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1 Symbolic ConstraintsConstraints on trees are becoming popular in automated theorem proving, logic program-ming and in other �elds thanks to their potential to represent large or even in�nite setsof formulae in a nice and compact way. More precisely, a symbolic constraint system, alsocalled a constraint system on trees , consists of a fragment of �rst-order logic over a set ofpredicate symbols P and a set of function symbols F , together with a �xed interpretationof the predicate symbols in the algebra of �nite trees T (F) (or sometimes the algebra ofin�nite trees I(F)) over F . The satis�ability problem associated with a constraint systemis to decide whether a formula has a solution. There are plenty of symbolic constraintsystems, some important examples are:� uni�cation problems in which the formulae are conjunctions of equations and wherethe equality symbol is interpreted as a congruence relation generated by a �nite setE of equational axioms. (See [12] for a survey).� disuni�cation problems in which the formulae are conjunctions of equations and negat-ed equations (called disequations), or more generally, arbitrary formulae involving noother predicate symbol than equality. Such formulae are interpreted in the free orquotient algebras of T (F). (See [6] for a survey).� membership constraints in which the formulae involve membership constraints of theform t 2 � where � belongs to an in�nite set of sort expressions, generally builtfrom a �nite set of sort symbols, logical connectives and applications of functionsymbols. The membership predicate symbols are interpreted using (some kind of)tree automata. (See for example [4]).� ordering constraints which are the subject of this survey paper. The set P nowinvolves, besides equality, a binary predicate symbol �. This symbol is interpretedas an ordering on trees; we will discuss later which kind of interpretations are relevant.� many other systems, like set constraints, feature constraints etc. We refer to [7] for ashort survey.Symbolic constraints, besides their own interest, can be used together with a logical lan-guage, hence leading to constrained formulae. A constrained formula is a pair (�; c) (ac-tually written �jc) where � is a formula in some �rst-order logic built upon a set Q ofpredicate symbols and a set F 0of function symbols, and c is a formula (called constraint)in some constraint system over P � Q;F � F 0 As sketched above, any constraint systemcomes with a satisfaction relation j= such that, for any assignment � of the free variablesof c, � j= c i� c� holds in the given interpretation. Then, �jc can be simply interpreted asthe (possibly in�nite) set of formulae[[� j c]] = f�� j � j= cg3



It should be clear from the above interpretation that constraints may help in express-ing large or in�nite sets of formulae. For example, uni�cation problems can be used forcompacting the information, allowing for sharing, as in the example:�[f(x; x; x)] j x = Bigterm standing for �[f(Bigterm,Bigterm,Bigterm)]The reader is referred to e.g. [15] for more details.Constraint systems can also be used in expressing deduction strategies. For example, thebasic strategy for paramodulation and completion can be nicely expressed using the con-straint system of uni�cation problems [1, 19]. Let us go further in this direction since thisis indeed where ordering constraints come into the picture. First, let us make an excursioninto rewrite system theory.2 Ordered StrategiesLet E be a �nite set of equations, for example the classical three equations de�ning grouptheory: 8><>: (x� y)� z = x� (y � z)x� 1 = xx� x�1 = 1A classical problem is to decide whether a given equation, for example (x� y)�1 = y�1 �x�1 in group theory, is a logical consequence of E. This problem, also known as theword problem, has been subject to intensive research. The brute force search for a proofusing the replacement of equals by equals, although complete, rarely leads to an actualsolution. One of the most successful approaches is to use ordered strategies. Knuth andBendix in their famous paper [16] proposed to use the equations in one way only, i.e. asrewrite rules. Of course, such a strategy is incomplete in general, but completeness canbe restored using a completion mechanism based on the computation of some particularequational consequences called critical pairs. One requirement of the original method wasthe termination of the rewrite system: the replacement of equals by equals using the orderedstrategies should always end up after a �nite number of replacement steps.In the above example of group theory, it is quite easy to ful�ll this termination requirementby choosing carefully the way in which to orient the equations. The situation changes ifwe consider the commutative groups, adding the equation x � y = y � x to the abovesystem. Now the completion procedure fails because commutativity cannot be oriented ineither way without loosing termination. Several solutions have been studied to overcomethis problem. It is beyond the scope of this paper to investigate all of them (see [10]).They can be mainly divided into two families: rewriting modulo and ordered rewriting.Rewriting modulo seems interesting when the non-orientable axioms are �xed and known,since it is then possible to tailor the computation of critical pairs and any other operationrequired during the completion process. In general, however, it may also fail. In contrast,4



ordered completion never fails but may run forever. The idea is very simple: use everyequation in one way or the other, depending on the ordering on the instances on which itis applied. For example consider the commutativity axiom and assume a total ordering onterms, e.g compare lexicographically the arguments of �, from left to right. Then if a > b,a�b rewrites to b�a using x�y = y�x, but not the other way around, since a�b > b�a,but b� a 6> a� b. This idea is developed in e.g. [11]. To be more precise, let us introducesome notations.We use notations consistent with [10]; missing de�nitions can be found there. A set ofpositions is a (�nite) set of strings of positive integers which is closed by pre�x and by thelexicographic ordering. � is the empty string. For example f�; 1; 2; 21g is a set of positionwhereas f�; 1; 21g and f�; 2; 21g are not. Given a set of function symbols F 0 together withtheir arity, a term t is a mapping from a set of positions P to F 0 such that, if p 2 P andt(p) has arity n, then p �n 2 P and p � (n+1) 62 P . tjp is the subterm of t at position p andt[u]p is the term obtained by replacing tjp with u in t (see [10] for the de�nitions). In F 0,we distinguish a particular set of nullary symbols called variables. This subset is denotedby X . The set of all positions of a term t is written Pos(t) and the set of its non-variablepositions is FPos(t).Now, the deduction rule for the standard completion procedure can be stated as follows:l! r g ! dl[d]p� = r� If p 2 FPos(l) and � = mgu(ljp; g)This rule is classically associated with an orientation rule w.r.t. a given ordering on terms:l = rl! r If l > rNow the ordered completion consists of a single rule (besides simpli�cation rules which wedo not consider so far):l = r g = dl[d]p� = r� If p 2 FPos(l), � = mgu(ljp; g), l� 6� r� and g� 6� d�which deduces a new equation only for equations which actually can form a critical pair.In the light of constrained logics, this rule can be reformulated as the (classical) criticalpair computation between l = r j l 6� r and g = d j g 6� d. Going further in this directionit is possible to improve the above deduction rule, expressing the conditions at the objectlevel, thus keeping track of which instances of the equations can lead to a critical pair. Weget then the following constrained deduction rule:l = r j c g = d j c0l[d]p = r j ljp = g ^ c^ c0 ^ l > r ^ g > d If p 2 FPos(l)(Note that we replaced here 6� by >, assuming that the ordering is total on ground terms).This strategy is strictly more restrictive than the ordered deduction rule because we keep5



track of the reason why some former equations have been generated: the constraint containsin some sense the \history" of the deduction. This point of view has been extended toarbitrary clauses and shown to be complete (see e.g. [20]).This new rewriting point of view has however a drawback: at some point it is necessaryto decide whether the constraint is indeed satis�able: all these systems are quite useless ifwe are computing with empty sets [[� j c]]. This is the motivation for the study of orderingconstraint solving which is the subject of the next sections. First we will precise whichinterpretations of the ordering are relevant.3 Orderings on TreesWith respect to ordered strategies in �rst-order logic with equality, the ordering we considermust have the following properties:� To be well founded� To be monotonic i.e. f(: : : ; s; : : :) > f(: : : ; t; : : :) whenever s > t.� To be total on ground terms. (i.e. terms without variables).Totality is mandatory only for completeness of the strategy, whereas the two �rst propertiesare already necessary for the completeness of the rules themselves. Monotonicity is requiredbecause, along the proofs, equality steps can take place at any positions in the terms.Typical orderings which ful�ll the above three properties are the recursive path orderingsintroduced by N. Dershowitz [9]. We consider these orderings as well as some extensionsin sections 4, 5.Originating from quite di�erent problems, other interpretations of the orderings have beenstudied in the literature. For example, � can be interpreted as the subterm ordering. Tobe more precise, let us introduce some terminology. The existential fragment of a thetheory of P ;F (in a given interpretation) is the set of formulae 9~x:� which hold in theinterpretation, where � is any quanti�er-free formula built over P ;F and ~x is the setof variables occurring in �. More generally, the �n fragment of the theory is the set of(closed, i.e. without free variables) formulae 9� ~x18� ~x29� : : : ~xn:� which hold true in theinterpretation, where � is quanti�er free. It is shown in [26] that existential fragment ofthe theory of subterm ordering is decidable. On the other side, it is also shown in [26] thatthe �2 fragment of the theory of subterm ordering is undecidable, which sets up a quiteprecise boundary between decidability and undecidability in this case. Subterm orderingis also studied in the case of in�nite trees: again the existential fragment of the theory isdecidable [25] and the �2 fragment is undecidable [24].Let us �nally consider yet another ordering on trees: the encompassment ordering. We saythat s encompasses t (noted s � t) if some instance of t is a subterm of s. For example,6



s = g(f(f(a; b); f(a; b))) encompasses t = f(x; x) since instantiating x with f(a; b), weget a term t� which is a subterm of s. The encompassment ordering plays a central rolein the so-called ground reducibility problem in rewriting theory. Given a rewrite systemR, a term t is ground reducible w.r.t. R if all the ground instances of t (i.e. instanceswithout variables) are reducible by R. A reducible term is always ground reducible, butthe converse is false. For example, consider R = fs(s(0))! 0g and t = s(s(x)) and assumethat the set of function symbols only consists of 0; s. Then t is ground reducible becausethe tail of any of its ground instances will be s(s(0)). However, it is not reducible. Groundreducibility has been shown decidable by D. Plaisted [22]. However, as noticed in [3], thisproperty can be nicely expressed using the encompassment ordering: t is ground reducibleby a rewrite system whose left members are l1; : : : ; ln i�8x; ~z: x � t! (x � l1 _ : : :_ x � ln)where ~z is the set of variables of t.Theorem 1 ([3]) The �rst-order theory of �nitely many unary predicate symbols �l1; : : : ;�ln is decidable.This shows in particular that ground reducibility is decidable.4 Recursive Path Ordering Constraints4.1 The lexicographic path orderingGiven a precedence �F (which we assume so far to be an ordering) on F , the lexicographicpath ordering on T (F) is de�ned as follows: s = f(s1; : : : ; sn) >lpo g(t1; : : : ; tm) = t i� oneof the following holds:� f >F g and, for all i, s >lpo ti� for some i, si �lpo t� f = g (and n = m) and there is a j < n such that{ s1 = t1; : : : ; sj = tj and sj+1 >lpo tj+1{ and, for all i, s >lpo tiTheorem 2 ([9, 14]) �lpo is a well-founded ordering. It is monotonic and, if �F is totalon F , then �lpo is total on T (F).This shows, according to the previous section, that the lexicographic path ordering is agood candidate for ordered strategies. Fortunately, there is a positive result on constraintsolving in this interpretation: 7



Theorem 3 ([5]) The existential fragment of the theory of a total lexicographic path or-dering is decidable.The original proof has been actually simpli�ed in [18] where two other problems are consid-ered: the satis�ability over an extended signature and complexity issues. A conjunction ofinequations, built over an initial set of function symbols F is satis�able over an extendedsignature if there is an (�nite) extension F [ F 0 of the set of function symbols and anextension of the precedence to this new set of function symbols in which the formula issatis�able. This kind of interpretation is actually useful for the applications in automatedtheorem proving (see [20]).Theorem 4 ([18]) The satis�ability problems for quanti�er-free total LPO ordering con-straints over a given signature and over an extended signature are both NP-complete.Actually, the NP-hardness result can be strengthened:Theorem 5 Let � be interpreted as a total �lpo. Deciding satis�ability of a single inequa-tion s > t is NP-complete.Sketch of the proof. According to the above theorem, we only have to prove NP-hardness. We encode 3SAT. F = ff; g; h; 0g with the precedence g > h > f > 0 and weassume g unary, h; f binary and 0 constant. We will use also the abbreviations: 1 = f(0; 0)and 2 = f(0; f(0; 0)). Then, we use the following translations:� each positive literal P is translated into h(2; xP ) > f(h(xP ; xP ); h(2; 0)) which holdsi� xP is assigned to 1.� each negative literal :P is translated into 1 > xP which holds i� xP is assigned to 0.� each clause s1 > t1 _ s2 > t2 _ s3 > t3 is equivalent (w.r.t. the �lpo interpretation)to f(g(C1(C(0))); f(g(C2(C(0))); g(C3(C(0)))))> h(0; g(C(C(0))))where C(x) def= f(t1; f(t2; f(t3; x))), C1(x) def= f(s1; f(t2; f(t3; x))),C2(x) def= f(t1; f(s2; f(t3; x))) and C3(x) def= f(t1; f(t2; f(s3; x))).� the conjunction s1 > t1 ^ : : :^ sn > tn is equivalent to the single inequationCh(s1; : : : ; sn; t1; : : : ; tn) >Cf(Ch(t1; s2; : : : ; sn; t1; : : : ; tn); : : : ; Ch(s1; : : : ; sn�1; tn; t1; : : : ; tn))where Ch and Cf are the right \combs" recursively de�ned by:C�(t; L) def= �(t; C�(L)) and C�(;) def= 0 :8



The coding is in O(n2). It is a routine veri�cation that the resulting inequation is satis�ablei� the set of clauses is satis�able. 2The proposition also holds for satis�ability over an extended signature, with a minor mod-i�cation: :P has to be translated in a slightly more complicated way: f(0; f(1; xP)) >f(1; 0)^ f(0; f(1; 0))> f(1; xP ) which is in turn expressed using a single inequation as wedid above.4.2 The recursive path ordering with statusThe recursive path ordering with status is slightly more general than the lexicographicpath ordering. In addition to the precedence, we assume, for each function symbol, givena status which can be either \multiset" or \lexicographic" (other status are also available,but w.r.t. constraint solving only these two are relevant).The de�nition of the ordering is exactly the same as in section 4.1 except when f = g.In that case, we get the status of f and compare the terms as before if the status islexicographic, whereas, if the status is multiset, s >rpo t i� fs1; : : : ; sng � ft1; : : : ; tngwhere � is the multiset extension of >rpo (see [9, 10] for more details). This ordering isnot total on ground terms as permuting the direct subterms of a function symbol whosestatus is multiset leads to incomparable terms. However, modulo such permutations, the(quasi-)ordering is total. With such an extension to a total quasi-ordering, constraintsolving is still possible:Theorem 6 ([13]) The existential fragment of the theory of a total recursive path (quasi-)ordering with status is decidable.Actually, as above, the fragment is NP-complete. Satis�ability over an extended signatureis NP-complete as well [18].4.3 Partial recursive path orderingsAlthough less interesting from the applications point of view, the question arises of whetherthe above results can be extended to arbitrary (non-total) recursive path orderings. Thisturns out to be a di�cult question, which is not answered so far.The only progress in this direction is the study of tree embedding constraints. This is yetanother interpretation of the ordering on trees. Tree embedding is the least recursive pathordering: it extends the precedence where any two symbols are uncomparable. It can alsobe de�ned as the least monotonic ordering which contains the subterm relation. Up toour knowledge, there is only one result about tree embedding and, more generally, partialrecursive path orderings:Theorem 7 ([2]) The positive existential fragment of the theory of tree embedding is de-cidable. 9



In the positive existential fragment, negation is not allowed in the quanti�er-free part ofthe formula.4.4 The �rst-order theory of recursive path orderingsNow, extending the language allowing for some more quanti�ers may be useful for decidingsome other properties (such as for simpli�cation rules as described in [15]). Unfortunately,we fall into the undecidability side as soon as we try to enlarge the class of formulae.R. Treinen �rst shows that the �4 fragment of the theory of a partial lexicographic pathordering is undecidable [24]. But this leaves still some room and most properties for whicha decision procedure would be welcome can be expressed in the �2 fragment. Moreoverthe result did not apply to total orderings, which are the most interesting ones. Extendingthe technique of [24], it is possible to show the following:Theorem 8 The �2 fragment of the theory of any (partial or total) lexicographic pathordering is undecidable, as soon as there is at least a binary function symbol.We give a sketch of the proof, the full (quite technical) proof of this result can be foundin [8].We reduce the Post Correspondence Problem (PCP) to the theory of a lexicographic pathordering following the line of [24]. Let F be a �nite set of function symbols, such that 0 isa minimal constant, f is a binary function symbol which is minimal in F � f0g and g is aminimal unary symbol larger than f . Let P = (pi; qi)i=1:::n be an instance of the PCP overthe alphabet fa; bg. We can device an injective coding function cw: fa; bg� ! T (ff; 0g)and formulae empty(x) and pre�xv(x; y) for every v 2 fa; bg�, such that j= empty(x) i�x = cw(�), and that j= pre�xv(x; cw(w)) i� x = cw(v �w). Now it is not hard to device aninjective pairing function pair:T (ff; 0g)� T (ff; 0g)! T (ff; 0g) and a formula x = y,suchthat pair(x; y) = pair(x0; y0)$ _(p;q)2P pre�xp(x; x0) ^ pre�xq(y; y0)and such that = is well-founded but nevertheless t = t0 implies t <lpo t0. Intuitively,t = t0 reads \the pair represented by t0 is obtained form the pair represented by t byone construction step of P . It is important that = is a well-founded relation, this can beachieved by counting in = (not in pair) the maximal number of construction steps to go.The idea is now to design a sentence solv which holds i� there is a sequence t0; : : : ; tnsuch that t0 = pair(cw(�); cw(�)), tn = pair(cw(w); cw(w)) for some w 6= � 2 fa; bg� andj= ti = ti+1 for every 0 � i < n. Let I(x) be a formula which holds i� x = pair(cw(�); cw(�)),and let F(x) be a formula which holds i� x = pair(cw(w); cw(w)) for some w 6= � 2 fa; bg�.In the following formula solv, some parts are not yet de�ned. The intended meaning ofx head y is that x is the head of the sequence y, nonempty(y) expresses that y has a head10



and (x; y0) sub y should express that the sequence cons(x; y0) is a subsequence of y.9y( 9x; y0(I(x) ^ (x; y0) sub y)^8x; y0((x; y0) sub y ! [ F(x)_(nonempty(y0)^ 8x0(x0 head y0 ! x = x0)) ]Now, we have to show that the above formula solv holds i� P has a solution. We give�rst some characterizations of the \if" and \only if" parts respectively in terms of prop-erties of the formulas nonempty(x), x head y and (x,y) sub z. Then, we will sketch how(x,y) sub z is constructed. This is the most complicated part; the constructions of x head yand nonempty(x) are skipped here. We will also sketch why (x,y) sub z follows the require-ments.In order to show that solv holds if P has a solution, we have to design a coding cs ofsequences of elements from T (ff; 0g). cs:T (ff; 0g)�! T (F ). This is given by cs(�) def= 0,and cs(cons(t; �t)) def= f(g(t); cs(�t)). Now, solv holds if P has a solution, provided that thefollowing relations are satis�ed:j= nonempty(cs(s)) , s 6= �j= t head cs(t0; : : : ; tn) , t0 = tj= (t; u0) sub cs(t0; : : : ; tn) , exists i � n, t = ti, u0 = cs(ti+1; : : : ; tn) (1)Once we have the de�nition of sub with property (1), it follows immediately that solv holdsif P has a solution: We take y to be the coding of the solution to P .Conversely, P has a solution if solv holds, provided that the following relations are satis�ed:nonempty(y)! 9x x head y (2)(x; y0) sub y ^ x0 head y0 ^ x = x0 ! 9y00 (x0; y00) sub y (3)This claim is easily proven by well-founded induction on =. The lemmata (2) and (3) giveexactly the argument needed in the induction step. Using well-founded induction at thisplace is a central idea in [24].Appropriate de�nitions of nonempty(y) and x head y are given easily. Now, let us sketchthe construction of (x; y) subz. The �rst step is the de�nition�1(x; y) def= f(g(x); g(x))� y > g(x)It is easily proven by structural induction on u, that j= �1(t; u) implies that g(t) is themaximal subterm of u which is headed by a symbol not smaller than g. For instance, if g isthe greatest symbol in F , this means that g(t) is the maximal g-headed subterm of u. Inthis proof, we exploit the fact that f < g. It is not always true, that for any y containinga g there is an x such that �1(x; y). On the other hand, the de�nition of nonempty(y) willhave to ensure this fact, as can be seen from the de�nition of sub given below. The formula11



9x �1(x; y) does the job but introduces an existential quanti�er at the wrong place, whichwould throw solv out of the �2 fragment. A working formula  (y) using only universalquanti�ers can be found in the full paper [8]. Now it can be shown that alwaysj= �1(x; cs(t0; : : : ; tn))$ x = tn (4)which gives us access to the greatest pair of a list. Note that in our representation of lists,the greatest term stands at an innermost position; it is by no means obvious that we canaccess this term when the ordering might be total. This was a main di�culty which was notsolved in the result on partial precedences in [24]. The complete de�nition of (x; y0) sub yis (�1(x; y)^ y0 = 0)_9w (f(g(x); f(g(x); y0)) > y � f(g(x); y0) > g(w) > g(x)^ �1(w; y))Let us sketch now the main part of the proof, namely that the de�nition of (x; y0) sub ysatis�es (1). The \(" direction of (1) is easy, let us prove the \)" direction. If the �rstcase of sub applies, then the claim holds by (4). Otherwise,j= f(g(t); f(g(t); u0)) > cs(t0; : : : ; tn) � f(g(t); u0) > g(r) > g(t)^�1(r; cs(t0; : : : ; tn))holds for some r 2 T (F ). In fact, r = tn by (4). Now, j= g(r) > g(t), hence tn >lpo t.Let i be the smallest index such that ti �lpo t. Such an i exists since tn >lpo t. Hence,ti0 6�lpo t for all i0 < i. Using the lpo rules, cs(t0; : : : ; tn) �lpo f(g(t); u0) is simpli�ed intocs(ti; : : : ; tn) �lpo f(g(t); u0), hence cs(ti; : : : ; tn) >lpo u0.Now let j be the smallest index such that t 6�lpo tj . Note that j is well de�ned sincet 6�lpo tn. Since f(g(t); f(g(t); u0)) >lpo cs(t0; : : : ; tn), it follows that f(g(t); f(g(t); u0)) >lpocs(tj ; : : : ; tn). Since by construction t 6�lpo tj , this inequality is equivalent to u0 �lpocs(tj ; : : : ; tn). Together we havecs(ti; : : : ; tn) >lpo u0 �lpo cs(tj ; : : : ; tn)and hence i < j. By our construction of j this means t �lpo ti. On the other hand we haveti �lpo t, hence t = ti. Using the de�nition of an lpo, we can now simplifyf(g(ti); f(g(ti); u0)) >lpo cs(t0; : : : ; tn))� f(g(ti); f(g(ti); u0)) >lpo cs(ti; : : : ; tn)) f(g(ti); u0) >lpo cs(ti+1; : : : ; tn)) u0 �lpo cs(ti+1; : : : ; tn)On the other hand, we havecs(t0; : : : ; tn) �lpo f(g(ti); u0) )� cs(ti; : : : ; tn) �lpo f(g(ti); u0)) cs(ti+1; : : : ; tn) �lpo u012



Hence, u0 = cs(ti+1; : : : ; tn). 2In case there are only unary symbols we can use another reduction technique and show:Theorem 9 The �rst-order theory of strings embedding is undecidable.The theory of strings involves a binary concatenation function, but the undecidabilityresult in fact holds if we restrict ourselves to unary functions which pre�x a string with a�xed symbol. With the representation of strings as terms, this kind of left concatenationcorresponds to the application of a unary function symbol.Sketch of the proof: We encode the concatenation of words, whose �rst-order theory isknown to be undecidable (see e.g. [23]). We use an additional symbol # and successivelyexpress the following properties:x# � z, where x contains no #:�1(x; z) def= x � z ^ 8y(#y � z $ y = �)z = x#y (and x; y are #-free):�2(x; y; z) def= # 6� x ^# 6� y ^## 6� z ^8u[## 6� u! (z � u$ (�1(x; u)^#y � u))]This reads: \z is minimal with the property that z contains at most one #, x# � z and#y � z."x; y; u are #-free and z = xy:�3(x; y; u) def= 9z:(�2(x; y; z)^# 6� u ^ 8v(u � v � z $ (v = u _ v = z)))Since u doesn't contain #, it must be the immediate predecessor of z obtained by deletingthe # of z. 2The decidability of the theory of a total lexicographic path ordering on strings remainsopen.5 ExtensionsWe list below a number of extensions which have still to be investigated.� As we have seen in section 2, using ordering constraints avoids failure even in pres-ence of associative-commutative (AC) function symbols. This particular case of un-orientable equations occurs very often. On the other hand, however, although the13



use of ordering constraints prevents failure, completion procedures often run foreverin such situations. Hence, from the practical point of view, it is important to de-sign dedicated techniques for this particular situation. In general, AC equations arenot treated like the other relations; this theory is built-in, which implies the use ofAC-uni�cation (or AC equality constraints). Using ordering constraints in this con-text requires �rst an AC-compatible ordering which is total on ground terms. For along time no such ordering was known. P. Narendran and M. Rusinowitch [17] werethe �rst to give such an ordering, which is based on polynomial interpretations. Anrpo-style AC-compatible ordering, total on ground terms was then given in [21]. Isit possible to design a constraint solving algorithm for such an ordering? This is anopen question which is currently under investigation.� Another important question is the combination of constraint systems on terms. In-deed, we may consider the problem of using ordered strategies on constrained equa-tions (or clauses). The combination of ordering constraints and equations and dis-uni�cation constraints is quite obvious (equational constraints are already consideredwithin the ordering constrains and s 6= t is equivalent to s > t_ t > s when the order-ing is total). More relevant is the combination with membership constraints. Thisis another open question currently under investigation: is the existential fragment ofthe theory of �;2 �, for a family of unary predicate symbols 2 �, as explained inintroduction, decidable?� Finally, we already mentioned some open questions about the theory of recursivepath orderings. In case of partial orderings, we don't know whether the existentialfragment is decidable. Similarly, the problem of the �rst-order theory of a totallexicographic path ordering on unary function symbols is open.References[1] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation andsuperposition. In D. Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction,Saratoga Springs, NY, Lecture Notes in Computer Science, vol. 607, pages 462{476.Springer-Verlag, June 1992.[2] A. Boudet and H. Comon. About the theory of tree embedding. In M. C. Gaudel andJ.-P. Jouannaud, editors, Proc. Int. Joint Conf. on Theory and Practice of SoftwareDevelopment, Lecture Notes in Computer Science, vol. 668, pages 376{390, Orsay,France, Apr. 1993. Springer-Verlag.[3] A.-C. Caron, J.-L. Coquid�e, and M. Dauchet. Encompassment properties and au-tomata with constraints. In C. Kirchner, editor, Proc. 5th. Int. Conf. on RewritingTechniques and Applications, Lecture Notes in Computer Science, vol. 690, pages 328{342, Montreal, Canada, 1993. Springer-Verlag.14
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