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Constraint programming is a programming paradigm that was originally
invented in computer science to deal with hard combinatorial problems.
Recently, constraint programming has evolved into a technology which
permits to solve hard industrial scheduling and optimization problems.
We argue that existing constraint programming technology can be useful
for applications in natural language processing. Some problems whose
treatment with traditional methods requires great care to avoid combi-
natorial explosion of (potential) readings seem to be solvable in an effi-
cient and elegant manner using constraint programming. We illustrate
our claim by two recent examples, one from the area of underspecified
semantics and one from parsing.

1 Introduction

This paper is an overview of techniques of modern constraint program-
ming (CP) and their current applications in computational linguis-
tics. We argue that CP can be the foundation for efficient, elegant
approaches to notorious problems in natural language processing.

Constraint programming is a paradigm that emerged from logic pro-
gramming in the mid-eighties (Jaffar and Lassez, 1987; Marriott and
Stuckey, 1998). The aim of constraint programming is to provide a
general platform on which (typically NP-hard) combinatoric problems,
such as scheduling and optimization, can be solved efficiently. Tradi-
tionally, one would use a generate and test strategy, where a space of
models is generated and searched for solutions; but the complexity and
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size of these problems makes the search spaces so huge that this strat-
egy is unfeasible in practice. CP follows a strategy of propagate and
distribute instead. The case distinctions that constitute search steps
(distribution) are put off for as long as possible; first, simple determin-
istic inferences (propagation) are applied. That is, model elimination
is preferred over model enumeration. Search will still be necessary, but
good propagation will narrow down the possible choices in the distri-
bution steps, thus reducing the size of the search space, sometimes
dramatically.

In the nineties, constraint programming has evolved into a mature
technology, and off-the-shelf development systems are available. CP
has been incorporated into several host languages, e.g. C++ (ILOG,
1999) and Prolog (Dincbas et al., 1988; Aggoun and Beldiceanu, 1993;
Aggoun et al., 1995). There are also special programming languages
for CP, e.g. the concurrent CP language Oz (Smolka, 1995; Mozart
Consortium, 1999) and others (Smolka, 1998; Caseau and Laburthe,
1996). We will use Oz in this paper. CP has been applied successfully
to scheduling and optimization problems in industry (ILOG, 1999; Ag-
goun and Beldiceanu, 1993). The most useful algorithms known for
constraint propagation apply to finite domain, finite set, and arith-
metic constraints. Modern programming systems allow programmers
to combine these algorithms at a high level of abstraction. (Notice
that the word “constraint” in “constraint programming” has only a
superficial relation to its usage in “constraint-based” theories e.g. of
grammar, such as HPSG and LFG.)

Computational linguistics has only recently been discovered as an
application of CP. Duchier (1999) presented an approach to parsing
dependency grammar which is based on constraint programming with
finite sets. Koller et al. (1998) applied constraint programming to se-
mantic underspecification, and Duchier and Gardent (1999), to dis-
course. In all of these instances, model elimination techniques are used
to cope with ambiguities which could otherwise cause serious combina-
torial problems.

In this paper, we survey the state of the art of constraint pro-
gramming in natural language processing. Our goal is to illustrate the
power of constraint programming at successful examples, in the hopes
of encouraging more computational linguists to apply CP for their own
purposes.

In Section 2, we explain model elimination informally and show how
it can be used in principle to deal with ambiguities. In Section 3, we
discuss the basic ideas of Constraint Programming. This section also
introduces some of the most important types of constraints, in partic-
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ular finite domain, finite set, and selection constraints. In Sections 4
and 5, we go through examples from Section 2 in more detail and show
how CP can help to solve the ambiguity problem. First, we implement
dominance constraints, as used in a certain approach to scope under-
specification. Then we present a parser for dependency grammar based
on CP. We conclude and point to future work in Section 6.

Implementations of the systems described in Sections 4 and 5, in-
cluding source codes, can be found on the WWW (Duchier et al., 1999).

2 Model Elimination

In this section, we take a closer (but still informal) look at model elimi-
nation. We first consider an example that shows how model elimination
can prevent combinatorial explosion, and introduces the basic intuition.
Then we turn to the problem of handling ambiguity in computational
linguistics, where combinatorial explosion can be a problem too. In
this context, model elimination is extremely close in spirit to under-
specification. The section concludes with two linguistic examples – one
from semantic underspecification and one from parsing. Details of these
examples will be filled in in Sections 4 and 5.

2.1 An Example

Combinatorial puzzles are problems where a combination of values for a
certain set of variables must be found which satisfies given constraints.
An example is the following equation, where each letter stands for a
distinct digit and leading digits are non-zero:

SEND

+ MORE

= MONEY

Combinatorial puzzles are the simplest way to visualize the danger of
combinatorial explosion. The example has eight variables, each of which
has 10 possible values. This means that there are 108 potential models,
only one of which really satisfies the equation. One way of solving the
puzzle is to generate all combinations of values for the variables and
then to test for each combination if it is a solution. A generate-and-
test C implementation for the example takes about 20 seconds, but
real-world applications typically involve hundreds of variables, and the
number of possible combinations grows exponentially. So generate-and-
test is unfeasible in practice – even for only 15 variables instead of eight,
the generate-and-test program would run for over six years.
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An alternative approach is to infer additional information about
solutions first. In the example, it is easy to see that M must take the
value 1, and S must be at least 8; more inferences are possible. That
is, we eliminate models (i.e. all models where M is not 1) instead of
enumerating them. The (simple, computationally cheap) inferences we
perform are called propagation. When no further propagation is possi-
ble and we have not found a model yet, we must distribute, i.e. perform
a case distinction for a variable value; but distribution is delayed for
as long as possible. This strategy can reduce the size of the search
space (and thus, the runtime), sometimes dramatically: A standard
propagate-and-distribute implementation of the example using finite
domain constraints takes a search space of 7 nodes!

2.2 Ambiguity and Underspecification

A similar danger of combinatorial explosion is inherent in the treatment
of ambiguities in natural language processing: Multiple ambiguities
present in the same sentence can make the total number of readings
grow exponentially. This is a challenge because ambiguities are very
common in natural language, for example as attachment ambiguities
and scope ambiguities :

(1.1) John saw the man with the telescope.

(1.2) Every man loves a woman.

Attachment ambiguities (1.1) are syntactic ambiguities of where a given
constituent, most commonly a PP, should be attached to the syntax
tree. In the example, “with the telescope” could modify either “the
man” or “saw”. Scope ambiguities (1.2) are semantic ambiguities of the
relative scope of different scope-bearing elements, such as quantifiers or
negation. In the example, the quantifiers “every man” and “a woman”
can take scope over each other in both ways.

Even worse, there are “ambiguities” that don’t really contribute
to the readings of a sentence at all. For example, the word “that”
in the sentence Mary likes that rabbit could be either a demonstrative
pronoun, a relative pronoun, or a complementizer according to the
lexicon; this must be represented as an ambiguity in an early stage of
parsing. However, this ambiguity goes away later because the relative
pronoun and complementizer readings won’t be able to participate in a
parse; they would be reflected in a chart parser as unproductive edges.
In processing, we should be especially careful not to get exponential
blowups due to intermediate ambiguities that aren’t even justified by
an actual exponential number of readings of the entire sentence. We
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∀x •

→ •
man •

x •

•

∃y •

∧ •
woman •

y •

love •
x • y •

•

Figure 1.1: Underspecified description of “Every man loves a woman.”

shall call the phenomenon of an ambiguity that is disambiguated (at
least partially) by later processing steps local ambiguity.

Underspecification is an approach to ambiguity that attempts to
cope with the problem of combinatorial explosion of readings. (For
an overview of underspecification in semantics, see e.g. van Deemter
and Peters, 1996.) The idea is to represent all the readings of an am-
biguity with a single compact description and then to work with this
description instead of the readings themselves for as long as possible.
The readings can be obtained from the description, but this is only
done when necessary; that is, underspecification prefers elimination of
models over their enumeration.

For instance, a description of the two readings of (1.2) looks typi-
cally as in Fig. 1.1. The diagram specifies the parts that the semantics
is composed of (the quantifiers “every man” and “a woman”, and the
nuclear scope “loves”), and that both quantifiers must outscope the
nuclear scope. However, it leaves the relative order of the two quanti-
fiers open. Note that as long as we don’t enumerate readings explicitly,
there is no room for combinatorial explosion: The size of the diagram
is only linear in the size of any reading. It can be read more formally
as a dominance constraint ; we will come back to this in Section 4.

2.3 Example: Scope and Anaphora

An underspecified, model-eliminative approach to ambiguity makes it
possible to deal with local ambiguity in an elegant way. By way of
example, suppose we continue the ambiguous (1.2) with

(1.3) Her name is Mary.
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This continuation forces the existential quantifier to take wide scope;
the ambiguity goes away. One way to explain this is to assume a dy-
namic logic (e.g. Kamp and Reyle, 1993; Groenendijk and Stokhof,
1991) as our semantic representation language; in such a logic, the
reading in which the universal quantifier gets wide scope would violate
anaphoric accessibility conditions.

Clearly, a generate-and-test approach that enumerates all readings
of the first sentence, then tests each reading for accessibility violations,
will cause unacceptable processing times for more complex ambiguities,
besides being not very reasonable intuitively.

An underspecified approach could represent the meaning of the first
sentence e.g. as in Fig. 1.1. When the second sentence is processed, it
hasn’t yet committed to the actual meaning of the first sentence. We
could derive from the anaphor the restriction that no static connective
(such as a universal quantifier) should be on top of the existential quan-
tifier and add this restriction to the description of the first sentence.
Finally, we would use some calculus for making descriptions more ex-
plicit to derive the fact that the existential quantifier actually must
take wide scope in the first sentence.

Thus, anaphora give us an opportunity for eliminating some models
of a local ambiguity without ever representing them explicitly. For
details of this construction, see (Koller and Niehren, 2000). In Section
4, we will come back to scope underspecification; there we will show how
model-elimination techniques can be applied to make the enumeration
of readings more feasible – as in the “Send More Money” puzzle above.

2.4 Example: Parsing

Finally, recall the earlier “that” example where the lexical entry and/or
morphological form of a word could be ambiguous to a parser. Here
we consider a similar example: the morphological ambiguity of the NP
“die Frau” (“the woman”) in German. This NP can be either in the
nominative or in the accusative case. This is interesting in parsing a
sentence like

(1.4) Den
the(acc)

Mann
man

liebt
loves

die
the(nom/acc)

Frau.
woman

‘The woman loves the man.’

This sentence is not ambiguous; “die Frau” is the subject, and “den
Mann” is the direct object. But German word order is relatively free,
so a parser must also allow for “die Frau” being the object, as in
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(1.5) Der
the(nom)

Mann
man

liebt
loves

die
the(nom/acc)

Frau.
woman

‘The man loves the woman.’

In each case, a chart parser will probably introduce an edge which
doesn’t contribute to the correct parse.

Again, model elimination can point to a more intuitive treatment of
a local ambiguity. We start with a description of the syntax specifying
that “liebt” is the verb, that it has exactly one subject and one object,
and what the available case information is. Now we can reason as
follows: In the first sentence, “den Mann” must be the object because
its case can only be accusative. So “die Frau” must be the subject
because the subject role is already filled. The second example works in
the same way.

We will develop a dependency parser based on Constraint Program-
ming in Section 5 which will reduce the size of the search space by
performing inferences just like these.

3 Constraint Programming

In this section, we make our notion of Constraint Programming more
precise. After presenting the computation model of concurrent con-
straint programming at an example, we define a concrete constraint
language. We will use this constraint language in the next two sections
to treat the linguistic examples from Section 2. We can only scrape
at the surface of CP here; the recommended introductory textbook is
(Marriott and Stuckey, 1998).

3.1 An Example

On an abstract level, propagate and distribute is best explained by the
model of concurrent constraint programming (Saraswat and Rinard,
1990; Saraswat et al., 1991). The idea is to distinguish simple con-
straints that can be solved deterministically from complex constraints.
Simple constraints are stored in a constraint store, and complex con-
straints are turned into propagators, concurrent processes that observe
the constraint store, deduce logical consequences from the store and
their defining formulas, and add these consequence to the constraint
store.

By way of example, let us look at how propagation works for fi-
nite set constraints (Fig. 1.2). The constraint store (oval) contains
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S ⊆ S1 ∪ S2 S1 ⊆ S3

S1 ⊆ {1, 3}
S2 ⊆ {2}

{1} ⊆ S ⊆ {1, . . . , 6}
S3 ⊆ {1, 2}

S ⊆ S1 ∪ S2 S1 ⊆ S3

{1} ⊆ S1 ⊆ {1}
S2 ⊆ {2}

{1} ⊆ S ⊆ {1, 2}
{1} ⊆ S3 ⊆ {1, 2}

Figure 1.2: Propagation with set constraints.

(ground) lower and upper bounds for some set variables. Two propa-
gators (rectangles) operate on the constraint store; they implement set
inclusions. In the situation on the left hand side, both propagators can
contribute information. First, the store entails that S1 ∪S2 ⊆ {1, 2, 3},
so the left propagator, S ⊆ S1 ∪ S2, can infer that 46∈S ∧ 56∈S ∧ 66∈S;
this information is added to the store. Second, since the store entails
1∈S ∧ 1/∈S2, the left propagator can deduce 1∈S1. On the other hand,
the right propagator, S1 ⊆ S3, can infer from 3/∈S3 that 3/∈S1; and
from 1∈S1, which was added by the left propagator, it can infer 1∈S3.
But now, the store entails S1 ∪ S2 ⊆ {1, 2}, so the left propagator can
again infer that 36∈S. Now no further propagation is possible; the end
result is shown on the right hand side of Fig. 1.2.

If we had to find a solution to the set constraint, we would now
perform a single distribution step, which could e.g. create two new con-
straint stores, one with the information S2 = ∅ and one with S2 = {2}.
Then propagation would resume over these two stores. But propaga-
tion had a tremendous effect already: We have fully determined the
value for S1, and there are only eight possible combinations of variable
values left (instead of 1024).

3.2 A Constraint System

The concrete constraint system we are going to use for our applications
is shown in Fig. 1.3. It defines several types of constraints C and
several types of variables V . Some of these constraints are standard
in constraint programming, such as finite domain (FD) constraints A,
finite set (FS) constraints B, and tuple constraints F ; some, such as dis-
junctive propagators D and selection constraints E, are less common.
All of these constraints are fully supported by the Mozart programming
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V ::= S | X | N
A ::= T∈{n1, . . . , nk}

| T1=T2 | T1 6=T2

| T1≤T2

B ::= n∈S | n/∈S
| S ⊆ ∪n

i=1Si

| S1 ∩ S2=∅

C ::= A | B | D | E | F

D ::= orni=1 ∧
m(i)
j=1 Cij

T ::= n | N | |S|
| min(S) | max(S)

E ::= S=〈S1, . . . , Sn〉[N ]
F ::= X=[V1, . . . , Vk]

| X=Y

Figure 1.3: The constraint system.

system, an implementation of the concurrent constraint language Oz
(Mozart Consortium, 1999).

Variables and Values. We assume three infinite sets of variables,
collectively ranged over by V . Let max be a large natural number
depending on the constraint programming system in use, for instance
max = 134217726 for Oz. A finite domain variable N denotes a natural
number n in {0, . . . , max}; a set variable S denotes a finite subset of
{0, . . . , max}, and a tuple variable X denotes a k-tuple of values.

Constraint Store. The simple constraints that we can write di-
rectly into the constraint store are (conjunctions of) finite domain mem-
bership N∈{n1, . . . , nn}, set inclusion n∈S, set exclusion n/∈S, and tu-
ple constraints. Set inclusion and exclusion describe lower and upper
bounds of set variables S. For any set D of numbers, we write D ⊆ S as
a shortcut for ∧{n∈S | n ∈ D} and S ⊆ D instead of ∧{n/∈S | n /∈ D}.
All other constraints serve as propagators; we describe their behaviour
below.

Distribution. Distribution performs case distinctions during the
search for a solution. In this paper, we need distribution over the values
of finite domain and finite set variables. FD distribution steps (shown
in Fig. 1.4) split the domain {n1, . . . , nk} of N into two subdomains
{n1, . . . , ni} and {ni+1, . . . , nk}, for some 1 ≤ i < k. Then the two
cases N ∈ {n1, . . . , ni} and N ∈ {ni+1, . . . , nk} are considered inde-
pendently. FS distribution distinguishes possible values for finite sets
in a similar fashion. The constraint store and all propagators are copied
by distribution. A distribution strategy, which determines which finite
domains are split and in which way, can be specified independently.

Finite Set Constraints (B). Beyond the simple constraints for set
inclusion and exclusion, the system provides union and disjointness
constraints. These constraints are implemented as propagators with
the following operational semantics:
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. . .

N ∈ {n1, . . . , ni}
Store

. . .

N ∈ {n1, . . . , nk}
Store

. . .

N ∈ {ni+1, . . . , nk}
Store

Figure 1.4: Distribution (where 1 ≤ i < k).

S ⊆ ∪k
i=1Si : ∧k

i=1n 6∈ Si ⇒ n 6∈ S
S ⊆ ∪k

i=1Si : n ∈ S ∧ ∧k
1≤i6=jn 6∈ Si ⇒ n ∈ Sj if 1 ≤ j ≤ k

S1 ∩ S2=∅ : n ∈ Si ⇒ n 6∈ Sj if i 6= j ∈ {1, 2}

Each propagator waits until the constraint store contains the simple
constraints on the left hand side of the rule. Then the simple constraint
on the right hand side is added to the constraint store.

In the rest of the paper, we will write S= ]n
i=1 Si as a shortcut for

the conjunction of S ⊆ ∪n
i=1Si,

∧n

i=1 Si ⊆ S, and
∧

1≤i<j≤n Si∩Sj = ∅;
that is, ] defines a partition of a set variable.

Finite Domain Constraints (A). In addition to the simple domain
membership constraint, the system defines equality, inequality, and or-
dering constraints for finite domain (FD) variables N . In this paper,
we use FD variables only as auxiliary tools, e.g. for reasoning about
the cardinality of sets, controlling disjunctive propagators, or model-
ing agreement. Usually, FD constraints come together with arithmetic
constraints, but we do not need those here.

Tuple Constraints (F). A tuple constraint X=[V1, . . . , Vk] states
that X denotes the tuple of denotations of V1, . . . , Vk. Tuple constraints
can be stored directly in a constraint store, but may have to be syn-
chronized with existing information by unification. For instance, if
X=[V1, . . . , Vk] is in the store, then the addition of X=[V ′

1 , . . . , V ′
k]

amounts to adding ∧k
i=1Vi = V ′

i .
Disjunctive Propagators (D). Disjunctive propagators (Schulte,

2000; Janson and Haridi, 1991) are maybe the most unfamiliar type
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of constraint we define. On the level of denotation, the disjunctive

propagator orni=1∧
m(i)
j=1 Cij is equivalent to a disjunction ∨n

i=1∧
m(i)
j=1 Cij .

Operationally, a disjunctive propagator tests the n clauses in parallel
for consistency with the global constraint store. It blocks until all but
one clause have become inconsistent, and then it adds the remaining
clause to the constraint store. That is, a disjunctive propagator never
enumerates cases. This is in contrast to the behaviour of traditional
logic programming languages (see e.g. Apt, 1990), where disjunction is
modeled by choice points and always enumerated. Enumeration can be
implemented in CP by distributing over choice variables, a technique
which is explained and used in Section 4.

An example should help to make this clear. In Section 3.1, we had
two propagators for set constraints. Now let us add a third propagator:
the disjunctive propagator or(3 ∈ S, 2 ∈ S2). The new propagator
will block during all of the propagation we described earlier, as both
branches are consistent with the constraint store. The last propagation
step, however, infers that 36∈S; so the first branch of the disjunctive
propagator becomes inconsistent, and it can add the second branch
(2 ∈ S2) to the constraint store.

It is possible to implement implications and equivalences using or

if the antecedent is a constraint whose negation we can write down
(e.g. set membership). We write imply(C, C ′) as an abbreviation
of or(C ∧ C ′,¬C) and equiv(C, C ′) for or(C ∧ C ′,¬C ∧ ¬C ′). Note
that these implementations allow propagation in both directions: If
C is entailed by the constraint store, the propagator for imply(C, C ′)
will add C ′ to the store, and if C ′ is inconsistent with the store, the
propagator will add ¬C.

Selection Constraints. A different approach to disjunction is taken
by selection constraints. The selection constraint S=〈S1, . . . , Sn〉[N ]
is logically equivalent to ∨n

i=1(N=i ∧ S=Si); that is, the variable N
selects one of the set variables Si in the list. Selection constraints sacri-
fice generality for even stronger propagation: They provide constructive
disjunction, which can extract information common to all alternatives.

S=〈S1, . . . , Sm〉[N ] : N∈{n1, . . . , nk} ∧ ∧
k
i=1n∈Sni

⇒ n∈S
S=〈S1, . . . , Sm〉[N ] : N∈{n1, . . . , nk} ∧ ∧

k
i=1n6∈Sni

⇒ n6∈S

Two selection constraints can communicate with each other by shar-
ing their selection variables. This is possible because selection variables
N can be constrained by propagation:

S=〈S1, . . . , Sn〉[N ] : n∈S ∧ n/∈Si ⇒ N 6=i
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4 Application: Dominance Constraints for Scope

Underspecification

In this section, we define dominance constraints and show how to
encode them using finite set and finite domain constraints. This is
a standard move in CP implementations: We reduce a language of
application-oriented constraints to implementation-oriented constraints,
which can be processed efficiently and for which propagation is auto-
matically provided by the programming system.

This gives us an immediate way to solve dominance constraints: We
simply have to solve the corresponding FS constraints. However, the
propagation available in the encoding is useful even without distribu-
tion; Koller and Niehren (2000) show how the implementation below
can be extended to do inferences as in Section 2.3 by pure propagation.

The presentation is based on (Koller and Niehren, 1999; Duchier
and Gardent, 1999; Duchier and Niehren, 2000).

4.1 Dominance constraints

Dominance constraints are tree descriptions, i.e. logical formulas whose
models are trees. They are omnipresent in underspecified approaches to
scope ambiguity, sometimes in disguise (Reyle, 1993; Bos, 1996); they
appear explicitly in (Muskens, 1995) and as part of the Constraint
Language for Lambda Structures (CLLS, Egg et al., 1998). Dominance
constraints have been applied to many other areas of computational
linguists as well, e.g. incremental parsing (Marcus et al., 1983), tree
adjoining grammars (Vijay-Shanker, 1992; Rambow et al., 1995), and
discourse (Gardent and Webber, 1998); their logical and computational
properties have been investigated e.g. in (Cornell, 1994; Backofen et al.,
1995; Koller et al., 1998).

We assume a set of labels ranged over by f which contains every,
a, man, loves, woman, etc. A dominance constraint ϕ is a conjunc-
tion of labeling constraints X:f(X1, . . . , Xn), (atomic) dominance con-
straints X�

∗Y , inequality constraints X 6= Y , and disjointness con-
straints X ⊥Y .

ϕ ::= X:f(X1, . . . , Xn) | X�
∗Y | X ⊥Y | X 6= Y | ϕ ∧ ϕ′

The variables X, Y, Xi in a constraint denote nodes in the same tree.
A labeling constraint expresses that X denotes a node which has the
label f and whose children are denoted by X1, . . . , Xn. A dominance
constraint X�

∗Y expresses that X denotes a node that is somewhere
above (or equal to) the node denoted by Y in the tree. An inequality
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Eq

Up

Down

Left Right

Figure 1.5: Partitioning Trees

constraint expresses that the two variables denote different nodes, and
a disjointness constraint X ⊥Y expresses that neither of the two nodes
dominates the other. We write X=Y (equality) for the conjunction
X�

∗Y ∧ Y �
∗X and X�

+Y (strict dominance) for X�
∗Y ∧X 6= Y .

By way of illustration of the use of dominance constraints in CL, we
sketch their application to scope underspecification (Egg et al., 1998).
We can encode the terms and formulas of a traditional semantic rep-
resentation language (such as formulas of predicate logic, or lambda
terms) as trees; then we can take a dominance constraint ϕ to describe
those formulas or terms whose corresponding trees satisfy ϕ. So we can
use dominance constraints to give intuitive pictures such as Fig. 1.1
a precise meaning: We can read the graph as a graphical representa-
tion of a dominance constraint – a constraint graph. The nodes of the
constraint graph represent variables in a dominance constraint; labels
and solid lines represent labeling constraints, and dotted lines repre-
sent atomic dominance constraints between the respective variables.
For more details, see (Egg et al., 1998, 2000).

4.2 A Solver for Dominance Constaints

Now we present the encoding of dominance constraints as set con-
straints. Solutions of these set constraints encode solutions of the dom-
inance constraint, which represent the readings of the sentence.

The key idea for the encoding is to model a tree by partitioning the
set of its nodes. Each node in a tree induces a partition of the set of
variables: The node denoted by a variable X is either strictly above,
strictly below, equal, or disjoint (to the left or to the right) of this node.
The situation is illustrated by Figure 1.5. In logical terms, this means
that the disjunction (1.6) is valid for all tree models:
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(1.6) X=Y ∨X�
+Y ∨ Y �

+X ∨X ⊥Y

Formula 1.6 suggests a naive generate and test procedure: In order to
solve a dominance constraint ϕ, simply test all possible relationships
between each two variables X, Y ∈ Var(ϕ) for consistency. The set
constraint encoding will be much more efficient, however, because of
propagation on sets.

Translation to Set Constraints

Suppose we are given a dominance constraint ϕ. We associate each
variable X that appears in ϕ with a unique natural number Id(X).
Let Ids be the set of all variable identities {Id(X) | X ∈ Var(ϕ)}. For
all X ∈ Var(ϕ), we introduce set variables eq(X), down(X), up(X),
and disj (X), which we are going to constrain to the sets of variable
identities equal to, strictly above, strictly below, or disjoint to X. For
all X ∈ Var(ϕ), we require:

Id(X) ∈ eq(X) ∧
Ids = eq(X) ] down(X) ] up(X) ] disj (X)

We assume a tuple variable daughters(X) and an integer variable label(X),
which represents the label f of the node denoted by X, encoded as some
number. For each node variable X ∈ Var(ϕ), we assume a tuple vari-
able X of the same name and impose the tuple constraint

X = [eq(X), up(X), disj (X), down(X), daughters(X), label(X)]

We can use the tuple constraint X = Y to express that two variables
denote the same node. Finally, we introduce two auxiliary set variables
eqdown(X) and equp(X) for all X ∈ Var(ϕ) for which we impose the
following constraints.

eqdown(X) = eq(X) ] down(X)
equp(X) = eq(X) ] up(X).

If X dominates Y in a tree, this means that X is above Y , Y is
below X, and whatever is disjoint to X is also disjoint to Y . Thus:

[[ X�
∗Y ]] =def equp(X) ⊆ equp(Y )

∧ eqdown(X) ⊇ eqdown(Y )
∧ disj (X) ⊆ disj (Y ).

An encoding of the labeling constraint X:f(X1, . . . , Xn) will obvi-
ously require that X1, . . . , Xn denote the daughters of X and that X
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has the label f . Furthermore, the down set of X is the disjoint union
of the eqdown sets of the daughters, and the up set of each daugher is
the equp set of X:

[[ X:f(X1, . . . , Xn) ]] =def label(X) = f
∧ daughters(X) = [X1, . . . , Xn]
∧ down(X) = ]n

i=1eqdown(Xi)
∧ ∧n

i=1up(Xi) = equp(X)

Inequality X 6= Y simply means that the equal sets of the two
variables are disjoint – that is,

[[ X 6= Y ]] =def eq(X) ∩ eq(Y ) = ∅.

Finally, disjointness X ⊥Y is encoded as

[[ X ⊥Y ]] =def eqdown(X) ⊆ disj (Y )
∧ eqdown(Y ) ⊆ disj (X).

We can now implement the disjunctions (1.6) as disjunctive propa-
gators (1.7), as provided by our constraint programming system.

(1.7)
N ∈ {1, 2, 3, 4} ∧ or(N=1 ∧ X=Y, N=2 ∧ [[ X�

+Y ]],
N=3 ∧ [[ Y �

+X ]], N=4 ∧ [[ X ⊥Y ]])

These disjunctive propagators enforce that every model of the con-
straint really encodes a tree.

Enumerating Solutions

The constraints so far allow us to axiomatize the encodings of trees
satisfying a certain dominance constraint. Unfortunately, propagation
alone will not be sufficient to actually enumerate these encodings. For
instance, the propagator (1.7) can easily block because two different
branches are consistent with all the other available information.

To solve this problem, we have introduced constraints involving
finite domain variables N into the propagator. We introduce one such
choice variable for each pair of node variables in ϕ and associate every
clause of the corresponding disjunction with one possible value for N .
Now when evaluation of an or statement suspends, we can distribute
over the remaining values of its associated choice variable. Thus, choice
variables allow us to control the enumeration of solutions.

We can do even better than this, however, if we split the single
four-way disjunction into four two-way disjunctions:
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Quantifiers Readings (a) (b)
3 5 200 ms/6 failure 100 ms/0 failure
5 42 2.69 s/78 failure 2.63 s/0 failure
7 168 5.98 s/229 failure 6.24 s/0 failure

Figure 1.6: Runtimes of the dominance constraint solver for some prob-
lem sizes (a) using the four-way, (b) using four two-way or propagators.

(1.8)

N ∈ {1, 2, 3, 4} ∧ or(N=1 ∧ X=Y, N 6=1 ∧ [[ X 6=Y ]])
∧ or(N=2 ∧ [[ X�

+Y ]], N 6=2 ∧ [[ ¬X�
+Y ]])

∧ or(N=3 ∧ [[ Y �
+X ]], N 6=3 ∧ [[ ¬Y �

+X ]])
∧ or(N=4 ∧ [[ Y ⊥X ]], N 6=4 ∧ [[ ¬Y ⊥X ]])

The declarative semantics of (1.7) and (1.8) are the same, but (1.8)
propagates more strongly. The operational semantics of the disjunctive
propagators is to block until all but one alternative are inconsistent;
and it’s clearly easier to make a single alternative inconsistent than
three.

Results The constraints so far can be taken over almost verbatim
as a real Oz program for enumerating solutions of a dominance con-
straint. All that’s missing is an input procedure that takes a dominance
constraint ϕ as defined in Section 4.1 and spawns the treeness propa-
gators (1.8) and, for each atomic constraint in ϕ, the corresponding set
constraint. Now we only have to distribute over the choice variables.

Running this implementation on many examples exhibits quite rea-
sonable runtimes for enumerating solutions. Times for three examples
with three, five, and seven scope-bearing elements (quantifiers, nega-
tion, sentence-embedding verbs, etc.) are shown in Fig. 1.6.1

It is interesting to observe that the propagators (1.8) are indeed
much stronger than (1.7): In fact, they restrict the search space so
strongly that there is no failure at all! This is also illustrated by Fig.
1.7, which shows the search tree for sentence (iii): All the leaves are
(originally green) diamonds indicating success, and there are no (orig-
inally red) boxes indicating failure. However, the run times of the
two implementations don’t differ significantly; there is a more general
trade-off between strong propagators and cheap propagators: What is

1The sentences were (i) Two researchers of every company work on a program,
(ii) Some researchers of every departement of most companies see most samples of

every product, (iii) Every mother says most researchers of a company do not see

every sample of a professor.
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Figure 1.7: A failure free search tree.

gained by making the search tree small can be lost by doing more work
in each of its nodes.

4.3 Discussion

What we have just done is to encode trees using tuples of sets and
dominance constraints as finite set constraints. This was useful because
there are implementations of set constraints with very good propagation
(which, incidentally, are even supported on a high level of abstraction
by some programming languages). By distribution, we could enumerate
all models; but as we have indicated above, propagation alone can be
useful.

Propagation really made a difference in avoiding combinatorial ex-
plosion. The stronger propagators could even avoid blind search al-
together in the examples in Fig. 1.6; distribution was only necessary
to distinguish different readings. This happens for all examples from
scope underspecification that we have tried. It is a very surprising re-
sult because the satisfiability problem of dominance constraints is NP-
complete (Koller et al., 1998), and it is characteristic of NP-complete
problems that there must be some failure. Recently, it has become clear
that the dominance constraints that are really needed for scope are all
in a subclass called normal ; normal dominance constraints were shown
to have a polynomial satisfiability problem by Koller et al. (2000). This
does not say anything about the behaviour of the CP implementation;
but it seems that the propagators (1.8) are so strong that they exploit
the polynomial complexity automatically.
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Figure 1.8: Dependency tree of Den Mann liebt die Frau.

5 Application: Dependency Parsing

In this section, we show how we can apply CP to dependency pars-
ing, following (Duchier, 1999). After a brief introduction to the precise
flavour of dependency grammar we use and a definition of a tiny gram-
mar of German, we show how to axiomatize the valid dependency trees
of a sentence by finite set constraints. Parsing, then, reduces to solving
these constraints. The resulting implementation handles many infer-
ences by constraint propagation: For instance, we show in detail how
the parser can do the inference from Section 2.4.

5.1 Dependency Grammar

Dependency grammar (Tesnire, 1959; Hudson, 1990) is a grammar for-
malism which is alternative to phrase structure or categorial grammar.
Unlike phrase structure grammar. Instead, the nodes in the syntax tree
are simply the words of the sentence, and the edges stand for direct de-
pendency relations between words.

By way of example, consider Fig. 1.8, the dependency tree of the
German sentence Den Mann liebt die Frau (“the woman loves the man”,
as in 1.4). At the root of the tree is the finite verb liebt. It has two
dependents, namely the subject Frau and the object Mann. Each of
these has one dependent – the determiners die and den, respectively.
We label the edges with roles such as det , subject , object . The roles
are taken from a set Roles ; this set is divided into complement roles
Comps and modifier roles (e.g. adj for adjective modification).

Dependency grammar is particularly interesting for languages with
free word order. While phrase structure grammars require special
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string : den
cats : det
agrs : 〈masc, acc〉
roles : ∅













string : Mann
cats : n
agrs : 〈masc, nom/acc〉
roles : {det}













string : Frau
cats : n
agrs : 〈fem,nom/acc〉
roles : {det}













string : die
cats : det
agrs : 〈fem,nom/acc〉
roles : ∅













string : die
cats : relpro
agrs : 〈fem,nom/acc〉
roles : ∅













string : liebt
cats : vfin
agrs : 〈 ,nom〉
roles : {subj, np acc}







Figure 1.9: Some lexical entries.

mechanisms for making word order more liberal, word order in de-
pendency grammars is totally free to begin with. Their problem is
not to allow more liberal word orders, but to exclude ungrammatical
ones. Constraints on word order that tackle some problems that are
nontrivial for phrase structure grammars can be integrated into the
axiomatization we present below, but we can’t go into details here.

5.2 An Example Grammar

A dependency grammar is built from sets of strings, roles, categories,
and agreement tuples. It consists of a set of lexicon entries e, for each
of which it defines a string string(e), a set of categories cats(e), a set
of agreement tuples agrs(e), and a set of roles roles(e) that must be
filled by dependents. An example for a tiny lexicon fragment is given
in Figure 1.9. We use 〈 , nom/acc〉 as shorthand notation for the set
of all agreement tuples that have arbitrary gender and nominative or
accusative case.

In addition, the grammar defines a role constraint Γρ for each role
ρ, which must be satisfied for any two nodes in the dependency tree
that are linkes by a ρ-edge. For example, objects must be nouns in
accusative case that depend on a finite verb:

Γobject(w, w′) =def cat(w)=vfin ∧ cat(w′) = n ∧ agr(w′) ∈ 〈 , acc〉

As another example, a determiner must agree with the noun it depends
on and be the first word in the yield of the noun. The yield of a word
is the set of all words in the sentence that can be reached by traversing
any number of dependency edges.

Γdet (w, w′) =def cat(w′)=det ∧ agr(w)=agr(w′)
∧ w′ = min(yield(w)).
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Finally, the grammar can define global word order constraints. We
ignore these in this presentation.

5.3 Translation to Set Constraints

Now we encode dependency parsing using set constraints. As in Section
4, we encode a (dependency) tree using sets of nodes. We impose a finite
set constraint whose models correspond to valid dependency trees of
the input sentence. Parsing, then, reduces to finding values for the set
variables.

Preliminaries

First of all, we pick unique numbers for all syntactic categories, roles,
and agreement tuples. We encode the words in the sentence (i.e. the
nodes of the dependency tree) by their linear positions. Let’s say that
Nodes denotes the set of all these positions. In this way, we only need
to talk about integers and sets of integers. Each position corresponds to
one node in the dependency tree. We associate with every node w the
finite domain variables cat(w) (the category of w) and agr(w) (agree-
ment); these variables are constrained to be encodings of categories and
agreement tuples, respectively. In addition, we associate the finite set
variables roles(w) (role labels of edges starting at w), mothers(w) (set
of mothers of w), for each role ρ ∈ Roles, ρ(w) (set of daughters of w
via a ρ-labeled edge), and finally daughters(w) (set of daughters of w
via any edge), all of which are constrained to be subsets of Nodes . We
can access the word at position w via the variable String(w).

Lexicon

First, let’s connect the nodes to the lexicon. We associate with every
word s a sequence Lex (s) = 〈e1, . . . , ek〉 of possible lexical entries. A
lexical entry is a record defining the entries cats (possible categories),
args (possible arguments), and roles , as above. (Note that nodes have
FD-valued features agr , cat , whereas lexical entries have set-valued fea-
tures agrs , cats.) Now for each node w, we introduce two new variables
Nw and Ew. Nw will denote the index of the lexical entry in Lex (s)
that is actually used in w, and Ew is this lexical entry itself (a record).
Nw and Ew should be related by a selection constraint. Selection con-
straints are only defined on sequences of set variables, but we can use
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the pointwise selection constraints:

cats(Ew) = 〈cats(e1), . . . , cats(ek)〉[Nw]
agrs(Ew) = 〈agrs(e1), . . . , agrs(ek)〉[Nw]
roles(Ew) = 〈roles(e1), . . . , roles(ek)〉[Nw]

Now the connection between nodes and lexical entries can be axioma-
tized in the following way:

cat(w)∈cats(Ew)
agr(w)∈agrs(Ew)

roles(w) = roles(Ew).

Well-formedness

Now that we know where each node gets its features from, let’s impose
constraints on the well-formedness of a dependency tree. First of all,
we have to ensure proper valencies. For one, we must make sure that
whenever a certain role ρ is in the roles set of a node w, it is realized
by a daughter, and vice versa:

equiv(|ρ(w)|>0, ρ∈roles(w)).

On the other hand, every complement of a node must be realized by
at most one other node. (There is no such restriction for modifiers.)
That is, for every ρ ∈ Comps, we have the constraint

0 ≤ |ρ(w)| ≤ 1.

To express that the models really encode trees, we say that every
node except for the unique root has exactly one mother and that there
are no cycles. First, we introduce a single new FD variable root for
the identity of the root node of the dependency tree. We define mothers
via the mothers(w) and daughters(w) variables introduced above. A
daughter is a daughter via an arbitrary edge,

daughters(w) = ∪{ρ(w) | ρ ∈ Roles, w ∈ Nodes}

and mothers is the left inverse relation of daughters :

equiv(w∈mothers(w′), w′∈daughters(w)).

Uniqueness of mothers is axiomatized as follows:

0 ≤ |mothers(w)| ≤ 1
∧ equiv(|mothers(w)|=0, w = root).
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Finally, every node is either a daughter or the root:

Nodes = {root} ]
⊎

ρ,w

ρ(w).

To axiomatize cycle-freeness, we first associate each node w with
FS variables yield(w) and yield !(w). The yield of a node w is the set
of nodes (including w) which can be reached from w by traversing any
number of dependency edges. The set of this nodes is what yield(w)
should denote; yield !(w) is the irreflexive counterpart. yield! can be
axiomatized by using selection constraints, but we skip this here for
lack of space. What we’re interested in is that we can impose the FS
constraint

yield(w) = {w} ] yield !(w)

and obtain both the definition of yield and cycle-freeness (w is not a
member of its own irreflexive yield).

Finally, each pair of nodes that is connected by a ρ-labeled edge
must satisfy the role constraint Γρ, as we said in Section 5.2. We
model this by requiring that for all nodes w and w′ and for all roles ρ,

imply(w′∈ρ(w), Γρ(w, w′)).

Due to the implementation of imply, this constraint acts as a propagator
in both directions: If w′ ∈ ρ(w), it will impose the role constraint
Γρ(w, w′); and once Γρ(w, w′) turns out to be inconsistent, it infers
that w′ 6∈ ρ(w).

Putting It Together

We have now axiomatized encodings of trees (this time, dependency
trees) using set constraints; these constraints enforce that the trees are
well-formed trees for the given sentence and conform to the grammar.
As in Section 4, the axioms essentially give us an actual Oz implemen-
tation.

This time, distribution will enumerate possible parses of the sen-
tence according to the grammar. Distribution is over the values of
the mothers variables, the lexicon selection variables Nw, and the role
variables ρ(w). That is, we need to distribute both over FD and FS
variables.

5.4 Example

To conclude the exposition of the dependency parser, let’s discuss the
sentence (1.4), repeated below, from Section 2.
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(1.9) Den
the(acc)

Mann
man

liebt
loves

die
the(nom/acc)

Frau.
woman

‘The woman loves the man.’

The complete (unique) dependency tree for this sentence is in Fig.
1.8. This tree can be derived purely by propagation. Below, we sketch
the propagation steps that the actual implementation would perform.
We skip some details for better readability, but all the missing details
can in principle be filled in from constraints in this section.

First, since Frau requires a det-complement, the set det(Frau) is a
singleton. It can’t contain Frau, Mann, or liebt, because the categories
of these words violates the role constraint for det. Neither can it be den,
which doesn’t agree with Frau. This means that det(Frau) = {die}.
Now the det role constraint tells us that the lexical entry we must pick
for the die is the determiner one. We can derive that the determiner
of Mann is den and that hence, Mann has accusative case, in a similar
fashion.

Furthermore, the two sets subject(liebt) and object(liebt) must be
singletons (since liebt requires both roles) and can’t contain liebt, den,
or die (which have the wrong categories). We have just inferred that
Mann has accusative case, so it can’t be a member of subject(liebt), as
this would violate the subject role constraint; so the value of subject(liebt)
must be {Frau}. This disambiguates the case of Frau (and of die) to
nominative, which in turn excludes Frau from membership in object(liebt);
so object(liebt) must be {Mann}.

An interesting computation based on selection constraints takes
place for the (seemingly simpler) sentence (1.10).

(1.10) Die
the(nom/acc)

Frau
woman

liebt
loves

den
the(acc)

Mann.
man

‘The woman loves the man.’

In order to derive that den is the determiner for Mann, we must
exclude die from det(Mann). We do this by reasoning about agree-
ment; but the agreement of die is defined by the lexical entry, and we
don’t know at first which lexical entry we’re going to use. However,
both possible lexical entries contain the same agreement information.
So the constructive disjunction provided by the lexical selection con-
straint will be able to assign this common information to die, without
even having to decide which lexical entry to use.
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5.5 Discussion

We have encoded dependency parse trees using sets and dependency
grammars plus general well-formedness conditions as constraints on
these sets. The grammar is encoded in the lexicon, role constraints,
and in word order constraints that we didn’t discuss.

The process of dependency parsing as presented is fundamentally
different to traditional chart parsing. A chart parser generates pos-
sible (partial) parse trees from smaller ones. Along the way, it may
turn out that some of the generated possibilities can’t contribute to a
parse after all; those must be discarded. The dependency parser pre-
sented here doesn’t generate trees; it configures them from a given set
of nodes. It accumulates as much information about the structure of
the tree by propagation as possible before distributing choices. (Local)
ambiguities are reflected as undetermined variable values and modeled
with different types of constraints; e.g., attachment ambiguities with
FS constraints (values of the mothers(w) variables), agreement with
FD variables, and lexical ambiguities with selection constraints.

In practice, it turns out that the parser is very efficient when using
a small but interesting grammar of German; again, it produces search
trees with few if any failures. However, syntactic coverage is far away
from what is available for more widely used grammar formalisms (say,
LFG, HPSG, TAG). The development of a larger-scale grammar and
exploration of parsing times on this grammar are important lines of
future work. Another interesting problem is to see to what extent ideas
from this implementation carry over to other grammar formalisms. A
start in this direction is (Duchier and Thater, 1999), which presents a
parser for D-Tree Grammars (Rambow et al., 1995), a variant of TAG.

6 Conclusion

In this paper, we have discussed the basic ideas of constraint program-
ming and argued that it can be useful for applications in computational
linguistics. Constraint programming is an approach to combinatorial
problems that attempts to reduce the size of the search space by con-
straint propagation. Put another way, it prefers model elimination over
model enumeration. So far, the main applications of constraint pro-
gramming in computational linguistics concern the treatment of ambi-
guities; local ambiguities, which occur only in intermediate processing
steps, can often be cheaply disambiguated by propagation alone.

The idea of propagation is extremely natural. In fact, there are
probably very few pure generate-and-test programs that do not “prop-



Constraint Programming in Computational Linguistics / 25

agate” even a little between case distinctions. What constraint pro-
gramming can offer here is a more general framework that allows a
clean specification of propagators. Some of the concrete implementa-
tion ideas in this paper have been developed independently elsewhere
as well. For instance, Maxwell and Kaplan (1991) propose a treatment
of disjunction that employs something very much like choice variables.

We have presented two examples from computational linguistics to
which constraint programming has been applied successfully: scope
underspecification with tree descriptions and parsing for dependency
grammars. Our intention is to encourage computational linguists to
look into constraint programming for their own needs. We are only
beginning to understand what characterizes a problem where constraint
programming can be more useful than traditional methods (say, charts);
but the examples suggest that it can indeed allow elegant, efficient
solutions to old problems.

A situation that constraint programming cannot deal with very well
(yet) is when new objects must be created dynamically. Many exist-
ing data structures and algorithms in computational linguistics rely on
this; examples are phrase structure parsers, which create nonterminal
nodes as they go along, and all forms of generation algorithms. An-
other interesting question is if, and how, constraint programming can
be brought together with statistical methods. This is as unclear for
constraint programming as for any other logic-based method. Both
questions are open problems.
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