
In Proceedings of the 1995 International Conference on Logic Programming,Kanagawa, Japan, June 1995. The MIT-Press.Operational Semantics ofConstraint Logic Programswith CoroutiningAndreas PodelskiMax-Planck-Institut f�ur InformatikIm Stadtwald, D-6123 Saarbr�ucken, Germanypodelski@mpi-sb.mpg.deGert SmolkaProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germanysmolka@dfki.uni-sb.deAbstractThe semantics of constraint logic programming languages with coroutiningfacilities (\freeze," suspension, residuation, etc.) cannot be fully declarative;thus, an operational semantics has to be taken as the de�ning one. Wegive a formal operational semantics for a Prolog-like language with cut andentailment-based conditional. The di�culty here is to present the semanticsin a form that abstracts away inessential details and highlights the interac-tion between language constructs. Our approach is derived from those usedfor concurrent calculi. We use abstract syntax trees, congruence laws andrewrite rules to de�ne the semantics. A computation step is modeled as theapplication of a rewrite rule to an abstract syntax tree modulo structuralcongruence. This semantics serves as a de�ning tool for the language design-er and as the interface between the language designer and implementor; itallows the programmer to check his intuition with a formal execution mod-el and it gives him a performance measure for the execution of programs.We have used the semantics to make precise, for the �rst time, the criticalinteraction between sequential execution (including backtracking and cutpruning) and coroutining. In particular we exhibit cases where this inter-action can lead to indeterministic results (i.e., to non-predictable programexecution).1 IntroductionThe logical semantics (\ j=�`") which has been given for logic program-ming languages [7, 6] has been one reason for their success. It presents theselanguages as executable speci�cation languages. The declarative semanticsbecomes practically useful when, for example, programming search prob-lems. These languages are, however, mainly used as programming languages1

which have declarative as well as purely operational functionalities (such asthe ordering of goals, the cut operator, and facilities for coroutining whichappear in one form or another1 in most CLP- or Prolog-Systems. Also, itis well known that the formal correspondence between declarative and op-erational semantics is lost even for the \pure" subset of practical languageimplementations. Thus, the semantics cannot be fully declarative, and wehave to take an operational semantics as the de�ning one.To achieve the de�nition of an operational semantics is not di�cult inprinciple; one need only formalize an interpreter. The di�culty is to presentthe semantics in a form that abstract away inessential details and high-lights the interaction between language constructs. The work in [3] givesthe operational semantics of \freeze," but on a very low-level; for exam-ple, it formalizes the stepwise search through the list of frozen goals. Sucha low-level approach seems suitable for specifying and comparing languageimplementations, but not so much for designing and specifying the languagesthemselves. On a very high-level, declarative and operational semantics forcomitted-choice languages have been given by Maher in [8], who capturedguard satisfaction as constraint entailment. Similar in spirit is the workin [14] which considers a logic programming language with don't-know choiceand guarded rules.In this paper, we give a short, simple and formally precise descriptionof the operational semantics of logic programs with coroutining facilities.In comparison with [3], our semantics is high-level. In contrast to [3], ittreats constraint handling logically . In contrast to [8, 14], our semanticsaccounts for order (of goals and alternatives), cut and eager wakening and ig-nores declarative semantics. Our approach is based on abstract-tree rewritingwhich appeared in a revised representation of the �-calculus [9] and was em-ployed in [15, 16] to formulate calculi for higher-order concurrent constraintprogramming model. The abstract-tree rewriting model proves particularlyuseful for constraint programming since constraint propagation and simpli�-cation (for testing satis�ability as well as entailment) can be accommodatedelegantly by means of the congruence on trees. This congruence is de�ned us-ing the logical meaning of constraints. Thus, we model constraints logically,as is standard in CLP.The next section introduces our general approach. Section 3 introducesthe notions of constraints and predicate de�nitions and applications and con-siders simple programs, which are built up with the operators \& " and \ ; ".Sections 4, 5 and 6 consider programs obtained by adding an operator, either\!", \ ?" or \9", to simple programs. Section 7 considers the combination ofall �ve operators. The article ends with a conclusion section.2 The ApproachThe ingredients of our semantics are (cf., Figure 1): BNF style rules tode�ne the abstract syntax, reduction rules (\ �! ") for the operational and1For example: \freeze," suspension, residuation (negated constraints also introduce animplicit form of coroutining); cf. [5, 10, 11, 4, 1]).2

congruence laws (\ � ") for the declarative aspects.The execution of a program is seen as a sequence of state transitions. Thestates are modeled by formulae (\continuations") which are represented astrees as usual. A computation step is modeled as the application of a rewriterule to an abstract syntax tree modulo structural congruence. Formally,the reduction relation \ =) " modeling the direct state transitions is anextension of the relation �! given by the reduction rules, namelyC1 � C 01; C2 � C 02; C 01 �! C 02C[C1] =) C[C2]for any context C (of the form de�ned in the corresponding de�nition) andcon�gurations C1; C 01; C2; C 02. A context is a \tree with a hole;" C[C] denotesthe tree obtained from C by putting the tree C into the hole. For example, forthe contexts de�ned in Figure 1 we de�ne �[C] = C and (� ; C 0)[C] = C ; C 0.The trees are made abstract by a congruence. The idea is that congruenttrees describe the same state. Formally, the relation � is the congruencegenerated by the congruence laws.2The purpose of congruences is twofold: (1) They serve to make treessu�ciently abstract to suitably model states. For example, E1 ^ (E2 ^ E3)and (E1 ^ E2) ^ E3 are di�erent trees; by making them congruent one cantalk about the list of conjuncts written as E1 ^ E2 ^ E3. (2) They serve todescribe the e�ect of a functionality of the language on a high level (i.e.,declaratively): Instead of modeling the e�ect through transitions betweencertain states, one identi�es these states through the congruence. For exam-ple, we describe the e�ect of uni�cation by a congruence law (Simpli�cation).The implementation of the language has to ensure that these \hidden" tran-sitions are possible when needed.3 Simple Programs (\&" and \ ;")We will motivate and explain the de�nition for the execution of simple pro-grams in Figure 1 at hand of an example. We take the de�nition of the lengthpredicate, length([],zero). length([HT],succ(N)) :- length(T,N). |and, hereby indicating how the systematic translation from concrete intoabstract syntax works, translate it to the following syntactic formula.3length(x; n)$ ((x = nil ^ n = zero) ;((x = cons(y; z)^ n = succ(m))& length(z;m)))We say that the predicate length(x; n) is de�ned by an expression E whichis composed of sub-expression with the symbols \ ; " (read: \Sequential Or")2This means, � is the least equivalence relation which respects the congruence lawsand the rule: If t1 � t01 and t2 � t02, then t1 � t2 � t01 � t02 for binary tree-composingsymbols �, and accordingly for ternary ones.3This is not yet a logical de�nition; i.e., the symbol \$" does, for now, not have thelogical reading \if and only if." We omit the account of existential quanti�cation untilSection 6. 3

SYNTAXExpressions E ::= ' j p�x j E1 &E2 j E1 ; E2Con�gurations C ::= ' :E j ? j C1 ; C2Contexts C ::= � j C ; CREDUCTION RULESApplicationElaboration ' :p�x&E �! ' : �x = �y &E1 &E if p�y$ E1 in program,V(' :E)\ V(p�y $ E1) = ;ConstraintElaboration ' :'1 &E �! ' ^ '1 :E if � 6j= ' ^ '1 $?; '1 6= >�! ? if � j= ' ^ '1 $?Or Elaboration ' : (E1 ; E2)&E �! (' :E1 &E) ; (' :E2 &E)CONGRUENCE LAWSSequential And (fExpressionsg; & ; >) is a monoid.Sequential Or (fCon�gurationsg; ; ; ?) is a monoid.Simpli�cation '1 � '2 if � j= '1 $ '2.Figure 1: Simple Programs (\&" and \ ; ")and \& " (read: \Sequential And"). The atomic sub-expressions are eitherapplications p�x (here: length(z;m)) or constraints ' (here: x = cons(y; z)^n = succ(m)). Constraints are themselves composed of atomic constraintswith the symbol \^" (read: \Logical And").4In order to motivate the use of two \And" symbols now, we notethat the di�erence between the two expressions x = f(y; a) ^ y = a andx = f(y; a)&y = a corresponds to the di�erence between X=f(a,a) andX=f(Y,a), Y=a in Prolog syntax.5 In connection with coroutines, this di�er-ence has an operational signi�cance (if the constraint y = a fails, coroutinesmay be �red in the second case, but not in the �rst; cf., Section 5).The semantics is formally parametrized with a constraint system, whichde�nes the syntax and the interpretation of the particular class of �rst-orderlogic formulae that we consider `constraints'. The constraint system consistsof a signature (a set of �rst-order function symbols f and predicate symbolsr) and a consistent �rst-order theory �. The theory can be given as the setof all sentences valid in a given structure; e.g., of �nite trees. The abstractsyntax of constraints ' is given below (the symbols ? and > stand for thefalse and true constants).Constraints ' ::= r(�x) j x = y j x = f(�y) j ? j > j '1 ^ '2 j 9x'4We use �x as an abbreviation for a tuple of pairwise di�erent variables.5The formally correct expression corresponding to X=f(a,a) is 9y9z(x = f(y; z) ^ y =a ^ z = a). 4

The semantics uses the test of satis�ability of constraints (\� j= '$?").6For modeling states, we use formulae called con�gurations C which are,for now, of the form ' :E , i.e., composed of a constraint store ' (a con-straint) and a continuation E (an expression) by a symbol \:" (read: \ColonAnd"). The initial state is modeled as the con�guration constituted by the\empty constraint store" > (standing for the true constraint) and the queryexpression; for example, if the query is length([a|Z],N), prime(N)?, as>|{z}constraint store: (x = cons(y; z)^ y = a)& length(x; n)& prime(n)| {z }continuationConcluding the introduction of syntax, we recapitulate that we have in totalthree \And" symbols: \:" for constituting con�gurations, \^" to composeconstraints, and \& " to compose expressions (which constitute continuationsand the body of predicate de�nitions).All state transitions must be authorized by a reduction rule. Since the�rst & -conjunct in the continuation is a constraint, we apply the ConstraintElaboration rule to obtain the successor state of the initial state:> ^ (x = cons(y; z)^ y = a)| {z }constraint store : length(x; n)& prime(n)| {z }continuation :Now, the �rst & -conjunct in the continuation is an atom, and we apply theUnfolding rule.The �rst & -conjunct in the continuation being a ; -disjunction, we nextapply the Or-Elaboration rule. Then, the con�guration modeling the suc-cessor state is composed of two con�gurations by the \ ; "-symbol. Each ofthe two has a copy of the constraint store and of the remaining conjuncts inthe continuation.Until now, states were represented by con�gurations of the form ' :E,and we could apply the reduction rules on these con�gurations in the emptycontext (which is noted \�"). Now, the con�guration is of the form C ; C 0.Here, � ; C 0 is the context of C. Hence, we may apply a reduction rule onC; if this application yields C 00, then the con�guration C ; C 0 reduces to thecon�guration C 00 ; C 0. This means that the reduction of an \ ; "-disjunctionis realized by rewriting the �rst con�guration-disjunct.Here, since the �rst & -conjunct in the continuation is a constraint whichis incompatible with the constraint store, the �rst continuation-disjunct re-duces, by applying the Constraint-Elaboration rule, to the con�guration ?(the fail-con�guration). Hence, we obtain the successor state modeled bya con�guration of the form ? :C. Since the Sequential-Or congruence lawpostulates in particular that ? ; C � C (\? is a neutral element for \ ; "-composing con�guration-disjuncts"), the con�guration C models the samestate.6In the example, the constraints correspond to the term equations in Prolog. Theyare interpreted over the logical structure � of �nite trees. Here, The signature does notcontain any predicate symbols r. 5

In order to illustrate how we model constraint simpli�cation declaratively(instead of using uni�cation), we consider one more transition. Applicationof the Constraint-Elaboration rule yields the state which is modeled by thecon�guration:x = cons(y; z) ^ y = a^ x = cons(y; z) ^ n = succ(m): length(z;m)&prime(n)and which is modeled also by the following con�guration which is congruentaccording to the Simpli�cation congruence law.7(x = cons(y; z) ^ y = a ^ n = succ(m)) : length(z;m)&prime(n):To recapitulate and to compare with SLD-resolution, we model Leftmost-Selection through the form of the reduction rules and through the Sequential-And congruence laws (which say that an & -conjunction of expressions in acontinuation forms an ordered sequence; i.e., the operator \& " is not com-mutative). We model the Topmost Selection rule through the de�nition ofcontexts and through the Sequential-Or congruence laws (i.e., \ ; " is not acommutative operator on con�guration-disjuncts).8 We model Success bythe fact that the continuation of the �rst con�guration-disjunct in a con�g-uration is equal to >. That is, the con�guration is of the form ' : > ; C.A transition sequence coming to a state modeled by such a con�gurationterminates in this state.9 We model Failure by the fact that a con�gurationreduces to the fail-con�guration ? if the �rst & -conjunct in the continua-tion is a constraint which is is logically inconsistent with the constraint store.The fail-con�guration may be the �rst con�guration-disjunct in a con�gu-ration modeling an execution state. Then omitting the ?-disjunct yields acongruent con�guration which models the same state. This is how we modelBacktracking.4 The Cut (\ !")We introduce the semantics de�ned in Figure 2, for Horn clauses with theaddition of the cut operator (and still without the account of \9").p(t1):- q1.p(t2):- q21, !, q22, q23.p(t3):- q3.p(t4):- q4.7The Simpli�cation congruence law does not in
ict on the reduction relation (since theConstraint Elaboration rule depends directly on the logical meaning of constraints). It isused for modeling the e�ect of the constraint solver. It will be used also in Section 6 formodeling the lifetime of local variables.8The Sequential-Or congruence laws are formulated only for con�gurations. The Or-Elaboration rule implies, however, that one can apply them also to expressions withoutchanging the semantics; i.e., an \ ; "-disjunction of expressions may also written as theirordered sequence.9We model the behavior of Edinburgh-style Prolog where further solutions haveto be requested explicitly. Request of further solution amounts to failing the �rstalternative/con�guration. 6

SYNTAXExpressions E ::= ' j p�x j E1 &E2 j E1 ; E2 j !(E;E1; E2)Con�gurations C ::= ' :E j ? j C1 ; C2 j !(C1; E; C2)Contexts C ::= � j C ; C j !(C; E; C)REDUCTION RULESCut Elaboration ' : !(E0; E1; E2)&E �! !((' :E0); (E1 &E); (' :E2&E))Cut Failure !(?; E; C) �! CCut Success !((' :> ; C1); E; C2) �! ' :EFigure 2: The Cut (\ !")We translate the above predicate de�nition in concrete Prolog syntax withcut into the following one in abstract syntax:p(x)$ ((x = t1& q1)| {z }clause before/ ; ! (x = t2& q21| {z }goals before/ ; q22& q23| {z }after cut ; x = t3& q3 ; x = t4& q4| {z }clauses after cut))which uses expressions of the form !(E;E1; E2) , i.e., composed of three sub-expressions (E, the cut-guard; E1 and E2, the �rst and second alternatives)by the symbol \!" (read: \cut"). This symbol cannot given a logical meaningwhich corresponds to its operational semantics.The translation above gives an idea on how such a translation can bedone systematically. It is given for the �rst time in [13] for replacing cut byDEC-10 Prolog's if-then-else operator (which is implemented unsoundly).We will now de�ne the operational semantics of cut-expressions. If anexecution state is modeled by a con�guration where the �rst conjunct in thecontinuation is a cut-expression, then the Cut-Elaboration rule is applied.10The successor state is modeled in the extended-syntax con�gurations, name-ly by a con�guration of the form !(C1; E; C2) composed of a con�gurationC1 (the guard-con�guration), an expression E (the guard-continuation) andanother con�guration C2 (the alternative con�guration) by the \!" symbol.The de�nition of contexts yields that in order to model the next suc-cessor state, one reduces the guard-con�guration; i.e., the reduction ofa cut-con�guration takes place in the guard-con�guration. The guard-con�guration can itself reduce into a cut-con�guration, and so forth.In the case where the guard-con�guration in a cut-con�guration hasfailed, i.e., the execution state is modeled by a cut-con�guration of theform !(?; E; C), we apply the Cut-Failure rule to derive the successor state.It is modeled by the alternative con�guration C. In the case where the10To obtain an intuition of the Cut-Elaboration rule, ' : !(E0; E1; E2)&E �!!((' : E0); (E1 &E); (' : E2 &E)), reformulate the Or-Elaboration rule to ' :(E0 &E1 ; E2)&E �! (' :E0 &E1 &E) ; (' :E2 &E).7

SYNTAXExpressions E ::= ' j p�x j E1 &E2 j E1 ; E2 j ?(';E1; E2)Pools P ::= ?(';E1; E2) j > j P1 ^ P2Con�gurations C ::= P :' :E j ? j C1 ; C2REDUCTION RULESCond Elaboration P :' : ?('0; E1; E2)&E �! P^ ?('0; E1; E2) :' :ECond Success P^ ?(>; E1; E2) :' :E �! P :' :E1 &ECond Failure P^ ?(?; E1; E2) :' :E �! P :' :E2 &EControl Cond Success and Cond Failure have priority.CONGRUENCE LAWSParallel And (fPoolsg; ^; >) is a commutative monoid.Relative Simp.li�cation ?('1; E1; E2) :' :E � ?('2; E1; E2) :' :Eif � j= '1 ^ '$ '2 ^ '.Figure 3: Coroutining (\ ?")guard-con�guration has succeeded, i.e., the execution state is modeled by acut-con�guration of the form !((' :> ; C1); E; C2), we apply the Cut-Successrule to derive the successor state. It is modeled by ' :E, i.e., the �rst dis-junct of the guard-con�guration with the guard-continuation. The seconddisjunct C1 of the guard-con�guration and the alternative con�guration C2are put away with. This is how we model \pruning parts of the search tree."5 Coroutining (\ ?")Given the syntax of expressions as in Section 3 (cf., in Figure 1), we willextend it with conditional expressions. For now (cf., Figure 3), these areexpressions of the form ?(';E1; E2) composed of a constraint ' (the guard)and expressions E1 (the then-expression) and E2 (the else-expression) by theternary symbol \ ?" (read: \cond"). The logical meaning is \if ' then E1else E2" which is \'^E1 _ :'^E2." Conditional expressions can be usedto express negated constraints: :' is logically equivalent to ?(';?;>).As an example, we give a new de�nition of the length predicate (cf.the guarded Horn clause length(x ; n) :{ x = nil [] n = zero), again omittingexistential quanti�cation:length(x; n)$?(x = nil; n = zero;x = cons(y; z)^ n = succ(m))& length(z;m)The operational semantics of conditional expressions can be described as fol-lows: For each encountered (i.e., elaborated) cond-expression ?(';E1; E2),8

test whether the constraint store entails or disentails '. If yes, execute E1or E2, respectively (\�re" or \trigger the coroutine"). Otherwise, suspendand repeat the test (\resume") after a modi�cation of the constraint store(i.e., after a constraint elaboration).The operational semantics outlined above implements the \freeze" op-erator of Prolog-II. For example, freeze(X,p(X)) corresponds to ?(x =a; p(x); p(x)) where a can be any constant.We will now formalize this operational semantics, so that it: (1) is soundwith respect to the logical semantics, (2) re
ects the suspension/resumptionmechanism, (3) accounts for multiple suspensions, (4) models the triggercondition declaratively, and (5) accounts for the incrementality and locality(to each guard) of the possibly often repeated entailment and disentailmenttests.We introduce a new syntact entity, the pool, which becomes anotherconstituent of con�gurations, besides the constraint store and the contin-uation. The pool of a con�guration modeling some state describes whichcond-expressions have been encountered (i.e., elaborated) but not yet �redso far. Thanks to the Paralled-And congruence laws, these cond-expressionsform an unordered list, i.e., a multiset. This is important because this mod-els the fact that the tests resume on all suspensions at the same time, andthere is no a priori order on the coroutines that can be �red.The initial state of an execution is now modeled by a con�guration withan empty pool, i.e., equal to > (and with an empty constraint store, asbefore).In a �rst version, the three reduction rules for cond-expressions are thefollowing.Cond Elab. P :' : ?('1; E1; E2)&E �! P^ ?('1; E1; E2) :' :ECond Success P^ ?('1; E1; E2) :' :E �! P :' :E1 &E if � j= '! '1Cond Failure P^ ?('1; E1; E2) :' :E �! P :' :E2 &E if � j= '! :'1In order to re
ect that the resumption of the tests happens after eachmodi�cation of the constraint store and the coroutine is triggered as soon aspossible, we add an applicability condition to all reduction rules other thanCond Success or Failure. This condition says that neither the Success northe Cond Failure rule are applicable. The condition can, of course, also beformulated locally to each rule. Namely, as: The con�guration to be reducedis not congruent to a con�guration of the form P^ ?('1; ;) :' : where� j= '! '1 or � j= '! :'1.The semantics given so far satis�es the �rst four points raised above,but not point (5). The questions open are: Can the trigger condition (i.e.,entailment or disentailment) be tested locally, i.e., by looking only at theparticular cond-expression? Can this test be done incrementally?From now on, we will assume that the constraint system can implementRelative Simpli�cation [2], which simpli�es a constraint '1 relative to a con-straint ' to a constraint '2 such that (1) the conjunction of ' with '1 isequivalent to the conjunction with '2, (2) if ' entails 9�x'1, then 9�x'2 is9

equivalent to true,11 and (3) if ' disentails '1, then '2 is the false constraint;i.e., � j= ' ^ '1 $ ' ^ '2 ;� j= '! 9�x'1 i� � j= 9�x'2 $ > ;� j= '! :9�x'1 i� '2 = ? :Relative Simpli�cation yields incremental and local, sound and completetests of entailment and disentailment.We now add Relative Simpli�cation congruence law and replace the CondSuccess and Failure rules by the new versions given in Figure 3. This com-pletes modeling the execution of coroutines.To come back to the point raised in Section 3 on the di�erence between'1 ^ '2 and '1 &'2, we can now construct an example and use the for-mal semantics to show that in the one case a suspended cond-expressionis �red (possibly leading to an in�nite loop) and in the other it is not.Take the de�nition p(x) $?(x = f(y; a); p(x);?) and the initial states> : > : p(x)& (x = f(y; z) ^ z = b) and > : > : p(x)&x = f(y; z)&z = b(corresponding to the queries p(X), X=f(Y,b) and p(X), X=f(Y,Z), Z=b,respectively).To indicate a source of non-con
uence, one can construct an examplewhere the order chosen for the �ring of two competing suspended cond-expressions yields two di�erent behaviors (e.g., one leading to an in�nite loopand the other not). This is due to the fact that, in our semantics, both cond-expressions are moved from the (\concurrent") pool to the (\sequential")continuation where they are ordered by their composition with \& ".12 Takethe de�nitions p(x) $?(x = a; p(x);?) and q(x) $?(x = a;?;?) and theinitial state > :> : p(x)& q(x)&x = a. Execution may lead to either of thestates > : (x = a) :?& p(x) or > : (x = a) :p(x)&?.We will discuss the interaction of cut and coroutining in Section 7.6 Existential quanti�cation (\9")The logically correct version of the de�nition of the length predicate in Sec-tion 3 (when $ means \if and only if") has to quantify the variable y in aconstraint and the variables z and m in an expression:length(x; n)$ ((x = nil ^ n = zero) ;(9z9m (9y(x = cons(y; z))^ n = succ(m)& length(z;m))| {z }expression being quanti�ed))The previous version of the Unfolding rule tacitly assumes that the programalways contains an appropriate version of the de�nition of the predicatebeing unfolded. We did not model that such a version is obtained, for eachunfolding, by consistent renaming of all variables occurring in the de�nition.11As a special case: If ' entails '1, then '2 is equivalent to true.12One may, of course, design a semantics with a di�erent, more fair execution strategyfor coroutines. 10

SYNTAXExpressions E ::= ' j p�x j E1 &E2 j E1 ; E2 j 9xECon�gurations C ::= ' :E j ? j C1 ; C2 j 9xCContexts C ::= � j C ; C j 9x CCONGRUENCE LAWSQuanti�er Exchange 9x9yE � 9y9xE, 9x9yC � 9y9xCQuanti�er Renaming C1 � C2 if C1 and C2 equal up to �-renamingQuanti�er Mobility 9x(' :E ; C) � (9x') :E ; 9xC if x 62 V(E)Figure 4: Existential quanti�cation (\9")Also, in the semantics present so far, the new variables introduced by theunfolding are visible everywhere and never disappear again. This is not acomplete modeling of the actual operational semantics.From now on, having extended the syntax of expressions with \9" (cf.,Figure 4), we may assume that the expression de�ning a predicate p�x doesnot have any free variables other than the ones in the tuple �x. Hence,the new form of the Unfolding rule does not add any free variables to thecon�guration to which it is applied. Its applicability condition �x \ �y = ;(to avoid capturing between the actual parameters �x and the formal ones�y) can be satis�ed (with the Quanti�er Renaming congruence law) if �x is inthe scope of an existential quanti�er; hence, it is su�cient to require thatthe free variables in the query (initial con�guration) do not occur in theprogram.A quanti�ed expression cannot be elaborated directly. The scope of thequanti�ed variables has to be extended �rst (by application of the Quanti�erElaboration law). This is possible only if they can not be captured, i.e.,come into the scope of a di�erent quanti�er. In order to extend the scopeof variables that have the same name as others, they have to be renamed�rst (by application of the Quanti�er Renaming law). After the scope ofthe quanti�ed variables has been extended (\the quanti�er is pulled out"),i.e., the whole con�guration instead of just the expression is quanti�ed, thecon�guration can be reduced thanks to the de�nition of contexts.Finally, the scope of a variable in an expression can be reduced to anysub-expression that contains all its occurrences (\the quanti�er is pulledin"). This could be modeled by congruence laws of the form 9x(T1 � T2) �(9x T1) � T2 where x 62 V(T2), for any trees T1 and T2 of any syntactic en-tity and any composition symbol �. In fact, the Quanti�er Mobility law inthe version given here su�ces for our semantics, together with the Quan-ti�er Exchange law. The Simpli�cation law then takes care of removingquanti�ers of redundant (\auxiliary") variables (such as in 9x x = nil ^ 'where x 62 V(')) and of removing variables which do no longer appear in acon�guration, since 9x' � ' if x 62 V(').11

This is how we account for the introduction of variables as well as fortheir scope (i.e., their visibility and life-time), namely through congruencelaws which re
ect laws for logical quanti�cation.7 The complete semanticsThe addition of the features discussed in the previous three sections to thebase case discussed in Section 3 yields the semantics de�ned in Figure 5. Twoof these feature combinations need to be discussed. We leave the discussionof the combination of \9" and \ ?" to the full version of this paper.Cut and Coroutining The complete semantics accounts in particular forthe interaction between cut- and cond-expressions. Here, we must removesome ambiguities that are often left open in language speci�cations or man-uals. There are two interesting cases, namely (1) where a suspension lies inthe scope of a cut, and (2) where a suspension calls a cut upon triggering.Our formalization of the semantics de�nes (i.e., speci�es through theform of the Cut Success and Failure rules) that a cut ignores suspensionsfor its decision. More precisely, if a cut is reached at a moment of executionwhere a coroutine is suspending, then a potential failure of this co-routineis not anticipated but the cut is executed as if the co-routine did not exist.(It is crucial, of course, that this coroutine can indeed not be �red; thisis assured by the additional applicability condition on all rules other thanCond Success and Failure expressing that these two rules have priority.)In the second case it seems better to leave the speci�cation open andadmit non-con
uence of terminating executions.13 We recall that we postu-late that \^" is a commutative composition symbol over cond-expressions inthe Paralled-And congruence law, and thus do not �x the order of reactiva-tions of competing suspensions. In the case where a reactivation leads to thecall of an order-dependent control-operator such as the cut, its decision andthe subsequent program execution are no longer determined before-hand.One can easily construct an example where two coroutines are �red oneafter the other and where one of the two calls a cut whose decision is in
u-enced by the other. Take the de�nitions p(x; y) $?(x = a; y = b;?) andq(X; Y)$?(x = a; !(r(Y);>;?);?) and r(y)$ (y = a; y = b) and the ini-tial state > :> : p(x; y)&q(x; y)&x = a. Its execution leads to either of thetwo states > : x = a; y = b : !(r(y);>;?) or > : x = a : !(r(y);>&y = b;?)and from there to > : x = a; y = b : > or to ?, respectively. We mod-el this indeterminism by the fact that our abstract-tree-rewriting system isnon-con
uent when such a case is admitted.8 Conclusion and Future WorkWe have presented a formal de�nition of the operational semantics of con-straint logic programs with coroutining. What is it good for? We will list a13At the end of Section 5 we mentioned non-con
uence even in absence of the cut.12

SYNTAXExpressions E ::= ' j p�x j E1&E2 jE1 ;E2 j !(E;E1; E2) j ?(�x; ';E1; E2) j 9xEPools P ::= ?(�x; ';E1; E2) j > j P1 ^ P2Con�gurations C ::= P :' :E j ? j C1 ; C2 j 9xC j!(C1; E;C2)Contexts C ::= � j C ; C j !(C; E;C) j 9x CREDUCTION RULESApplication Elab. P :' :p�x&E �! P :' :9�y(�x = �y &E1)&Eif p�y $ E1 in program, �x \ �y = ;Constraint Elab. P :' :'1&E �! P :'^ '1 :E if � 6j= ' ^ '1 $?; '1 6= >�! ? if � j= ' ^ '1 $?Or Elaboration P :' : (E1 ; E2)&E �! (P :' :E1&E) ; (P :' :E2&E)Cut Elaboration P :' : !(E0; E1; E2)&E �! !(P :' :E0; E1&E;P :' :E2&E)Cut Failure !(?; E;C) �! CCut Success !((P :' :> ; C1); E;C2) �! P :' :ECond Elab. P :' : ?(�x; '0; E1; E2)&E �! P^ ?(�x; '0; E1; E2) :' :ECond Success P^ ?(�x; '1; E1; E2) :' :E �! P :' :9�x('1 &E1)&Eif � j= 9�x'1Cond Failure P^ ?(�x;?; E1; E2) :' :E �! P :' :E2&EControl Cond Success and Cond Failure have priority.CONGRUENCE LAWSSequential And (fExpressionsg; & ; >) is a monoid.Sequential Or (fCon�gurationsg; ; ; ?) is a monoid.Parallel And (fPoolsg; ^; >) is a commutative monoid.Simpli�cation '1 � '2 if � j= '1 $ '2.Relative Simp. ?(�x; '1; E1; E2) :' :E � ?(�x; '2; E1; E2) :' :Eif � j= '1 ^ '$ '2 ^ '.Quanti�er Elab. P :' :9xE1&E2 � 9x(P :' :E1&E2) if x 62 V(P :' :E2)Q. Exchange 9x9yE � 9y9xE, 9x9yC � 9y9xCQ. Renaming C1 � C2 if C1 and C2 equal up to �-renaming.Q. Mobility 9x(P :' :E ; C) � P :9x' :E ; 9xC if x 62 V(P) [V(E)Figure 5: The Complete Semantics13

few bene�ts.(1) By modeling program execution through reduction rules and throughcongruence laws, we have been able to state what the (primarily) operationaland what the declarative aspects of the languages are. For instance, wehave accounted for the fact that the sequences of goals are ordered, but therepresentations of constraints as conjunctions are not.(2) We have abstracted away from details that are relevant only for lan-guage implementations, and not for the program execution. Clearly, back-tracking is merely a matter of space-e�cient implementation.(3) We have modeled the control operators of the program (such as theorder statement for goals and clauses and the cut). This enables the pro-grammer to predict the control
ow of his program and to evaluate its per-formance (assuming a complexity bound for the constraint solver, e.g., aquasi-linear one in the case of Prolog-II).(4) We have been able to make precise the critical interaction betweensequential execution (of expressions in the continuation) and concurrent exe-cution (of suspended conditionals in the pool), in particular in the two caseswhere a suspension lies in the scope of a cut or a suspension calls a cut upontriggering.As for future work: Not all of the mathematical formulae which modelexecution states have a �rst-order logic reading, nor do all of the rewritingsteps which model state transitions. It is now possible, however, to investi-gate which of them do. This can be useful in order to determine which ofthe programs do have a declarative reading (in �rst-order logic).Along the lines of this paper, one can now start modeling other languagefunctionalities which are considered impure such as assert/retract, requestof further solutions, backtrackable assignment, cells, and so on.One interesting branch of future work would consist of investigating con-
uence proofs for the reduction relation with coroutining (without coroutin-ing, all reduction steps are deterministic), possibly building on work in [12].As the examples given above show, only \`weak" con
uence may possiblyhold (i.e., con
uence of terminating executions), and even this only under arestriction on the use of cut.Acknowledgements We thank Harald Ganzinger, Michael Hanus, Sverk-er Janson, Olivier Ridoux and Peter Van Roy for discussions and comments.
14

References[1] H. A��t-Kaci, B. Dumant, R. Meyer, A. Podelski and P. Van Roy. Wild LIFE:A User Manual. Digital Equipment Corporation, Paris Research Laboratory.Rueil-Malmaison, France, April 1993.[2] Hassan A��t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based con-straint system for logic programming with entailment. Theoretical ComputerScience, 122(1{2):263{283, January 1994. (Also appeared in Fifth GenerationComputing Systems, Tokyo, 1992.)[3] E. B�orger and P. Schmitt. A formal operational semantics for languages of typeProlog III. In E. B�orger, H. Kleine B�uning, M. M. Richter, and W. Sch�onfeld,editors, CSL'90, 4th Workshop on Computer Science Logic, LNCS 533, pages67{79, 1991.[4] M. Carlsson, J. Wid�en, J. Andersson, S. Andersson, K. Boortz, H. Nilsson,and T. Sj�oland. SICStus Prolog User's Manual. SICS, Box 1263, 164 28 Kista,Sweden, 1991.[5] A. Colmerauer, H. Kanoui, and M. V. Caneghem. Prolog, theoretical principlesand current trends. Technology and Science of Informatics, 2:4, pages 255{292,1983.[6] J. Ja�ar, M. J. Maher. Constraint Logic Programming: A Survey. Journal ofLogic Programming 19 & 20, 503{581, 1994.[7] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.[8] M. J. Maher. Logic semantics for a class of committed-choice programs. InFourth ICLP, pages 858{876. MIT Press, 1987.[9] R. Milner. Functions as Processes. In Journal of Mathematical Structures inComputer Science 2:2, pages 119{141, 1992.[10] L. Naish. MU-Prolog 3.1db Reference Manual. Computer Science Department,University of Melbourne, Melbourne, Australia, May 1984.[11] L. Naish. Automating Control for Logic Programs. In JLP 2:3, 1985, pages167{184, 1985.[12] J. Niehren and G. Smolka. A Con
uent Calculus for Higher-order Relation-al Programming. In J-P. Jounnaud, editor, 1st International Conference onConstraints in Computational Logics, LNCS 845, pages 89{104, 1994.[13] R. A. O'Keefe. On the treatment of cuts in Prolog source-level tools. InSymposium on Logic Programming, pages 68{72, The Computer Society Press,1985.[14] G. Smolka. Residuation and guarded rules for constraint logic programming.In F. Benhamou and A. Colmerauer, editors, Constraint Logic Programming:Selected Research, pages 405{419, MIT Press, 1993.[15] G. Smolka. A calculus for higher-order concurrent constraint program-ming with deep guards. Research report, Deutsches Forschungszentrum f�urK�unstliche Intelligenz, Stuhlsatzenhausweg 3, D-W-6600 Saarbr�ucken, Ger-many, 1993.[16] G. Smolka. A foundation for higher-order concurrent constraint programming,In J-P. Jounnaud, editor, 1st International Conference on Constraints in Com-putational Logics, LNCS 845, pages 50{72, 1994.15

