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Abstract

Alice is a functional programming language that extends Standard ML with support
for distributed and concurrent as well as constraint programming. One key feature of
the system is that code is communicated in a high-level platform-independent format,
called Alice Abstract Code, which is statically generated from Alice source code. The
system ensures efficient execution by run-time compilation to native code. However,
the native code compiler is not portable and it is hard to maintain.

This thesis develops a portable execution unit based on byte code. A new run-time
compiler compiles the Abstract Code to Alice byte code that is executed by a register-
based interpreter. Specialized instructions and dynamic code rewriting are used to
speed up interpretation.

The module system of Alice imposes a strict separation of software blocks. This is
only resolved at run-time as modules are linked dynamically. Thus, the run-time
compiler has much more knowledge about the current state of the system than the
static compiler. One optimization that is particularly effective at run-time is inlining.
Two different forms of inlining (inlining of primitive operations, procedure integration)
are investigated to reduce the overhead of procedure calls. The compilation strategy
of the native code compiler is generalized to selective compilation in order to avoid
compilation of rarely executed procedures.

The byte code system sets the new standard for platform-independent execution in
Alice, starting from release 1.2. This thesis presents a careful analysis of the system
and shows that its performance is competitive to the native code system.
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1 Introduction

Alice [3] is a functional programming language based on Standard ML. It features sup-
port for distributed and concurrent programming as well as constraint programming.
Alice programs are executed by a virtual machine whose open source implementation
is based on a generic virtual machine library called SEAM [40]. The goal of this thesis
project is to extend this system with a new execution unit based on run-time byte
code compilation and interpretation. The new part of the virtual machine achieves
efficient execution independent of the underlying hardware platform.

The Alice Programming Language

Alice offers rich support for open programming. As mentioned in “Alice Through the
Looking Glass” [38] the main characteristics of open programming are modularity,
dynamicity, distribution, and concurrency. These characteristics influence the archi-
tecture of the virtual machine.

Modularity means that software blocks are built separately and combined dynamically.
A static compiler translates the modules into platform-independent code blocks that
the virtual machine links at run-time. In general, software blocks can be imported and
exported in a running program; this is meant by dynamicity. Thus, at run-time, the
strict separation between modules is resolved. A dynamic compiler can capitalize on
its knowledge about the imports of a module to generate efficient code.

The understanding of distribution in Alice is to communicate both data and code
over networks. This requires a platform-independent representation of data and code
that the virtual machine can handle. The implementation of the virtual machine has
to support a wide range of platforms. In particular, the challenge is to offer equal
performance for all platforms, such that programmers do not have to care on which
architecture their Alice programs are actually executed.

The lightweight concurrency of Alice allows highly parallel execution of programs. The
virtual machine coordinates concurrent execution of threads and supports implicit data
flow synchronization based on the concept of futures [22].

1.1 Executing Alice Programs

The SEAM library offers a generic execution model in which customized execution units
smoothly integrate. Figure 1.1 gives an overview about the execution model, which is
described in the following.

SEAM'’s Execution Model

A scheduler coordinates concurrent execution of threads. Each thread maintains its
own stack of activation records that are called tasks in SEAM. Each task references a
concrete task manager that knows how to execute the task. A concrete task creator is
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Figure 1.1: SEAM’s execution model

responsible for pushing new tasks onto the stack, which happens, for instance, when
a procedure is called.

The framework explicitly supports mixed-mode execution. At run-time, the scheduler
assigns the tasks to their dedicated task managers, using the reference that each task
maintains. Two different approaches for executing Alice programs have existed before
this thesis project.

(1) Abstract Code Interpreter

One key feature of Alice is that code is communicated in a high-level platform-
independent format, called Alice Abstract Code, or abstract code for short. Thirty
abstract code instructions suffice to express all kinds of Alice programs. The instruc-
tions are arranged as nodes of a graph — the abstract code graph — that explicitly
encodes the control flow of a procedure. To sum up, the abstract code has a compact
definition and, due to the high-level nature of the instructions, it is a memory-saving
representation of Alice programs.

The static Alice compiler transforms each Alice program into a set of abstract code
graphs. The virtual machine contains a task manager and a task creator for abstract
code. The task manager is compact and serves as a practical reference for the semantics
of the abstract code. However, interpreting abstract code is slow.

(2) Run-Time Compilation to Native Code

To speed up execution, there is a task manager for native code. To create a native code
task, the system compiles abstract code graphs into native code functions at run-time.
The execution unit just calls the generated native code functions.

Some typical benchmark procedures, for instance the Ackermann function, run up to
30 times faster when compiled to native code. However, the current run-time compiler
has three severe drawbacks:

e [t is not platform-independent, but only supports 32-bit x86 architectures.
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e Debugging the native code system is extremely complicated.

e Generating efficient native code requires deep knowledge of the underlying hard-
ware.

This thesis project aims at an alternative execution unit that is efficient, platform-
independent, and easy to maintain. Thus the new approach falls in between the two
existing ones.

1.2 New Approach: Byte Code System

In this thesis, we develop a new execution unit for the Alice virtual machine. The unit
is based on byte code that is generated at run-time and executed on a byte code inter-
preter. Many optimizations are applied and the resulting system offers performance
that is competitive to the native code system.

Alice Byte Code

Throughout the thesis, the term byte code stands for a sequential code representa-
tion, consisting of virtual machine instructions that can be executed on an interpreter.
The Alice byte code is mainly a linearization and specialization of the abstract code.
For each abstract code instruction, there is at least one corresponding byte code in-
struction. Additionally, there are specialized byte code instructions that offer efficient
implementations of frequent special cases.

Execution Model

Byte code is executed by a register-based machine. All local variables of a procedure
are kept in (virtual) registers that live in the current byte code task. As there is no
restriction on the size of a task, there is no upper bound on the number of registers.
All local variables can be mapped onto registers. The registers also store intermediate
results of a computation.

The byte code instructions directly operate on virtual registers. In contrast to tradi-
tional stack-based interpretation, the instructions can randomly access the operands,
and the register-based approach usually needs less instructions to implement a proce-
dure. Whereas the debate on stack versus registers is decided for hardware [31], there
is an ongoing discussion for software interpreters [17, 18] with a clear trend towards
registers [41].

Task Execution: Interpreter

The byte code interpreter implements the machine model. In the standard execution
model of SEAM, the scheduler assigns a task to the interpreter that returns control
directly after it finishes execution of the task. The execution might be interrupted by
an exception or because of data flow synchronization during concurrent computations.
Additionally, the scheduler periodically suspends the current thread to ensure fair
distribution of processor time among all threads. Before the interpreter is left, the
current machine state is saved in the task.

Task Creation: Compiler

Whenever a procedure is called, the scheduler delegates task creation to a concrete
task manager. Depending on the configuration of the virtual machine, this might be
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the byte code task manager. If the task creator finds out that the procedure has still an
abstract code representation, it invokes the byte code compiler. The compiler traverses
the abstract code graph in a depth-first manner and emits semantically equivalent byte
code for each abstract code instruction. At the end, the compiler returns byte code,
which implements the procedure, and the number of registers, which is needed during
the execution. With this information, the task creator can generate a byte code task.

1.3 Byte Code Optimizations

To speed up execution, several optimizations are applied in the compiler and inter-
preter.

Register Allocation

As there is an unlimited number of virtual registers, the byte code compiler can use a
one-to-one mapping from local variables to registers. This, however, leads to big tasks,
and the bigger a task is, the more expensive is task creation. In addition, the tasks, or
more precisely the task stacks, are subject to garbage collection, and huge task stacks
slow down the collection. Register allocation is used to obtain a more clever mapping
and since less registers are needed, the task size is reduced. A lightweight allocation
algorithm, known as “Linear Scan Register Allocation” [34], is used.

Procedure Calls

We already mentioned that in the standard SEAM model the interpreter executes a
single byte code task and returns control to the scheduler. Performance benefits if the
interpreter maintains control as long as possible. The byte code system uses dynamic
(interpreter-driven) and static (compiler-driven) techniques.

The byte code interpreter dynamically tests if the procedure that is called has already
a byte code representation. In this case, the interpreter maintains control, creates the
new task and directly starts to execute it.

For some procedures, the byte code compiler can find out that they have a byte
code representation. In this case, it generates specialized instructions that bypass the
scheduler.

When the code representation can change during execution, for instance, from abstract
code to byte code, a combination of static and dynamic techniques is used. The
compiler tags the call instructions such that the interpreter can rewrite them if the
dynamic test succeeds.

Procedure Integration

Optimized calls still produce more run-time overhead than executing straight-line code.
The goal of procedure integration — better known as inlining — is to eliminate calls
altogether. The byte code compiler automatically integrates procedures that do not
exceed a fixed size limit into their caller. As the integration analysis happens at run-
time, one main challenge is to balance power and overhead of the analysis. Another
challenge is to efficiently simulate parameter passing from the caller to the embedded
callee and back.
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Selective Compilation

The compilation strategy of the native code system is to compile each procedure before
its first execution. As the strategy is implemented as lazy evaluation (compilation) of
code, there is no way to postpone compilation further. The byte code system uses a
more flexible technique, which we call selective compilation. This allows to formulate
compilation as transition between different code stages. Transitions are controlled
by arbitrary boolean conditions. This way, it is easy to express the condition that
procedure p is not compiled until the n-th execution. Of course, the transition system
can contain more than two stages. One can think of a system with k compilation steps,
and in each step more and more and more optimizations are applied.

1.4 Contributions

Before this thesis project, there was a huge performance gap between platform-inde-
pendent interpretation and platform-dependent run-time compilation. The byte code
system developed in this thesis project is platform-independent and its performance
comes close to the native code system. The implementation is fully operable and it is
part of all Alice releases starting from release 1.2.

We investigate procedure integration, selective compilation, dynamic tests, and code
rewriting in the byte code system. All existing execution units are evaluated carefully,
with special focus on the optimizations of the byte code system. In general, the
byte code system is a good platform to experiment with new optimizations. As it is
implemented in the high-level language C++, it is much easier to modify and extend
than the native code system.

There is few documentation about SEAM and the Alice language layer. Brunklaus and
Kornstaed give an overview [13]. Chapter 2 and 3 contain detailed information about
the virtual machine, which helps to close the gap between the conceptual view and the
actual implementation.

1.5 Structure of the Thesis

Chapter 2 and 3 present the architecture of the Alice virtual machine and explain
properties of the abstract code and native code. In Chapter 4, we introduce the ma-
chine model and instruction set of the byte code interpreter. Chapter 5 develops the
translation phase from abstract code to byte code. Chapter 6 focuses on optimiza-
tions that are needed to achieve good run-time performance. Implementation-specific
aspects are discussed in Chapter 7. Chapter 8 compares the abstract code interpreter,
the byte code and the native code system and evaluates interesting system properties
like compile time and code size of Alice applications. A conclusion of the thesis is
given in Chapter 9.
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2 The Alice Virtual Machine

Alice programs are executed by a virtual machine that is built on top of the virtual
machine library SEAM (Simple Extensible Abstract machine). The library provides
generic services that ease implementation of virtual machines for modern programming
languages. It offers an abstract data model as well as an abstract execution model
that explicitly supports mixed mode execution. The architecture of SEAM is originally
described by Brunklaus and Kornsteadt as “A Virtual Machine for Multi-Language
Execution” [13]. This chapter gives an overview about the framework and details the
Alice specific aspects that are embedded into the model as a so called language layer.

2.1 Seam

SEAM provides generic services that are common to a wide range of virtual machine
implementations. The two central generic components are the scheduler and the ab-
stract store. Language-specific aspects are parameterized and language implementors
have to equip their implementations with defined interfaces. All units that are specific
to a language L are called language layer for L.

2.1.1 Scheduler

The lightweight threads, offered by Alice, directly build on SEAM’s concurrency model.
The scheduler coordinates concurrent execution of several threads. Every thread main-
tains its own stack of activation records. An activation record is called task in SEAM’s
terminology.

As depicted in Figure 1.1 (page 2), the scheduler coordinates execution on two levels.
The first level is fair distribution of processor time between threads. All threads
reside in a queue. Whenever a fixed time slice has elapsed, a flag is set to a global
status register that issues the scheduler to suspend the current thread and choose the
next thread in a round-robin fashion. Thread coordination is generic and language
implementors only have to ensure that the status register is checked periodically.

The second level is coordination of tasks inside a thread. The scheduler delegates
creation and execution of tasks to language-specific execution units. A global register
bank serves for language independent communication between tasks. SEAM defines a
generic interface for execution units, but does not prescribe a specific execution model
since this is, in general, highly language-specific.

Execution Unit

A language-specific execution unit that respects SEAM’s generic interface consists of
two components: a task creator and a task manager, also called interpreter. The task
creator sets up a new task from a first class computation that consists of a piece of code
and an associated environment. For instance, a procedure call is prepared by issuing a
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task creator to push a new task. Each task contains a reference to its interpreter. The
task abstraction allows for simple language inter-operation and — more importantly
in the context of this project — for multiple execution modes. At run-time, several
different execution units coexist. As each task knows its associated task manager, the
scheduler can easily assign a task to the right task manager.

To implement an additional execution unit for a specific kind of code, one has to write
a task creator and an interpreter that both respect the scheduler interface.

Tasks can not only represent computations that the user of the system triggers. They
are also used internally by the virtual machine to implement services. There is for
instance a service to minimize (parts of) the data graph in the abstract store (Tack
[43]). This service defines its own task creator and manager and can therefore be
controlled by the scheduler.

Exceptions

Exceptions permit a structured form of jump and a save way to transmit data to the
jump target. In general, the exception mechanism builds on two constructs: an ex-
ception can be raised and handled. Raising an exception means to abort the current
computation and to pass the exception value to the run-time system. The run-time
system searches for a dynamically enclosing block that knows how to handle the ex-
ception. The task stack constitutes the dynamic scope and is therefore searched for
an appropriate handler.

SEAM’s scheduler features generic support for exceptions. When a concrete execution
unit raises an exception, it writes the exception value to the scheduler register Reyy,.
An exception handler is a pair: its first field contains a reference to the task that
pushed the handler; the second field contains the handler procedure that specifies the
formal argument and the code of the handler. Every thread maintains an extra stack
for all handlers. When an exception occurs, the scheduler looks for an appropriate
handler in the handler stack and skips all tasks that are above the task referenced by
the handler (called current task in the following). This is especially efficient when the
exception aborts a recursive procedure that has allocated many tasks.

SEAM does not prescribes the exact representation of the handler procedure. Instead,
every execution unit implements a special task creator that the scheduler invokes to
start execution of the handler procedure. The task creator binds the formal argument
of the handler to the content of R.., and modifies the current task, such that the
handler procedure is executed when the scheduler assigns the task to its interpreter.

2.1.2 Abstract Store

SEAM permits an abstract view on memory that allows high-level modeling of language-
specific data structures. The abstract store holds a data graph that has a designated
entry point, called root set. The graph is constructed from two basic node types:
chunks are raw byte data of arbitrary length, and blocks contain a number of directed
edges to other nodes. In order to make use of efficient native operations, integers are
provided as an additional node type. The library already defines some high-level data
structures, for instance, (weak) maps, dynamic arrays, stacks and queues. Each of
these data structures is defined on the abstract store and can fully use all its services.
Two major services are garbage collection and pickling. Additionally the abstract store
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provides transients that can elegantly express synchronization and communication in
concurrent systems.

Garbage Collection

Garbage collection frees memory that is occupied by unreachable store nodes. SEAM
uses generational garbage collection [46]. The starting point for the collection is the
root set. Language implementors only have to know about the root set to endow
their language with a high-quality garbage collection. The implementation itself also
benefits from this service. SEAM is implemented in C++, which does not offer au-
tomatic memory management. Implementation of language-specific services often re-
quires many temporary data structures. Using SEAM’s predefined data structures,
which are subject to the internal memory management, facilitates implementation
and maintenance.

Pickling

The data graph in the abstract store can be transformed into an external byte string,
called pickle. The pickle is stored in a file or transmitted over the network, allowing for
persistent storage of data graphs as well as platform-independent data exchange. The
unpickler reconstructs an isomorphic data graph from the pickle. Tack, Kornstead
and Smolka present “Generic Pickling and Minimization” [44] as it implemented in
Alice.

The abstract store is a generic memory model. However, nodes in the data graph can
contain platform-dependent data. If the language implementor wants to use the pick-
ling service, he has to provide means to transform the platform-dependent represen-
tation of nodes into a platform-independent one. So for every concrete representation
there must be a handler that translates it to an abstract representation. For instance,
the concrete code representation might be native machine code for Intel processors.
This code is of course invalid for the PowerPC. Before code can be pickled, it has to
be transformed into an abstract, i.e. platform-independent, representation. For Alice,
this is the Alice Abstract Code, which is presented in Section 3.1.

Transients

The concurrency model of SEAM realizes synchronization and communication between
threads with transients. Transients are placeholders for yet undetermined values.
When a computation hits a transient instead of an actual value, it returns control to
the scheduler that blocks the thread until the value is determined. There are several
kinds of transients of which futures and by-need values are described in this section.

The notion of futures first occurs in Multilisp [22]. In Alice, a future is a transient that
might become a value in the future. It maintains a queue of blocked threads that are
rescheduled when the future is replaced by an actual value. A by-need is a transient
that is associated with a first class computation. So it contains the code and all data
required to compute the actual value. When a thread requests the actual value, the
by-need is transformed into a future on which the requesting thread blocks. At the
same time, the run-time system creates a new thread with two tasks on its task stack.
The first task spawns the first class computation to compute the actual value. The
second task explicitly replaces the by-need with the result.

Niehren, Schwinghammer and Smolka give a more formal treatment of futures for stat-
ically typed languages. They investigate a concurrent A-calculus with futures [32].
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2.2 The Alice Language Layer

The language layer defines all language-specific aspects of the Alice virtual machine. It
models all Alice values on SEAM’s abstract store, and it contains three different execu-
tion units for Alice Abstract Code, native code and byte code. Code also lives inside the
abstract store, which has some interesting implications for the actual representation.

2.2.1 Alice Values

All Alice values, which are directly modeled on the abstract store, are listed in Table
2.1. For each value type there is an example given that relates the internal values to
the external representation in the source language.

| value | example |
integers 1234
tuples (x,2)
closures fn x => x+y
transients lazy (x+1)
strings "Hello, world!"
real numbers 123.456
reference cells ref 23
arrays and vectors | #[1,2,3,4]
records {a=3, b="string"}
tagged values MyConstructor (x,y)
constructed values | MyException "error"

Table 2.1: Alice values

The SEAM library defines integers, tuples, strings, reals, closures, and several types
of transients, for instance, futures and by-needs. All other values are defined in the
Alice language layer. Due to space restrictions, this thesis will not describe how these
values are modeled on the abstract store. Details on the data layout can be found in
Guido Tack’s Diploma thesis [43]. We concentrates on a restricted value set, consisting
of integers, tuples, closures, tagged values and exceptions. The restricted value set is
then used for a concise description of Alice Code.

Integers. Integers are represented as a special node type in the abstract store, so
they are directly supported by SEAM. They are represented in a way that allows the
use of native arithmetic operations. Alice also provides big integers values, which can
become arbitrarily large and cannot be mapped on hardware. In the following, we
always mean the small integer values when we just speak of integers.

Tuples. Tuples directly correspond to the mathematical concept. Internally, they are
represented as a block. So tuples allow a more abstract view on blocks.

Closures. A closure is a pair consisting of self-contained piece of code and a global
environment that contains all free variables occurring in the code. In the example
given in Table 2.1, the variable y is free and will therefore be bound by the global
environment.

10
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Tagged Values. The type system of Alice supports datatype declarations.
datatype tt = A of int | B

The static Alice compiler assigns an integer tag to each constructor. A constructor
values of the form (A 34) is a block that contains the tag for A and all data fields.
For efficiency, nullary constructors are represented as integers since the tag is the only
information they store.

Exceptions. Exceptions are defined as constructed values. These values implement
Alice exttype declarations, which are data types that can be extended dynamically.
Instead of an integer tag, they contain an arbitrary block that uniquely identifies
them.

2.2.2 Alice Code

The Alice language layer defines three types of code. This section lists the code
forms and discusses some principle properties. Details on the representation and the
instructions are given in Chapter 3 and Section 4.3.

Alice Abstract Code

One key feature of Alice is that code can be communicated in a platform independent
format, called Alice Abstract Code, or abstract code for short. The static Alice compiler
compiles the source language into abstract code. This code form is the external storage
format for Alice Code, used in pickles. So it is the only code form that survives the
run-time of a program.

The abstract code is defined by an Alice data type declaration and internally rep-
resented as tagged values. Conceptually, the code makes up a graph whose nodes
encode the instructions of the abstract code. The instructions are high-level, which
means that one instruction comprises many execution steps. This yields a compact
definition of the instruction set. Additionally, the code consumes less memory, which
allows fast code exchange over a network connection.

Native Code

To achieve fast execution speed, the run-time system compiles the abstract code to
native code, before a procedure is executed for the first time. The native code compiler
does only work on 32-bit x86 processor architectures.

Byte Code

Run-time compilation to byte code is the platform-independent way to speed up exe-
cution. Alice byte code can be roughly described as a linearizion and specialization of
the abstract code. The definition of a byte code for Alice and the development of an
efficient interpreter and an optimizing run-time compiler from abstract code to byte
code are the main contributions of this thesis.

Both byte code and native code are represented in a linear fashion and occupy a
contiguous range in memory. This memory region has a meaning only for an interpreter
or a hardware processor, respectively. We call this kind of representation binary code.

11
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Code as Data

All code forms are modeled on SEAM’s abstract store. Since code is just another form
of data, it is subject to garbage collection and can be pickled. The resulting challenges
are different for abstract code and binary code.

Abstract code consists of values that the Alice language layer provides. So neither
garbage collection nor pickling causes any trouble because they can simply be used as
for any other Alice values.

The binary code formats native code and byte code occupy a contiguous range in
memory. This can either be modeled as a block or a chunk. Code typically contains
only a small number of references to other store nodes. It is a reasonable design
decision to choose chunks for the representation of binary code. The only difficulty
with chunks is that the garbage collector regards them as (atomic) leaf nodes and
does not update references from binary code to other store nodes. Therefore, binary
code is represented as a pair of a code chunk and an immediate environment that is
a block that contains references to store nodes. Native code and byte code access all
immediate values indirectly via indexes into the immediate environment.

As code chunks live in the abstract store, they are subject to garbage collection. For
this reason, binary code has to be position independent, such that all addresses are
still valid after the garbage collector moved the code to a different location.

Native code is by its nature platform-dependent. The abstract code is the abstract
representation of native code. In order to make use of pickling, there must be a
handler that transforms native code into abstract code. In general, this backward
transformation is quite complicated, especially when advanced compiler optimizations
like procedure integration are involved. The current architecture keeps both code
representations in memory. The execution unit uses the native code whereas the
pickler takes the abstract code. This is the simplest solution although it wastes some
memory. Byte code is represented in the same way.

Putting all pieces together, the concrete representation of binary code is a triple of
a code chunk, an immediate environment and an abstract code graph (as abstract
representation).

2.2.3 Execution Units

There is an interpreter that can directly execute the abstract code. It is compact and
serves as an executable reference for the semantics of the abstract code. Since the
abstract code is not designed for efficient execution and the interpreter does not apply
any optimizations, interpreting abstract code is very slow. To speed up execution, a
run-time compiler transforms every procedure into native code or byte code when it
is invoked for the first time. Byte code is executed on a special byte code interpreter
(Chapter 4). The native code compiler creates self-contained native functions that are
called by a native code interpreter. The scheduler coordinates the interpreters and
assigns the tasks to them. Many optimizations are applied to return control to the
scheduler as seldom as possible.

Executing native code is on average three to five times faster than interpreting the
abstract code, and there are some extreme cases like Ackermann’s function that is
more than thirty times faster when using native code. The performance of the byte
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code system can compete with the native code system. Detailed benchmarks are given
in Chapter 8.

Exceptions
The exception mechanism of Alice builds on SEAM’s generic exception service. To un-
derstand how the exception mechanism works, let us consider the following example:

exception ZERO

a
raise ZERO
mlist > (xr,x*a)

fun mlist’ (nil,a)
| mlist’> (0::_,_)
| mlist’ (x::xr,a)

fun mlist xs = mlist’ (xs,1) handle ZERO => 0

Procedure mlist’ multiplies all elements of a list. If the list contains zero, it aborts
computation and raises exception ZERO. Procedure mlist contains code to handle this
exception. The static Alice compiler creates a handler procedure that closely resembles
to the following pair:

(x, case x of ZERO => 0 | . => raise x)

The first component specifies the formal argument x that binds the exception value.
The handler code first checks if it can handle the current exception. For our example,
the handler is only responsible for the exception ZERO. In all other cases, the exception
is re-raised, which means that it is passed to the next handler on the handler stack.

Calling Convention Conversion

A calling convention defines how parameters are exchanged between procedures. Fol-
lowing the standard terminology, the procedure that invokes another procedure is the
caller and the procedure that is called is the callee.

SEAM offers a global register bank for generic parameter passing, but it does not
prescribe a special calling convention. Conceptually, there are only unary procedures
in Standard ML and this also extends to Alice. If a caller wants to pass several
parameters, it packs them into a tuple and the callee selects all elements that it needs.
In the majority of cases, the tuple construction is superfluous because the callee is
interested in all components and does not use the tuple. The Alice virtual machine
avoids tuple construction whenever possible by using a dynamic calling convention
conversion. The general idea is that the receiver is responsible to convert the arguments
into the format it expects. There are four cases:

e match: The caller supplies exactly the number n of arguments that the callee
expects. In this case, the callee reads registers 1 to n from the global register
bank without conversion.

o mismatch — tuple expected: The caller offers n > 1 arguments, but the callee ex-
pects exactly one argument. In this case, the callee constructs a tuple consisting
of all arguments in the register bank.

o mismatch — discrete arguments expected: The caller supplies one argument, but
the callee expects n > 1 arguments. In this case, the callee has to deconstruct
the tuple that is in register 1.
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e mismatch — no argument supplied: The caller does not supply an argument, but
the callee expects one. In Alice, callers do not supply tuples of arity zero. The
empty tuple is uniquely represented as integer number zero. So the callee can
construct the value when it needs it.

The interpreter implementor has to ensure that every procedure checks the number
of arguments in its prelude. Such a check is also needed whenever a callee returns to
its caller and uses the register bank to pass some arguments. An optimizing compiler
can generate code that skips the tests if the compiler detects that there is always a
match.
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This chapter describes the code formats that have already been present before this
thesis project. It presents the Alice Abstract Code and gives an overview about the
native code system. The conclusion of the chapter motivates why a byte code system
for Alice has some significant advantages over a native code system.

3.1 Alice Abstract Code

The first part of this section addresses the format of the abstract code, whereas the
second part deals with the instructions. At the end, there is a short discussion of
advantages and disadvantages of this code representation.

3.1.1 Format

Alice represents code as a directed acyclic graph. The acyclic structure is achieved by
transforming all loops into recursion. The nodes of the graph encode the instructions
of the abstract code. Except for the root node, each node has either one or two
predecessors. A node has n > 0 successors. The code graph explicitly encodes the
control flow, which means that each instruction knows about its continuations.

The static Alice compiler removes all information about types. Static type safety
guaranties that the abstract code instructions operate on correctly typed arguments.
In particular, there are no polymorphic instructions, which means that the instructions
do not have to test the type of its arguments.

Alice Procedures

Code only occurs as procedure bodies. Each procedure code contains the root of its
abstract code graph, a list of formal arguments and some additional information to ease
compilation (see Chapter 5 and 6). Procedure code is parametrized over global values,

procedure_code ::={
root: mstr
formalArgs: def”
number0fIds: nt

outArity: int option
subst: id — value option
liveness: (id X int X int)*

Figure 3.1: procedure code with annotations
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which means that these values are indirectly accessed via free variables. An Alice
procedure is a closure that contains a procedure code and an environment of values for
the free variables. Notice that procedures are the only abstraction mechanism in the
abstract code. The static Alice compiler transforms every higher-level concept, like
functors or structures, into procedures.

Static Single Assignment Form

The abstract code is in static single assignment (SSA) form. SSA is a property of
intermediate languages that makes compiler optimizations clean and efficient. If an
intermediate language is in SSA form, then every variable has a single definition site.
Single-assignment is a static property because in a general control flow graph the
assignment might be in a loop. SSA form was developed by Wegman, Zadeck, Alpern,
and Rosen [4, 37| for efficient computation of data flow problems, such as global value
numbering and detecting equality of variables.

Given an arbitrary program, a variable with name v might be used for several unrelated
purposes. Transformation to SSA form removes all superfluous dependencies and thus
makes optimizations more powerful. Let us consider the following program:

u «— a-+b
v «— u+1
u «— a—+1

It is not directly clear from the names that the definition of v does not depend on the
second definition of w. If we choose new names such that each assignment gets a fresh
name, the dependencies become obvious.

Uy «— a-+b
vy — up+1
Uy — a-+1

For straight-line code, the transformation is quite easy because it only means to a-
rename the program. The situation becomes more difficult if two control flow edges
join, as depicted in Figure 3.2.

if x <5 thenv+« 1elsev+—2

w—v+1
ifz<b
v — 1 Vg — 2

N

w—v? + 1

Figure 3.2: control flow graph for an if expression
Following the simple renaming strategy, it is not clear whether v; = vy or v7 = vs. In

fact, this cannot be decided statically. SSA form solves the problem with a notational
trick, called ¢-function. These pseudo-assignments are introduced at the beginning of
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ifr<b

RN

v — 1 Vg — 2

NS

vg — ¢(v1,v2)

A

w<—wvs +1

Figure 3.3: control flow graph with ¢-function

a basic block (compare Figure 3.3). If the left control flow branch is taken, ¢(vy,v2)
has the value v, and if the right control flow branch is taken, it has the value vs.
Intuitively, ¢-functions synchronize variable names at control flow join points such
that the SSA property (single definition point) is maintained. The simplest approach
for ¢-placement, is to place ¢-functions for all variables at every join point in the
control flow graph. This approach introduces many unnecessary ¢-functions. Bilardi
and Pingali describe a range of algorithms for optimal ¢-placement and compare their
efficiency [11].

SSA form is typically used as intermediate representation for imperative languages.
The functional programming community prefers the A-calculus and continuations as
intermediate language. Andrew Appel pointed out the close relationship between the
two representations in his article ”SSA is Functional Programming” [6].

Executable SSA Form

If we want to interpret code in static single assignment form, ¢-functions cause some
trouble. Whenever the execution takes a branch, it has to remember its number in
order to be able to evaluate ¢-functions. Interpreting static single assignment form was
recently proposed by Ronne, Wang and Franz [45]. In contrast, Alice uses a modified
version of SSA form without ¢-functions. The single assignment property, which is
that every variable has a single definition site, is weakened to

on every path each variable is defined at most once

This definition only works because all paths in the abstract code graph are acyclic.
The static Alice compiler eliminates ¢-functions by trying to assign the same variable
names on each branch. If this fails for a certain branch, an explicit move instruction
is inserted at the end. An example is given in Figure 3.4. The additional move
instruction is depicted in a dashed node. For simplicity, we assume that the compiler
cannot directly assign vs to 1 on the left branch.

As all ¢-functions are converted from a pseudo instruction into directly executable
code, the abstract code can run on an interpreter without modification.
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ifx <5
vy — 1 vy — fz
U2 U1 vy — v + 1

w<— vy +1

Figure 3.4: control flow graph with explicit assignment

3.1.2 Instructions

The set of abstract code instructions decomposes into five groups:
(1
(2

(

(4

(5

allocation of data structures

access to data structures

W

)

)

) conditionals
) procedure application
)

exceptions

The remainder of this section defines the abstract code instructions for the restricted
value set, which composes of integers, tuples, closures, tagged values, and exceptions.
A record-like notation is used for each instruction. This notation aims for a com-
prehensible presentation. The actual implementation represents the instructions as
data type values. They can be obtained by stripping the record annotations from the
instructions, preserving the order of the constituents.

Identifiers

The abstract code explicitly differentiates between defining and applied occurrences of
identifiers. Let id be the set of identifiers and value denote the set of all Alice values.
Defining occurrences of identifiers can have the following form:

def = 1IdDef {id : id}
| Wildcard

There is either a local definition of an identifier or a wildcard. A wildcard is only a
hint that the result of the definition is not used.

There are three forms of applied occurrences:

ref = Global {id : id}
| Immediate {value:wvalue}
| Local {id:id}

Global identifiers refer to locations in the closure. Local identifiers refer to locations in
the current task, i.e. stack frame. The static compiler propagates each constant value
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to its use site. The abstract code refers to them as immediate values. Each abstract
code instruction is parameterized over ref and def, respectively. This yields a compact
definition of the instructions. However, execution speed suffers because each identifier
access is preceded by a case distinction. This is a first hint that the primary design
focus of the abstract code is not execution speed but compact definition and ease of
(just-in-time) compilation.

(1) Allocation

Allocation in the abstract code means creation plus initialization. The style is the same
for all values: first the destination is given, then several data elements for initialization
are provided, and the last component next identifies the successor instruction. Figure
3.5 shows allocation instructions for the restricted value set.

mstr = .
| NewTup {dest : def fields:ref* mnext:instr}
| NewTagVal {dest:def tag: int fields: ref" next: instr}
| NewClosure {dest:def globals:ref” code: code next : instr}
Figure 3.5: instructions for allocation
(2) Access

To select components from a tuple, the abstract code offers the instruction SelTup
(Figure 3.6). The number of destination locations is equal to the tuple arity, which
means that all fields are selected at once. Wildcard is used for all fields that should not

mstr = e
| Let {dest : def src:ref next : instr}
| SelTup {dest: def* +tuple:ref mnext: instr}

Figure 3.6: instructions for access

be selected. The Let instruction loads immediate or global values to local variables,
or it assigns the content of one local variable to another. As indicated before, this is
used to explicitly synchronize variables after control flow join points.

(3) Conditionals

The two test instructions, depicted in Figure 3.7, work on tagged values. Both in-
structions subsume four basic steps:

1. They extract the tag ¢t from the test value.
2. They look up the tag in a vector of alternatives.

3. The corresponding entry in the vector contains a list of local identifiers and a
successor instruction s. The local identifiers are bound to the fields of the tagged
value.

4. The successor instruction s is taken.
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The general test and the compact test only differ in the second step. In the general
case, the vector contains triples of the form (tag x def™ x instr). A linear search on
the vector is performed to find an entry with tag ¢. If there is no corresponding entry,
the else branch is taken.

Compact tests are used if the test cases cover a contiguous range of tags from 0 to
k. Then, the branches can be stored compactly in a vector, such that their position
defines the associated integer tag. After a range check 0 < ¢ < k, the tag t serves
as an index into the vector, yielding constant time lookup. The range check can be
removed if the test is exhaustive, which means that the test table covers all possible
cases. The static Alice compiler can find out about exhaustive tests on the basis of
type information. For all exhaustive tests, else branch is set to NONE.

mstr = ..

| TestTag {
testval : ref
branches : (int X def* x instr)*
else : instr

}

| TestTagCompact {
testval : ref
branches : (def” x instr)*
else : instr option

}

Figure 3.7: instructions for testing tagged values

(4) Procedure Application

To execute an Alice procedure, one has to apply actual arguments to the procedure.
Two kinds of apply instructions are distinguished. If the caller needs the result of the
callee’s computation in order to resume its own computation, the application defines
a continuation. This is a pair of a list of identifiers that store the return values of
the callee, and the successor instruction of the application. In this standard form of
procedure application, the new task is created on top of the caller task. The situa-
tion is different if the caller just returns the callee’s return values without computing
something in between. One says that the call instruction is in tail position. In this
case, there is no continuation needed and the tail call instruction discards the caller
task before it creates the new task.

When the callee finishes it computation, it passes some values to its caller with the
Return instruction. The described instructions are depicted in Figure 3.8.

(5) Exceptions

Figure 3.9 shows the instructions to raise and handle an exception. Try pushes a new
handler onto the handler stack and tries to execute the body in which an exception
might occur. EndTry pops the topmost handler from the handler stack. An exception
value is raise with Raise.

The handler procedure is defined by the handler field in the Try instruction. This
contains the formal argument and a reference to the handler code, which is a subgraph
of the normal abstract code graph.
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mstr = e

| Apply {

closure : ref

in: ref”

cont : (def™ X instr)

}

| ApplyTail {closure: ref in: ref*}
| Return {values: ref*}

Figure 3.8: instructions for procedure application and return

mstr = e
| Try {body : instr handler : (def X instr)}
| EndTry {next: instr}
| Raise {exception: ref}

Figure 3.9: instructions to raise and handle exceptions

Join Points

A node in the abstract code graph is a join point if it has two predecessors. The
abstract code explicitly encodes join points as special nodes. So by definition, all
other nodes (except the root node) have exactly one predecessor.

mstr = e
| Shared {stamp:int next: instr}

The Shared instruction is just a marker for a join point. It contains a stamp that
distinguishes it from other join points in the code graph.

3.1.3 Primitives

The presented groups of abstract code instructions do not provide the full functionality
of the Alice system. There is, for instance, no instruction to initiate concurrent compu-
tation and the instruction set does not contain arithmetic instructions and operations
on arrays or strings. The language layer implements these operations as primitives,
i.e. as language-specific virtual machine services. Primitives are encoded as procedures
that can be used in Apply and ApplyTail instructions.

Outsourcing of core functionality to virtual machine services allows a compact defi-
nition of the abstract code. However, procedure application always causes overhead
because a new task is created and the old task must possibly be kept. The effort only
pays off if the primitive is sufficiently complex. An optimizing execution unit has to
convert frequently used primitives into a more efficient representation. For the native
code system, this means that the compiler has to detect, for instance, primitives for
arithmetic and generate native code for them. In the byte code system, the interpreter
offers arithmetic instructions that the compiler uses in code generation.
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3.1.4 Discussion

Java uses a stack-based byte code [30] as platform-independent representation. Effi-
cient Java virtual machines [1, 25] have to extract the control flow from the linear byte
code before a run-time compiler can generate more efficient code. The Alice Abstract
Code has a significant advantage over the linear byte code representation. The graph
explicitly encodes the control flow, and the nodes (instructions) carry all information
that is needed to directly compile the code. Therefore, a compiler does not need to
construct an extra intermediate representation.

Another advantage is that code can be stored in a compact way due to the use of
high-level instructions and primitives. Code size becomes especially important when
code is transferred over a network connection.

On the other hand, the removal of ¢-functions in the abstract code might artificially
extend the liveness of a variable across branches. Suppose a left branch sets a variable
at the beginning and the right branch synchronizes this variable at the end. Then,
the variable is declared to be live over the whole right branch. This increases register
pressure and decreases code quality for register-poor architectures.

3.2 Native Code

Before this thesis project, just-in-time compilation from abstract code to native code
was the only way to speed up execution. In principle, the native code compiler is not
biased towards a special hardware architecture. It uses the GNU lightning library [12]
for dynamic code generation.

GNU Lightning

GNU lightning offers a meta instruction set that resembles a RISC architecture. The
interface supports a wide range of current processor architecture including all 32-bit
x86 architectures, the PowerPC, and SPARC. The compiler writer has to generate
meta-code and GNU lightning directly emits machine code from the meta-code in-
structions. This translation process is based on macros and there is no intermediate
compiler data structure involved. This makes code generation fast and does not con-
sume much memory.

The just-in-time compiler of Alice works for all 32-bit x86 architectures. Unfortunately,
porting it to PowerPC failed. The compiler uses some machine-dependent quirks that
only work for the x86 architecture. It is not enough to recompile it with different
settings for GNU lightning — this is the intention of the library. Instead, several parts
of the just-in-time compiler have to be rewritten. To make thing worse, GNU lightning
currently does not seem to be in a stable state for PowerPC.

Drawbacks of GNU Lightning

GNU lightning is one of the best tools for dynamic code generation that is currently
available under a free software license. Nevertheless, the library has some severe limi-
tations.

Implementing a (just-in-time) compiler is an error-prone task and decent debugging
facilities are crucial to succeed in acceptable time. It is the most critical drawback
of GNU lightning that it does not offer a symbolic debugger. This means that the
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abstraction layer, i.e. the meta instructions, can be used to write programs, but there
is no facility to read the program on this meta level. In order to debug the created
code, one has to step through the actual machine code, which requires deep knowledge
of the underlying hardware.

The compiler writer can only access a limited number of registers. Currently the
number of registers is six. The Alice just-in-time compiler needs three registers for
temporary use. This leaves only three registers for register allocation. So the design of
a meta instruction set for both RISC and CISC architectures led to the least common
denominator with respect to register numbers. Of course, this saves a possibly complex
mapping from virtual to real registers, but it impedes effective usage of registers on
register-rich architectures. Additionally, the library does neither provide a peephole
optimizer nor an instruction scheduler. Both techniques would increase performance,
but, as the designers say, would considerably slow down code generation.

To sum up, it is quite involved to generate native code. The developer of a native
code compiler needs deep knowledge of the underlying hardware to generate efficient
code. Using a library such as GNU lightning eases implementation. However, the addi-
tional abstraction layer has some drawbacks since it does not feature decent debugging
facilities and since it does neither apply local nor global code optimizations.

3.3 Motivation for a Byte Code System

To generate native code of acceptable quality, many of the abstractions that SEAM
provides have to be reimplemented in assembler code, so that the just-in-time compiler
can inline them. It would not be feasible to use function calls for all abstractions. The
assembler programming part highly increases the engineering effort and undermines
the design idea of SEAM, which is that the language implementor can just use generic
services without caring about their internal realization.

This project takes a different approach with the goal of achieving efficient execution
as well as portability. The key idea is to use byte code instead of native code, and
to generate the byte code at run-time from abstract code. To execute the byte code,
an interpreter is implemented that respects SEAM’s interfaces. The great advantage is
that the whole engine can be implemented in a high-level programming language (here:
C++) and no knowledge of the target machine is required. All SEAM abstractions can
be used in the interpreter implementation. When the interpreter is compiled, modern
C++ compilers, like GCC, automatically inline most of the abstractions. Thus, using
the abstractions does not cause performance penalties.

A highly optimized native code system will undoubtedly always be faster than a byte
code interpreter. However, for a research system like Alice, the second approach
has significant advantages. The main focus of Alice is the investigation of high-level
programming features. The underlying virtual machine has to be maintainable, easy
to extend, independent from the hardware architecture, and reasonably fast. A byte
code system suits these demands best, especially when the developer team is small.
Additionally, such a system is an ideal research platform to investigate high-level
optimizations because it is much easier to debug than a native code compiler. The
knowledge that the developers gain from the byte code system helps a lot to identify
the strengths and weaknesses of the whole programming system. In fact, it will be
useful even if the team finally decides to move the research focus to the underlying
virtual machine and develop a sophisticated native code compiler.
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Instruction Set

This chapter develops a byte code interpreter for the Alice virtual machine. The first
section defines what is meant by byte code in this thesis. Thereafter, the concrete
machine model of the byte code interpreter is explained. This includes the principle
architecture and the definition of a byte code task. The third section specifies the byte
code instruction set. We conclude the chapter by introducing some optimizations that
are applied in order to achieve good performance.

4.1 Definition

The term byte code is often used and everybody has a rough idea what it means.
However, there is no official definition for the term and it is used for quite different
code forms. Therefore, we give a definition for what byte code means in the context of
this thesis.

Definition (Byte Code) Byte code is a sequential representation of a program, con-
sisting of virtual machine instructions that may have scalar arguments (here: integers).
The virtual machine instructions can be executed by an interpreter.

So byte code instructions are executed by a software machine and not directly on
hardware. We use the term byte code buffer to describe the contiguous memory region
in which the byte code instructions and arguments are aligned in a string-like fashion.
Instructions and arguments are not necessarily byte-aligned.

4.2 Machine Model

Byte code tasks are executed by the byte code interpreter that implements a register-
based machine model. Figure 4.1 depicts a byte code task with all state information.

Registers

All local variables of a procedure are kept in registers that live in the current task. The
number of registers that are needed during the execution of a task can be computed at
compile time. So the task creator preallocates a task large enough to hold all registers.
In the following, the term register always refers to the location in the task. In order to
clearly distinguish them from hardware registers, they are sometimes called byte code
registers or virtual registers.

Machine State

In addition to the registers, the interpreter state comprises four components:
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byte code buffer

byte code ... [ @
interpreter 2
BP
PC 3 : immediate
machine state / environment
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registers ! .\\b
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byte code task

Figure 4.1: byte code task and state information

BP  pointer to byte code buffer

PC program counter

1P pointer to immediate environment
CP  pointer to closure

Every Alice procedure maintains its own byte code buffer. The buffer is represented
as a chunk and contains all byte code instructions that implement the procedure. The
program counter points to the instruction that is currently executed.

The byte code instructions do not directly access immediate values that are subject to
garbage collection. Instead, they use indexes into an immediate environment to access
the values indirectly (Section 2.2.2). Whenever the interpreter loads an immediate
value into a register, it performs the assignment R; «— IP[j].

Every procedure maintains an environment to access global variables. C'P points to
the closure that keeps the values for all global variables that are used in the current
byte code chunk. Global variables are indexes into the closure. So to load, for instance,
the content of global variable number 2 into register Ry, the interpreter executes the
assignment Ry «— CP[2].

Byte Code Task and Startup

A byte code task contains all registers and a complete description of the interpreter
state (BP,PC,IP,CP). Since the number of registers varies from task to task, it addi-
tionally maintains a size information. Figure 4.1 shows the layout of a byte code task.
Behind the reference to the interpreter, which is common to all tasks in SEAM, the
state and the size is defined. The registers lie behind the size information.

The scheduler starts the interpreter by passing a byte code task to it. The interpreter
fetches the state information and starts execution at BP[PC].

Creating a byte code task involves compilation from abstract code to byte code. The
compiler is explained in the next chapter.

Interrupts

There are three situations in which the interpreter has to interrupt its current compu-
tation and return control to the scheduler.
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e Transients: When the interpreter requires the value of a transient, it issues a
request to the scheduler that coordinates evaluation and synchronization.

e Preemption: The interpreter periodically checks the global status register and
returns control to the scheduler if the status register is set. This happens, for
instance, if a garbage collection becomes necessary or if the scheduler chooses
another thread to resume its computation.

e Exceptions: As the scheduler is in charge of exception handling, the interpreter
returns control whenever an exception is raised.

When an interrupt occurs, the interpreter stores its state inside the current task. The
program counter is the only information that has to be saved since the three remaining
state components do not change during execution, and registers are automatically
caller-saved since they are local variables of the caller task.

Exceptions

The byte code system represents a handler procedure as a pair (z,pc). The byte code
register x is the binder for the exception value. The handler code starts at BP[pc].
The task creator for handler procedures assigns the content of the scheduler register
Rezn to x and sets the PC of the current task to pc.

Procedure Calls

The easiest way to implement procedure calls is to follow SEAM’s standard protocol.
This means that the interpreter transfers the arguments to the scheduler registers
and issues a procedure call to the scheduler. The scheduler initiates task creation
and returns control to the interpreter again. This scheme works perfectly, but is not
efficient in practice. We will see in Section 4.4 how to optimize procedure calls by
bypassing the scheduler.

Related Work

There is no consensus that register-based interpreters are superior to stack-based ar-
chitectures. Historically, both approaches have coexisted with a preference for stack-
based interpreters. Two early virtual machine implementations, using stack-based
interpreters, are the Algol Object Code (1964) [35] and the P-machine (1976) [5] for
the execution of Pascal programs. The notion of registers in virtual machine occurred
in Warren’s Abstract Machine (1983) [2].

The virtual machine of OCaml is an example for an efficient stack-based interpreter.
The standard stack architecture is slightly modified in order to keep the topmost stack
cell always in a register. The idea comes from Leroy’s “The ZINC Experiment” [29].
Ertl proposed a more general approach to cache a variable amount of stack values in
registers [18].

However, during the last years there has been a trend towards register machines. Shi
et al. transform Java byte code to a register format at load-time and report about
a speedup of 26.5% on average [41]. The reason is that the number of executed
instructions drops more than 47% when a register instruction set is used. However,
code size increases by 25% since the arguments have to be specified explicitly.

The designers of Lua 5.0 switched from a stack to a register architecture and report a
speedup of 18% on average for their benchmarks [24]. The register design of the Alice
byte code interpreter closely resembles Lua 5.0. One difference is that, for technical
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reasons!, Lua imposes a limit of 200 registers per stack frame. In contrast, the size
of a byte code task is only limited by the available hardware memory. Due to the
SSA form of the abstract code, there are sometimes more than 3000 registers needed.
Since this results in huge tasks, Section 6.4 introduces a form of register allocation
that reduces the register needs.

4.3 Byte Code

The abstract code is the basis for the Alice byte code, or byte code for short. The idea
is to remove all information that is not needed for the computation, and to flatten the
abstract code graph. So the byte code is mainly a linearization and specialization of
the abstract code.

The first section describes the structure and the layout of the byte code instructions.
After that, the instruction set is introduced. As for the abstract code, we do not
present all instructions, but focus on the restricted value set (integers, tagged values,
closures, tuples, and exceptions).

4.3.1 Structure and Layout

A byte code instruction consists of an opcode, possibly followed by three types of
arguments. These are register numbers, immediate values and jump offsets, which are
all of type integer. The register numbers specify locations in the current byte code
task. Immediate integer values are directly stored in the code, whereas immediate
values that are subject to garbage collection are stored in an immediate environment.
The code stores the indexes to this environment, instead of the actual values. Jump
instructions define their target by an offset that is added to the current program
counter:
target = PC + offset

Given a set of opcodes, which are operations like iadd, and the symbols ¢, r, v, and o
with the following meaning

¢ € Opcode opcode

7 € Nx>g register number

veN value (integers or address into immediate environment)
oeN jump offsets

the abstract layout of all byte code instructions can be defined as a regular expression

. def
instr = cr*ov* o*

The abstract instruction layout specifies two important properties. First, the order of
arguments of different type is fixed, and second, an instruction can have an arbitrary
number of arguments. The actual layout that is used in the implementation is given
in Chapter 7, which details implementation specific aspects of the byte code system.

1Lua allocates the stack frames in the C stack. The restriction is an arbitrary choice to limit the
stack growth on function calls. Compilation aborts if the limit is exceeded.
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As mentioned before, the abstract code does not contain polymorphic instructions.
This property extends to byte code instructions. So every instruction knows how to
interpret its arguments. There will never be confusion whether the integer is a constant,
an index into the global environment, or an index to the immediate environment.

4.3.2 Instructions

This section presents all instructions that correspond to the abstract code instructions
from Section 3.1.

Identifiers

The byte code instructions use registers for all variable arguments. This way, the
tests that the abstract code instructions perform on applied variable occurrences are
removed.

Registers correspond to local variables and thus there is no instruction needed to load
local identifiers of the abstract code to byte code registers. The byte code compiler is
in charge of mapping the local identifiers to byte code registers. The simplest mapping
is the identity function Local(i) — R;.

Global variables and immediate values are explicitly loaded into registers to make them
accessible to the instructions.

load_global dst addr
load_immediate dst addr
load_int dst number

For global variables, addr is the index into the closure, and for immediate values, it
is the index into the immediate environment. Notice that the integer values are not
stored in the immediate environment because they can be embedded into the code.
load_int moves the integer number into the destination register.

(1) Allocation

The abstract code instructions combine construction and initialization. These phases
are separated in the byte code instruction set. There is one instruction to construct a
new value and to store it into a register, and there is another instruction to initialize
the fields one by one.

e Allocation of tuples:

new_tup dst width
init_tup dst src index

The first instructions creates a new tuple of arity width and stores the re-
sult in register dst. The second instruction takes the fresh tuple, given by
dst, and copies the content of register src into field number index. For in-
stance, NewTup IdDef (1) [Local(2), Local(3)] corresponds to the byte code
sequence [new_tup R1 2, init_tup R1 R2 O, init_tup R1 R3 1].

e Allocation of tagged values:

new_tagval dst size tag
init_tagval dst src  index
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The instruction new_tagval creates a new tagged value with size fields and the
identification number tag. Initialization is identical to tuples.

e Allocation of closures:

mk_closure dst code size
init_closure dst src index

mk_closure creates a new closure into register dst. code is an index into the
immediate environment in which the reference to the code is stored. The en-
vironment of the closure has size fields that can be filled one by one with
init_closure.

(2) Data Structure Access

Once values are allocated, they can be moved to other locations, for instance, to
synchronize variables of two branches (cf. SSA form, Section 3.1.1). The semantics of
the load instruction is that the content of register src is copied to register dst.

load_reg dst src

Another operation on data structures is selection. The following byte code instructions
select a single field from a tuple or a tagged value:

select_tup dst src index
load_tagval dst src index

src specifies the tuple or tagged value, index the field, and dst the register in which
the field should be stored.

All instructions that require the actual value of an argument contain an internal test
on transient values. If the test finds out that the argument is not yet determined, the
interpreter interrupts execution and issues a request to the scheduler. There is, how-
ever, a single situation in which we need an explicit transient test: pattern matching
on the empty tuple, i.e. the unit value. The static compiler generates an empty tuple
selection SelTup (#[],Local(0)) from source code of the form fun xyz () = ....
This corresponds to an explicit request, as the semantics of Alice prescribes that a
value has to be determined before it is selected. The byte code offers an extra instruc-
tion for this case that checks for a transient value and interrupts execution if the value
is not yet determined.

await src

(3) Conditionals

The byte code distinguished three different types of tag tests: (a) general tests, (b)
compact tests, and (c) exhaustive tests.

tagtest RO table (x (a) *)
ctagtest RO (* inlined table *) (x (b) *)
ctagtest_direct RO (* inlined table *) (x (c) *)
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All three instructions keep the test value in register RO. The second argument specifies
the test table. On execution, the instructions first extract the tag out of the test value
and look up the tag in the test table, afterwards.

tagtest implements the test table as hash table, and table is its address in the
immediate environment. The tag test checks if the extracted tag is a member of the
hash table and sets the program counter to the continuation address that is stored in
the table.

The instructions do not contain explicit information about the else branch. If there
is one, the compiler has to assure that the code for the else branch is directly emitted
behind the tag test instruction.

The instruction ctagtest is for compact tests, whereas ctagtest_direct can be
used for exhaustive tests. For both instructions, the test table is inlined into the code.
Figure 4.2 exemplifies the layout of a compact tag test with an inlined test table. The

ctagtest
RO
targety
targets } test table
targets

} else branch

Figure 4.2: tag test with inlined test table

difference between the compact test and the exhaustive test is that the latter does
not perform a range check. This implies that exhaustive tests do not have an else
branch.

(4) Procedure Application

The instruction set provides a call instruction that respects the standard SEAM pro-
tocol. There is an additional instruction to treat tail calls more efficiently.

seam_call RO R1 ... Rn
seam_tailcall RO R1 ... Rn

Register RO contains a closure, and registers R1 to Rn contain the arguments. The
instruction transfers all arguments to scheduler registers and issues a procedure call
to the scheduler.

The return instruction finishes the execution of a task. It writes the contents of
registers R1 to Rn to the global register bank and removes the current byte code task
from the task stack. Then it issues the scheduler to resume execution of the underlying
task.

seam_return R1 ... Rn
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(5) Exceptions

To implement exception handling, there are byte code instructions to push and pop
an exception handler, and there is an instruction to raise an exception:

install_handler h
remove_handler
raise RO

install_handler pushes the handler, which is stored under index h in the immediate
environment, onto the handler stack. The handler is popped from the stack with
the remove_handler instruction. The instruction raise RO raises the exception value
that is stored in register RO.

Join Points

In order to encode the control flow graph in a linear byte code representation, the byte
code simulates some of the graph edges with jump instructions. The jump target is
defined relatively to the jump instruction. To execute the jump, the interpreter adds
the offset to the current program counter.

jump offset

Figure 4.3 depicts a control flow graph together with its linear representation.

1
1 N
2 )
2 3 // v . . ’
1\ 3
AN
A
4 4
(a) control flow graph (b) linear representation

with jumps

Figure 4.3: general control flow graph and its linear representation

The control flow splits after node 1, for instance, because of a two-sided tag test.
Behind node 2 and 3, the control flow joins again in node 4. The first step to obtain
a linear representation is to store all nodes of the graph in an array. As the linear
representation does not permit explicit edges, i.e. references from one node to another,
they have to be simulated.

The execution path of the byte code interpreter follows the linear order of the instruc-
tions that are stored in the array. So the array representation implicitly defines edges
(1,2), (2,3), and (3,4). As we are interested in an isomorphic representation, we have
to convert the edge (2,3) into an edge (2,4). Therefore, a jump is inserted at node 2
to skip node 3. The edge (1,3) results from the tag test in node 1.
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Calling Convention Conversion

There must be some way to load procedure arguments out of the global register bank
into byte code registers. Due to the calling convention of Alice (Section 2.2.3), the
number of arguments that are in the register bank does not necessarily coincide with
the receiver’s expectation. So in some cases, the receiver has to convert the arguments
before loading them into byte code registers. The two CCC instructions in the byte
code perform the conversion internally and then load the arguments into the dedicated
registers.

cccl R1
ccecn Rl ... Rk (x k > 1 %)

The first instruction indicates that the receiver expects one argument and that the
argument will be loaded into register R1. If the instruction finds more than one argu-
ment in the register bank, it constructs a tuple; and if there is no argument, it stores
the unit value into R1. The second byte code instruction checks if there are several
arguments present. If there is only one, this argument is certain to be a tuple that
is deconstructed into registers R1,... ,Rk. Otherwise, the arguments are loaded into
R1,... Rk.

4.4 Optimizations

The presented byte code instructions suffice to express every Alice program that is
defined on the restricted value set. However, the resulting program would be slow. In
order to offer more efficient instructions for frequent special cases, the base instruction
set is extended with specialized instructions. Furthermore, there are specialized call
instructions that bypass the scheduler whenever possible.

Inlined Primitives

Primitives implement core functionality of the language as virtual machine services.
SEAM defines a task creator and an interpreter for primitives. This way, they can be
used as normal procedures. However, if the primitive is small and frequently used,
execution speed significantly suffers from the overhead of many procedure calls. The
byte code interpreter re-implements a small set of primitives. This contains instruc-
tions for integer arithmetic, operations on reference cells, and an instruction to create
by-need transients.

iadd dst srcl src2

isub dst srcl src2

set_cell cell src (x cell := src *)
load_cell dst src (x dst = !src *)
inlined new_byneed dst src

Dynamic Tests for Intra-Language Invocation

The interpreter can significantly speed up procedure calls if it bypasses the scheduler.
Most of the procedure calls are so called intra-language invocations, i.e. the current
interpreter also executes the procedure that is invoked. To leverage this, the (tail)call

33



4 Byte Code Interpreter and Instruction Set

instruction tests for every procedure if it has a byte code representation. In this case,
it does not use the scheduler to invoke the procedure. Instead, the instruction itself
creates the new task, updates the interpreter state, and starts execution at the new
program counter. If the interpreter detects a recursive call, it can even perform better
since it only needs to create the new task and update the program counter.

Dynamic tests in the call instructions prove to be quite effective in practice. They
produce low overhead and significantly speed up execution. The great advantage of
dynamic tests over static optimization is that they really catch all byte code invo-
cations. This is especially interesting in Alice where procedures can be passed as
arguments. The feature is heavily used, for instance, in foldl for lists.

fun foldl nil = a

| foldl (x::xr) foldl f (f(x,a)) xr

- a
f a
fun my.op (x,a) = 3xx + a

foldl my_op 0 xs

The example shows the implementation of foldl and an operator my_op. The custom
operator my_op is applied to f01d1l somewhere in the program text. Suppose that both
procedures are automatically translated to byte code on their first invocation. Clearly,
all calls in foldl to the operator are byte code calls and the dynamic call tests ensure
that they are efficiently invoked. Static optimization cannot do anything because the
call inside fold1l is to an argument that is likely to change during run-time.

Whenever the interpreter bypasses the scheduler, it is in charge of simulating all es-
sential scheduler operations. The interpreter executes the following steps for a byte
code call:

1. It calls the task creator to construct the new task.
2. It tests for preemption and possibly returns control to the scheduler.

3. Otherwise, it adjusts interpreter state to the new code, closure and immediate
environment, and sets the program counter to the beginning of the new code.

Parameter passing does not change. The scheduler registers still serve as intermediate
locations for the arguments.

Dynamic tests are also used in the return instruction. Instead of giving back control
to the scheduler, the interpreter tests if the task to which it returns is a byte code
task. In this case, it can directly execute it.

Dynamic Code Rewriting

In a high performance interpreter, the dynamic test should be avoided whenever pos-
sible. The instruction set offers special calls for immediate procedures. The call
instructions are separated into three classes:

e Byte code call: This instruction assumes that the callee has a byte code repre-
sentation and it bypasses the scheduler without a dynamic tests.

e Rewrite call: This instruction dynamically tests for byte code calls. If it detects
such a call, it rewrites itself to a byte code call instruction. This way, there are
no tests in the following executions.

e Immediate call: This instruction can be used if it is clear that the procedure does
not have a byte code representation. It issues a call to the scheduler without
performing a dynamic test.
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Rewrite call instructions are especially interesting. For many immediate procedures,
it is true that they may be transformed to byte code in the future. For instance, the
byte code system compiles a procedure when it is executed for the n-th time. Dynamic
code rewriting means to overwrite the old instruction with a new one. The byte code
interpreter replaces the opcode, but keeps the arguments. Rewriting becomes a local
operation that does not require further adjustments on the code, like recomputation
of jump offsets.

The native code compiler also optimizes procedure calls. These optimizations strongly
depend on the assumption that procedures are compiled on their first use. This means
that postponing compilation further breaks the call optimizations.

Instruction Specialization

A concise set of byte code instructions is nice for presentation and it eases compiler
implementation. However, for many instructions, there are special cases that occur
quite often. Adding specialized instructions to the instruction set noticeably increases
execution speed.

Alice offers tuples of fixed arity. In practice, most of the tuples are pairs and triples.
Therefore, it pays off to introduce specialized byte code instructions for construction
and deconstruction of pairs and triples. Other examples for specializations are call
instructions. The number of arguments rarely exceeds three, such that performance
benefits from specialized call instructions for argument numbers from zero? to three ar-
guments. There are also specialized arithmetic instructions, for example, an increment
and a decrement instruction for integer arguments. The semantics of Alice prescribes
overflow and underflow checks for all arithmetic operations. The general instruction to
add two integers checks on the result whether it falls below the smallest representable
number or exceeds the biggest representable number. The increment instruction only
needs to check for overflow, and the decrement instruction only needs to check for
underflow.

There are two main reasons for the performance increase. First, the specialized byte
code instruction can be implemented more efficiently. Second, the dispatch overhead
for arguments is lower. For instance, the increment instruction only fetches one register
number from the code, whereas the general iadd instruction requires access to three
fields (one target register and two source registers).

Super-Instructions

Super-instructions combine several virtual machine instructions into one, thus reduc-
ing code size as well as dispatch and argument access overhead. The literature distin-
guishes two ways of implementing super-instructions, namely a static and a dynamic
approach [19]. In the static approach the interpreter writer identifies common in-
struction sequences and adds a new implementation for each super-instruction. In the
dynamic approach super-instructions are created at run-time.

The Alice byte code system uses static super-instructions. There is, for instance, an
instruction that combines pair construction and initialization.

new_pair R2
init_tup R2 RO
init_tup R2 R1

1]
Il
\

new_pair_init R2 RO R1

2In Alice, the caller does not pass the unit value. If the callee needs the argument, the calling
convention conversion at procedure entry takes care to supply unit.
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The super-instruction new_pair_init combines the three instructions into one. As-
suming that for every instruction and every argument one code buffer slot is needed,
code size decreases from eight slots to four slots. Instead of three dispatch operations,
there is only one, and argument R2 is also accessed once instead of three times.

While implementing static super-instructions is relatively straightforward, implement-
ing dynamic super-instructions is more demanding. Piumatra and Riccardi propose
a technique that they call selective inlining [33]. The idea is to combine all instruc-
tions in a basic block by concatenating their implementations at run-time. On some
architectures, a few assembler code instructions have to be interspersed between the
old implementations. So it is not possible to implement dynamic super-instructions
in a portable way. As one of the main goals of this project is to achieve platform
independence and portability, the dynamic approach is not appropriate for the byte
code system.

Related Work

The main trend to speed up execution in virtual machines is compilation to native code
at run-time. Several variations of such systems exists. The programming language
Self is executed on a compile-only system [23]. Sun’s Java hot spot virtual machine
[1] only compiles hot paths and thus can afford to apply expensive optimizations that
are common to static compilers.

Nevertheless, interpreters are an important part of modern virtual machines. As hot-
spot compilers only transform a part of the byte code to native code, the rest is exe-
cuted by an efficient interpreter. Some important techniques to optimize the dispatch
of the next instruction can explained best at source code level. They are discussed in
the implementation chapter (Section 7.2).
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This chapter deals with compilation from abstract code to byte code. Byte code is
generated at run-time. This is called just-in-time or dynamic compilation. The first
section discusses why just-in-time compilation is particularly well-suited for Alice. The
compilation process is then explained by means of a translation function that traverses
an abstract code graph and emits semantically equivalent byte code. Several infras-
tructure components that are needed in the specification of the translation function are
introduced before. Translation function and infrastructure form the compiler, which
is specified in the last section.

5.1 Why Just-In-Time?

Aycock [8] characterizes just-in-time (JIT) compilation in the following way:

Strictly speaking, JIT compilation systems are completely unnecessary.
They are only a means to improve the time and space efficiency of a pro-
gram.

The central problem of executing Alice programs is solved by static compilation to
abstract code, which is interpreted at run-time. However, to speed up execution,
just-in-time compilation is especially well-suited for Alice.

In Alice, procedures are grouped together in components that are the physical corre-
spondence of modules (Rossberg et al. [38]). The static Alice compiler compiles each
component separately to abstract code. A component can access other components
by explicitly declaring imports. An import path is given as a URL, either stating a
local path or a general location in the Internet. All components are linked at run-time
when the functionality that they provide is needed for the first time.

Separate compilation and the dynamic features of the component system make it
difficult or even impossible for the static compiler to do cross-component optimization.
This means, for instance, that the static compiler cannot optimize primitive calls. The
primitives are defined in components (for example Int.+ in structure Int) and the
compiler cannot differentiate between primitives and user-supplied procedures. The
only way of cross-components optimization is to bundle several components that are
locally available. This so called static linking cannot heavily be used as arbitrary
growth of components is not desirable. Currently, the static linker bundles precompiled
components, but does not apply further optimizations. So statically, there is no cross-
component optimization at all.

At run-time, there is much more information available about the current state of the
system. In particular, the encapsulation of procedures into components is completely
resolved. The run-time system only sees a uniform collection of procedures. A just-in-
time compiler can apply powerful techniques like inlining, which means to replace the
call site of a procedure by its implementation. This way, the compiler can generate
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more efficient code for primitives, for instance iadd instead of op+, or it can embed
the body of a normal procedure into the call site.

It has to be mentioned that the just-in-time compiler knows more about the system
state than the static compiler, but is does not know everything. Suppose the compiler
starts at time ¢. At this time, the run-time system already loaded and linked a col-
lection C<; of procedures. The run-time compiler can access all procedure in C<; to
generate optimized code. However, it cannot access procedures that will be loaded at
time t' > t.

Trade-Off

Static compilers can use expensive optimizations because the overhead does not slow
down the run-time system. Dynamic compilers have to be much more efficient in both
time and space because the compilation overhead directly affects the overall execution
time of the system.

Compilation from abstract code to byte code is fast since the byte code instructions
closely resemble the abstract code instructions and there is no intermediate represen-
tation needed. However, the simple compilation scheme presented in this chapter does
not produce efficient code. The next chapter introduces several optimizations and
shows how they can be realized efficiently.

Related Work

Aycock gives an overview about “The History of Just-In-Time” [8]. Just-in-time com-
pilation is an old technique that has become popular again with the advent of Java
[21]. Platform independence, type safety, and features for web programming have
made Java interesting for commercial use. Initially, Java systems were really slow be-
cause they interpreted statically created byte code. Static compilation to native code
cannot support dynamic class loading; so a just-in-time compiler is more appropriate
since it can apply more optimizations [1, 25].

5.2 Infrastructure

The main component of the compiler is the translation function that transforms ab-
stract code into byte code. This section describes several services that the compiler
provides to prepare and support the translation process.

Pseudo Code Conventions

All components of the compiler are formulated as procedures in ML-like notation.
There are three differences to the real programming language:

e Delimiters: Instead of EMIT("a b c¢"), we write EMIT (a b c¢). Additionally,
we omit some parentheses and use spaces instead.

e Polymorphic Maps: We assume that there is a universal hash table Map that
works for every atomic type.

e Variable number of arguments: In some cases, variable length patterns are used.

val [x1,...,xn] = map f xs (xdefinitionx)
val y = h x1 ... xn (xusex)
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In the example, the new list is deconstructed and the arguments are applied one
after another to procedure h. This notation saves explicit formulation of loops.

Additionally, the implementation of some procedures is not given when it is clear from
their signature what they do.

Code Buffer

The byte code buffer, introduced in Section 4.1, is constructed during compile-time.
The compiler emits the byte code into a code buffer code that can be thought of as
an array of integers. The macro EMIT abstracts away the details of alignment. To
write an instruction with several arguments into the code buffer, EMIT is used in the
following way:

EMIT (opcode argl ... argn)

The procedure codebuffer_init initializes the buffer for a new compilation. The first
free position in the code buffer is denoted by PC.

Immediate Environment

During code generation, the compiler sets up the immediate environment ienv for those
values that must not be stored in the code. The following operations can manipulate
the environment:

val ienv_insert : value —> index
val ienv_init : unit —> unit
val ienv_update : index*xvalue —> unit

The procedure ienv_init resets the global immediate environment. An immediate
value is registered at ienv with ienv_insert. Byte code instructions use the in-
dex to access the value. The environment can be changed during compilation with
ienv_update. This operation can be used to emit the byte code instruction before the
actual value is known.

Offset Table

The abstract code graph is a directed acyclic graph with explicit join points. The byte
code simulates the control flow edges with jump instructions. The compiler uses an
offset table to compute the offsets of the jumps. When it visits a join point for the first
time, it compiles the successor instructions and invokes set_visited to store the start
address of the corresponding byte code instructions in the offset table. When it visits
the join point again (coming from the other branch), it computes the offset between
the current PC and the start address in the table with get_offset and inserts a jump
instruction.

val set_visited : join_point_stamp —> unit
val get_offset : join_point_stamp —> int
val visited : join_point_stamp —> bool
val offsettable_init : unit —> unit

offsettable_init resets the offset table for a compilation. With visited, the com-
piler checks if it has visited the join point before.

Register Handling

The compiler distinguishes two kinds of registers:
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e normal registers that correspond to local identifiers in the abstract code, and

e scratch registers that are temporary locations that the compiler creates during
compilation. Scratch registers are, for instance, used to make global or immediate
values accessible to byte code instructions that only operate on registers.

Both kinds of registers are represented as locations in the current byte code task.
Normal registers take up the first n locations, and scratch registers start at location
n + 1. The compiler defines the following functor to handle registers in the described
way:

type id = int
type register = int

functor Registers (val numberOfRegs : int
val mapping : id —> register)
sig
val reset : unit —> unit
val peak : unit —> register
val new : unit —> register
val fromId : id —> register
end

The functor is parametrized by the number of normal registers and a mapping from
local identifiers to registers. The first argument specifies a lower bound for the register
needs of the procedure that is to compile. The second argument specifies how the local
identifiers from the abstract code are mapped to registers. The simplest solution is to
use the identity function and the statically known number of local identifiers.

structure Registers = Registers(val numberOfRegs = numberOflds
fun mapping id = id)

The compiler obtains a free scratch register by invoking new. The liveness of scratch
registers is restricted to the compilation of one abstract code instruction. So all scratch
registers can be freed afterwards with reset. At the end of the compilation process,
the procedure peak returns the upper bound of the number of needed registers. This
number defines the size of the byte code task.

Identifiers

The abstract code explicitly distinguishes between defining and applied occurrences
of an identifier. Defining occurrences can either be a wildcard or a local identifier.
The procedure getIdDef maps defining occurrences in the abstract code to byte code
registers.

fun getIdDef Wildcard = Registers .new()
| getldDef (IdDef id) = Registers.fromld id

It uses fromId to map local identifiers to virtual registers and returns a dummy register
for wildcards.

Applied occurrences of identifiers are also mapped to byte code registers. In the
abstract code, identifiers can be local or global variables, or immediate values. The
procedure loadIdRef maps local identifiers to byte code registers with the mapping
Registers.fromId. In order to load the content of global variables into a register at
run-time, loadIdRef requests a new scratch register and emits a load instruction. For
immediate values, it distinguishes between integers and pointer values. Integers can
directly be embedded into the code, whereas pointer values have to be stored in the
immediate environment.
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fun loadIdRef (Local id)

loadIdRef (Immediate v)

if isInteger v then
EMIT (load_int r v)

Registers.fromld id

else
let
val index = ienv_insert v
val r = Registers .new ()
in
EMIT (load-immediate r index); r
end
| loadIdRef (Global id) =
let
val r = Registers .new ()

in
EMIT (load_global r id); r
end

The translation function uses the procedure loadIdRef whenever it has to load an
argument into a register in order to make it available to a byte code instruction.

Calling Convention

The calling convention of Alice requires that each receiver of arguments transform the
arguments into the format it expects. So the receiver checks if there is an argument
mismatch, transforms the argument into the expected format and loads them out of
the register bank into the specified byte code registers. The byte code provides the
instructions cccl and cccn for this purpose.

0

fun transl_ccc #][]
| transl_ccc #[id]
let
val r = load id
in
EMIT (cccl 1)

end
| transl_ccc formalArgs =
let
val [rl,...,rn] = Vector.map getldDef formalArgs
in
EMIT (cccn rl ... rn)
end

If the receiver does not expect arguments, there is nothing to compile. In case it
expects one argument, cccl ensures tuple construction if more arguments are present.
cccen is generated if the receiver expects more than one argument.

5.3 Translation Function

The central component of the compiler is the translation function transl that emits byte
code for abstract code instructions. The function takes the root node of an abstract
code graph and emits a sequence of byte code instructions into the code buffer code
while traversing the graph.

val transl : abstract_code —> unit

The translation function is specified in pseudo code notation using the infrastructure
introduced before. The implementation is explained separately for each abstract code
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instruction, following the order in which they are introduced in Section 3.1. Scratch
registers are reset with Registers.reset before an instruction is compiled.

Allocation: NewTup, NewTagVal, NewClosure

To generate code for tuple allocation, the translation function first computes the des-
tination register and the arity of the tuple and emits the new_tup instruction with the
corresponding arguments. In a second step, it emits one initialization instruction for
every field of the tuple.

fun transl NewTup(dst, fields ,next) =

let
val _ = Registers.reset ()
val t = getldDef dst

val arity = Vector.length fields

fun init (i,x) =

let

val r = loadIdRef x
in

EMIT (init-tup t r i)
end

in
EMIT (new_tup t arity); (xcreationx)
Vector.appi init fields; (xinitializationx)
transl next

end

Code generation for NewTagVal is almost identical to tuple construction. The only
difference is the additional tag. Instead of new_tup t arity, the compiler emits
new_tagval t arity tag, and instead of init_tup, it uses init_tagval.

The new concept needed for closure construction is the code constructor that defines
the internal code representation. So for instance, it tells the byte code compiler to
compile the abstract code when the procedure is invoked for the first time. Everything
else is compiled just like tuples. There is one instruction to create the closure at
run-time and some other instructions to initialize the environment.

| transl NewClosure(dst,globals ,abstractCode ,next) =

let
val _ = Registers.reset ()
val r = getldDef dst
val size = Vector.length globals

AliceLanguageLayer .codeConstructor abstractCode
ienv_insert code

val code
val index

fun init (i,x) =
let
val r = loadIdRef x
in
EMIT (init_closure t r i)
end
in
EMIT (mk_closure r index size); (*creationx)
Vector.appi init fields; (xinitialization *)
transl next
end

Data Structure Access: Let, SelTup

To translate the Let instruction, the compiler determines the destination register and
emits code depending on the source. For local identifiers, it checks whether a move
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is required. Immediate values and global variables can directly be loaded into the
destination register.

| transl Let(dst,src,next) =

let
val _ = Registers.reset ()
val r0 = getldDef dst

in
case src of

Local id =
let val rl = Registers.fromld id
in if r0<>rl then EMIT (load_reg r0 rl)
end
| Immediate v =>
if isInteger v then EMIT (load_int r0 v)

else
let
val index = ienv_insert v
in
EMIT (load_immediate r0 index)
end

| Global id => EMIT (load_global r0 id);
transl next
end

Tuple selection is compiled component-wise, which means that the compiler emits one
instruction per binder. A wildcard implies that the field need not be selected. If the
selection operates on an empty tuple, its semantics is to request the unit value. In this
case, the translation function emits an await instruction.

| transl SelTup(dests,src,next) =
let
val _ = Registers.reset ()
val t = loadldRef src
fun select (-, Wildcard) @)
| select (i,IdDef id)
let val r = Registers.fromld id
in EMIT (select_tup r t i)
end

in
if length dests = 0 then EMIT (await t)
else Vector.appi select dests;
transl next

end

Conditionals: TestTag, TestTagCompact

The translation function starts code generation for tag tests with emission of the byte
code instruction testtag t table. The arguments specify the register that contains
the test value and the address of the hash table in the immediate environment. The
code for the else-branch is emitted directly after the test instruction. This saves an
extra argument for the location of the else-branch. Finally, the code for all other
branches is created with the procedure transl_branch that is applied to every entry
in the branch vector. The tag of each entry is used as hash key under which the start
address of the branch code is stored. The binding is generated at the beginning of the
branch code and the translation function is recursively called to generate code for the
successor instructions.
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| transl TestTag(testval ,branches,elselnstr) =

let val _ = Registers.reset ()
val t = loadIdRef testval
val map = Map.map ()
val table = ienv_insert map

fun bind (., Wildcard) = ()
| bind (i,IdDef id) =
let val r = Registers.fromld id
in EMIT (load_tagval r t i)
end

fun transl_branch (tag,defs,next) =
(Map. insert (map, tag ,PC);
Vector.appi bind defs;
transl next)
in
EMIT (testtag t table);
transl elselnstr;
Vector.app transl_branch branches;
end

For exhaustive tests, the jump table is embedded into the code. The table is allocated
directly behind the test instruction and stores the jump offsets to the code of the
branches.

| transl TestTagCompact(testval ,branches) =
let val _ = Registers.reset ()
. (* load testval and define ’bind’ x)
val startPC = ref 0
fun transl_branch (defs,next) =
let val offset = PC — !startPC

in ... ; (xemit offset into tablex)
Vector.appi bind defs;
transl next
end

in
EMIT (ctesttag t);
startPC := PC;
(*allocate space for inlined tablex)
PC := PC + length branches;
Vector.app transl_branch branches
end

Procedure Application: Apply, ApplyTail, Return

To call a procedure, the closure and all arguments have to be loaded into registers.
Everything else is done by the call instruction: it sets the arguments to the global
registers bank and delegates control to the scheduler. When the procedure returns, the
scheduler registers might contain some results. The procedure transl_ccc generates
code that transforms these values into the expected format and stores them into byte
code registers.

| transl Apply(closure ,args,(defs ,next)) =
let val . = Registers.reset ()
val r0 = loadIdRef closure
val #[rl,... ,rn] = Vector.map loadIdRef args
in
EMIT (seam_call r0 rl ... rn);
transl_ccc defs;
transl next
end

44



5.3 Translation Function

Tail calls are even simpler to translate because they do not have a continuation. The
translation function only needs to load the closure and the arguments into registers
and emit the seam_tailcall instruction. The translation of the return instruction
works in the same way. All arguments are loaded into registers and the byte code
instruction is emitted.

| transl (Return args) =

let

val _ = Registers.reset ()

val #[rl,... ,rn] = Vector.app loadIdRef args
in

EMIT (seam._return rl ... rn);
end

Exceptions: Raise, Try, EndTry

There is a direct correspondence between the Raise instruction of the abstract code
and the raise instruction of the byte code. This is an easy job for the compiler.

| transl (Raise e) =

let
val _ = Registers.reset ()
val r = loadIdRef e

in
EMIT (raise r);

end

The code block in which a handled exception might occur is surrounded by Try and
EndTry. The first one pushes the exception handler onto the handler stack and the
second one pops the handler if no exception occurred. The translation function creates
the handler procedure, which consists of a binder for the exception value and the start
address of the handler code.

| transl Try(body,(def,handlerInstr)) =

let
val _ = Registers.reset ()
val handler = ienv_insert (0,0) (*xinsert dummyx)

in
EMIT (install_handler handler);
transl body;
(xpatch handler after the start address is knownx)
ienv_update (handler, (getIdDef def ,PC));
transl handlerInstr;

end

| transl EndTry = EMIT remove_handler

The body code precedes the handler code. When the compiler emits code to install
the handler, it does not know its start address. Therefore, it patches the handler when
the information is available.

Join Points: Shared

The Shared nodes explicitly represent the join points in the abstract code graph. Of
course, the compiler must not generate several copies of the code below a join point.
Hence, it memorizes the start address s of the byte code when it compiles the abstract
code below a join point. When it visits the join point for a second time, it emits a
jump to s.
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| transl Shared(stamp,next) =
(Registers.reset ();
if visited stamp then

let
val offset = get_offset stamp
in
EMIT (jump offset)
end
else

(set_visited stamp; transl next)

5.4 Compiler

This section defines the compiler structure that offers exactly one procedure to the
outside world. compile receives a procedure code, as it is defined in Figure 3.1 (page
15). The abstract code is compiled by using all helpers specified in the previous
sections.

structure Compiler

sig
val compile : procedure —> byte_code * immediate_env * int
end
struct
(xall definitions of the previous sectionssx)
fun compile Procedure(body, formalArgs,numberOflds,_,_) =
let
structure Registers = Registers(val min = numberOflds
fun mapping id = id)
in
codebuffer_init ();
offsettable_init ();
ienv_init ();
transl_ccc formalArgs;
transl body;
(code ,ienv , Registers .peak())
end
end

Figure 5.1: byte code compiler

Figure 5.1 shows the definition of the byte code compiler. First, the compiler creates
a structure for register handling. The simple version uses the identity function to
map local identifiers to byte code registers. In the second step, all data structures
are initialized and the calling convention is compiled for the formal arguments of the
procedure. After these preparation steps, the compiler translates the abstract code
graph into byte code that is stored in a code buffer. Finally, the compiler returns
the byte code together with the immediate environment and the number of byte code
registers that the procedure needs at run-time.

Notice that this compilation scheme also works for a static compiler. So up to now,

the compiler does not use run-time information. However, the optimizations covered
in the next chapter capitalize on run-time information about immediate values.
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Task Creator

When the scheduler assigns a closure to the byte code task creator, the task creator
invokes the compiler to transform the abstract code into byte code. The compiler
returns a reference to the compiled byte code (BP), a reference to the immediate
environment (IP), and the maximal number of needed registers (peak). The task
creator computes the size of the task, which is peak + 6. The responsible interpreter is
the byte code interpreter and the closure pointer (C'P) is also known since it is passed
as an argument to the task creator.

Triggering Compilation

In order to trigger compilation, the run-time system has to detect when a procedure
is executed for the first time. An early version of the byte code compiler adopted
the technique of the native code compiler. When the procedure is loaded, the code
constructor creates a by-need that contains the abstract code and all information that
the compiler needs to translate the code into byte code. Before the task creator is
invoked, the scheduler requests the code and forces evaluation, which means that it
triggers compilation to byte code. This triggering policy is nice because it makes use
of the existing architecture. However, the final version of the byte code system imple-
ments a different approach that is more flexible. This so called selective compilation
is presented in the following chapter.
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The compilation scheme presented in Chapter 5 offers much room for optimization.
This chapter deals with optimizations that the byte code compiler applies to ensure
space efficiency and fast execution of the generated code. A set of small optimizations
is explained at the beginning. Thereafter, selective compilation is introduced, which is
a flexible approach to decide when to compile a procedure. Furthermore, the compiler
utilizes advanced techniques such as register allocation, procedure integration, also
known as inlining, and self call optimization.

6.1 Small Optimizations

An optimization is called small if it produces low compilation overhead and is easy
to implement. This section presents small optimizations for the treatment of scratch
registers. Additionally, the compiler can do more clever with tag tests, and a peephole
optimizer locally improves code quality. Furthermore, the compiler tries to eliminate
calling convention tests.

Scratch Registers

In the previous chapter, the translation function frees all scratch registers when it
compiles a new abstract code instruction, but it does not free scratch registers in
between. However, there is, for instance, only one scratch register needed to initialize
a tuple of arbitrary length. Therefore, we extend the Registers functor with the
following procedure:

val free_scratch : register —> unit

The call free_scratch R4 declares the register R4 to be free, which means that it
can be reused when new is called the next time. The procedure only affects scratch
registers and nothing happens when a normal register is passed. We can now refine
all initializations in the translation function as exemplified with NewTup.
fun transl NewTup(dst, fields ,next) =
let

val t
val arity

= getldDef dst
= Vector.length fields
fun init (i,x) =
let
val r = loadldRef x
in
EMIT (init-tup t r i);
Registers . free_scratch r (xthis is newx)
end
in
EMIT (new_tup t arity); (xcreationx)
Vector.appi init fields; (xinitializationx)
transl next
end
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Tag-Tests

The abstract code offers two ways to test a tagged value: general tag tests and com-
pact tag tests. The byte code offers two corresponding instructions and additionally
provides a special instruction for exhaustive tests, which are compact tests without
a range check. For performance reasons, it is desirable to compile as many tests as
possible into exhaustive tests. Profiling revealed that there are often only three or four
cases missing in order to make the test exhaustive. The byte code compiler detects
such situations, extends the test table and fills the new entries with the else-branch
offset as jump target.

The native code compiler does not use inlined test tables. Instead, it takes Alice
vectors and thus, because of the immediate environment, introduces an additional
indirection.

The static Alice compiler breaks down complex pattern matching into several tests.
This explains why unary tag tests are frequent. A specialized instruction handles them
efficiently.

Peephole Optimization

Peephole optimization is a classical technique to locally improve code quality. The
compiler tries to detect small sequences of instructions that cancel each other or that
can be replaced with one specialized instruction. This kind of optimization is especially
effective if the instruction set consists of many fine-grained instructions. Nevertheless,
generated byte code also contains some inefficiencies that can easily be fixed. For
instance, the following sequence occurs frequently

load_int RO O
await RO (*can be removedx)

Obviously, the await instruction is superfluous, as the number 0 is not a transient. If
the liveness information of the abstract code indicates that RO is never used in the
program again, the load_int instruction can also be removed.

Another sequence for which the compiler generates a specialized instruction is

load_int RO O
seam_return RO

These instructions are replaced by seam_return_unit.

Omiission of Calling Convention Tests

The instructions cccl and cccn combine parameter passing and calling convention
conversion. An optimizing compiler can remove the conversion tests when it is sure
that the number of supplied arguments always coincides with the expected number of
arguments. This is difficult to find out at the entry point of a procedure. One can
only remove the test if all call-sites are known at compile-time. However, if a callee
returns to its caller, the analysis is straightforward. Suppose the following byte code
implements the callee:
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(*procedure fx*)
cccl RO

return RO

The call site, generated by the simple compiler, looks as follows

bci_call £ RO Rl (*byte code callx)
cccl RO (*conversion test*)

The optimizing compiler uses the outArity information (Figure 3.1, p. 15) of proce-
dure £ to generate a specialized instruction getargl instead of cccl. For cccn, there
is also a specialized version without test. This simple strategy saves nearly half of all
conversion tests (47% for the Alice Toplevel interpreter).

6.2 Selective Compilation

Up to now, a procedure is compiled when it is executed for the first time. This
section introduces a more general model in which compilation is expressed as transition
between two forms of code, controlled by arbitrary boolean conditions. This gives
fine grained control over compilation and enables the compiler to apply expensive
optimizations selectively to procedures that are often executed.

In Chapter 5, the compilation strategy was based on by-need evaluation of code. A
by-need can be seen as a value that changes its appearance at most ones. It starts to
be a placeholder associated with a first class computation. As soon as a thread requires
the actual value of the placeholder, the scheduler triggers computation and fills the
placeholder with the result. Figure 6.1 depicts the evolution of by-need code into
concrete code for procedure p as a transition system. There is something special about

. compile ‘

by-need byte code

Figure 6.1: evolution from a by-need to actual code for procedure p

by-need code: it stores the abstract code that is already an executable code format.
In order to reduce compilation overhead, the abstract code interpreter can execute the
procedure for the first n times, and compilation is triggered when the code is requested
for the (n + 1)-th time. More generally, an arbitrary number of transformation steps
can be expressed. For instance, the compiler can apply sophisticated optimizations if
a threshold m > n is exceeded. Figure 6.2 depicts the resulting transition system. c
counts the number of calls to procedure p.

Unfortunately this is not expressible with transients. The virtual machine does not
provide services for conditional transitions. We have to implement triggering of tran-
sitions manually.

o1



6 Compiler Optimizations

c<n,c+=1 c <

m, c+=1
¢ > n, compile ; /; c>m, optimize
2

abstract code raw byte code optimized byte code

Figure 6.2: deferred compilation of code

Implementing Selective Compilation

The control logic of the transition system is implemented in special task creators. One
task creator is defined for every state in the transition system. The new task creators
are implemented as wrappers around the original ones. They check the transition
condition, and if it is met, switch to the successor state. Finally, they call the original
task creator to push the new task. As no information is collected as soon as the final
state is reached, the wrapper can be removed and the original task creator is used.

Selective compilation makes optimization of intra-language invocations more difficult.
As compilation can be arbitrarily postponed, the compiler may only find out that
a callee may eventually have a byte code representation. In this case, the compiler
generates a rewrite call that specializes itself as soon as the callee is compiled.

6.3 Capitalizing on Immediate Values

Immediate values are a potential source for optimizations. If primitives and procedures
are immediate, i.e. known at compile-time, the compiler can generate more efficient
code by using specialized instructions. Due to dynamic linking, the static compiler
cannot collect much information about values. At run-time, the dynamic compiler can
access much more immediate values. The Alice system uses template-based compila-
tion to further increase the number of available values.

6.3.1 Template-Based Compilation

The definition of procedure code (Figure 3.1, p. 15) contains a partial mapping subst
from global variables to values. We extend the compiler to make use of this substitution
by considering the procedure code as a template. The global variables are template
variables that the substitution instantiates during compilation.

Finding immediate values is especially interesting for the translation of the Apply
instruction. Whenever the translation function detects that the closure argument
is immediate, which means that it does not change at run-time, it can create more
efficient code. The extended translation function is depicted in Figure 6.3.

It is out of the scope of this thesis to completely specify trans1ImApply. We only
give an informal overview about the different cases. For all immediate procedures,
the compiler extracts the concrete code out of the closure and reflects on the type of
this code. If it is byte code, the byte code call instruction can be used. In case it is
abstract code, the compiler emits a rewrite call. The call might be recursive. More
details on optimizations for recursive calls are given in Section 6.6. The compiler can
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| transl Apply(closure ,args,(defs,next)) =
let

fun extractIm (Immediate v) = SOME v
| extractIm (Global id) = subst id
| extractIm (Local _) = NONE
val #[rl,... ,rn] = Vector.map loadIdRef args
in
case extractIm closure of
NONE =
let val r0 = loadIdRef closure
in EMIT (seam-call r0 rl ... rn)
end
| SOME v => translimApply (v,rl,...,rn)

transl_ccc defs;
transl next
end

Figure 6.3: optimizing compilation of Apply

reflect on primitives, for instance to generate iadd instead of a call to op+. All other
calls to immediate procedures are translated as immediate calls.

6.3.2 Closure Specialization

The substitution is constructed and modified when a new closure is created. The idea
of closures is to parametrize code over its environment, such that different closures can
share the same code. In the following example, each invocation of add creates a new
closure with different definitions of x, but with the same code x+y. In particular, the
just-in-time compiler translates the code at most once, which is especially important
if add is called frequently.

val a =1

val add x = fn y = x+y
val inc = add a

However, for the following equivalent definition of inc, it is clear that the body x+a
can only belong to a single closure.

val a =1

val inc = fn x => x+a
Therefore, it is save to substitute the global variable a by 1, which means that the
closure is specialized to a particular environment.

The abstract code offers, besides the usual way to create closures with NewClosure,
an instruction NewSpec that creates a closure specialized with respect to a specific
environment.

mstr = .
| NewSpec {dest:def globals: ref* code: code next: instr}

On execution, NewSpec writes all global values into the substitution of the procedure
in dest, such that the compiler can replace all global variables by immediate values.
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Since the code is specialized to the current environment, the code cannot be shared,
but has to be compiled separately for every closure.

The static Alice compiler decides upon the placement of NewSpec and NewClosure
with a simple heuristic. For each closure that is created on top-level — so each closure
that is created only once when the component is loaded — it uses NewSpec. In all other
cases, it generates NewClosure.

6.4 Register Allocation

At a first glance, it seems unnecessary to consider register allocation for the byte
code. The machine model offers an unbounded number of registers and the compiler
can therefore map every local variable of the abstract code to a byte code register.
However, programs in abstract code are represented in static single assignment form
(Section 3.1, p. 16). SSA form highly increases the number of local variables, which
means that the compiler produces big tasks if it uses a one-to-one mapping. Pushing
a big task is more expensive than pushing a small one, and a big stack slows down
garbage collection since all task stacks reside in the abstract store. Register allocation
reduces task sizes and therefore speeds up execution.

Liveness Intervals

The static Alice compiler computes a liveness interval for each local variable. Each
abstract code instruction is assigned to natural number, its program point. The num-
bering defines a topological order on the abstract code graph. An interval is a pair
of program points. For = — [a,b], a indicates the program point where z is defined
and b gives the program point where x is used for the last time. In the context of
an unbounded number of byte code registers, allocation means to find the minimum
number of sets with non-overlapping intervals.

Linear Scan Register Allocation

The classical register allocators of static compilers reduce register allocation to a graph
coloring problem which can be approximated efficiently (Chaitin [15]). For just-in-time
compilers, the algorithm is too slow because it works on a register interference graph
that can be quadratic in the number of liveness intervals. Poletto and Sarkar invented
a “linear scan register allocation” [34] that is linear in the number of liveness intervals
and does not require expensive graph construction. The assumption of a fixed number
of registers is essential for the linear running time. Let V be the number of liveness
intervals. For an unbounded number, the algorithm can be implemented with a worst
case time complexity of O(V -log V).

Figure 6.4 shows the main procedure of the allocator in ML-like notation. The allocator
starts with a canonical one-to-one register mapping. The number of needed registers is
set to zero and a new min-heap (cf. Cormen et al. [16]) is created and initialized. The
heap contains registers together with the end point of their interval. The minimum of
the heap is the register with the smallest end point. So the register that is most likely
to expire is always on the top of the heap. The allocator loops over all intervals in
order of increasing start point. It first takes the minimum from the heap and checks if
its end point overlaps with the start point of the current interval. If not, the minimum
is deleted and the register is reused for the current variable. Otherwise, the variable
is assigned to a fresh register and the number of needed registers is incremented. In
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fun allocator (intervals ,numberOflds) =
let
val mapping = Array.tabulate (numberOflds, fn x=>x)
val heap = Heap. heap ()

fun alloc ((id,a,b),max) =
let
val (b’,reg) = Heap.min heap
in
if b’ < a then (xregister can be reusedx)
(Heap . deleteMin heap;
Array . update (mapping, id ,reg);
Heap.insert (heap,(b,reg));
max )
else (*a fresh register is mneededx)
(Array .update (mapping , id ,max);
Heap.insert (heap,(b,max));
max+1)
end

val max_regs = foldl alloc 0 intervals
in

(mapping , max_regs)
end

Figure 6.4: register allocator; intervals are sorted in order of increasing start point

both cases the newly occupied register is added to the heap together with its end
point, and the mapping is updated accordingly. After the loop, the final mapping and
the maximal number of registers, i.e. the space needed in the stack frame for local
variables, is returned.

Analysis

Computing and sorting of liveness intervals happens statically. The allocator loop
(hidden in foldl) takes linear time in the number of liveness intervals. Extracting the
minimum from a min-heap is a constant time operation. In worst case, if all intervals
overlap, the heap contains all intervals. A heap is a complete binary tree and insertion
and deletion maximally have to walk along the longest path in the tree. Therefore,
they take O(log V') time. In summary, this leads to O(V -log V') time complexity.

A binary heap can be implemented as an array. Computing the indexes of parents or
children is realized by efficient bit shift operation. In practice, the number of intervals
is smaller than 20 for most procedures. We discovered only a few procedures with
about 1000 intervals. So the algorithm nearly performs linear time for standard Alice
programs. Table 6.1 shows the register need of the Alice Toplevel interpreter. Each
procedure was fully byte compiled on the first execution.

Toplevel interpreter
without allocation 96 381
with allocation 24729
space savings 74%

Table 6.1: number of local variables with and without register allocation

Register allocation in the native code compiler takes O(V?). The reason is that it

95



6 Compiler Optimizations

performs two allocations in parallel. First, hardware registers are allocated and spilled
if necessary. This is linear time as only three hardware registers are used. Second,
the allocator naively checks if a spilled register is expired and its memory slot can be
reused. The check is implemented as linear search in a singly linked list.

Compiler Extension

The register allocator can easily be incorporated into the compiler. The allocator
only needs the liveness intervals that are stored in every procedure code. It returns a
mapping, represented as an array, from local identifiers to byte code registers and the
number of local registers. This information is passed to the registers functor.

fun compile Procedure(body, formalArgs,numberOflds,
subst ,liveness) =
let
val (map, max_regs) = allocator (liveness ,numberOflds)
structure Registers = Registers(val min = max_regs
fun mapping id = sub (map,id))

6.5 Procedure Integration

Abstraction is a key feature of modern programming languages. In functional lan-
guages, procedures are the basic abstraction units and higher-level mechanisms, like
modules, can be compiled into procedures. This is exactly what the static Alice com-
piler does when it transforms the source language into abstract code.

Procedure calls cause overhead: a new task has to be created for each call, and the
parameters are passed from the current task to the new one. In a system where proce-
dures are ubiquitous, it is essential to reduce the overhead as much as possible. This
section discusses procedure integration for Alice Abstract Code. Procedure integration
is a powerful optimization for programs that use procedural abstraction. The first
part of this section focuses on the question which procedure to integrated, whereas the
second part shows how to integrate.

In the literature, the term inlining is more common. We prefer the notion of integration
because the term inlining is highly overloaded (inlining of procedures, primitives, byte
code, ...).

Motivating Example

The idea behind procedure integration is quite simple. Suppose we have the following
two procedures:

fun do_magic x = x+1
fun f nil = nil
| f (x::xr) = do-magic x :: f xr

If we integrate do_magic into £, we arrive at the following implementation for f:

fun f nil = nil
| £ (x:i:xr) = x+1 ::  xr
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Experiments show that the alternative implementation is about 60% faster. However,
the resulting code sacrifices abstraction for efficiency. It is a much better idea to keep
the abstraction in the source language, but automatically remove it in the internal
code. This is what procedure integration is all about.

General Picture

The analysis phase decides which procedure should be integrated. Integration means
to substitute the call instruction by the callee’s body. Additionally, parameter passing
is simulated. So procedure integration goes in four phases:

1. decide which procedure to integrate

2. compile parameter passing from caller to callee
3. compile callee’s body

4. compile parameter passing from callee to caller

Fortunately, there is no difference between parameter passing from caller to callee,
which is needed for procedure calls, and parameter passing from callee to caller, which
is needed for procedure returns. The same algorithm can be used for both scenarios.

6.5.1 Which Procedure to Integrate?

A callee is only integrated into the caller if it does not exceed a size limit. Since an
integrated callee is specialized to a specific call site, every instance of the procedure
has to be compiled separately. Compilation time T¢ is strictly increasing in the size
of a procedure. Suppose procedure p needs time T (p) = |p| - t to be compiled, where
t is some time unit, for example 1 ms. If procedure ¢ contains n calls to procedure p
that are all integrated, it takes (Jg| + n - |p|) - t to compile ¢. The size limit prevents
arbitrary growth of code size that would significantly slow down compilation.

Additionally, integration is only enabled for the transition to the final state of the
code transition system. This way integration is only performed for procedures that
are often executed. It remains to show how the size of a procedure is defined and how
the information is collected.

The Size of a Procedure

The analysis phase works on the abstract code. There is a close correspondence be-
tween byte code and abstract code. The size of a procedure is defined as the number
of nodes in the abstract code graph. There are a few exceptions to this simple rule.
Some node types do not produce byte code and are therefore not counted. Other types
of nodes produce lots of instructions and therefore weigh more than standard nodes.
The exact definition of the size is an experimental task.

Collecting Information

The analysis phase computes for every procedure a set of pointers to integration candi-
dates. This works by stepwise inspection of the global call graph. An example is given
in Figure 6.5. If the analysis starts at g, it transitively analyzes procedures h, 7, j, and
k and stores the information at each visited node. When f is analyzed afterwards, the
information for h is already available. This ensures that every edge in the global call
graph is visited at most once.
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Figure 6.5: call graphs for a set of procedures

Call graphs are inherently cyclic. We have to take care that the analysis phase does
not diverge. Whenever the analyzer revisits a node, it stops to break the cycle. Figure
6.6 shows two types of cyclic dependencies between procedures. If the analysis starts
at f, it does not follow the dashed edges. Interestingly, the mechanism transforms

Figure 6.6: cyclic dependency between procedure f and g

mutual recursion into self recursion if the procedures do not exceed the size limit. The
compiler can generate more efficient code for self recursion, as we will see in Section
6.6. A predicate that checks if an integer number is even can be implemented with
two mutually recursive procedure in the following way

fun even 0 = true

| even n = odd (n-1)
and odd 0 = false

| odd n = even (n-—-1)

The byte code compiler removes the mutual recursion and generates byte code that
closely corresponds to the following source code

fun even 0 = true
| even n =
let val n’ = n—1 in
case n’ of
0 => false
1 => even (n’-—1)
fun odd 0 = false
| odd n = even (n-—-1)

Notice that odd is not transformed. The analysis starts at even and transitively
analyzes odd where it stops to break the cycle. There is no extra analysis for odd.
However, the only thing one can save by an analysis of odd is a single call to even.

Of course, one could define more relaxed termination conditions. An interesting ex-

tension to the currently used condition would be to unroll self loops until the size limit
is reached.
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6.5 Procedure Integration

Closure Creation Considered Harmful

Integration of procedures that create closures can be harmful. If a procedure integrates
its own creation, the code is newly compiled on every call of the procedure. This can
even cause the compiler to diverge if compilation is not delayed like in Alice.

Let us consider a simple example to illustrate the problem.

fun f x =
let fun g y = if x=0 then y else (f (x—-1)) y
in g
end

Procedure £ creates a closure for its inner procedure g and returns it. When procedure
g is compiled, the integration analysis detects that £ can be integrated since it is small
enough and because there is no cycle in the call graph. Inside g there is a new closure
created (application £ (x-1)) that uses the same code as g. So we integrated closure
creation into the loop. This produces enormous compilation overhead for curried
procedures. To avoid this effect, procedures that create closure are not considered as
integration candidates.

A more general solution would be to check for each candidate that contains closure
creation whether the closure contains the same code as a procedure in the currently
investigated call graph. The analysis allows to integrate the first call to £, but all
recursive call are not integrated. We suppose that the savings of a single call cannot
amortize the additional analysis overhead.

Related Work

The Jalapenno Java virtual machine [7] searches for hot call edges, i.e. caller-callee
pairs, to guide integration decision. In essence, this means that a call graph is periodi-
cally constructed at run-time. Holzle and Ungar proposed a more lightweight approach
for the programming language Self [23]. The authors use the procedure call stack as
basis for their inline decision and thus do not need to construct an extra graph. The
stack corresponds to a path in the call graph. So the analysis is split into several
inspections of the call stack. Both approaches consider edge weights of the call graph
to find out good inline candidates.

In contrast to that, the analysis of the Alice byte code system is more coarse-grained
and does not consider edge weights. The design focus clearly lies on the speed of the
analysis and not on the exactness. It would be interesting to experiment with more
exact techniques.

6.5.2 In-Place Parameter Passing

Parameter passing has to respect the calling convention of Alice. The convention
prescribes that the receiver converts the arguments into the format it expects. If
we integrate a callee into a caller, we do not need any checks at all. Both parties
know exactly in which format they require the arguments and the calling convention
conversion can be hardwired into the code.

If the number of formal arguments is not equal to the number of actual arguments,
compilation of the calling convention is straightforward. We can simply construct or
deconstruct a tuple into the argument registers. Let us take an example procedure £
that is called by another procedure g. f expects a tuple as argument, but g supplies
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two discrete arguments. cccl automatically constructs a pair.

code for f: code for g:
cccl RO cccl RO
load_global R1 O (*load f*)
select_tup0 R1 RO (*R1<-#1 R1x) seam_tailcall R1 RO RO
iinc R1

seam_return R1
When f is integrated into g, the pair is constructed explicitly.

code for g’ with f integrated:
cccl RO
new_pair_init R1 RO RO (* Rl <- (RO,R0) *)

select_tup0 R2 R1 (*x R2 <- #1 R1 *)
iinc R2
seam_return R2

If number of actual arguments coincides with the number of formal arguments, things
get more complex.

code for f: code for g:
cccn RO R1 cccn RO R1
. load_global R2 O
return R2 seam_tailcall RO R1 RO

The most obvious solution is to use register move instructions.

code for g’ with f integrated:
cccn RO R1
load_reg R2 R1 (¥ R2 <- R1 %)
load_reg R3 RO (* R3 <- RO *)

seam_return R4

This causes some problems because, in the original version, the call instruction sets all
arguments at once. Thus, parameter passing is atomic. Suppose there is some clever
register allocation involved. The allocator will detect that RO and R1 stop to live at
the beginning of the body of £ and we get the following code:

code for g’ with f integrated + register allocation:
ccen RO R1
load_reg RO R1 (* RO <- R1 %)
load_reg R1 RO (* R1 <- RO *)

seam_return R2
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Clearly, this is wrong because the value of RO is written before it is read in the as-
signment to R1. We could adjust the liveness information to avoid such conflicts.
However, this increases the number of local registers and impedes further optimiza-
tions (e.g. elimination of load instructions, Section 6.5.3). We can do more clever.
The algorithm has to detect write-read conflicts and resolve them in some way. For
the above example we can write the following code to resolve the conflict:

code for g’ with f integrated + register allocation:
cccn RO R1
load_reg SO RO (* SO <- RO *)
load_reg RO R1 (x RO <- R1 %)
load_reg R1 SO (* R1 <- S0 x)

seam_return R2

In general, there are two types of conflicts that arise in parameter passing:

1. wrongly ordered assignments

Ro — T
Rl — RO
Rn — Rn -1

2. cyclic assignments Ry < --- «— R, «— Ry

The algorithm to compile in-place parameter passing has to identify these conflicts, re-
solve them, and finally generate code that simulates parameter passing. The following
section develops an efficient solution to that problem.

Write-Read Conflict Resolution

The algorithm works in two phases. First it decomposes the assignments into a list of
marked assignment chains. The example set of five assignments

1: Ry «— 1
2: Rl — R3
3: R2 — RQ
4: R3 — R4
5: Ry «— Ry
makes up two chains:
1 Ry — Ry« 1 (normal)

2. Ry« R3— Ry — Ry (cyclic)

Definition-use chains are used to construct assignment chains. The algorithm takes
an assignment and transitively follows each use of the destination register as well as
the definition of the source register. If the algorithm encounters that the start of the
chain equals its end, it stops and marks the chain as cyclic. In total this needs linear
time in the number of assignments.

In the second phase the algorithm generates code for the assignment chains. For
normal chains, this works by a forward scan through the chain. For 1’ we get:
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load_reg R2 RO (* R2 <- RO *)
load_int RO 1 (* RO <- 1 %)

For cyclic chains we also do a forward scan, but we split the first assignment into two
by introducing a scratch register. So we get the following code for 2':

load_reg SO R3 (* SO <- R3 %)
load_reg R3 R4 (* R3 <- R4 %)
load_reg R4 R1 (* R4 <- R1 %)
load_reg R1 SO (* R1 <- SO *)

In the actual implementation cyclic chains are resolved with swap instructions, as this
requires less byte code instructions.

6.5.3 Eliminating Load Instructions
Naive compilation of parameter passing for integrated procedures will not result in

good code. The increment procedure in Figure 6.7 serves as a running example. The
dereferencing operator that Alice implements as a procedure can be integrated. Naive

fun !(ref x) = x (xderef defined in Alice libraryx)

fun inc r = r:=!r+1

Figure 6.7: increment of an integer reference cell

simulation of parameter passing for the ! operator results in the following code:

cccl RO
load_reg R1 RO  (* incoming arguments *)
load_cell R2 R1 (* body of ! *)
load_reg R3 R2  (* outgoing arguments *)
iinc R3

set_cell RO R3
seam_return_unit

Two thirds of the integrated code constitute of superfluous parameter passing. What
we actually want is code like this:

cccl RO

load_cell R1 RO (* body of ! *)
iinc R1

set_cell RO R1

seam_return_unit

In general, all superfluous load instructions should be eliminated. Two techniques are
used to tackle this issue. The register allocator can eliminate many load instructions.
If an actual argument stops to live when it is passed, register allocation can use this
register for the formal parameter and this way no register move is needed. If the
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liveness of an actual arguments overlaps the whole body of the callee, a restricted
form of alias analysis is required.

Merging Liveness Intervals

The register allocator can eliminate load instructions automatically if it uses a modi-
fied liveness information, i.e. the liveness intervals of a procedure plus all its integrated
callees. To get this extended liveness information, one could do a complete liveness
analysis for each procedure after integration; but experiments show that this consider-
ably slows down execution. It is cheaper to merge the liveness intervals that the static
compiler provides.

To illustrate how the algorithm works, we consider the increment example again. Every
instruction is annotated with its program points.

code for inc without integration of !:

0: cccl RO

1: immediate_call ! RO
2: cccl R1

3: iinc R1

4, 5: set_cell RO R1

6: seam_return_unit
code for !

0: cccl RO

1, 2: load_cell R1 RO

3: seam_return R1

The procedure integration phase merges sets of liveness intervals. For the example, the
first set is F' = {Rg + [0, 5], Ry — [2,4]} and the second set is S = {Ry — [0,1], Ry —
[2,3]}. To avoid name clashes, the registers in S are a-renamed to Ry and R3. After
integration, the code and the corresponding program points look as follows:

0: cccl RO

1, 2: load_reg R2 RO  (* incoming arguments *)
3, 4: load_cell R3 R2 (* body of ! *)
5, 6: load_reg R1 R3 (* outgoing arguments *)
7: iinc R1

8, 9: set_cell RO R1

[EE
O -

seam_return_unit

We are looking for an algorithm that merges F' and S. The liveness intervals of the
resulting set 1" should be consistent with the program points in the example above. Of
course, the annotated program points are not known statically. They are only given
to check the output of the algorithm.

In order to get the liveness intervals T for registers Ry, R1, Rz, and R3, the algorithm
performs the following steps:
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1. Examine the original caller to find the program point p.q; of the call exit (cccl
instruction after the call instruction).
example: Deqip = 2

2. Find out the number of program points py,q, of the callee.
example: Pmar = 4

3. Add peqp to interval bounds in S.
example: 8" = {Ry — [2,3], R3 — [4,5]}.

4. Add ppma. to all interval bounds in F' that are greater than peq;.
example: F' = {Ry — [0,9], Ry — [6,8]}

5 T FUS
example: T = {Ry — [0,9], Ry — [6,8], R — [2,3], Ry — [4,5]}

All steps of the algorithm, except the first one, only work on the liveness intervals. To
find peqir, the program point for the call instruction has to be computed. Fortunately,
an extra pass through the caller code is not required. The program points are counted
during the search for integration candidates.

Some effort is necessary to gain an implementation that is efficient, when several pro-
cedures are integrated. Step four of the algorithm is the main source of improvement.
A better strategy is to collect the offsets py,q. for every peq; and shift all intervals of
T at the end. Then this algorithm is linear in the maximum of the number of program
points (of the caller after integration) and the number of liveness intervals (of the caller
and all integrated callees).

In general, this approach works well for all load instructions at the exit of integrated
procedures, but it cannot eliminate the first load instruction in the increment proce-
dure.

Alias Analysis

The first load instruction is generated because the liveness intervals of Ry and Rj3
overlap. However, it is obvious from the example that this instruction is superfluous.
It just creates a copy that the callee can only read. We need a technique to detect so
called aliases for registers whose liveness intervals overlap. For incoming arguments
the algorithm can be integrated into the merging phase of liveness intervals.

1. For every incoming argument R;, check if its liveness interval overlaps the starting
point of the formal parameter S;. If this is the case, do not add a liveness interval
for R;, but remember the mapping S; — R;.

2. Combine the alias mapping with the mapping that the register allocator returns.
This way we finally get rid of the first load instruction.

There is an interesting extension to the alias analysis. Suppose an alias is passed to an
integrated procedure and this procedure returns the alias again. Then the information
about the alias is lost at the exit of the integrated callee and the caller requires a
superfluous load instruction. Our algorithm can be extended in the following way:

e Introduce a local alias mapping for every procedure exit.

e On every exit check for every return argument if it is an alias. If this is the case,
store this information in the local alias mapping.
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e When all exits were visited, compute the greatest lower bound over all local alias
mappings.

e Combine the result with the global alias mapping, i.e. the mapping that is used
for aliases of incoming arguments.

6.5.4 Compilation of the Body

The previous sections explained the analysis phase and showed how parameter passing
can be implemented efficiently. This section deals with code generation of the body of
an integrated procedure.

The analysis phase passes the collected information to the compiler. Whenever the
compiler detects a procedure application, it looks up if the procedure is an integration
candidate. If it is one, parameter passing is compiled and the procedure code of
the candidate is fed to the compiler. The procedure code still contains the original
identifier names. The compiler takes care that the local identifiers are synchronized
with the names computed by the merging algorithm for liveness intervals.

Since the context of the integrated callee is fixed, global variables are converted into
immediate values. So the compiler specializes the integrated procedure to its caller.
This not only elegantly treats global variables, but more importantly makes more
immediate values accessible to the compiler. As outlined in Section 6.3, the compiler
can, for instance, generate more efficient code for calls to immediate procedures !.

All instructions that exit an integrated callee have to be converted into “intra-caller”
jumps. For instance, the meaning of a return instruction is that the callee jumps to
the continuation of the caller. Obviously, if the callee is integrated into its caller, it is
wrong to compile the return instruction literally since it would also exit the caller. A
return instruction is therefore translated into a jump to the continuation of the caller.
Another kind of exit is a tail call, which is converted into a normal call followed by a
jump to the continuation of the caller.

Exceptions, which can also jump out of a procedure, do not need special treatment since
procedure integration does not change the order in which the handlers are pushed.

6.5.5 Specifics of Alice

Due to separate compilation and dynamic linking, the static Alice compiler cannot
capitalize on procedure integration. It is much more effective to apply this optimization
in the just-in-time compiler because the module boundaries are resolved at run-time
and there is more information about immediate procedures.

The analysis phase runs through the abstract code graph. Modifying this graph is
incorrect. As we saw in Section 3.1 the graph defines the platform independent code
representation. Suppose we integrate a procedure in the first run and store the resulting
graph. If, in the second run, the implementation of the procedure changes, the modified
code will be invalid. There are three possible solutions: (1) copy the code graph
and modify the copied version; (2) modify the original graph, but provide means to
switch back to the original one; (3) store information in an external data structure and

1n the current framework, the conversion of globals to immediate values is done after the analysis
because the call graph is only investigated once, and not for each specialized version. This means
that procedure integration itself does not benefit from the specialization.
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perform the integration in the compiler. The third alternative was chosen for the byte
code system because it requires no complicated transformation and is space efficient.
Furthermore, it clearly separates the analysis and transformation phase.

6.6 Self Calls

Almost every interesting computation in Alice is done with recursive procedures. There
are no loops in the abstract code. The while-loop that the source language provides
is only syntactic sugar and is transformed into a recursive procedure. If a procedure
is directly recursive, i.e. it invokes itself to compute the next step, we say that the
procedure contains a self call. The compiler detects self calls during the analysis of
immediate procedures (see Section 6.3) by testing if the callee is equal to the caller.

We differentiate between normal self calls, which are self calls in non-tail position, and
self tail calls. The rest of this section introduces specialized byte code instructions for
both kinds of self calls.

Specialized Instructions

For a normal self call, the byte code interpreter knows that the callee has a byte code
representation and that it is not a transient. This saves two dynamic tests. The special
byte code instruction for normal self calls puts all arguments into scheduler registers,
issues the creation of a new task, stores the return address and checks for preemption.
If the thread is allowed to continue, the interpreter processes the new task. So the
specialized instruction saves the indirection over the scheduler and it keeps the state
pointers BP,CP, and IP.

3

For self tail calls, the interpreter need not push a new frame. After the arguments have
been passed, control can jump back to the beginning of current code. Self tail calls are
thus converted into loops. The semantics of Alice requires a preemption test for the
loop to ensure fair distribution of processor time among all live threads. Parameter
passing could be realized by using the scheduler registers. Fortunately, we already
developed a mechanism to do this more elegantly. We can reuse in-place parameter
passing (Section 6.5.2). This has the great advantage that we do not have to pass
arguments at all for all registers that are only passed to themselves.

The treatment of self tail calls is suboptimal regarding global and immediate values.
The load instructions of these values should be hoisted out of the loop to save reloading
in each loop iteration. On the other hand, it would require an additional analysis and
a special treatment of scratch registers, whose scope currently comprises only byte
code blocks that correspond to abstract code instructions.
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The Alice virtual machine is implemented in C+4. On the one hand, C++ offers
strong abstraction facilities, for instance, classes, inheritance, and templates. On the
other hand, the language still supports low-level features for efficient implementation
of virtual machine services. Since C++ allows low-level programming, the programmer
can easily introduce errors. For this project, a well-structured development process,
which enabled continuous testing, helped to achieve a reliable implementation in the
specified time period.

The first section outlines the development process. The second section deals with
implementation techniques for efficient interpreters. A section on the implementation
of the byte code compiler concludes the chapter.

7.1 Development Process

Building an interpreter together with a byte code compiler is not as complex as a
native code compiler, especially if the source language resembles the target language.
Nevertheless, it is still an error prone task and finding the cause of an error can be
extremely difficult and time-consuming. The implementation strategy for this thesis
project aimed to find programming errors as early as possible. As two working exe-
cution units have existed already, the SEAM task model could be used for continuous
testing during the development process.

Two main components were to implement:
e an efficient interpreter to execute byte code
e a compiler to transform abstract code into byte code

One cannot test the interpreter implementation as long as there are no means to
generate byte code. A compiler offers this functionality, but it cannot be tested as
long as there is no interpreter. One solution to break this cyclic dependency is to
write the two units in parallel. However, this has some disadvantages. If an error
occurs, both compiler and interpreter have to be checked because they are both in the
process of development and therefore unreliable.

A better approach is to use a byte code assembler to generate test sequences for the
interpreter. As soon as the interpreter is fully implemented and tested, the compiler
can be written and tested using the reliable interpreter.

Byte Code (Dis-) Assembler

The byte code assembler is integrated into the Alice library. One part is implemented
in Alice, and the other part, which needs access to low-level services of the virtual
machine, is implemented in C4++. SEAM’s foreign function interface connects the
C++ part with the Alice implementation.
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The assembler receives a list of data type items, representing byte code instructions,
and transforms the items into the internal byte code representation.
datatype register = RO | R1 | R2 |

datatype byte_code_instr =
iadd of register * register x register
|

val sequence = |
cccl RO,
load_int (R1,1),
iadd (R2,R0,R1),
seam_return R2

]

val inc : int —> int = assemble sequence

The example implements an increment procedure in byte code. Since the byte code is
defined as a data type, the assembler need not parse the input.

To make byte code programming more convenient and independent from the inter-
nal representation, the assembly language is extended with string labels that allow a
natural formulation of jump instructions:

val sequence = [... label ”start”, ..., jump ”start”, ... ]

The assembler is easy to implement because it is mainly a one-to-one mapping from
data type values to the internal byte code representation. However, even in trivial
programming tasks, there might be errors. To find bugs in the assembler, we imple-
mented a disassembler that transforms the internal byte code representation into a
readable string. This way, the code that the assembler generates can be validated.

The assembler is not only useful for debugging. It can also be used to benchmark
handwritten byte code against automatically generated code. Thus, one can estimate
how worthy a specific compiler optimization will be. For instance, the overhead of
superfluous load instructions that simulate parameter passing for integrated procedures
(Section 6.5.3) was analyzed in this way.

Interpreter

The interpreter is a loop with a huge case distinction over all instructions. All instruc-
tions are independent from each other and can thus be implemented separately. Each
instruction is validated with a handwritten test case. At the end, this gives a reliable
interpreter and a test suite for regression testing.

Compiler

The compiler translates abstract code instructions to byte code sequences. As soon as
the compiler infrastructure is working, code generation can be implemented separately
for each abstract code instruction. Writing test cases for the code generator is not as
convenient as for the interpreter because there does not exist an assembler for abstract
code. However, one can write small Alice procedures that the static compiler translates
into the desired abstract code instructions. The generated byte code is tested on the
byte code interpreter.

Following these steps cuts the overall task into manageable pieces and finally leads to
a reliable implementation. Of course, the first prototype nevertheless contained some
errors; but it was only a matter of two days to fix these bugs.
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7.2 Interpreter

The main part of the interpreter is a loop with a big case distinction over all in-
structions. The loop fetches byte code instructions out of the code buffer, checks the
opcode and jumps to the implementation to execute it. There are several ways to
implement the dispatch loop efficiently. This section restricts itself to two widespread
implementation techniques, called switch-based and direct threaded interpretation.

7.2.1 Switch-based Dispatch

In a switch-based implementation, the byte code is an array of integers that represent
both the opcodes and the arguments. The program counter is an index into the byte
code array. The dispatch loop contains a C++ switch statement with one case label
per byte code instruction. A small interpreter is exemplified in Figure 7.1.

int program|[] =
{ iadd, r0, r4, r7, seam-_call, r2 |, r0, ... };
int pc = 0;

for (;5) {
switch (program[pc++]) {
case iadd:

int r0 = program|[pc++];
int rl = program|[pc++];
int r2 = program|[pc++];
break;

case seam_call:

break;

Figure 7.1: switch-based interpreter

An optimizing C++ compiler usually implements the switch statement with a jump
table. At run-time, the interpreter fetches the opcode, checks if there is a case label
for it (range check), jumps to the implementation, executes it, and jumps back to the
switch when it reaches break. So there is a range check, an indirect and a direct
jump. The range check is superfluous as a correct program only consists of known
opcodes. Additionally, the direct jump can be eliminated, which brings us to direct
threaded dispatch.

7.2.2 Direct Threaded Dispatch

In a direct threaded [9] interpreter, the opcodes represent the start addresses of their
implementations. The interpreter routine can reach them with an indirect jump. ANSI
C does not support this form of jumps. However, the GNU C compiler offers an exten-
sion for a platform-independent implementation of direct threaded dispatch. Figure
7.2 shows a part of the source code. The interpreter performs indirect jumps from
one instruction to the next. The program counter is just a pointer into the byte code
array.
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int program|[] = {
(int)(&&iadd), r0, r4, r7,
(int)(&&seam_call), r2 , 10,
¥

int *pc = program;

// jump to first instruction
goto x((void x*)(xpc++));

iadd:
// fetch arguments
int r0 = *xpc++;
int rl = xpc++;
int r3 = xpc++;

// goto mext instruction
goto x((void *)(xpc++));

seam._call:

goto *((VOid >l<)(>|<p(;-|—.|-))7

Figure 7.2: direct threaded interpreter

By using macros and conditional compilation, the interpreter implementation can be
changed from threaded to switch dispatch and back. Direct threaded implementations
are usually faster than the switch-based interpreters. For example, the Ackermann
function runs 44% faster when direct threaded interpretation is enabled.

7.2.3 Advanced Interpretation Techniques

In principle, code for threaded or switch interpreters can be seen as a list of indirect
jump instructions together with some arguments. Modern processors try to predict
the destination of an indirect jump. If the prediction is good, this gives a significant
speedup. On the other hand, it takes several processor cycles to recover from a false
prediction. Unfortunately, the heuristics that are used do not work well for interpreter
routines. Consider the following example:

iadd R4 R1 RO (x R4 <- R1 + RO *)
iadd R5 R2 R3 (*x R5 <= R2 + R3 *)
new_pair_init R6 R4 R5  (* R6 <- (R4,R5) *)

After executing the first line, the branch prediction unit assumes that iadd is most
likely followed by itself. This assumption fails for the second iadd instruction that is
followed by new_pair_init.

The heuristic, which works well for other programs, often fails for virtual machine
interpreters because it is not the native PC but the virtual PC that correlates with
the control flow of the byte code program. There are several techniques to improve
branch prediction and to reduce the dispatch overhead of indirect branches.

e Piumarta and Riccardi [33] propose to concatenate the native code chunks that
implement an instruction, on basic blocks to eliminate jump instructions. They
call their technique selective inlining.
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e Ertl and Gregg [19] investigated the failure prediction rate for interpreters on
modern processors. They proposed several techniques to make the prediction
more accurate: static and dynamic super-instructions, instruction replication,
and extensions of inlining over basic blocks.

e A recent work uses so called context threading [10] to make better use of the
branch prediction hardware units. Berndl et al. use native function calls and
can thus capitalizing on branch prediction for calls and returns. They argue that
this gives better prediction rates than indirect jumps and report a speed-up of
25% for a Java interpreter.

As presented in Chapter 4.4, the byte code system only uses static super-instructions.
Replication does not seem to make sense as it significantly blows up interpreter size
and slows down build time!. Full inlining of byte code is in its essence a naive way of
run-time compilation to native code. In summary, all advanced dynamic approaches
depend on the underlying hardware and are not portable.

7.3 Compiler

The compiler traverses the abstract code graph and generates byte code, either for
a switch-based or a direct threaded interpreter. This section shows how the graph
traversal is implemented and how the compiler can be abstracted over the internal
code representation.

7.3.1 Code Traversal

Graph traversal is typically implemented either with an explicit control stack or with
recursion. The explicit control stack is supposed to be more efficient in C++. The stack
might, for instance, contain the nodes that the compiler has to translate. The maximal
stack height is then the number of nodes in the abstract code graph. Recursion needs
more stack space since the control stack is implicitly maintained in the procedure call
stack. Furthermore, there is one function call per node. However, as shown in Chapter
5, the compiler can be formulated quite naturally with a recursive translation function.
Therefore, we decided to implement the byte code compiler based on recursion. The
performance penalty is low since the compiler is not as performance critical as the
interpreter. High-level optimizations like selective compilation (Section 6.2) save a lot
more compilation time than sophisticated implementation techniques.

7.3.2 Code Layout

The final phase of a compiler is the generation of target code that is, for instance,
some sort of assembly code or byte code. The native code compiler of Alice uses GNU
lightning to generate executable native code. Other compilers pass the assembly code
to an assembler for further processing to binary code. The byte code compiler also
separates code generation from the transformation to the internal representation. As
an additional abstraction layer, there is a set of macro definitions to encode byte code
instructions into the code buffer and to decode them from the buffer.

1Ertl and Gregg report about a Forth interpreter that is 400 MB huge and that needs 5 hours to be
compiled.
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Byte code resides in a array of words. The current implementation uses one slot for
each opcode and one slot per argument. Modern machine architectures are designed
for fast access on word boundaries. Experiments in the byte code framework show
that a more compact representation reduces code size, but slows down execution. For
instance, when two registers are aligned into one slot, the byte code of the Ackermann
function is 23% smaller and execution slows down by 2%. As byte code is already small
in comparison to native code (see Chapter 8), we prefer the word-sized representation,
which is both faster and easier to implement.

Direct Threaded Code

In direct threaded code, the opcodes are addresses of locations inside the interpreter
main routine. The GNU C compiler does not allow to access these addresses from
outside of the routine. However, the byte code compiler needs the addresses for code
generation. The solution is that the interpreter routine is called at startup time of
the system with a designated argument (ain;z) and fills all internal addresses into a
global table. This way, the compiler, or more precisely, the layout macros get access
to a mapping from instruction numbers to code addresses. The disadvantage of this
approach is that the interpreter routine has to check for ainit whenever it is called.
Fortunately, the test is only a pointer comparison, which causes almost no overhead
in practice.
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8 Evaluation

In this chapter, we evaluate the byte code system and investigate the effectiveness of
different optimizations. All benchmarks were carried out on a 2.8GHz Pentium IV
with 1GB of RAM, running Linux 2.4.20.

Abbreviations

We use the following abbreviations throughout the chapter to describe different system
configurations:

e AC: abstract code interpreter

e B(C: byte code system with all optimizations; compilation before the second
execution. Several different variations of BC are used:

BC—P Procedure integration disabled

BC—T Register allocation disabled

BCiazy Compilation before the first execution

BChpiain Base system presented in Chapter 4 and 5 without optimizations

BCZlgﬂn Base system extended with dynamic tests in (tail-) call and return
instructions

BCsat, Base system with compile-time call optimizations, i.e. the compiler

differentiates between byte code, immediate, rewrite, and self calls;
there are dynamic tests in the return instruction

BC’;ﬂg: st Base system with compile-time and dynamic call optimizations
e NC': native code system with lazy compilation, i.e. every procedure is compiled
before its first execution

Interpreting the Benchmark Results

Except for the run-times, all results are given in absolute numbers. For the run-
times, the byte code system is taken as a reference point and the relative improvement
compared to the other systems is given in percent. So if the table lists 10% for NC,
this means that the byte code system is 10% faster than NC, whereas —10% means
that BC is 10% slower. A percentage of 300 means that BC is 4 times faster.
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8.1 System Evaluation

Three kinds of benchmarks were carried out to compare the byte code system to the
abstract code interpreter and the native code system. The first kind of benchmarks
investigates code size and compilation time of the byte code and native code compiler.
The second class of benchmarks are standard performance tests, like the Ackermann
function and Fibonacci function. These tests can easily be ported and MoscowML
[36] is taken for an external comparison. The mosmlc compiler statically compiles
the source language to Caml [14] byte code, which is executed by the Caml byte
code interpreter. The third class compares the run-times of three Alice applications,
namely the Toplevel interpreter startup, the Alice test suite and the bootstrap process
of Alice.

8.1.1 System Characteristics

This benchmark measures code size and compilation time of the Toplevel startup.
The Alice Toplevel interpreter provides a prompt that allows entering and evaluating
programs in an interactive way. Instead of BC, the system BCy,., is used because it
has the same compilation strategy as NC.

| mode | compilation time (ms) code size (MB) #compiled procs |

NC 220 16.64 4361
BCiazy 185 3.35 3773

Table 8.1: compilation time and code size for the Toplevel startup

The byte code compiler is faster although it performs two passes over the abstract code:
the first pass is for integration analysis and the second pass is for code generation. As
both compilers have a similar structure and use the same compilation strategy, this
difference does not come from clever implementation techniques. The main reason
for the slower compilation time of the native code system is the massive amount of
code it produces. The generated byte code is about 5 times smaller. Therefore, code
generation is significantly faster. The difference in the number of compiled procedures
stems from procedure integration. So 13.5% of all procedures do not need to be
compiled separately as they can always be integrated.

8.1.2 Micro-Benchmarks

By micro-benchmark, we mean the measurement of the run-time of a single (or only a
few) procedure(s). There are several procedures that are traditionally used to evaluate
the execution speed of a system. Such comparisons can, for instance, be found in
“The Computer Language Shootout Benchmarks” [28]. We distinguish three groups
of benchmarks.

(1) Recursion and Arithmetic

The Ackermann function, the Takeuchi function, and the Fibonnaci function are ex-
amples of functions that heavily use recursion. In each recursive step, they perform
some simple integer arithmetic.
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(2) Recursion and Symbolic Computation

This group comprises a tail-recursive implementation of 1ist reverse and mergesort
for lists. Both benchmarks test recursion and perform symbolic operations on lists in
each recursive step.

(3) Special Feature Benchmarks

One main feature of the byte code system is procedure integration. Table 8.2 shows
three benchmarks that particularly benefit from this feature. loop is a tail-recursive
procedure that increments a counter on each invocation. The counter is a reference
cell that is modified with a small helper procedure that the byte code compiler in-
tegrates into the loop. bubblesort contains the library procedure Array.swap that
is integrated, too. The benchmark tree performs a depth-first-search on a balanced
binary tree, using a stack. The stack is implemented in a simple Alice structure and
each of its procedures can be integrated.

Results

The run-times represent the arithmetic mean of 20 runs for each benchmark.

) @)
mode fib tak ack reverse mergesort
BC 345 2493 3687 164 1162
AC 461% 514% 743% 429% 287%
NC —-219% —-88% —303% | —110% —58%
MoscowML | —217% —42%  63% 45% 10%
(3)
mode loop bubblesort tree
BC 699 2050 1181
AC 2253% 501% 1067%
NC 21% 38% 25%
MoscowML | 125% 99% —2%

Table 8.2: results of micro-benchmark

Table 8.2 shows the benchmark results for (1) and (2). There are massive improvements
in comparison to the abstract code system, which formerly was the only platform-
independent execution mode. The native code system is fastest on all benchmarks. The
difference is most significant for benchmarks that heavily use arithmetic. MoscowML
performs well for fib and tak, but on the other benchmarks, it is slower than the
Alice byte code system. MoscowML has efficient arithmetic operations, but symbolic
computation seems to be less efficient. The reason for the bad performance of ack
remains unclear’.

Table 8.2 also shows the benchmark results for (3). The byte code system massively
outperforms the abstract code interpreter and is on average 28% faster than the native
code system. The behavior of MoscowML is again a bit mysterious. Although it is two
times slower for loop and bubblesort, it slightly outperforms the Alice byte code sys-
tem for tree. Our conclusion is that it is difficult to obtain a fair comparison between
different programming systems because each system has its own characteristics.

1Using the OCaml byte code compiler delivers the same results. So the performance decrease for
ack seems to be a peculiarity of the interpreter.
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8.1.3 Alice Applications

The previous section presented some micro-benchmarks. These performance tests only
evaluate specific features and the results cannot be generalized. Three larger Alice
applications are measured to obtain a more realistic comparison between the different
execution modes:

o Toplevel startup: The Toplevel interpreter provides a prompt that allows entering
and evaluating programs in an interactive way. The benchmark measures the
startup time of the Toplevel.

o library test suite: The Alice test suite checks the correctness and the performance
of all basic modules in the Alice library.

e bootstrap: Alice is able to compile itself. The bootstrap process generates the
run-time system, the compiler, and the Alice library.

Results
| mode | Toplevel startup library tests bootstrap |
BC 1654 ms 10 min : 44 sec 20 min : 50 sec
AC 156% 248% 179%
NC 12% —-11% 0.2%

Table 8.3: benchmark results for different Alice applications

Table 8.3 shows the benchmark results. The native code system is fastest for the
library tests. However, the distance to the byte code system is significantly less than
in the micro-benchmarks. The Toplevel starts up fastest with BC'. For the bootstrap,
NC and BC take equally long. The byte code system is even some seconds faster than
the native code system. The results confirm our hypothesis that an optimized byte
code system can be faster than a simple native code system.

8.2 Evaluation of Optimizations

This section takes a look at some optimizations that the byte code compiler and
interpreter apply. Measurements are given to confirm that the optimizations really
improve performance. The structure of the section follows the previous one.

8.2.1 System Characteristics

Table 8.4 shows how procedure integration and selective compilation affect compilation
time and code size for the Toplevel startup. The reference system is the fully optimized
system BCjq., that compiles each procedure on the first execution.

Results

Procedure integration nearly doubles compilation time because an additional pass is
needed for the analysis of integration candidates. About 18% more code is generated
since procedure bodies may be copied several times into the caller. Interestingly, this
does not affect execution speed. Despite the slower compilation and the bigger code,
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‘ mode ‘ compilation time (ms) code size (MB) #compiled procs

BCla., 185 3.35 3773
BC,E 100 2.74 4361

BC 90 1.15 2848
BC i 56 1.04 3096

Table 8.4: compilation times and code size for the Toplevel startup

we will later see that the Toplevel startup is 4% faster when procedure integration is
used.

The system BC compiles each procedure before the second execution, using selective
compilation. The results for compilation time and code size reveal interesting system
properties. The numbers show that nearly 25% of all procedures are executed only
once. These procedures are big because they amount to 66% of the code size. Addi-
tionally, they seem to contain many integration candidates since selective compilation
reduces the code growth that comes from procedure integration. In summary, the
results indicate that the Alice system contains some huge procedures that are better
not compiled since they are only executed once.

8.2.2 Micro-Benchmarks
All micro-benchmarks were tested with different configurations of BC.

Results

The results of the benchmarks are depicted in Table 8.5. The numbers for micro-
benchmarks of kind (1) and (2), and for (3) are summarized to obtain a more compact
presentation.

mode ‘ SM)y+>(2)  >(3) ‘ lib test Toplevel
BC 7888 ms 3980 ms | 10 min:44 sec 1654 ms
AC 577% 969% 248% 156%
BCpiqin 286% 555% 95% 64%
BCo" 213% 445% 7% 53%
BCsat, 201% 1402% 61% 43%
Bt bdn 191% 377% 56% 36%
BC—P! 0% 146% 5% 1%
BC— 5% 29% 0.5% 16%

Table 8.5: benchmarks for different system configurations

The numbers show that optimizations are essential for the performance. Naive trans-
formation from abstract code to byte code results in a system that is more than 4
times slower than optimized byte code. However, BCyqr is already twice as fast as
the abstract code interpreter.
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We pointed out that improvements for procedure calls are important optimizations.
The byte code system uses two different approaches that complement each other. The
benchmarks show that dynamic tests improve performance by 70%. The compile-time
approach is slightly more effective, and the best idea is to use both approaches in
combination.

The system BC~P* shows equal performance for benchmarks of kind (1) and (2) since
they cannot benefit from procedure integration. Benchmarks of kind (3) are explicitly
tuned to benefit from the feature. They are 2.5 times faster when procedure integration
is enabled.

Section 6.4 showed that register allocation reduces memory demands. The question is
whether this affects execution speed, and the answer is yes. The standard benchmarks
run 5% faster. The benchmarks whose performance depends on procedure integra-
tion speed up by 29%. The reason is that procedure integration depends on register
allocation to eliminate superfluous load instructions (see Section 6.5.3).

8.2.3 Alice Applications

The Toplevel interpreter and the Alice test suite are taken to benchmark real applica-
tions. Table 8.5 shows the results. Performance differences for different optimizations
are not as extreme as for the micro-benchmarks, but the trend is the same.

The simple byte code system BClpqin is already up to 150% faster than the abstract
code interpreter. Compile-time call optimizations are slightly more effective than dy-
namic tests, and both approaches complement each other.

Procedure integration speeds up the benchmarks about 5%. The numbers for register
allocation depend on the benchmark. Whereas the Toplevel startup is 16% faster
when register allocation is enabled, the performance increase for the library test is
negligible.

8.3 Summary of all Results

The benchmark results show that the performance of the byte code system comes
close to the native code system. For some applications, like the Toplevel startup
and the bootstrap, the byte code system is even faster. The byte code system mas-
sively outperforms the abstract code interpreter and has therefore become the standard
platform-independent execution unit in Alice.

The performance of the byte code system heavily depends on optimizations. Dynamic
tests and compile-time specialization double execution speed. For procedure integra-
tion, the picture is mixed. We presented realistic micro-benchmarks that run more
than twice as fast when procedure integration is enabled, whereas real applications
moderately speed up by 5%. In summary, this chapter proved that the optimizations
really speed up execution.
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9 Conclusion

This chapter concludes the thesis by summarizing the main contributions. Some topics
for future work on the Alice run-time system are proposed at the end.

9.1 Summary

Alice programs are executed by a virtual machine, which is implemented on top of
the generic virtual machine framework SEAM. The framework explicitly allows mixed-
mode execution. This thesis developed a byte code system, which serves for efficient
platform-independent execution of Alice programs. The project comprised three main
parts.

(1) Specification of an Alice Byte Code

The Alice byte code is derived from the abstract code, which is the external storage
format for Alice code. There is at least one byte code instruction for each abstract code
instruction. The byte code instructions only keep information (in form of arguments)
that is needed during execution. Additional information, like debug annotations, are
removed. Some abstract code instructions, which perform multiple basic execution
steps, are split into several byte code instructions. For performance reasons, there are
many byte code instructions for frequent special cases. To eliminate expensive proce-
dure calls, there are special instructions for frequent primitives, like integer arithmetic
operations. In contrast to the abstract code, the byte code is linear and the control
flow is simulated with jump instructions.

(2) Just-In-Time Byte Code Compiler

The static Alice compiler transforms the source program into a set of abstract code pro-
cedures. The byte code compiler is in charge of transforming the abstract code graphs
to byte code chunks at run-time. Optimizations are essential to achieve performance
that is competitive to the native code system. Call optimizations and instruction spe-
cialization are lightweight techniques that are highly effective to speed up execution.
Additionally, the byte code compiler features loop transformation with elimination of
parameter passing, procedure integration, and a more flexible mechanism to trigger
compilation, called selective compilation.

(3) Byte Code Interpreter

The byte code is executed by an interpreter that is embedded into the virtual ma-
chine as a task manager for byte code. The byte code interpreter uses direct threaded
interpretation, which is both fast and portable. Additionally, it features several op-
timizations to avoid indirections over SEAM’s scheduler, including dynamic tests and
dynamic code rewriting.
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The performance evaluation shows that the byte code system is often more than 4
times faster than the abstract code interpreter. So it noticeably improves platform-
independent execution speed. For larger applications, the performance is even com-
petitive to the native code system, and it outperforms the native code system for the
bootstrap and the Toplevel startup.

9.2 Future Work

This section proposes ideas for future projects to improve the Alice virtual machine.
The main focus lies on execution speed. We also discuss some design decisions that
could have been made differently.

Strictness Analysis

Alice supports lazy and concurrent programming. Both concepts are based on the
notion of transients. A transient is a placeholder for an undetermined value. To
bind a transient to an actual value, the transient is transformed into a reference that
points to the actual value. Since the actual value might again be a transient, refer-
ence chains can become arbitrarily long. Instructions that require actual values always
have to check for transients and dereference the chains. To remove superfluous test-
ing and dereferencing, a compiler could perform a kind of strictness analysis. The
simple strictness analyzer for Haskell by Jones and Partain [27] could serve as a first
basis. However, transients are more general than lazy values. “Touch Optimization”
presented by Flanagan and Felleisen [20] should also be considered.

Since the additional compiler phase is likely to be expensive, it is reasonable to perform
(at least parts of) the analysis in the static compiler. Rough measurements in the byte
code interpreter suggest that in more than 99% of all cases there is no request needed.
These results neither reflect how many tests a compile time analysis can remove, nor
do they reveal anything about superfluous dereferencing. However, they suggest that
the run-time system surely benefits from strictness analysis and touch optimization.

Selective Compilation

The current byte code system only uses the basic functionality of selective compila-
tion. It would be interesting to experiment with different code stages. For example,
the system could start by interpreting the abstract code. After several executions, a
slightly optimizing byte code compiler could generate byte code. For heavily recursive
procedures, the system could finally generate highly optimized byte code or native
code.

It would also be interesting to consider more sophisticated heuristics for the transi-
tions between code stages. The counter heuristic proved to be effective in most cases.
However, the bootstrap time slightly decreases when a lazy compilation strategy is
used. A more fine-grained heuristic may be profitable. To get a better heuristic, one
could introduce counter decay, which means that the counters are periodically divided
by two ([42], p. 165). This approach accommodates the relative frequency of calls. So
recursive procedures are compiled early, whereas procedures that are only called a few
times per second are not modified.
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Procedure Integration

There is few literature on technical aspects of procedure integration. Jones and Mar-
low encountered this lack and present detailed information about the Glasgow Haskell
Inliner [26]. In this thesis, we pointed out several technical difficulties and pitfalls
of procedure integration in Alice. We decided to clearly separate the analysis from
code generation and not to modify the abstract code graph during the analysis. This
approach has the advantage that services like pickling remain unchanged. An alterna-
tive approach is to modify the abstract code, such that the compiler does not have to
know about procedure integration. This way, the optimization could more easily be
incorporated into other compilers, like the native code compiler. On the other hand,
backwards transformation to the original abstract code would be necessary in order to
enable pickling.

The main criterion to decide what procedure to integrate is code size. One can think
of several extensions to this simple heuristic. For instance, bigger procedures could
also be integrated if the caller invokes them with a high frequency.

Procedure integration could serve as a starting point for recursion unrolling because
both are technically very similar. Rugina and Rinard investigate “Recursion Unrolling
for Divide and Conquer Programs” [39] and report that the resulting programs run up
to 10 times faster.

We already indicated that the system benefits from procedure integration not only
because the procedure call overhead is removed, but also because there are more im-
mediate values available to the compiler. One could investigate constant propagation
and folding. For instance, if an actual argument is an immediate tagged value, all
tests on this values inside the integrated callee can be removed. Some nested tag-tests
could also be simplified if the tests of the caller and the callee overlap. We already
collected some rough measurements for tagged values and found out that one can skip
around 40 tag-tests during the Toplevel startup. However, a more careful analysis
and implementation is required for definite statements about the power of constant
propagation.

Hoisting of Global Variables and Immediate Values

Abstract code instruction can directly operate on global variables and immediate val-
ues. The byte code interpreter loads them into scratch registers in order to make
them accessible to byte code instructions that only operate on registers. Since scratch
registers are only alive in the code block that stems from the compilation of a single
abstract code instruction, an immediate value or global variable that is used more than
once in several consecutive abstract code instructions is loaded several times.

To remove superfluous load instructions, hoisting of global variables and immediate
values could be used. They could be hoisted in the abstract code graph and a Let
instruction could be introduced to move them into local identifiers. This way, they
would be included into the liveness analysis and register allocation. Experiments show
that in many cases there are at most two load instructions to the same value on a
path. So it remains unclear whether the minor improvement in code quality justifies
modifications of the abstract code format and additional analysis overhead.

Byte Code Debugger

The byte code system offers a simple disassembler. In combination with profiling code
added by hand to the interpreter, this was sufficient for debugging. However, a more
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general and more powerful debugging facility is preferable. During the implementation
of new concepts, the interpreter crashes often because some virtual registers contain
wrong values. C++ debuggers only reveal which byte code instruction crashed, but to
find out the reason for the crash, step-by-step evaluation with interactive inspection of
the interpreter state would be very helpful. A debugger would simplify maintainability
of the system.

Improvements to the Static Compiler

The static compiler could provide some additional annotations to guide just-in-time
compilation.

e The number of nodes in the abstract code graph could easily be computed during
static compilation. This would eliminate counting in the procedure integration
phase.

e Recursive calls should be marked. This would save some hacks in the run-time
compiler.

e Alice functors could be marked. Then, as an experiment, one could specialize
functors to their arguments. These arguments are often procedures for which
procedure integration could be used.

Many compiler optimizations, for instance the call optimizations, only work for im-
mediate values. The static compiler uses closure specialization (see Section 6.3.2) to
enable the run-time compiler to transform global variables to immediate values. How-
ever, the heuristic that decides whether to generate a specialized closure or not is
rather ad-hoc. Every closure that is declared top-level is specialized. This captures all
procedures of a module that are visible from outside. More sophisticated techniques
are desirable to capture procedures that are declared locally.

We already mentioned that cross-component optimization in Alice may statically be
impossible. However, it would be very interesting to investigate partial analyses. This
means that the static compiler takes the imports as preconditions and tries to derive
some invariants from them; or it creates a general form of code templates that the
just-in-time compiler can instantiate during compilation.
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