
Situated Simpli�cationAndreas PodelskiMax-Planck-Institut InformatikIm StadtwaldD-66123 Saarbr�ucken, Germanypodelski@mpi-sb.mpg.de Gert SmolkaProgramming Systems LabGerman Research Center for Arti�cial Intelligence (DFKI)Stuhlsatzenhausweg 3D{66123 Saarbr�ucken, Germanysmolka@dfki.uni-sb.deAbstractTesting satisfaction of guards is the essential operation of concurrent con-straint programming (CCP) systems. We present and prove correct, forthe �rst time, an incremental algorithm for the simultaneous tests of en-tailment and disentailment of rational tree constraints to be used in CCPsystems with deep guards (e.g., in AKL or in Oz). The algorithm is pre-sented as the simpli�cation of the constraints which form the (possiblydeep) guards and which are situated at di�erent nodes in a tree (of arbi-trary depth). The nodes correspond to local computation spaces. In thisalgorithm, a variable may have multiple bindings (which each representa constraint on that same variable in a di�erent node). These may berealized in various ways. We give a simple �xed-point algorithm and useit for proving that the tests implemented by another, practical algorithmare correct and complete for entailment and disentailment. We formulatethe results in this paper for rational tree constraints; they can be adaptedto �nite and feature trees.
This paper has appeared in Theoretical Computer Science, volume173, pages 209{233, February 1997.

1

1 IntroductionOne idea behind concurrent constraint programming (CCP) is to base the satis-faction of guards (which is the condition driving the synchronization mechanism) onconstraints. In this model, a constraint store is connected with several nodes �. Eachof them is associated with a constraint '� (its guard) and with a guard check. Theguard check consists of the tests of entailment and disentailment of '� by the con-straint store. (If one of the two tests succeeds, an action may be triggered from thatnode.) The constraint store grows monotonically; upon each augmentation, the testsare repeated until one of the two tests succeeds. In the deep-guard model, each con-straint '� may itself be a constraint store which also grows monotonically and whichis itself connected with \lower" nodes, and so on. That is, at each instance one has atree of nodes (or, local computation spaces) with constraints; a constraint in a node �is visible in all nodes lower than �. The problem is to determine which of these nodesare entailed [disentailed] by their parent node. At every next instance, this test will berepeated for a tree with augmented constraint stores in the nodes. Thus, an algorithmimplementing the test has to be incremental. In this paper, we �rst de�ne formally thegeneral scheme of such an algorithm for an abstract constraint system as situated sim-pli�cation. We then give a concrete algorithm for the case of constraints over rationaltrees in two di�erent presentations, a high-level one based on �xed-point iteration anda more concrete one with more re�ned control and with implicit data representation.We prove the correctness of this algorithm in both presentations, relying on our conciseformal account of the logical properties of rational-tree constraints.CCP [14] comes out of concurrent and constraint logic programming, which originatedwith the Relational Language [4] and with Prolog-II [5], respectively. The computationmodel of concurrent logic programming languages [15] is based on committed-choice,a particular guard operator. In [10], the commit condition was analyzed as logicalentailment. (The delay mechanism in Prolog-like languages as MuProlog [12, 11] andfunctional residuation in LIFE [1, 2] are based on entailment as well.) AKL [7] andOz [8, 9] are two practical systems providing both for concurrent (as in multi-agent) andconstraint logic programming in one uniform framework. Here, deep guards constitutethe central mechanism to combine processes and (\encapsulated") search for problem-solving.The �rst formal account (with proof of correctness) of an incremental algorithm forthe simultaneous tests of entailment and disentailment is given in [3], for
at guardsand a constraint system over feature trees. This algorithm is an instance of a generalscheme called relative simpli�cation. An abstract machine for the check of
at guardsfor constraint systems over trees is given (and proven correct) in [16]. It re
ects thepresent implementations in AKL and Oz. The algorithm is guard-based in the sensethat for every guard to be revisited (i.e., whose test is resumed), the entire localbinding environment is re-installed (and removed afterwards, if the test still suspends).Its on-line complexity is quadratic, whereas it is quasi-linear for the Beauty&Beastalgorithm given in [13]. That algorithm is variable-based in the sense that the bindingsare installed for each variable independently and only when needed. The bindingsare indexed by the guard; thus, they may remain being installed (i.e., this avoids re-installing/removing the local binding environment each time the test of the guard isresumed). The algorithm given in this paper picks up that idea, namely of indexingthe bindings of the same variable by the di�erent nodes (where each of the bindingsrepresents a constraint on the variable in a di�erent node). This provides for a high-level presentation. It now remains a matter of implementation how a variable's multiplebindings are realized. This may be done, for example, by re{installing/removing theguard environment as mentioned above, or by using lookup tables, which seems more2

1 X=f(a Y)2 or3 Z in X=f(Z Z)4 or5 Y=Z6 []7 Y=b8 ro9 []10 Y=c11 ro
�: X = f(a; Y)

�1: X = f(Z;Z) �2: Y = c
1: Y = Z
2: Y = bFigure 1: Oz program and corresponding tree of 5 computation spacese�cient.In this section, we have stated the problem informally and put it into a general context.In Section 3, we formalize it and give the general scheme called situated simpli�cationfor incremental algorithms solving the problem over an abstract constraint system. Be-fore that, however, we discuss a motivating example informally, in Section 2. Section 4lists those properties that are important for the tests of satis�ability and entailmentover rational trees and that we need here. We give their proofs in a concise way. Wethen present a concrete situated simpli�cation algorithm for constraints over rationaltrees in two di�erent ways. The �rst one, in Section 5, is high-level in the descriptionof its control strategy (which is by �xed-point iteration) and of its data representation.The second one, in Section 6, avoids redundant computations and data representationsas much as possible using a task stack and using a store with implicit representationsof constraint conjuncts. We close with a conclusion section.2 Motivating exampleThe execution of the Oz program given in Figure 1 will build up a tree of 5 computationspaces. The constraints are equations between terms, interpreted over the domain ofrational trees. The e�ect of line 1 is to put the constraint X = f(a; Y) into the(\global") constraint store at the root of the tree; we note this node �. Lines 2 to 11code a disjunction consisting of two disjuncts. These have to be tested simultaneouslyfor entailment and disentailment (the disjunction is suspended until one of the disjunctsis entailed or disentailed, i.e., \determined").1 The tests of the two disjuncts are donein the two local computation spaces �1 and �2 which are directly below �.The constraint X = f(a; Y) does not determine the constraint Y = c. That is, theconstraints in the computation spaces above �2 (here, only �) do not determine theconstraint in �2 (which forms the second of the two disjuncts, given in line 10). Thismight change during the execution of other, not shown parts of the program, say, ifY = c was added to � (then �2 would be entailed), or if Y = d was added to � (then�2 would be disentailed).The �rst of the two disjuncts (coded by lines 3 to 8) is a conjunction of the constraintX = f(Z;Z) and another disjunction. The variable Z is quanti�ed existentially overthis conjunction, or: �1 is the \home" of Z (whereas � is the home of X and Y). The1In the following, we will use \determine" as a synonym of \entail or disentail."3

computation space �1 is above the two computation spaces
1 and
2 for the tests ofthe disjuncts Y = Z and Y = b, respectively.Now,
2 is disentailed since the conjunction X = f(a; Y) ^ X = f(Z;Z) of the con-straints in computation spaces above
2, here �1 and �, disentails the constraint Y = b.On the other hand,
1 is entailed since the conjunction X = f(a; Y) ^ X = f(Z;Z)of the constraints in computation spaces above
1, here also �1 and �, entails theconstraint Y = Z.Finally, we observe that �1 itself is not determined. The constraint X = f(a; Y)does not determine 9Z X = f(Z;Z). This might change, for example, if the constraintY = a was added to �. This last case touches the issue of detecting \implicit equalities,"here, between the �rst and second argument of the term f(a; Y).How does our algorithm perform a test on the �ve computation spaces? It will simplifythe constraint in each computation space to a new constraint, hereby taking into ac-count the constraints in all the computation spaces above. This simpli�ed constraintsignals (by its syntactic form) whether the computation space is entailed or disentailedor neither.For example, the simpli�ed constraint in
1 is > (for true) and thus signals entailment(> is a special case of a constraint signaling entailment). The one in
2 is ? (for false)and thus signals disentailment. The one in �1 is Z = Y ^ Y = a and, since it binds avariable (here Y) from a computation space above, it does not determine �1. (It wouldbe further simpli�ed to Z = Y if the constraint Y = a was added to �, and this wouldsignal entailment; note that 9Z Z = Y is equivalent to >.) Finally, the simpli�edconstraint in �2 would be Y = c and thus signals \not determined." (It would befurther simpli�ed to ? if Y = a was added to �, and then signal disentailment.)Intrinsic di�culties of tree-ordered constraint stores. The algorithm will com-pute with suitable representations of the constraints, namely by bindings on variables.These representations must specify to which node the binding belongs. Also, theremight be several bindings on the same variable (in the example, two on X and three onY). This will be handled by allowing multiple bindings and by indexing the bindingswith the nodes. For a �xed node, the algorithm must accumulate the constraints inall the computation spaces above; i.e., it must represent their conjunction. What ifthere are several bindings on the same variable in this conjunction (in the example,if we take either of
1 or
2 as the �xed node, there are two bindings on X)? Couldthey be contradictory? Which one to choose? Also, if the test on a node dependson all nodes above it, then this means that each modi�cation of the constraints of anode (by incremental adding of a conjunct) concerns potentially all the nodes belowit. That is, their suspending tests may have to be resumed. Furthermore, acyclicityof bindings going through nodes above and below has to be re-checked. An additionaldi�culty, algorithmically and for proving correctness, comes from the fact that for themanipulation of constraints over rational trees, bindings previously considered mustbe memorized in oder to avoid in�nite loops and in order to prove the entailment ofthose bindings (as in the proof that X = f(Y), Y = f(X) and Z = f(Z) togetherentail X = Z; here, the repeated encounter of X = Z upon iterative application of thedecomposition rule indicates the entailment of X = Z).3 Situated Simpli�cationIn this section we will introduce some notions whose context is as follows. The algorithmto be presented in this paper is an instance of a new general scheme (called situated4

simpli�cation) which is parameterized by the constraint system. An algorithm in thisscheme will take a constraint tree as input. For each of the nodes of the constraint tree,the algorithm will determine whether the node has one of the two properties which wewill introduce below, called inconsistent or entailed , or neither of them. It will do thisby transforming the constraint tree into a normal one.We assume a constraint system, i.e., a �rst-order theory � (the theory can be given asthe set of all sentences valid in a given structure; e.g., of rational trees) and a set Con of�rst-order formulae called constraints. The set Con must be closed wrt. conjunction.2The set of variables is Var. For ' 2 Con, free var(') is the set of all free variables of '.We also assume a �nite tree-ordered set3 Nodes whose elements we refer to as nodes(or, local computation spaces). We note the tree-order \�". We read � < � as \� isabove �" (which means, � is closer to the root in the tree order). In the notation inthis paper, we will try to keep the order � � � �
 when we choose letters �; �;
 toname nodes.Finally, we assume a function home : Var 7! Nodes which assigns each variable x onenode � as its \home." We call the variables in home�1(�) the local variables of thenode �. We often write them in a tuple �x�. Thus,�x� = flocal variables of �g = home�1(�):The variables x with home in nodes strictly above � are the global variables of �. Thus,fglobal variables of �g = [fhome�1(�) j � < �g:We may use \global" and \local" referring only implicitly to a �xed node �. The localand the global variables are the ones \visible in �." Thus,fvariables visible in �g = [fhome�1(�) j � � �g:The set Nodes and the assignment home of variables to their \home" nodes are �xedthroughout the rest of this paper. We are interested in labelings of the nodes by con-straints (hence the name \constraint tree") which respect the partition of the variablesaccording to their home nodes in the following sense.We de�ne that a constraint tree T is a mappingT : Nodes 7! Con; � 7! '�such that the free variables of each constraint '� are visible in its home node �, i.e.,free var('�) � [fhome�1(�) j � � �g:We will write T also as the sequence ('�)�2Nodes.We refer to the constraint '� as the \constraint situated in �." We de�ne the \contextof �" as the constraint '<� which is the conjunction of the constraints situated innodes strictly above �; i.e., '<� =[f'� j � < �g:2As usual, we identify a conjunction with the multiset of its conjuncts (and ^ with [) inour notation. Thus, X = t 2 ' means that X = t is a conjunct in ', and Sf' j ' 2 Mg isthe conjunction of all constraints ' in the set M .3A tree-ordered set is isomorphic to a pre�x-closed subset of some free monoid, where \�"corresponds to the relation \is pre�x of". 5

The constraint \visible in �" is noted '�� and de�ned accordingly.The node � is inconsistent (or, disentailed) if '�� is unsatis�able, which is the same as� j= '<� ! :9�x�'�:Note that this may also be expressed by � j= '<� ! (9�x� '� $?).The node � is entailed if (1) it is consistent and (2) the constraint situated in � isentailed (modulo local variables) by the context of �. Condition (2) is formally:� j= '<� ! 9�x�'�:Note that condition (2) may also be expressed by � j= '<� ! (9�x� '� $ >).The constraint tree ('�)�2Nodes is normal if it satis�es conditions 1. and 2. below.1. If � is inconsistent, then the constraint '� is the constraint false.2. If � is entailed, then the constraint 9�x� '� is equivalent to true.Formally, this means the same as the following.1. If � j= '<� ! :9�x� '�, then '� = ?.2. If � j= (9)'<� and � j= '<� ! 9�x� '�, then � j= 9�x� '�.Two constraint trees are equivalent if for every node �, the two constraints visible in� in each constraint tree are equivalent. Formally, for two constraint trees ('�)�2Nodesand ('0�)�2Nodes, if � j= '�� $ '0��:Note that the two constraint trees have the same set of nodes, namely Nodes, which is�xed (as is the home mapping on variables).We name situated simpli�cation a procedure which transforms a constraint tree intoan equivalent normal constraint tree.Situated Simpli�cation implements the simultaneous tests of entailment and disentail-ment of '� by the context of � for every � 2 Nodes.4 Rational TreesWe assume a signature containing the function symbols (or constructor symbols) whichwe note f , g, h, a, b, c, etc. (we assume the existence of at least two di�erent symbolsbut nothing else on the signature; in particular, it may be �nite or in�nite). We callconstructions the terms of the form f(�x) and note Struct the set that they form. Here, �xdenotes an ordered tuple (x1; : : : ; xn) of length n according to the arity of the functionsymbol f , with pairwise di�erent variables x1; : : : ; xn.The set of constraints Con is the set of possibly existentially quanti�ed conjunctions' of equations between variables x 2 Var and terms t 2 Var [Struct (the restrictionto terms of depth at most one is for presentation only; it is, of course, not a properrestriction). Formally, we have the following abstract syntax for constraints.4' ::= x = y j y = f(�x) j 9x' j '1 ^ '2 j > j ?4We use = for both the logical equality symbol and the meta-level identity; no ambiguitywill arise. 6

A tree � may be represented as a set of pairs (w; f) where the function symbol f isthe labeling of the node with the path w 2 f1; 2; : : :g?. The empty path " refers to theroot of the tree. We write the free-monoid concatenation of paths v and w simply vw;we have "w = w" = w.The set t must satisfy several conditions in order to be a tree: The labeling is unique,the root is always a node of t , and the direct descendants of each node conform to thearity of its function symbol (i.e., (w; f); (w; g) 2 t implies f = g), ("; f) 2 t for somefunction symbol f), and if (w; f) 2 t then (wi; fi) 2 t function symbol fi i� 1 � i �arity of f).The tree � is rational i� it has only �nitely many subtrees, which are the trees w�1� =f(v; f) j (wv; f) 2 �g for some path w.The application of a function f to trees t1; : : : ; tn yields the treef(t1; : : : ; tn) = f("; f)g [f(iw; g) j (w; g) 2 ti; i = 1; : : : ; ng:Given a constraint ', we say that the variable x is determined if ' contains an equationbetween x and a construction. A constraint ' = fxi = fi(�ui) j i = 1; : : : ; ng where thedetermined variables x1; : : : ; xn are pairwise di�erent is called a linear system.>From now on, � is the theory of rational trees over the given signature of functionsymbols. We will use the following three facts about trees, the �rst one for the consis-tency test and the other two for the entailment test. The �rst one is the characteristicproperty of rational trees (cf., for example, [6]).Fact 1 A linear system ' is satis�able; i.e., � j= (9)'.The �rst fact is a logical consequence of the next one. (On the other hand, given aproof of the �rst fact, the second fact could have been proven from the �rst. Namely,the value of a non-determined variable never contains an occurrence of the value of adetermined variable and, thus, may be chosen arbitrarily in any solution for '.)Fact 2 For all values of the non-determined variables in a linear system 'there exist values for its determined variables x1; : : : ; xn such that ' holds, i.e.,� j= (8) 9(x1; : : : ; xn)'.Proof. Given ', we de�ne the relation x ;w y (\x leads to y") by: x ;" x, and ifx ;w y and y = f(y1; : : : ; yk; : : : ; yn) 2 ' then x ;wk yk. We extend any valuation �de�ned on the non-determined variables of ' by setting�(x) = f (w; f) j x;w y; y = f(�u) 2 'g [f(wv; f) j x;w y; y is non-determined; (v; f) 2 �(y)g:For all determined variables x, every subtree of �(x) is either of the form w�1�(x) =�(z) where z is the variable occuring in ' such that x;w z, or it is a subtree of sucha �(z) for a non-determined variable z. Thus, �(x) is a rational tree, and � satis�es allequations x = f(�u) 2 '. qedThe next fact says when equations between determined variables are entailed.55This is a simple fact about rational trees, and �nite trees as well. It is orthogonal to thealgorithmic problem of the entailment test for rational trees which is caused by cycles in thedetermining equations. 7

Fact 3 The constraint ' entails the conjunction of variable-variable equations iffor every conjunct x = y of there exist determining equations x = f(u1; : : : ; um)and y = f(v1; : : : ; vm) in ' such that the variables uj and vj are equated in ' or in or they are the same variable (i.e., uj = vj 2 ' [or uj = vj for j = 1; : : : ;m).Proof. We �rst note that two rational (or in�nite, or �nite) trees �1 and �2 are equali� for all n they are equal up to depth n.6 Given a valuation � which satis�es ' (i.e.,�; � j= '), we prove, by induction over n,for all x = y 2 , �(x) and �(y) are equal up to depth n. (1)We assume (1) for n0 with n0 < n and x = y 2 . Then there exist x =f(u1; : : : ; um); y = f(v1; : : : ; vm) 2 ' as in the formulation of Fact 3. Thus, if n = 0then (1) holds. Otherwise, for j = 1; : : : ;m, uj = vj or uj = vj 2 ' or uj = vj 2 .In any of the three cases (in the last one by induction), �(uj) and �(vj) are equal upto depth n� 1, and hence, (1) holds for n. qed5 Fixed-Point AlgorithmIn this section, we will represent the two kinds of rational-tree constraints by bindings(either to a variable or to a construction) which are marked by the node to whichthe constraint belongs. We call the corresponding representation of a whole constrainttree a decoration. Then we will describe an algorithm which works by generatingmany new bindings (a lot of which will be redundant). Since it will never remove abinding (and not use new constructions), however, the termination follows from the�niteness of all possible bindings. The successive generations of bindings are justi�edby either the logical properties of equality, or by the fact that a constraint is visible inall nodes below the one to which it belongs, or by one logical property of the rational-tree constraint system (namely, the injectivity of function symbols). If there are nomore justi�ed generations of bindings possible, then the bindings (reduced to a non-redundant subset) represent a constraint tree which is normal (and, thus, exhibitswhich nodes are inconsistent or entailed). This follows from Theorem 1, which stateshow the bindings exhibit directly which nodes are inconsistent or entailed.We will next de�ne a representation for rational-tree constraint trees.A decoration D is a labeling of nodes � by �nite relations �= � Var� (Var[Struct) suchthat all variables occurring in �= are visible in the node �. We write the relationshipas x �= y or x �= f(�u), respectively. For each node �, we de�ne its \context relation"<�= = [f �= j � < �g:A decoration D de�nes a constraint tree ('�)�2Nodes by '� = fx = t j x �= tg.For decorations, the notions of equivalence and of inconsistent (or of entailed) nodesand of determined variables are obtained by referring to the de�ned constraint trees.A decorationD is complete if for all variables x; y, constructions f(�u); f(�v) and nodes �,1. �= \ (Var � Var) is an equivalence relation,6Formally, one may de�ne the restriction of a tree � to depth n inductively byf(�1; : : : ; �m)j0 = f(a; : : : ; a) and f(�1; : : : ; �m)jn+1 = f(�1jn; : : : ; �mjn), for some constantsymbol a. 8

2. <�= � �=,3. x �= y, x �= f(�u) implies y �= f(�u),4. x �= f(�u), x �= f(�v) implies �u �= �v.Given any decoration D, each of the conditions above can be made to be satis�ed byadding pairs to the relations �= (which is an equivalence transformation on the de�nedconstraint tree). Going iteratively through the four conditions yields a monotonicallygrowing family of relations. Since for each �, �= is a subset of Var � (Var [Struct)ranging only over the variables and constructions occurring in D, the iteration reachesa �xed point in �nitely many steps (note our assumptions that each relation �= is �niteand that the �xed set Nodes is �nite). We have given an algorithm which proves thefollowing statement.Proposition 1 For every decoration D there exists a least complete decoration D0containing D (i.e., D � D0). Moreover, such a decoration D0 is equivalent to D.A complete decoration is interesting because it exhibits which nodes of the de�nedconstraint tree are inconsistent and which are entailed.Theorem 1 If D is a complete decoration, then:1. The node � is inconsistent i� x �= f(�u) and x �= g(�v) and f 6= g for some variablex and constructions f(�u), g(�v);2. The node � is entailed i� � is consistent and the following two conditions hold.(a) If x is global and x �= f(�u) then there exists a variable y and a constructionf(�v) with x �= y and y <�= f(�v) (i.e., y is determined in the context of �).(b) If x and y are global and x �= y then either x <�= y or x <�= f(�u) and y <�=f(�v) for some constructions f(�u), f(�v) (i.e., both x and y are determinedin the context of �).Proof. Given a complete decoration and a node � �xed, we may construct a functionr : Var 7! Var such that (1) r(x) = r(y) i� x �= y, and (2) r(x) is local only if x islocal. That is, r assigns each variable a|with preference global|representative of itsequivalence class, the equivalence being �= \ (Var � Var). (We will make use of thepreference of a global over a local variable as the representative when we introduceequation 2.) The constraint'r� = fr(x) = f(r(�u)) j x �= f(�u)g [fx = r(x) j x �= r(x); x 6= r(x)gis equivalent to '� (in the empty theory, by the laws for equality),j= '� $ 'r�:If the condition in Statement 1 of the theorem holds, then clearly '� is unsatis�able.Otherwise, we can write 'r� in the form'r� = fx1 = f1(�u1); : : : ; xn = fn(�un)g [fxn+1 = yn+1; : : : ; xm = ymg (2)where the variables x1; : : : ; xm are pairwise di�erent. The �rst part is a linear systemand, by Fact 1, has a solution over rational trees. Again by the laws for equality, thissolution may be completed to be one for the second part too. This proves Statement 1.9

If the condition (a) in Statement 2 is violated, then '<� ^ x = g(�v) is satis�ableand disentails x = f(�u) and, hence, '�. If condition (b) is violated, then '<� ^ x =f(�u) ^ y = g(�v) is consistent and disentails x = y and, hence, '�. Thus, '<� does notentail '�.If conditions (a) and (b) hold, then Fact 3 says that all equalities between globalvariables in '� are redundant with respect to '<�. The equalities with at least onelocal, existentially quanti�ed variable are redundant too. Thus, '<� ^'� is equivalentto '<� ^ 'r�;local, where 'r�;local = fx = t 2 'r� j x localg:But Fact 2 says that 9�x�'r�;local is valid. This proves Statement 2. qedRemark. In the theorem above, Statement 2 holds with respect to �nite trees too.Thus, the algorithm can be adapted to �nite trees simply by adding the occurs-checkto the test of a node's consistency.In fact, the description above yields that if each of two constraints is satis�able over�nite trees (and hence, also over rational trees), then the entailment relation betweenthem is the same for �nite and for rational trees.The theorem above expresses that the �xed-point algorithm implements situated simpli-�cation. Namely, a complete decorationD can be assigned a constraint tree (�)�2Nodesas follows. If there exist x �= f(�u) and x �= g(�v) with f 6= g, then � = ?. Otherwise, � = 'r� � '<� � fx = y j x and y are determined in '<�g:The constraint tree thus de�ned is equivalent to the one de�ned by D and it is normal.We omit the tedious but straightforward proof.6 Practical AlgorithmWe will �rst de�ne an e�cient (i.e., non-redundant) representation for the equationsvisible in the nodes of a constraint tree and then investigate a \solved form" for such arepresentation, i.e., a form for consistent nodes exhibiting which of them are entailed.We next de�ne a representation of a constraint tree specifying the constraint tree as atriple of (yet) unsolved equations, solved ones and inconsistent nodes. Naturally, theoperational service of the practical algorithm is to \solve" such a representation of aconstraint tree, namely, to transform it into an equivalent one where all consistent nodesare represented by equations in solved form. We will �nally give such an algorithm andprove it correct.6.1 Sets of Situated BindingsA set of situated bindings B is a set of elements (x; �; t) 2 Var�Nodes� (Var[Struct),where x and the variables of t are visible in �, which satis�es the following conditions.1. (\No cycles on the same path")If �1; : : : ; �n � � and f(x1; �1; x2); : : : ; (xn; �n; xn+1)g � B, then x1 6= xn+1.2. (\No binding of global to local variable")If (x; �; y) 2 B and x is global, then y is global too.3. (\No two bindings of the same variable in the same node")If (x; �; s); (x; �; t) 2 B, then � = � and s = t.10

4. (\If two bindings of the same variable are on the same path, then the above oneto a construction and the lower one to a variable")If � < � and (x; �; s); (x; �; t) 2 B, then s 2 Var and t 2 Struct.A set of situated bindings B de�nes a constraint tree by '� = fx = t j (x; �; t) 2 Bgand thereby the notions of inconsistent and of entailed nodes.Thanks to the �rst condition above, the following de�nition is well-founded.7vderef(x; �;B) = � vderef(y; �;B) if there exists (x; �; y) 2 B with � � �,x otherwise.Note that thanks to condition 4 each (x; �; y) 2 B with � � � is necessarily unique.A set of situated bindings B de�nes a decoration (�=B)�2Nodes byx �=B y i� vderef(x; �;B) = vderef(y; �;B); andx �=B f(�u) i� (vderef(x; �;B); �; f(�u)) 2 B for some � � �:Note that this decoration satis�es the �rst two, but generally not the last two conditionsfor a complete decoration.We call a set B of situated bindings complete if the following two conditions hold.1. If (x; �; y); (x; �; f(�u)) 2 B and � � � then y �=B f(�u).2. If (x; �1; f(�u)); (y; �2; f(�v)) 2 B and x �=B y and �1; �2 � � then �u �=B �v.We now have the following characterization.Proposition 2 B is a complete set of situated bindings i� (�=B)�2Nodes is a completedecoration.Given a set of situated bindings B, we obtain B� by removing \secondary bindings"in B, i.e., B� = B � f(x; �; y) j exists (x; �; f(�u)) 2 B; � � �g:Theorem 1 and Proposition 2 immediately yield the following characterization of en-tailed nodes.Proposition 3 Given a complete set of situated bindings B, a node � is entailed i�all bindings (x; �; t) 2 B� are on local variables x only. All nodes are consistent.With respect to situated simpli�cation, the statement above means the following.Corollary 1 If B is a complete set of situated bindings, then B� de�nes an equivalentnormal constraint tree (with consistent nodes only).7Note that the function vderef always yields a variable (and never a construction). Thisallows us to express, in the de�nition of �=B , an \explicit equality" between two variables. (An\implicit equality" is one between two variables bound to equal constructions; e.g., betweenx and y when (x; �; f(�u)); (y; �; f(�u)) 2 B, or when (x; �; f(x)); (y; �; f(y)) 2 B, and so on.)11

6.2 Con�gurationsA con�guration is a triple (E;B; I) consisting of a multiset E of elements (x; �; t) 2Var�Nodes�(Var[Struct) (which we call situated equations), a set of situated bindingsB and a set I � Nodes of inconsistent nodes which never contains a node occurring ineither B or E and is downward closed (i.e., if � � � and � 2 I then � 2 I).A con�guration de�nes a constraint tree over rational trees by'� = � ? if � 2 I;fx = t j (x; �; t) 2 B [Eg otherwise.Given a con�guration, the notions of equivalence and of inconsistent and entailed nodesrefer to the de�ned constraint tree.We call a con�guration (E;B; I) normal if E = ; and B is a complete set of situatedbindings.The operational service to be provided by our algorithm is indicated by the followingcharacterization (namely, to transform a con�guration into a normal one).Proposition 4 Given a normal con�guration (B;E; I), a node � is1. inconsistent i� � 2 I, and2. entailed i� all variables x with a binding (x; �; t) 2 B� are local variables of �.The next remark says that the algorithm implements situated simpli�cation; it is areformulation of Corollary 1.Corollary 2 Given a normal con�guration (B;E; I), the equivalent con�guration(E;B�; I) obtained by removing secondary bindings in B de�nes a normal constrainttree.6.3 Normalization of Con�gurationsWe consider the procedure given in Figure 2.Starting with an initial con�guration (E0; B0; I0), each execution of the body of thewhile loop yields a new triple (Ei; Bi; Ii), for i = 1; : : : ; N where N � !. It might be auseful exercise for the reader to reformulate the algorithm using con�guration-rewriterules.It is important to note that the algorithm can start with any con�guration (and not justwith one where B and I are empty). The algorithm is to be used on-line, i.e., wherethe computation tree and the set of situated equations E are augmented incrementally.The algorithm is incremental since B and I grow then incrementally too.We will next explain some lines of the algorithm. In line 3, the result of vderef appliedto x is again a variable, by the de�nition of vderef. This variable might itself be boundto a construction. If the binding lies in �, line 10 will take care of that case, and line 14if the binding lies in a node � above �.If the term t is a variable, then its deref value is one too (again, by the de�nition ofvderef). Line 9 ensures that we don't bind a global to a local variable. This correspondsto condition 2. in the de�nition of a set of situated bindings in Section 6.1 (which playsa role for the entailment condition). 12

1 while E 6= ;2 choose (x; �; t) 2 E3 x := vderef(x; �;B)4 if t = y (i.e., t 2 Var) then5 y := vderef(y; �;B)6 if x = y then7 skip8 [] x 6= y then9 if x global and y local for � then swap(x,y) �10 for all (x;
; s) 2 B with � �
11 remove (x;
; s) from B, add (y;
; s) to E12 for all (y;
; z) 2 B with � <
13 if vderef(z;
;B) = x then remove (y;
; z) from B �14 if exists (x; �; s) 2 B with � < � then add (y; �; s) to E �15 add (x; �; y) to B16 �17 [] t = f(�u) (i.e., t 2 Struct) then18 if exists (x; �; g(�v)) 2 B with � � �, f 6= g then19 for all (z;
; s) 2 B [E with � �
20 remove (z;
; s) from B and E, add
 to I21 [] exists (x; �; f(�v)) 2 B with � � �, then22 add (�u; �; �v) to E23 [] not exists (x; �; g(�v)) 2 B with � � � (f = g or f 6= g), then24 for all (x;
; s) 2 B with � �
25 remove (x;
; s) from B and add to E26 add (x; �; f(�u) to B27 �28 �29 remove (x; �; t) from E30 endFigure 2: The algorithm transforming a con�guration into a normal one
13

Lines 10-11 ensure conditions 3. and the part of 4. which concerns the lower parts ofpaths through �.Lines 12-13 ensure that condition 1. holds even after line 15 has been executed. Namely,one has to avoid cyclic references which go through nodes above and below �. It isimportant to note that we can restrict ourselves to removing bindings (y;
; z) where� <
, and not � �
. This reason is that y is the result of applying the functionvderef(; �;B). Thus, there can not be a binding (y; �; z).In line 14, the term s is necessarily a construction (if it were a variable, the value ofvderef could not be x). Thus, condition 4. holds even after line 15 has been executed.We need, however, ensure that condition 1. of the de�nition of a complete set of situatedbindings will hold (which plays a role for the disentailment test).If the term t is a construction, then there are three cases. All of them are easy todeal with. (1) (Lines 18-20) The variable x is bound to a construction with a di�erentfunction symbol. Then the node � and all nodes below it are inconsistent. We needremove their bindings according to the de�nition of a con�guration in Section 6.2.(2) (Lines 21-22) The variable x is bound to a construction with the same functionsymbol. Then we need ensure that condition 2. of the de�nition of a complete setof situated bindings will hold. (3) (Lines 23-26) The variable x is not bound to anyconstruction (\x is free"). Then we only need to ensure conditions 3. and 4. in thede�nition of a set of situated bindings in Section 6.1.Example from Section 2. The initial con�guration (E0; B0; I0) which correspondsto the execution of the Oz program given in Section 2 is given by B0 = ;, I0 = ;, andE0 = f (x; �; f(y1; y)); (y1; �; a);(x; �1; f(z1; z)); (z1; �1; z);(y;
1; z); (y;
2; b);(y; �2; c) g:Note that we need introduce auxiliary (existentially quanti�ed) variables y1 and z1because constructions are of the form f(�x) where the variables in the tuple �x =(x1; : : : ; xn) are pairwise di�erent.We will choose (and remove) and add elements of E in a stack-like manner. That is,the algorithm will �rst move (x; �; f(y1; y)) and (y1; �; a) from E to B (using lines 23-26). Then it will remove (x; �1; f(z1; z)) from E and add (z1; �1; y1) and (z; �1; y) toB (after adding the two bindings temporarily to E, using lines 21{22).After applying vderef twice, the binding (z1; �1; z) gets installed in B as (y1; �1; y).Here, line 14 is applied; i.e., (y; �1; a) is put into E and eventually installed in B.After applying vderef on z, the binding (y;
1; z) is simply removed from E (usinglines 6-7). So the node
1 does not contain any bindings. Thus, in the constraint tree,the constraint in the node
1 is the empty conjunction, which is > (for true).Using lines 18-20, we remove the binding (y;
2; b) from E and add
2 to I .Finally, the binding (y; �2; c) is moved from E to B, by use of lines 23-26.Then, the outcome of the algorithm is the con�guration (B;E; I) where E = ;, I =f
2g, and B = f (x; �; f(y1; y)); (y1; �; a);(z1; �1; y1); (z; �1; y); (y1; �1; y); (y; �1; a);(y; �2; c) g:If we eliminate the existentially quanti�ed variables y1 and z1, then x = f(a; y) is theconstraint of the node �, z = y ^ y = a the one of �1, > the one of
1, ? the one of14

2, and y = c the one of �2. v Other examples. We will now give some examples inorder to motivate particular lines of the algorithm. Always, we assume � � � �
.The con�guration with B = f(x; �; f(x)); (y; �; f(y))g and E = f(x; �; y)g will leadto applications of lines 14-15 (add (x; �; y) to B and (y; �; f(y)) to E) and lines 21-22(add (x; �; y) to E) and lines 6-7 and then terminate. The node � is entailed sinceboth x and y are bound to constructions.The con�guration with B = f(x; �; f(u)); (x; �; y)g and E = f(y; �; g(v))g will lead toapplications of lines 14-15 (add (x; �; y) to B and (y; �; f(u)) to E and afterwards toB) and line 25 (move (y; �; f(u)) from B to E) and then to line 18 (add � to I).The con�guration with B = f(y; �; f(v)); (x; �; f(u))g and E = f(y; �; x)g wherehome(x) = � will lead to applications of line 9 (swap x and y), and then line 10-11 (remove (x; �; f(u)) from B, add (y; �; f(u)) to E). After adding (u; �; v) to E(by application of line 21) and then moving the binding from E to B, the algorithmterminates. The node � is not determined.The con�guration with B = f(w; �; u); (u; �; v)g and E = f(v; �; w)g will lead to anapplication of lines 12-13 (that is, (u; �; v) is removed from B) before the installationof (v; �; w) in B.Thus, if we put the two preceding examples together, the con�guration with B =f(y; �; f(v)); (x; �; f(u)); (w; �; u)g and E = f(y; �; x); (v; �; w)g where home(x) = �will lead to a con�guration without a binding on �. That is, � is entailed.6.4 Correctness and TerminationWe consider any sequence ((Ei; Bi; Ii))i=0;:::;N starting in a con�guration (E0; B0; I0)and obtained by successive execution of the body of the while loop. The proofs of thenext propositions are obvious.Proposition 5 Each triple (Ei; Bi; Ii) is a con�guration.Proposition 6 If the procedure terminates in (EN ; BN ; IN) then (EN ; BN ; IN) is anormal con�guration.Proposition 7 The step from (Ei; Bi; Ii) to (Ei+1; Bi+1; Ii+1) is an equivalence trans-formation on the de�ned constraint trees.Theorem 2 The sequence ((Ei; Bi; Ii))i=0;:::;N must be �nite; i.e., the procedure givenin Figure 2 always terminates.Proof. Every con�guration (Ei+1; Bi+1; Ii+1) is obtained from (Ei; Bi; Ii) by oneof �ve cases inside the body of the while loop. Hence, we have one of the followingpossibilities.1. (Ei+1; Bi+1; Ii+1) = (Ei � f(x; �; x)g; Bi; Ii) for some variable x2. Ii+1 = Ii, andBi+1 = Bi [f(x; �; y)g �B where B � f(x; �; f(�u))g [f(z;
; t) j � <
g3. Ii+1 = Ii] I where I 6= ;4. (Ei+1; Bi+1; Ii+1) = (Ei�f(x; �; f(�u))g[E;Bi; Ii) where E � f(u;
; v) j � �
g5. Ii+1 = Ii, and Bi+1 = Bi [f(x; �; f(�u))g �B where B � f(x;
; t) j � <
g15

In each of these cases, (Ei+1; Bi+1; Ii+1) � (Ei; Bi; Ii) where � is the lexicographicordering on reversed con�guration-triples, with, component-wise,1. I � I 0 if I � I 0,2. B � B0 if B w B0, where w is the multiset ordering induced by(x; �; y) > (x; �; f(�u)) > (x;
; t) if � <
;3. E � E0 if E v E0, where v is the multiset ordering induced by(z;
; t) < (u; �; v) < (x; �; f(�u)) if � <
:Since there are no in�nitely decreasing �-chains, the sequence ((Ei; Bi; Ii))i=0;:::;N is�nite. qed7 Conclusion and Future WorkWe have given the �rst formal account of an algorithm for checking entailment anddisentailment of deep guards. We have formulated the results in this paper for rationaltree constraints; they can be adapted to �nite and to feature trees.A �rst conclusion one may draw is that the machinery needed for deep guards is prin-cipally not more complicated than for
at guards. The sole di�erence lies in the ad-ministration of the tree order for (1) the implementation of the function vderef(x; �;B),which goes over at most two levels of the computation tree in the case of
at guards,but arbitrarily many in the case of deep guards, and (2) the removal of situated bind-ings (x;
; s) from nodes
 below a given node �, thus, essentially, for the test of�-comparison between nodes.This work is the preliminary for (on-line) complexity analysis and for comparing di�er-ent realizations of our algorithm. The di�culty seems here to determine the complexityof �nding all situated bindings (x;
; s) with
 � �. It will be interesting to measurethe performance of the implementations already existing in AKL and Oz, which areguard-based, against a variable-based implementation using hash-tables for the lists ofsituated bindings of each variable. The theoretical on-line complexity seems better forthe latter which avoids re-installing multiple bindings. In the case of
at guards over ra-tional trees, this has been shown in [13]: It has quasi-linear as opposed to quadratic cost.Interesting, though mainly theoretically, is also the problem of the optimal amortized-time complexity of the vderef(x; �;B) function, which is about path-compression forbindings which go through several nodes.AcknowledgementsWe thank Peter Van Roy for discussions. We thank the anonymous referees for insight-ful remarks. This work is partially supported by the ESPRIT project ACCLAIM (EP7195). Gert Smolka has also been supported by the BMBF Project Hydra (contractITW 9105) and the Esprit Project CCL (contract EP 6028).References[1] Hassan A��t-Kaci and Andreas Podelski. Towards a meaning of LIFE. InJ. Maluszy�nski and M. Wirsing, editors, Proceedings of the 3rd International16

Symposium on Programming Language Implementation and Logic Programming,Springer LNCS vol. 528, pages 255{274. Springer-Verlag, 1991.[2] Hassan A��t-Kaci and Andreas Podelski. Functions as passive constraints inlife. ACM Transactions on Programming Languages and Systems (TOPLAS),16(4):1279{1318, July 1994.[3] Hassan A��t-Kaci, Andreas Podelski, and Gert Smolka. A feature-based constraintsystem for logic programming with entailment. Theoretical Computer Science,122(1{2):263{283, January 1994.[4] K.L. Clark and S. Gregory. A relational language for parallel programming. InProc. of the ACM Conference on Functional Programming Languages and Com-puter Architecture, pages 171{178, 1981.[5] Alain Colmerauer. Prolog II reference manual and theoretical model. Technicalreport, Groupe Intelligence Arti�cielle, Universit�e Aix { Marseille II, October1982.[6] Bruno Courcelle. Fundamental properties of in�nite trees. Theoretical ComputerScience, 25(2):95{169, 1983.[7] S. Haridi and S. Janson. Kernel Andorra Prolog and its computation model.In D.H.D. Warren and P. Szeredi, editors, Proceedings of the 7th InternationalConference on Logic Programming, pages 31{48. MIT Press, June 1990.[8] M. Henz, M. Mehl, M. M�uller, T. M�uller, J. Niehren, R. Scheidhauer, C. Schulte,G. Smolka, R. Treinen, and J. W�urtz. The Oz Handbook. Research Report RR-94-09, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, Stuhlsatzenhausweg3, D-66123 Saarbr�ucken, Germany, 1994. Available through anonymous ftp fromduck.dfki.uni-sb.de.[9] Martin Henz, Gert Smolka, and J�org W�urtz. Oz|a programming language formulti-agent systems. In Ruzena Bajcsy, editor, 13th International Joint Confer-ence on Arti�cial Intelligence, volume 1, pages 404{409, Chamb�ery, France, 30August{3 September 1993. Morgan Kaufmann Publishers.[10] Michael J. Maher. Logic semantics for a class of committed-choice programs. InJean-Louis Lassez, editor, Proceedings of the Fourth International Conference onLogic Programming, pages 858{876. MIT Press, 1987.[11] Lee Naish. Automating control for logic programs. The Journal of Logic Program-ming, 2(3):167{184, October 1985.[12] Lee Naish. The Mu-Prolog 3.2db reference manual. Technical report, Departmentof Computer Science, University of Melbourne, Victoria, Australia, 1985.[13] Andreas Podelski and Peter Van Roy. The Beauty and the Beast algorithm: Quasi-linear incremental tests of entailment and disentailment. In Proceedings of theInternational Symposium on Logic Programming (ILPS). MIT Press, November1994. To appear.[14] Vijay Saraswat and Martin Rinard. Concurrent constraint programming. In Pro-ceedings of the 17th ACM Conference on Principles of Programming Languages,pages 232{245, San Francisco, CA, January 1990.[15] Ehud Shapiro. The family of concurrent logic programming languages. ACMComputing Surveys, 21(3):413{511, September 1989.[16] Gert Smolka and Ralf Treinen. Records for logic programming. The Journal ofLogic Programming, 18(3):229{258, April 1994.17

