what the (primarily) operational
and what the declarative aspects of the languages are. For instance, we
have accounted for the fact that the sequences of goals are ordered, but the
representations of constraints as conjunctions are not.

(2) We have abstracted away from details that are relevant only for lan-
guage implementations, and not for the program execution. Clearly, back-
tracking is merely a matter of space-efficient implementation.

(3) We have modeled the control operators of the program (such as the
order statement for goals and clauses and the cut). This enables the pro-
grammer to predict the control flow of his program and to evaluate its per-
formance (assuming a complexity bound for the constraint solver, e.g., a
quasi-linear one in the case of Prolog-1I).

(4) We have been able to make precise the critical interaction between
sequential execution (of expressions in the continuation) and concurrent exe-
cution (of suspended conditionals in the pool), in particular in the two cases
where a suspension lies in the scope of a cut or a suspension calls a cut upon
triggering.

As for future work: Not all of the mathematical formulae which model
execution states have a first-order logic reading, nor do all of the rewriting
steps which model state transitions. It is now possible, however, to investi-
gate which of them do. This can be useful in order to determine which of
the programs do have a declarative reading (in first-order logic).

Along the lines of this paper, one can now start modeling other language
functionalities which are considered impure such as assert/retract, request
of further solutions, backtrackable assignment, cells, and so on.

One interesting branch of future work would consist of investigating con-
fluence proofs for the reduction relation with coroutining (without coroutin-
ing, all reduction steps are deterministic), possibly building on work in [12].
As the examples given above show, only “‘weak” confluence may possibly
hold (i.e., confluence of terminating executions), and even this only under a
restriction on the use of cut.

Acknowledgements We thank Harald Ganzinger, Michael Hanus, Sverk-
er Janson, Olivier Ridoux and Peter Van Roy for discussions and comments.
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