
Constraint-Based Scheduling in OzJ�org W�urtz, DFKI GmbH, Saarbr�uckenAbstractIt is discussed, how scheduling problems can be solved in the concurrent constraint pro-gramming language Oz. Oz is the �rst high-level constraint language, which o�ers an interfaceto invent new constraints in an e�cient way using C++. Its multi-paradigm features includ-ing programmable search are unique in the �eld of constraint programming. Through theinterface, algorithms from Operations Research and related �elds can be incorporated. Thealgorithms can be combined through encapsulation into constraints and can communicate viashared variables. This is exempli�ed by the integration of new techniques based on edge-�ndingfor job-shop and multi-capacitated scheduling. The viability of Oz as a platform for problemsolving is also exempli�ed by a graphical scheduling workbench. The performance for job-shopproblems is comparable to state-of-the-art scheduling tools.1 IntroductionSince many years, Operations Research (OR) is successfull in solving application problems. Often,tailored algorithms are developped, which tackle the problem under investigation very e�ciently.But di�culties may arise, if the tailored algorithm has to be adapted to changes of the problemformulation. The special-purpose program may have to be restated in a time-consuming way.On the other hand, constraint programming was invented with the aim to combine declarative-ness and expressiveness with e�ciency [7]. This works well for several application domains likescheduling, con�guration, or resource allocation. But for larger and especially hard problems, theused constraint-techniques were not su�cient. Hence, techniques from OR were incorporated intoconstraint systems, pioneered by CHIP [4]. Changes of the problem formulation can be modeledby stating di�erent constraints. But CHIP lacks exibility to allow the user to invent new kinds ofconstraints.We propose Oz [11, 12] as a platform to integrate algorithms from OR to achieve an amalgama-tion of a high-level constraint language with e�cient OR techniques. Oz is a concurrent constraintlanguage providing for functional, object-oriented, and constraint programming. The unique ad-vantages of Oz, which can be o�ered to the OR community are:� Expressiveness. Di�erent language paradigms allow a natural and high-level modelling of theproblem. Concurrent constraints provide for rapid testing of di�erent models.� Programmable Search. Besides prede�ned search strategies like depth-�rst one solution searchor branch & bound, the user can program his own strategies [10]. Search is completelyseparated from the reduction of the search space achieved by constraint propagation.� Modularity. Through the encapsulation of di�erent algorithms into constraints, they can becombined and interact in one environment. In combination with search and objects, collabo-rating problem solvers can be programmed.� Openness. Through the use of a C++ interface [9], new constraints can be implementede�ciently by the programmer and used like any Oz procedure.

These advantages are exempli�ed by a scheduling workbench called Oz Scheduler [13]. Thisworkbench makes use of di�erent OR algorithms for propagation and branching, which we haveimplemented for job-shop scheduling. The user can freely combine di�erent search strategies andconstraint algorithms. The performance is comparable to state-of-the-art special-purpose tools forscheduling.We show the integration of a new technique based on so-called edge-�nding techniques [2] intoconstraints for job-shop and multi-capacitated scheduling. But also techniques coming from linearprogramming or graph algorithms may be integrated.The paper is structured as follows. In Section 2, constraint programming in Oz is introduced.Section 3 explains how scheduling problems can be solved in Oz. In Section 4, the performance isevaluated for job-shop problems. The paper concludes with an overview on related work.2 Constraint Programming in OzThis paper deals with constraints on �nite sets of nonnegative integers, so-called �nite domains, inthe constraint programming language Oz. For a more thorough treatment see [10, 5].A basic constraint takes the form x = n, x = y or x 2 D, where n is a nonnegative integerand D is a �nite domain. The basic constraints reside in the constraint store. Oz provides e�cientalgorithms to decide satis�ability and implication for basic constraints.For more expressive constraints, like x + y = z, decidingtheir satis�ability is not computationally tractable. Such non-basic constraints are not contained in the constraint store butare imposed by propagators. A propagator is a computational storepropagator � � � propagatoragent that tries to narrow the domains of the variables occurring in the corresponding constraint.This narrowing is called constraint propagation.As an example, assume a store containing X; Y; Z 2 f1; : : : ; 10g. The propagator for X+Y < Znarrows the domains to X; Y 2 f1; : : : ; 8g and Z 2 f3; : : : ; 10g (since the other values cannotsatisfy the constraint). Adding the constraint Z = 5 causes the propagator to strengthen the storeto X; Y 2 f1; : : : ; 3g and Z = 5. Imposing X = 3 lets the propagator narrow the domain of Y toone. Propagators `communicate' via shared variables in the store. If a propagator narrows a domain,further propagators may be triggered, which may narrow further domains, triggering propagatorsand so on. This takes place until a �xed point is reached. Constraint propagation is completelyindependent from the particular implementation of a propagator. The constraint language servesas the glue to connect all the propagators and their algorithms.Constraint propagation is usually incomplete (for the sake of e�ciency). Hence, to obtain asolution for a set of constraints S, we have to choose a (not necessarily basic) constraint C andsolve both S [fCg and S [f:Cg; we distribute S with C at the current choice-point. The secondalternative S [f:Cg is solved if the �rst alternative leads to an inconsistent store (backtracking).We say that a failure has occurred, if constraint propagation leads to an inconsistent store. Notethat distribution takes place only if propagation has reached a �xed point. In the example above wehave �rst distributed with Z = 5 and then with X = 3. Thus, solving a constraint problem consistsin a sequence of interleaved propagation and distribution steps. In Oz, distribution strategies like�rst fail (choose the variable �rst with the currently smallest domain) but also more elaboratedstrategies can be programmed by the user.Additionally, Oz o�ers programmable search [10]. Besides search for one or all solutions andbranch&bound, resource limited search (limited number of time or failures) or local optimizationtechniques can be programmed; both used in the Oz Scheduler. The search tree for a solution canbe visualized by the Oz Explorer.While propagators can be developed and tested in Oz itself, a more e�cient implementation isavailable through a C++ interface, which allows the e�cient usage of destructive datastructures [9].The interface provides for high-level abstractions to free the programmer from tedious work like

triggering propagators etc. For the programmer it is transparent whether a propagator is providedas an Oz procedure or as a builtin through the interface.Thus, a constraint problem can be solved by the combination of three orthogonal concepts:Propagators, distribution and search. Because in Oz these concepts are completely independentfrom each other, the implementation of problem solvers is so convenient.3 Scheduling in OzWe consider job-shop problems �rst. An nxm job-shop problem consists of n jobs and m resources.Each job consists of m tasks to be scheduled on di�erent resources. The tasks in a job are linearlyordered. The resources have unary capacity and no preemption is allowed. A job-shop problemis characterized by two kinds of constraints: precedence and resource constraints. The solution ofa scheduling problem consists in an assignment of start times to tasks that is consistent with allconstraints. Usually, one is also interested in the optimal solution, minimizing the overall lengthof the schedule. A task can be modeled by its duration and a �nite domain for its start time. Aprecedence constraint like that A with duration d(A) must precede B is stated asA+ d(A) � B:A resource constraint states that two tasks A and B on the same resource must not overlap in time,i.e, A+ d(A) � B _ B + d(B) � A. This can be modeled in Oz by so-called rei�ed constraints:C1 = (A+ d(A) � B) ^ C2 = (B + d(B) � A) ^ C1 + C2 = 1:Here, the validity of e.g. A + d(A) � B is reected into the 0/1 valued variable C1. But theresulting `local' reasoning is too weak to solve hard problems. Thus, a technique called edge-�ndingwas invented in [2]. We explain it in terms of constraint propagation.Let S be an arbitrary set of tasks to be scheduled on the same resource and T 2 S. Let S 0be S without T . Then, T must be last, if it cannot be scheduled before all tasks in S 0 and notbetween two tasks in S 0. Let s(T), c(T), and d(T) be the earliest possible start time, the latestpossible completion time, and the duration of T , respectively. Let s(S 0), c(S 0), and d(S 0) be theearliest possible start time, the latest possible completion time and the sum of durations of tasksin S 0. Then, if c(S 0)� s(S 0) < d(S);T cannot be between two tasks of S 0, and ifc(S 0)� s(T) < d(S);T cannot be scheduled before all tasks in S 0. Hence, T must be last and the start time can benarrowed correspondingly, i.e., T � s(S 0) + d(S 0). Analogous rules hold for the detection that atask must be �rst. Several approaches di�er in the amount of further propagation and the selectionof the task sets S to consider [1, 2, 3, 6, 8].We integrated a kind of edge-�nding in a propagator, which bases on an algorithm suggested in[8] for proving lower bounds of job-shop problems. The algorithm (quadratic complexity) computesso-called ascending sets of tasks. For tasks not in these sets, edge-�nding rules are applied. Byconstruction, this algorithm avoids some useless edge-�nding tests. To improve the algorithm, it ischecked for all pairs of tasks, whether one can be scheduled before the other (essentially adoptingthe rei�ed approach above). One of the advantages of this algorithm is that it can be generalizedfor multi-capacitated resources (see below).For distribution (or branching as it is often called in OR), we implemented several strategies fromOR and Arti�cial Intelligence. The best results for proving optimality were obtained by a simpli�edalgorithm of [3], where we avoid the maintenance of cumbersome datastructures. In contrast to

[3], we use the distribution strategy also to add dynamically new propagators (because we candetect tasks, which must be scheduled �rst or last in a task subset). One surprising observation isthat this strategy (providing a very simple form of edge-�nding) in combination with a propagatorcomprising only the propagation of the rei�ed approach above, was su�cient to solve hard schedulingbenchmarks (see Section 4).To �nd the optimal solution quickly, we used repair and shu�e techniques for local optimization(see e.g. [1]), while the edge-�nding propagators are also stated for propagation. For this it wasvery convenient and inevitable to use programmable search in Oz and high-level abstractions.Furthermore, we implemented a propagator for multi-capacitated scheduling, where the resourcesmay have a capacity greater than one and the tasks may consume more than one resource unit. Tothis aim, we generalized our edge-�nding algorithm. Essentially, instead of computing the overallduration of a task set, we make use of the amount of resource usage. Let cap be the resoure capacity,u(T) the resource usage of a task T , and a(S) = PT2S d(T) � u(T). If(c(S 0)� s(S 0)) � cap < a(S 0) + d(T) � u(T);T cannot be between two tasks of S 0, and if(c(S 0)� s(T)) � cap < a(S 0) + d(T) � u(T);T cannot be scheduled before all tasks in S 0. Let rest = a(S 0) � (c(S 0) � s(S 0)) � (cap � u(T)). Ifrest > 0, then T can be narrowed with T � s(S 0) + brest=u(T)c.Moreover, for each task a time interval is computed, where the task occupies the resource inany case (if the latest start time is smaller than the earliest completion time). These intervals areused to disallow time intervals for tasks, which would exceed the available resource capacity. Notethat this kind of propagator can also be used for geometrical reasoning (modeling rectangles forfurniture layout, for example).If a problem requires further constraints like that tasks must have a particular distance, this canbe accomodated by constraint programming very easily. The propagators using edge-�nding can bestated as before, and one only adds the new propagators.4 EvaluationIn this section we evaluate the performance of Oz for 10x10 job-shop problem instances of [1] inTable 1. For all problems the optimal solution (starting with no information) has to be found andthe optimality has to be proved. Problem denotes the problem instance in [1], Fails the number offailures for the overall search (including the proof of optimality), CPU the corresponding runtimein seconds on a Sparc20/70 MHz workstation, and Fails(pr) and CPU(pr) the number of failuresand the time needed for the proof of optimality only. The column Rei�ed indicates that rei�edconstraints were used for the resource constraints1, while Edge-Finding indicates that edge-�ndingwas used.The results on the same problems for Ilog Schedule and Claire (see Section 5) are shown inTable 2 (BT denotes the number of backtracks; Ilog used an IBM RS6000 workstation and forClaire a Sparc10/40 MHz was used).In [1], the proof of optimality for all problems took more than 650 000 nodes in the search tree.Thus, the Oz Scheduler outperforms this approach by more than one order of magnitude.This shows that Oz is comparable to state-of-the-art scheduling tools like Ilog Schedule[6].1Except for �nding the upper bound for problem ORB1 and ORB3, where edge-�nding was used, because in thisphase, rei�ed constraints produced a too bad schedule length.

Rei�ed Edge-FindingProblem Fails CPU Fails(pr) CPU(pr) Fails CPU Fails(pr) CPU(pr)MT10 5838 169 3983 94 4117 157 2564 81ABZ5 4295 130 2160 52 3455 138 1597 52ABZ6 1737 64 239 5 1508 71 200 6La19 3798 112 1756 40 3331 138 1371 45La20 4793 129 3247 78 6496 228 1943 57ORB1 20164 554 16252 399 14242 521 11775 388ORB2 2813 86 766 17 2421 99 596 19ORB3 42327 1071 39405 952 34422 1121 28232 850ORB4 6180 172 1939 45 3722 140 1340 38ORB5 3987 114 1499 40 3468 138 1155 40Table 1: Results on 10x10 job-shop problems for the Oz SchedulerIlog Schedule ClaireProblem BT CPU BT CPU BT CPU(pr) (pr) (pr) (pr)MT10 13 684 236 4 735 67 1 575 80ABZ5 19 303 282 4 519 61 1 350 61ABZ6 6 227 101 312 5 217 ?La19 18 102 270 6 561 91 1 361 48La20 40 597 497 20 626 227 2 120 67ORB1 22 725 407 6 261 108 7 265 315ORB2 31 490 507 14 123 229 487 23ORB3 36 729 606 22 138 343 7 500 320ORB4 13 751 214 1 916 24 1 215 53ORB5 12 648 211 2 658 37 904 43Table 2: Results for Ilog and Claire5 Related WorkIn this section we shortly compare the relation to other constraint systems. CHIP[4] also providesfor means to solve scheduling problems, but is not open to implement new propagators. It heavilyrelies on its Prolog implementation. Claire[3] is a language compiling to C++ code, which providesvery good scheduling results. Its disadvantage is that it does not provide a rich programmingenvironment. Ilog Schedule[6] is a C++ library dedicated to scheduling. We claim that theexclusive use of C++ makes programming often more complicated than if one uses a high-levellanguage like Oz (o�ering comparable performance �gures).Remark The documentation of the DFKI Oz system is available from the programming sys-tems lab of DFKI through anonymous ftp from ps-ftp.dfki.uni-sb.de or through WWW fromhttp://ps-www.dfki.uni-sb.de/oz/.References[1] D. Applegate and W. Cook. A computational study of the job-shop scheduling problem.Operations Research Society of America, Journal on Computing, 3(2):149{156, 1991.

[2] J. Carlier and E. Pinson. An algorithm for solving the job-shop problem. Management Science,35(2):164{176, 1989.[3] Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In Proceedings ofthe International Conference on Logic Programming, pages 369{383, 1994.[4] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. Theconstraint logic programming language CHIP. In Proceedings of the International Conferenceon Fifth Generation Computer Systems FGCS-88, pages 693{702, Tokyo, Japan, December1988.[5] M. Henz and J. W�urtz. Constraint-based time tabling { a case study. Journal of AppliedArti�cial Intelligence, 10(5), October 1996. To appear.[6] Ilog, URL: http://www.ilog.com. Ilog Schedule 2.0, User Manual, 1995.[7] J. Ja�ar and M. Maher. Constraint logic programming - a survey. Journal of Logic Program-ming, 19/20:503{582, 1994.[8] P. Martin and D.B. Shmoys. A new approach to computing optimal schedules for the job shopscheduling problem. International Conference on Integer Programming and CombinatorialOptimization, Vancouver, 1996.[9] T. M�uller and J. W�urtz. Interfacing propagators with a concurrent constraint language. InJICSLP96 Post-conference workshop and Compulog Net Meeting on Parallelism and Imple-mentation Technology for (Constraint) Logic Programming Languages, pages 195{206, 1996.xv.[10] C. Schulte, G. Smolka, and J. W�urtz. Encapsulated search and constraint programming in Oz.In A.H. Borning, editor, Second Workshop on Principles and Practice of Constraint Program-ming, Lecture Notes in Computer Science, vol. 874, pages 134{150, Orcas Island, Washington,USA, 2-4 May 1994. Springer Verlag.[11] G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Science Today,Lecture Notes in Computer Science, vol. 1000, pages 324{343. Springer-Verlag, Berlin, 1995.[12] G. Smolka and R. Treinen, editors. DFKI Oz Documentation Series. Deutsches Forschungszen-trum f�ur K�unstliche Intelligenz GmbH, Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany,1995.[13] J. W�urtz. Oz Scheduler: A workbench for scheduling problems. In IEEE International Con-ference on Tools with Arti�cial Intelligence (ICTAI'96), 1996. To appear.

