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Abstract. We describe reasoning methods for the interval-based modal temporal
logic LLP which employs the modal operators sometimes, always, next, and chop.
We propose a constraint deduction approach and compare it with a sequent cal-
culus, developed as the basic machinery for the deductive planning system PHI
which uses LLP as underlying formalism.

1 Motivation

The work presented in this paper was motivated by an application coming from the field
of deductive planning. In the PHI system [BBD+93] planning is done on the formal basis
of an interval-based modal temporal logic. Apart from plan generation, the reuse and
the modification of existing plans is also investigated. Since plan generation and plan
reuse are formalized as deductive processes, various proofs in the underlying temporal
logic have to be performed raising the need for an efficient proof method for the logic.

In deductive planning, plans are generated by constructively proving plan specific-
ations, for example formulae of the form

pre ∧ Plan → goals

which describe the properties of the desired plan: if Plan is carried out in a situation
where the preconditions pre hold then the goals will be reached.

During the proof, the plan metavariable Plan is replaced by a plan (formula) that
satisfies the specification. Plan formulae in LLP [BDK92] provide constructs that allow,
e.g. to

– sequentially compose plans from arbitrary subplans or atomic actions,
– incorporate control structures for conditional and iterative plans, and
– abstract from the exact execution time of actions in plans.
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When plans are executed, every action leads to a new state of the world, i.e. plans
describe temporally ordered sequences of states. This suggests using a modal temporal
logic as the underlying formalism for deductive planning and grounding its semantics
on intervals in contrast to the usual possible worlds semantics. Intervals can be seen
as possible worlds to which an additional structure has been added, i.e. by consider-
ing worlds as sequences of states. This sequential structure of the worlds reflects the
semantics of plans.

The interval-based modal temporal logic LLP [BDK92] is consequently developed
as a formal basis combining features of choppy logic [RP86] with a temporal logic for
programs [Krö87].

The paper is organized as follows: in Section 2, we describe related work. We re-
view the logic LLP in greater detail and discuss the executability of LLP plans in
Section 3. Section 4 describes a sequent calculus approach for deductive planning and
plan reuse and discusses its advantages in the underlying context. As an alternative to
the LLP sequent calculus we introduce a constraint deduction approach in Section 5.
Finally, we conclude with some discussion comparing both approaches in Section 6 and
show how the constraint deduction approach is applied for tasks of temporal abstraction.

2 Related Work

Interval-based temporal logics have been proposed by several authors [MM83, Gab89]
as appropriate formalisms to describe the behavior of programs or plans. Plans can be
decomposed into successively smaller periods or intervals of, e.g. subplans or actions.
The intervals provide a convenient framework for introducing quantitative timing de-
tails. State transitions can be characterized by properties relating the initial and final
values of variables over intervals of time [MM83].

The logic LLP which is considered in this paper is a first order extension of the
propositional linear temporal logic PTL(U,X,C) [RP86]. PTL(U,X,C) contains the modal
operators weak-next, until and chop and has an interval-based semantics. The concept of
local variables, the interpretation of which may vary from state to state, was borrowed
from [Krö87, MM83, Hal87] in order to describe the action to be performed in a state
as well as the effects of the action.

In [Gab89, FO92] a declarative as well as an imperative view on temporal logic
formulae is proposed:

“A future statement of temporal logic can be understood in two ways: the
declarative way, that of describing the future as a temporal extension; and the
imperative way, that of making sure that the future will happen the way we
want it.” (cf. [Gab89],page 402)

Grounded on this view, the logic USF has been developed in [Gab89]. Specification
formulae in USF can be automatically re-written into an executable form utilizing an
exec predicate. For example, exec(a1) will make a1 true. The re-written formula is an
equivalent logical formulation of the specification.

Plan specification formulae in LLP can also be viewed as declaratively describing
the future as a temporal extension. To obtain a plan, specification formulae are not equi-
valently transformed but are constructively proved, i.e. an example (plan) is constructed
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which satisfies the specification. The plan can be seen as a program for controlling pro-
cess behavior: its execution in the initial state is sufficient to reach the specified goals.
This view led to the plans are programs paradigm which has already been proposed
by, e.g. [Bib86, MW87].

In order to benefit from the representational advantages provided by modal logics,
reasoning mechanisms for modal formulae have to be developed. Our work fits into the
framework of translation oriented methods similar to those described in [Ohl91, FS91].
It extends the constraint deduction approach for serial modal logics with sometimes and
always [FS91] to a non-serial modal temporal logic with the additional modal operators
next and chop.

3 The Interval-based Modal Temporal Logic LLP

LLP (Logical Language for Planning) [BDK92] is an interval-based modal temporal
logic which combines features of choppy logic [RP86] with a temporal logic for pro-
grams [Krö87]. The basis of LLP is a many-sorted first order language. Furthermore,
we distinguish local variables, the value of which may vary from state to state and
global variables which are the usual logical variables. Local variables are borrowed
from programming logics where they correspond to program variables.

LLP provides the modal operators � (next), ◊ (sometimes),
��

(always), and the
binary modal operator ; (chop). Furthermore, control structures like if-then-else and
while are available. In the following we shortly review the main properties of LLP as
introduced in [BDK92].

A state σi is a valuation assigning domain elements to local variables. Note that only
the values of local variables may change from state to state. Function and predicate
symbols are rigid, i.e. their interpretation does not vary over time. An interval σ is
a nonempty finite or infinite sequence of states � σ0σ1 … � . W denotes the set of all
intervals. The length of an interval σ is defined as

|σ | =

�
ω, if σ is infinite
n, if � σ = s0s1 … sn �

Observe that |σ | = 0 iff σ = � σ0 � is a singleton containing only one state. Intuitively,
the length of an interval does not represent the number of states this interval contains,
but the number of possible state transitions. The immediate accessibility on intervals is
defined as the subinterval relationship R with

σ R σ ′ iff σ = � σ0σ1σ2 … � and σ ′ = � σ1σ2 … � .

R∗ denotes the transitive and reflexive closure of R and R+ denotes the transitive closure
of R. The composition is defined as a partial function over the set of intervals W:

σ � σ ′ = �� 	 σ , if σ is infinite� σ0 … σn−1σnσn+1 … � , if
σ = � σ0 … σn−1σn � and
σ ′ = � σnσn+1 … �
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Global variables are interpreted by mapping them to domain elements using a valuation
function. The value of a local variable in an interval σ for a given interpretation is
its value in the initial state of the interval. The satisfiability relation |= for modal-free
formulae is defined as in classical first order logic. F and T denote the propositional
constants false and true, respectively. For the modal operators we define:

– σ |=� � φ iff σ ′ |= � φ for all σ ′ ∈ W with σRσ ′

– σ |=� ◊φ iff σ ′ |= � φ for some σ ′ ∈ W with σR∗σ ′

– σ |=�
�� φ iff σ ′ |= � φ for all σ ′ ∈ W with σR∗σ ′

– σ |=� φ ;ψ iff there are σ ′, σ ′′ ∈ W, with σ = σ ′ � σ ′′,
σ ′ finite and σ ′ |= � φ and σ ′′ |=� ψ

The immediate accessibility relation R is not serial, i.e.

∀σ ∃σ ′ σRσ ′

does not hold since an interval of length zero has no successor. For example, � F holds in
an interval σ iff σ has length 0, i.e. it is a singleton. More generally, � nF holds in σ iff σ
has at most n states, that is iff σ has at most length n-1. A formula φ ∧¬ � F∧ � � F; � �� ψ
holds in an interval � σ0σ1σ2σ3 … � if

– φ holds in the subinterval � σ0σ1 � and
– � �� ψ holds in the subinterval � σ1σ2σ3 … � , i.e., ψ holds in all subintervals � σn … �

with n ≥ 2.

3.1 Properties of LLP

Several results from the literature help to characterize LLP with respect to the expressive
power of the modal operators and their axiomatization. The modal operators

��
and ◊

can be expressed by ; [RP86] using the axioms ◊φ ↔ T;φ and
�� φ ↔ ¬◊¬φ.

Further results concern the axiomatization of first order temporal logics. An ax-
iomatization of the propositional linear temporal logic PTL(U,X,C) is developed and a
complete and sound decision procedure based on semantic tableaux is given for the
logic in [RP86].

Szalas proved in [Sza86] that there is no finistic and complete axiomatization of first
order temporal logics of linear and discrete time and gives an infinitary complete proof
system for the logic in [Sza87]. In [SH88] it is proven that a first order temporal logic
with equality and until is both weakly and strongly incomplete. A logic is defined to be
weakly incomplete if “the set of all tautologies (over an arbitrary signature) of the logic
is not recursively enumerable or, equivalently, if there is no finistic proof system which
is sound and complete for the logic”. A logic is strongly incomplete if “for no signature
the set of tautologies over this signature is recursively enumerable or, equivalently, if
the set of tautologies over the empty signature is not recursively enumerable”.

The results of Szalas hold for LLP as well with the consequence that there is no
sound and complete first order calculus for LLP.
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3.2 Planning in LLP

Plan generation is carried out by constructively proving plan specification formulae in
a sequent calculus [BDK92]. One type of plan specifications used by the PHI system, is
liveness properties containing in their goal specification a temporally ordered sequence
of intermediate subgoal states, e.g. formulae of the form:

pre ∧ Plan → ◊(goal1 ∧ goal2 ∧◊(goal3 ∧◊(goal4)))

As a result of the proof, a plan formula is obtained which is sufficient for the plan
specification. The plan utilizes the local variable ex, the value of which is a term rep-
resenting the action to be executed in the current state. An example of a plan formula
reads

ex = action1 ∧ ¬ � F ∧ � � F ;
�� φ ; ex = action2 ∧ ¬ � F ∧ � � F ; ex = action3

describing a plan which contains three actions. The subplan containing the actions
action2 and action3 can be executed at an arbitrary time after action1 has been ex-
ecuted provided that a formula φ always holds between the execution of action1 and
action2. φ describes in our context the minimal preconditions for the subsequent actions
which must be adhered to. This plan formula holds in an interval σ = � σ0σ1 … � if

– ex = action1 holds in the first state σ0 of σ ,
– there is an n ≥ 1 such that all intervals � σ1 … σn � to � σn � satisfy φ,
– ex = action2 holds in σn, and
– ex = action2 holds in σn+1.

3.3 Executability of LLP Plans

The PHI planner is able to generate complex plans containing control structures like
iteration and case analysis. One prototypical application domain of PHI is a subset of
UNIX, namely the mail domain. Here, the planner generates abstract plans that are
used by a plan recognizer to identify the goals of a user and to offer active help. The
following formula shows such an example plan achieving the goal “Read all mail from
sender Joe”:

n := 1;
while n < length(system mbox) do

if sender(msg(n, system mbox)) = joe
then ex = type(n, system mbox)
else ex = empty action;

n := n + 1
od

In order to execute an abstract plan, a plan interpreter [Den94] is used, which
performs sensing actions in the application system in order to instantiate variables and
parameters occurring in the abstract plan. Furthermore, since control structures cannot
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be executed directly in the application system they are replaced by executable action
sequences according to their definition. The plan starts by instantiating the internal
counter n with value 1, which refers to the current mail in the mailbox. The while–loop
is stepwisely expanded according to the definition of the while-operator:

while ε do α od ; β ↔ if ε then α ; [while ε do α od ; β] else β

The resulting case analysis is resolved by testing the validity of the condition n <
length(system mbox) in the application system. According to the definition of the if-
operator, the non-valid branch is eliminated:

if ε then α else β ↔ [ε → α] ∧ [¬ε → β]

Let us assume that the mailbox system mbox of the user contains 3 mails with the first
and last from sender Joe. In this situation, the following executable action sequence is
obtained as a refinement of the abstract plan:

ex = type(1, system mbox); read the first mail
ex = empty action; skip the second mail
ex = type(3, system mbox) read the last mail

4 The Sequent Calculus Approach

Together with the logic LLP a sequent calculus was developed which is used by the
planner for the constructive proofs of specifications. The sequent calculus extends the
S4 sequent calculus (see for example [Wal89]) with rules for the additional modal op-
erators � and ; and with derived rules which are of importance for deductive planning
and plan reuse.

Typical examples of such rules are the right- � rule, the chop composition and the
sometimes-to-next rule [BDK92].

– right- � :
Γ∗ ⇒ A, ∆∗

Γ ⇒ � A, ∆ with
Γ∗ =

�
B| � B ∈ Γ � ∪

� ��
B| ��

B ∈ Γ � , and
∆∗ =

�
B| � B ∈ ∆ � ∪

�
◊B|◊B ∈ ∆ �

– chop composition:
φ1 ⇒ ψ1 φ2 ⇒ ψ2

φ1;φ2 ⇒ ψ1;ψ2

– sometimes-to-next:
Γ ⇒ � φ ∧ ¬ � F, ∆

Γ ⇒ ◊φ, ∆

To guide sequent rule applications during a proof, a tactic language is provided in
which proof tactics can be described [Den94]. Proof tactics implement search strategies
that restrict the search space in the proof and thereby help to reduce unnecessary search
effort.

Furthermore, proof tactics specify a certain ordering of modal rule applications. As
discussed in [Wal89], the ordering in which modal rules are applied during a sequent
derivation influences whether a proof is obtained or not. If an inappropriate order is
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chosen, a proof may not be found. The cause of this order dependence is the fact that
some modal rules lead to formulae being “deleted”, i.e. subformulae from the con-
clusion of a sequent do no appear in the premise, see for example the right- � rule.
Therefore, besides restricting the search space, proof tactics help to maintain sufficient
formulae in the sequents to complete the proof.

The use of tactics to guide proofs in the LLP calculus led to an efficient imple-
mentation of plan generation and plan reuse in the PHI system [BBD+93]. The tactic
language which is provided by the system supports the formulation of new tactics when
new proof tasks must be solved by the system or when the syntactical class of formulae,
on which these proofs are performed, is extended.

Practical experiences, e.g. comparing the effort for plan modification to plan genera-
tion [Koe94b] show that proof tactics lead to a very efficient reasoning in the underlying
logic. Hence, proof tactics can be seen as one way of developing efficient reasoning
methods for modal logics based on Gentzen type calculi.

On the other hand, such classical calculi for modal logics and its extensions, e.g.
temporal logic and dynamic logic, which are usually of Hilbert, Gentzen or Tableaux
type are often criticized for their inefficiency because “the branching rate in the search
space is very high” and because they “ require special implementations of deduction
systems” (cf. [Ohl91]).

Alternatively, a translation of modal formulae into predicate logic syntax such that
standard predicate logic deduction systems are applicable has been proposed by some
authors [Ohl91, FS91] for modal logics with possible worlds semantics which provide
the modal operators ◊ and

��
.

In the work presented in [Ohl91] a functional and a relational translation method
are developed. The target calculus for the formulae obtained by the translation is the
resolution calculus. The relational translation introduces special predicates representing
the accessibility relations. This approach is very flexible because different kinds of
accessibility relations can easily be handled but the number and the size of translated
clauses is increased by the literals which are necessary to represent the possible worlds.
Since standard resolution strategies do not differentiate between “normal” and “special”
predicates, many unnecessary resolution steps may occur.

To overcome the problem, the functional translation method has been developed
whereby the relevant information about worlds is represented in terms, and reasoning
about possible worlds is done with specialized unification algorithms. On one hand,
this method leads to a more efficient calculus, while on the other hand, it is not known
whether this method can be extended to more expressive modal logics, which, for ex-
ample, contain the chop operator.

A generalization of the relational translation method, restricted to modal logics with
serial accessibility relations, is presented in [FS91]. A translation into a first order con-
straint logic is proposed and a hybrid reasoning method combining ordinary deduction
with special purpose methods for constraint processing is developed.

During the development of the sequent calculus approach for LLP the question
arose whether these translation oriented methods can be extended in order to provide a
framework for a semantics-based translation of LLP.

Furthermore, when such a translation of LLP into first order logic is possible, the
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question arises as to how an efficient calculus can be developed which might serve as
an alternative to the sequent calculus approach. It turns out that this remains a difficult
problem even for the translated logic.

5 The Constraint Deduction Approach

In the previous section we described the motivation that led to the development of
a semantics-based translation method for LLP. Since the logic we consider is more
expressive than those logics for which translation oriented methods already exist [FS91,
Ohl91] we hope to gain further insight into how far these results generalize.

A relational translation is developed during which special predicate symbols are in-
troduced representing the accessibility relations on intervals. Following the method of
[FS91], we proceed in three steps in order to obtain a constraint theory and a set of con-
strained clauses. These can be proven, for instance, by constrained resolution [Bür91],
which can be realized by a resolution prover and a satisfiability checker for constraints.
The steps are

1. translation of the modal logic LLP into a constraint first order logic CPL by reific-
ation of the intervals,

2. transformation of CPL formulae into constrained prenex normal form and
3. skolemization of formulae in constrained prenex normal form.

5.1 The Translation into CPL

The translation of LLP formulae into the constraint predicate logic CPL transforms the
modal-logic features of LLP into predicate logic by reification of the intervals. For this
purpose we first transform the signature ΣM of LLP into the signature ΣP of CPL as
follows:

1. CPL contains the two sorts D, denoting the domain of LLP, and W, which denotes
the set of intervals.

2. The domain variables in CPL are the global variables from LLP.
3. The function and predicate symbols from LLP carry over to CPL. Observe that,

in contrast to [FS91], functions and predicates have a fixed interpretation in all
intervals and therefore do not have to be equipped with an extra argument for the
actual interval.

4. The local variables of LLP, which may change the interpretation from interval to
interval, are translated into unary function symbols of type (W → D).

5. For the translation of modal operators we need the additional predicate symbols
S (type W), ≥ (type WW),

�
(type WW) and ⊕ (type WWW). Atoms constructed

with these predicates are called constraints, we write them in mixfix notation Sx,
x ≥ y, x

�
y and x = y ⊕ z.

An LLP interpretation � M is translated into a CPL interpretation � P as follows: The
domain of � P consists of the domain of � M (for sort D) and the set of all intervals (for
sort W). The interpretation of global variables and function symbols as well as predicate
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symbols remains unchanged. The interpretation of a function symbol translating a local
variable x is the function that maps an interval σ to the value of x in σ , which is its
value in the initial state of σ . The interpretation of the predicate symbol S is the set of
all intervals of length 0, (x, y) ∈ � �

P iff xRy, (x, y) ∈ ≥
�

P iff xR∗y and (x, y, z) ∈ ⊕
�

P

iff x = y � z.
As in [Ohl91], we define a translation function π that takes an LLP formula and

translates it into a CPL formula. Since intervals are reified in CPL, the actual interval
will be explicitly represented in the translated formula. Therefore, π takes as its second
argument the variable which refers to the actual interval. The following translation rules
from LLP into CPL are used by π :

π[x, w] := x if x a global variable

π[x, w] := x(w) if x a local variable

π[ƒ(t1, … , tn), w] := ƒ(π[t1, w], … , π[tn, w])
π[P(t1, … , tn), w] := P(π[t1, w], … , π[tn, w])

π[(F ∧ G), w] := π[F, w] ∧ π[G, w]
π[(F ∨ G), w] := π[F, w] ∨ π[G, w]

π[¬F, w] := ¬π[F, w]
π[∃xF, w] := ∃x π[F, w]
π[∀xF, w] := ∀x π[F, w]

π[◊F, w] := ∃v(w ≥ v ∧ π[F, v])
π[ ��

F, w] := ∀v(w ≥ v → π[F, v])
π( � F, w] := ∀v(w �

v → π[F, v])
π[(F;G), w] := ∃v, u(w = v ⊕ u ∧ π[F, v] ∧ π[G, u])

Theorem 1 states the soundness of the translation:

Theorem 1 For all LLP interpretations � M, LLP formulae φ, W-variables w holds

� M |= φ ⇔ � P |= ∀w π[φ, w]

where � P is the translation of � M .

Proof sketch: The soundness of the translation can be shown by structural induction
over terms and formulae. The base case for global variables is trivial because the as-
signment of global variables does not differ between � M and � P. Proving the soundness
of the translation rules for function and predicate symbols is trivial because they are
rigid and thus their interpretation remains unchanged. The correctness of the transla-
tion rule for local variables follows from the definition of � P: the interpretation of the
function symbol translating a local variable is the value of that variable in the first state
of an interval. The cases for normal (non-modal) connectives are straightforward, their
interpretations remains unchanged. To prove the correctness of the translation rules for
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modal operators the LLP semantics as well as the definition of the semantics of the
resulting constraint predicates is exploited.

As a short example the translation of the formula

T;P(v) → ◊P(v)

where v is a local variable is shown below. This formula is valid; it is in fact a con-
sequence of the following theorem of LLP:

T;φ ↔ ◊φ

After expanding →, we obtain (i1, i2, … are W-variables):

π[¬
�
T;P(v) � ∨ ◊P(v), i1]

= ¬π[T;P(v), i1] ∨ π[◊P(v), i1]

= ¬∃i2, i3

�
i1 = i2 ⊕ i3 ∧ π[T, i2] ∧ π[P(v), i3] � ∨ π[◊P(v), i1]

= ¬∃i2, i3

�
i1 = i2 ⊕ i3 ∧ π[T, i2] ∧ π[P(v), i3] � ∨ ∃i4

�
i1 ≥ i4 ∧ π[P(v), i4] �

= ¬∃i2, i3

�
i1 = i2 ⊕ i3 ∧ T ∧ P(v(i3) � ∨ ∃i4

�
i1 ≥ i4 ∧ P(v(i4)) �

5.2 The Transformation into Prenex Normal Form

The formulae computed by the above translation mechanism have the property that all
constraints τ occur only in the form ∀x̄τ → ψ or ∃x̄τ ∧ ψ . The aim is to preserve this
property during transformation into prenex normal form as this will allow the translation
into constrained clauses in the last step. Rules for transforming into prenex normal form
maintaining the above property have been given in [Fri91]:

¬∃x̄(τ ∧ φ) ⇒ ∀x̄(τ → ¬φ)
∃x̄(τ ∧ φ) ∧ ψ ⇒ ∃x̄(τ ∧ φ ∧ ψ )

provided that ψ does not contain variables of x̄.1 The problem is that the transformation

∃x̄(τ ∧ φ) ∨ ψ ⇒ ∃x̄(τ ∧ [φ ∨ ψ ]) (7.1)

needs additional conditions in order to be an equivalence transformation. This rule was
proven correct in [Fri91] for x̄ consisting of the single variable x, τ containing the
variable x only and τ being satisfiable in every model under consideration. In [FS91],
binary constraints K(x, y) have been considered where y is bound by the surrounding
existential quantifier but x is free. There, the correctness condition was that K, denoting
the accessibility relation between worlds, is serial.

Generally speaking, (7.1) is an equivalence transformation in the class � of models
if ψ does not contain x and if � |= ∀̃∃x̄ τ (7.2)

1 Only rules for ∃ are considered here; the rules for ∀ being dual.
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holds where ∀̃γ denotes the universal closure of a formula γ . As the reader easily
verifies, condition (7.2) subsumes those of [Fri91] for sorted deduction and of [FS91]
for reasoning with a serial accessibility relation.

While looking at the constraints introduced by the translation process, it turns out
that rule (7.1) applies to the quantifiers which arise from the operators ; and ◊, as for
all CPL interpretations � P

� P |= ∀x ∃y x ≥ y, and

� P |= ∀x ∃y, z x = y ⊕ z.

The situation is different with a formula

∃y
�
x

�
y ∧ φ � ∨ ψ (7.3)

as R is not serial. Two cases have to be considered: if the value of x is a sequence of
length 0, then (7.3) is obviously equivalent to ψ . If the value of x has a length of at
least 1, then we can replace (7.3) by ∃y(x �

y ∧ [φ ∨ ψ ]), or alternatively since
�

is functional, by ∀y(x �
y → [φ ∨ ψ ]). Note that any occurrence of a formula 7.3

is within the scope of a quantifier for x. The case distinction is done by splitting the
quantifier for x by using the rule

∃xγ ⇒ ∃x
�
Sx ∧ γ � ∨ ∃x

�
¬Sx ∧ γ � (7.4)

and accordingly for a universal quantifier. As an example, the following formula is
transformed into prenex normal form:

∀i1

�
∃i2

�
i1

�
i2 ∧ P(v(i2)) � ∨ Q(w(i1)) �

We split the quantifier for i1 using the dual of rule (7.4):

∀i1

�
Si1 → ∃i2

�
i1

�
i2 ∧ P(v(i2)) � ∨ Q(w(i1)) �

∧ ∀i1

�
¬Si1 → ∃i2

�
i1

�
i2 ∧ P(v(i2)) � ∨ Q(w(i1)) �

The prenex normal form is arrived at after three further transformation steps:

∀i1

�
Si1 → Q(w(i1)) � ∧ ∀i1

�
¬Si1 → ∃i2

�
i1

�
i2 ∧ (P(v(i2)) ∨ Q(w(i1))) � �

∀i1, j1

�
Si1 ∧ ¬Sj1 → Q(w(i1)) ∧ ∃j2

�
j1

�
j2 ∧ (P(v(j2)) ∨ Q(w(j1))) � �

∀i1, j1

�
Si1 ∧ ¬Sj1 → ∃j2

�
j1

�
j2 ∧ Q(w(i1)) ∧ (P(v(j2)) ∨ Q(w(j1))) � �
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5.3 The Skolemization

The rules for the skolemization of formulae in constrained prenex normal form can
be found in [Fri91]. In the example of the last subsection, the binary skolem func-
tion symbol sk is associated with the existentially quantified variable i2. We obtain the
constrained formula

Q(w(i1)) ∧ (P(v(sk(i1, j1))) ∨ Q(w(j1))) / Si1 ∧ ¬Sj1

as well as the sentence

∀i1, j1

�
Si1 ∧ ¬Sj1 → j1

�
sk(i1, j1) �

which in this case constitutes the constraint theory.

5.4 Solving Constraints

In order to obtain a hybrid reasoning system [Fri91] for CPL formulae a constraint
solver is needed which can decide the satisfiability of conjunctions of the constraint
atoms in a given constraint theory. The constraint theory employed here unfortunately
turns out to be undecidable. This can be shown quite easily using the method of [Tre92].
Furthermore, the undecidability of the satisfiability of the constraints follows from the
fact that validity of LLP-formulae is undecidable, while constrained resolution is com-
plete relative to the satisfiability of the constraints [Bür91].

Among the positive results on decidability of related constraint systems we mention
the seminal paper by Rabin [Rab69], where a decision procedure for the monadic second
order theory of strings is given. As a corollary of [Rab69], the full first order theory of
finite intervals with the predicates ≥ and

�
(but without ⊕) is decidable.

5.5 Application of the Translation Method

A translation of temporal-logic formulae into first-order logic by reification of inter-
vals leads to an explicit representation of the temporal information contained in the
formulae. This property can be used to explicitly reason about temporal relationships.
In Section 3 we showed the following example of a plan specification formula in form
of a liveness property:

pre ∧ Plan → ◊(goal1 ∧ goal2 ∧◊(goal3 ∧◊(goal4)))

Translating the goal specification formula into a CPL formula and separating the con-
straints from the first-order part of the formula leads to

∃i1, i2, i3 i1 ≥ i0 ∧ i2 ≥ i1 ∧ i3 ≥ i2 ∧
goal1(i1) ∧ goal2(i1) ∧ goal3(i2) ∧ goal4(i3)
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Temporal abstraction of plan specifications can now be implemented by removing
constraint formulae and thus relaxing the temporal constraints that are specified for a
set of subgoals. In the above mentioned example, we require the plan to achieve goal1

and goal2 in the same interval, while goal3 and goal4 have to be achieved later. When
we remove the set of constraints, no ordering of subgoal states is required anymore.
Temporal abstraction grounded on a manipulation of temporal constraints is used in
the PHI system to index plans in a plan library [Koe94a]. This method leads to a well-
defined temporal abstraction process and allows to prove a monotonicity property that
holds between original and abstracted plan specifications. It states that an existing sub-
set relationship between the set of models satisfying two LLP plan specifications is
preserved as a subset relationship between the set of models satisfying the abstracted
CPL formulae. This property ensures that a retrieval method can be developed that finds
a plan solving a given plan specification whenever it exists in the plan library.

6 Conclusion

Two calculi for an interval-based modal temporal logic are discussed in this paper:
a sequent calculus developed in [BDK92] and a constraint deduction approach. The
sequent calculus was implemented as the basis for deductive planning and plan reuse
in SICSTUS PROLOG. First practical experiences demonstrated that the sequent calculus
approach provides an efficient reasoning method when proofs are guided by tactics. The
tactics support the declarative representation of control knowledge which helps to keep
the search space to a manageable size. A tactic language is used to describe the tactics
and makes it easy to develop and incorporate new tactics into the system.

A translation into constraint predicate logic is presented as an alternative approach.
In this case, the undecidability of LLP reflects in the undecidability of constraint sat-
isfiability, although the basic machinery of constrained resolution itself is known to be
complete. This localization of the undecidability in the constraint part raises the hope of
finding decidable fragments of LLP by isolating decidable fragments of the constraint
theory.
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