
On Equality Up-to Constraints over Finite Trees,Context Uni�cation, and One-Step RewritingJoachim Niehren1, Manfred Pinkal2 and Peter Ruhrberg21 Programming Systems Lab2 Department of Computational LinguisticsUniversit�at des Saarlandes, Saarbr�ucken, Germanyniehren@ps.uni-sb.de and fpinkal,perug@coli.uni-sb.deAbstract. We introduce equality up-to constraints over �nite treesand investigate their expressiveness. Equality up-to constraints subsumeequality constraints, subtree constraints, and one-step rewriting con-straints. We establish a close correspondence between equality up-toconstraints over �nite trees and context uni�cation. Context uni�cationsubsumes string uni�cation and is subsumed by linear second-order uni-�cation. We obtain the following three new results. The satis�abilityproblem of equality up-to constraints is equivalent to context uni�ca-tion, which is an open problem. The positive existential fragment of thetheory of one-step rewriting is decidable. The 9�8�9� fragment of thetheory of context uni�cation is undecidable.Keywords tree constraints, subtree relation, string uni�cation, contextuni�cation, linear second-order uni�cation, one-step rewriting, semanticprocessing of natural language.1 IntroductionTrees are widely used in computer science and computational linguistics. Theyserve as representation for all kinds of symbolic structures such as programs,proofs, data structures, syntactic and semantic analyses of natural language ex-pressions. However, one often needs to represent structures which are only par-tially known, and relationships between several such partially known structures.For these purposes, it is convenient to use tree constraints. These are ordinarypredicate logic formulae with variables denoting trees and with relation symbolsinterpreted by prede�ned relations over trees.We introduce a new class of tree constraints, which we call equality up-to con-straints over �nite trees, and investigate their expressiveness. Equality up-to con-straints subsume equality constraints, subtree constraints, and one-step rewritingconstraints. We establish a close correspondence between equality up-to con-straints and context uni�cation. Context uni�cation subsumes string uni�cationand is subsumed by linear second-order uni�cation. We obtain the following threenew results. The satis�ability problem of equality up-to constraints is equivalentto context uni�cation, which is an open problem. The positive existential frag-



ment of the theory of one-step rewriting is decidable. The 9�8�9� fragment ofthe theory of context uni�cation is undecidable.Equality Up-to Constraints. The semantics of equality up-to constraints is basedon the equality up-to relation over �nite trees. Given �nite trees �1;�01; �2; �02 theequality up-to relation �1=�01=�2=�02 holds if �1 is equal to �2 up-to one positionp where �1 has the subtree �01 and �2 the subtree �02.
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An equality up-to constraint is a conjunction of expressions s1=s01=s2=s02 wheres1; s01; s2; s02 are �rst-order terms with �rst-order variables.Equality up-to constraints subsume equality constraints s1=s2 by equivalence tos1=s1=s2=s1 and subtree constraints s2�s1 meaning that the denotation of s2is a subtree of the denotation of s1 by the equivalence s2�s1 $ s1=s2=s1=s2.Venkatamaran [28] proves that the 9�8� fragment of the theory of the subtreerelation (including negation and equality) is undecidable. This implies that the9�8� fragment of the theory of equality up-to constraints is undecidable.Context Uni�cation. A context is a tree with a hole. More precisely, a contextwith hole X is a �rst-order term s with a single occurrence of X and no oc-currence of any other variable. We prefer to work with context functions ratherthan with contexts. A context function  is a function from trees to trees that isde�ned by some equation of the form (�) = s[�=X ] where s is a context withhole X . Note that a context function is a second-order function that is linear inthat it uses its argument exactly once.We assume a set of second-order variables ranged over by C. A second-order termt is either a �rst-order variable X , a construction a(t1; : : : ; tn) or an applicationC(t). A context constraint is a conjunction of expressions t1=t2. A second-ordervariable denotes a context function whereas a second-order term denotes a tree.The denotation of a second-order term C(t) is de�ned as the application of thedenotation of C to the denotation of t. Context uni�cation is the satis�abilityproblem of context constraints with respect to the above interpretation.Correspondence. Context constraints plus existential quanti�cation are at leastas expressive as equality up-to constraints, since s1=s01=s2=s02 is equivalent to9C (s1=C(s01) ^ s2=C(s02)). Conversely, we can encode context constraints intoequality up-to constraints (up to satisfaction equivalence) even if some contextvariables C occur more than twice. This fact is not obvious, and it is proved inthe paper. The given correspondence has the following two consequences. Thesatis�ability problem of equality up-to constraints is equivalent to context uni�-cation. The 9�8�9� fragment of the theory of context constraints is undecidable.



One-Step Rewriting. The �rst-order theory of one-step rewriting has attractedsome attention starting with [3] because it allows to express several decidableproperties of rewrite systems. The hope was that the whole theory could bedecidable. Treinen [26], however, has shown that the 9�8� fragment of the �rst-order theory of one-step rewriting is undecidable. Several improvements of thisresult have been achieved [14, 29] where only restricted rewrite systems areneeded.Equality up-to constraints subsume one-step rewriting constraints. A one-steprewriting constraint is of the form X1!X2 with s1!s2 and means that thetree denotation of X1 rewrites in one-step to the tree denotation of X2 via anapplication of the rewrite rule s1!s2. Let fY1; : : : ; Yng be the set of variablesoccuring in s1 and s2. If fX1; X2g \ fY1; : : : ; Yng = ; then the one-step rewrit-ing constraint X1!X2 with s1!s2 is equivalent to 9Y1 : : :9Yn(X1=s1=X2=s2).The condition fX1; X2g \ fY1; : : : ; Yng = ; can always be assumed by renam-ing the variables in the rewrite rule s1!s2. The equality up-to constraint thatwe obtained X1=s1=X2=s2 is satisfaction equivalent to the context constraintX1=C(s1)^X2=C(s2), which is a strati�ed in the sense of Schmidt-Schau� [22]because of the condition fX1; X2g\fY1; : : : ; Yng = ;. The decidability of strati-�ed context uni�cation is proved in [22]. Hence, the positive existential fragmentof the theory of one-step rewriting (constraints) is decidable.Plan of the Paper. In Section 2, we discuss related work. In Section 3, weintroduce equality up-to constraints, relate them to subtree constraints, anddistinguish decidable fragments. In Section 4, we de�ne context uni�cation andformulate results in analogy to those for equality up-to constraints. In Section 5,we formulate the correspondence between equality up-to constraints and contextuni�cation. In Section 6, we relate to the �rst-order theory of one-step rewriting.In Section 7, we illustrate how to compute solutions of context constraints inseveral simple examples, based on an algorithm formulated in Appendix B ofthe full paper.In the full version of the paper [16], three appendixes are added. In AppendixA, we give a proof omitted in the conference version of the paper. Appendix Bpresents a simple correct and complete but not necessary terminating algorithmfor context uni�cation (in Plotkin style). This algorithm is modi�ed in AppendixC such as to obtain an algorithm for context uni�cation in the style of L�evy'ssecond-order uni�cation algorithm. It is claimed in [12] that this algorithm ter-minates for all presented decidable fragments of linear second-order uni�cation(and thus context uni�cation). At the time of submitting this paper, however,the termination proof given there for the case of strati�ed linear second-orderuni�cation has not been agreed on to be complete.2 Related WorkString Uni�cation. String uni�cation is the problem of solving word equa-tions. For instance, all solutions of the word equation Ca=aC map C to a word



described by the regular expression a�. String uni�cation is subsumed by con-text uni�cation. The above word equation corresponds to the context constraintC(a(�)) = a(C(�)) where a is a function constant and � is a �xed �rst-orderconstant representing the empty word. Every solution of this context constraintmaps C to the context function  with (�) = a(: : : (a(�))). The correspondencebetween  and a� is obvious.String uni�cation has been discovered and investigated by several independentresearch communities (for an overview see [2]). The notion of string uni�cationstems from the �eld of automated deduction [21, 24], where it is also called A-uni�cation [1] with a single associative function symbol. String uni�cation has�rst been presented by Markov [15] in 1954 and is called Markov's problem bymathematicians in eastern countries. It is called L�ob's problem by mathemati-cians in western countries, for example by A. Lentin and M.P. Sch�utzenberger[11]. A solution to the string uni�cation problem was found by Makanin [13] in1977. Subsequent papers on this topic [18, 9, 23, 10] were concerned with �ndinga better description of Makanin's algorithm, closing small gaps in the proof ofcorrectness, and studying its complexity.Context Uni�cation. Context uni�cation is a subproblem of linear second-orderuni�cation (see below) and a generalization of string uni�cation. The notion ofcontext uni�cation was �rst used in [12] but stems from [4] where it is calleduni�cation with context variables. A formal de�nition of context uni�cation isgiven implicitly in [22]. To our knowledge, the decidability of context uni�cationis still open (in contrast to string uni�cation).Three distinct fragments of context uni�cation are solved in [4, 22, 12] respec-tively. Schmidt-Schau� [22] considers strati�ed context constraints mentionedabove. L�evy [12] handles all context constraints where �rst-order and second-order variables occur at most twice. Comon's fragment [4] includes context con-straints corresponding to equality and subtree constraints (see Section 4.2) butalso context membership constraints, which express that a context C belongsto a given regular set of contexts. A typical formula of this fragment is (in theword case) x=Ca2 ^ C2(a�1a2)�. It seems that nested Kleene stars cannot beexpressed in terms of string uni�cation. In contrast, a single Kleene star can beexpressed, for instance x=Ca2^C2a�1 is equivalent to x=Ca2^Ca1=a1C, whichis however not a member of Comon's fragment, since C is applied with distinctarguments a2 and a1.Linear Second Order Uni�cation. Context uni�cation can also be consideredas a subproblem of linear second-order uni�cation [12]. This is the problem ofwhether a conjunction of equations between second-order �-terms in long ��normal form has a solution that maps variables to linear second-order �-terms.L�evy's algorithm is correct and complete for linear second-order uni�cation butnot always terminating. The decidability of linear second-order uni�cation isopen but as for context uni�cation, three decidable fragments are known [12].Note also that linear second-order uni�cation is a subproblem of second-order



uni�cation, which is undecidable [7] but only a fragment of higher-order uni�ca-tion [19, 8].Ellipses in Natural Language. The motivation of the authors for the investi-gation of equality up-to constraints stems from the area of semantic processingof natural language. This line of research started with higher-order uni�cation[5, 6] and led to a de�nition of linear second-order uni�cation [20] independentlyfrom L�evy in [12]. An application of context uni�cation for semantic processingof natural language is presented by the authors in [17].Here, we give a linguistic toy example that illustrates how equality up-to con-straints (and thus context uni�cation) can be applied to the analysis of an ellipticsentence. Consider Peter likes Riesling, Chardonnay too. This sentence is composedof two subsentences Peter likes Riesling and Chardonnay too. The semantics ofboth subsentences are boolean values. The semantics of the word Peter is of typeperson, and the semantics of the words Riesling and Chardonnay are of type grape.The semantics of the word likes is some function of type person!(grape!bool).Given the semantics of all these words, the semantics of the subsentences can berepresented by the following two trees respectively:@(@(likes Riesling) Peter) and @(@(likes Chardonnay) Peter)More precisely, the semantics of the subsentences is obtained from the semanticsof its words by evaluating the above trees where @ is interpreted as functionapplication.The above trees can by described as the solutions of the following equality up-toconstraint with respect to the variables X1 and X2:X1=@(@(likes Riesling) Peter)) ^ X1=Riesling=X2=ChardonnaySuch a constraint can be derived on the basis of a syntactic analysis of thesentences, and a resolution of the ellipsis that takes Riesling and Chardonnayto play a structurally parallel role in their respective contexts. Note that thesemantics of the word too in the above sentence is described by the contextfunction  with (�) = @(@(likes �) Peter), but not by a tree.3 Equality Up-to ConstraintsWe de�ne the syntax and semantics of equality up-to constraints, relate them tosubtree and equality constraints, and distinguish some decidable and undecidablefragments of their �rst-order theory.3.1 Syntax and SemanticsWe assume an in�nite set of �rst-order variables ranged over by X , and a setof function constants ranged over by a, a1 and a2. Every function constant isequipped with an arity, which is an integer n � 0. For all undecidability results,



we assume that there is at least one constant of arity � 2 and one constant ofarity 0.A �rst-order term s is either a �rst-order variable X or of the form a(s1; : : : ; sn)where n is the arity of a and s1; : : : ; sn are �rst-order terms. An equality up-toconstraint is a conjunction of expressions of the form eq2(s1; s01; s2; s02) that wewrite as s1=s01=s2=s02 for better readability. A (�nite) tree � is a ground �rst-order term, i.e. a �rst-order term without variables. A context function  is afunction from trees to trees that is described by an equation of the form(�) = s[�=X ] for all trees �where s is a �rst-order term that contains a single occurrence of the variable Xand no occurrences of any other variable (i.e. s is a context with hole X).The relation symbol eq2 is interpreted as the following 4-ary relation between�nite trees.�1=�01=�2=�02 i� exists  such that �1 = (�01) and �2 = (�02)Let � be a variable assignment that maps �rst-order variables to �nite trees. Weextend � homomorphically to �rst-order terms.�(a(s1; : : : ; sn)) = a(�(s1); : : : �(sn))An equality up-to constraint s1=s01=s2=s02 is satis�able over �nite trees if thereexists a variable assignment � such that �(s1)=�(s01)=�(s2)=�(s02) holds.3.2 Subtree and Equality ConstraintsEquality up-to constraints can to express equality constraints s=s0 and subtreeconstraints s�s0. A variable assignment � is a solution of an equation s=s0 if�(s) = �(s0), and of a subtree constraint s�s0 if �(s) is a subtree of �(s0).Proposition 1. The following equivalences hold in the structure of �nite trees:s1=s2 $ s1=s1=s2=s1 and s1�s2 $ s2=s1=s2=s1Proof. The implication from the right to the left in the �rst equivalence can beproved as follows. If �1=�1=�2=�1 then there exists  such that �1 = (�1) and�2 = (�1). This yields �1 = �2. The second equivalence is trivial.Theorem2 (Venkataraman 1987). The existential fragment of the �rst-ordertheory of subtree constraints s�s0 over �nite trees is decidable and NP-complete.The 9�8� fragment of this theory is undecidable.A proof has been given by Venkataraman in [28]. Note that Theorem 2 carriesover to the subtree relation on in�nite trees [27, 25]. In this case, explicit equalityconstraints s=s0 have to be provided, since the equivalence X�X 0 ^X 0�X $X=X 0 does not hold over in�nite trees in contrast to �nite trees.



De�nition 3. An equality up-to constraint is uniform if all its conjuncts are ofthe form s1=s=s2=s.Lemma4. An equality up-to constraint is equivalent to a uniform equality up-toconstraint if and only if it is equivalent to a conjunction of subtree and equalityconstraints. The corresponding constraints can be computed in linear time.Proof. This follows from the equivalence s1=s=s2=s $ s1=s2 ^ s�s1, whichholds over �nite trees (and also over in�nite trees).Theorem5. The existential fragment of the �rst-order theory of uniform equal-ity up-to constraints is decidable and NP-complete. The 9�8� fragment of thistheory is undecidable.Proof. Every uniform equality up-to constraint is equivalent to a conjunction ofsubtree and equality constraints by Lemma 4 and conversely by Proposition 1.Thus, the theorem is a corollary to Theorem 2.The decidability of the positive existential fragment of the �rst-order theory ofuniform equality up-to constraints can also be reduced to Comon's result [4]about uniform context constraints reformulated in Theorem 11. Via Lemma 4this yields an alternative proof to Venkataraman's decidability result in Theorem2 but without negation.3.3 Two Occurrences Restriction and Strati�cationWe distinguish two more fragments of equality up-to constraints that have a de-cidable satis�ability problem. Both fragments are obtained by translating knownanalogous results for context uni�cation. In particular, we note that our notionof strati�cation for equality up-to constraints given here is motivated by ananalogous notion for context constraints introduced in Section 4.3.Theorem6. The satis�ability of equality up-to constraints with at most twooccurrences per �rst-order variable is decidable.Proof. This theorem reduces via Proposition 15 to the analogous result for con-text uni�cation formulated in Theorem 12 (which has �rst been proved by L�evy[12] in the setting of linear second-order uni�cation).De�nition 7. An equality up-to constraint ' is strati�ed if whenever a variableX occurs in s01 or s02 in a conjunct s1=s01=s2=s02 of ' then X does not occur ins1 and s2 and not in any other conjunct of '.Theorem8. The satis�ability of strati�ed equality up-to constraints is decid-able.Proof. This theorem reduces via Proposition 15 to an analogous result for con-text uni�cation given in Theorem 14 (which has �rst been proved by Schmidt-Schau� in [22]).



4 Context Uni�cationWe de�ne the syntax and semantics of context constraints and the notion of con-text uni�cation. We also distinguish some decidable and undecidable fragmentsof the �rst-order theory of context constraints.4.1 Syntax and SemanticsWe assume an additional in�nite number of second-order variables ranged overby C. A second-order term t is either a �rst-order variable X , a construc-tion a(t1; : : : ; tn) where the arity of a is n, or a term of the form C(t), wheret; t1; : : : ; tn are second-order terms. In particular, every �rst-order term s is alsoa second-order term. A context constraint is a conjunction of equations t=t0between second-order terms3.Semantically, we interpret context variables as context functions and second-order terms as �nite trees (like �rst-order terms). Let � be a variable assign-ment that maps �rst-order variables to �nite trees and second-order variables tocontext functions. The interpretation �(t) of a second-order term t under � isde�ned homomorphically.�(a(t1; : : : ; tn)) = a(�(t1); : : : ; �(tn))�(C(t)) = �(C) (�(t))A solution of a context constraint  is a variable assignment � that satis�esall equations in  . A context constraint is called satis�able if it has a solution.Context uni�cation is the satis�ability problem of context constraints.4.2 Subtree and Equality ConstraintsAs shown in Section 3.2, subtree and equality constraints can be expressed withuniform equality up-to constraints and vice versa. Here, we de�ne uniform con-text constraints in analogy. This notion has been investigated before by Comon[4] but without stating the correspondence to subtree and equality constraints(see Lemma 10).De�nition 9. We call a context constraint  uniform if whenever C(t1) andC(t2) occur in  then t1 is equal to t2.Lemma10. Every uniform context constraint is satisfaction equivalent to a con-junction of subtree and equality constraints. The corresponding constraint can becomputed in cubic time.Proof. As we will show in Propositions 15 and 17, every uniform context con-straint is satisfaction equivalent to a uniform equality up-to constraint and viceversa. Thus, the result follows from Lemma 4.3 In higher-order uni�cation, a context constraint would be called a context uni�cationproblem.



Theorem11 (Comon 1992). The positive existential fragment of the �rst-ordertheory of uniform context constraints is decidable. The 9�8�9� fragment of thistheory is undecidable.The decidability result in Theorem 11 has also �rst been proved by Comon in [4].A simpler proof has been presented in [12] and can also be found in AppendixC. The negative result of Theorem 11 is original to the present paper.Proof. The full theorem follows from Lemma 10 and Theorem 5 (which is aconsequence of the Venkataraman's result).Note that the correspondence in Lemma 10 is formulated with respect to satis-faction equivalence. We therefore needed an additional layer of existential quan-ti�ers in the undecidability result of Theorem 11, i.e. we obtain a weaker unde-cidability result for context constraints than for equality up-to constraints.4.3 Two Occurrences Restriction and Strati�cationWe recall two more decidability results for fragments of context uni�cation thathave been proved by L�evy [12] and Schmidt-Schau� [22].Theorem12 (L�evy 1996). Context uni�cation restricted to context constraintswith at most two occurrences per variable (�rst and second-order) is decidable.Proof. This result has �rst been proved by L�evy [12] in the framework of linearsecond-order uni�cation. A proof adapted to the setting of context uni�cation issketched in Appendix C.De�nition 13. Let � be either a �rst-order or a second-order variable. A second-order pre�x of � in a term t is a word of second-order variables that is obtainedwhen traversing t from the root to an occurrence of � in t. We write P(�; t) forthe set of all second-order pre�xes of � in t. The set P(�;  ) of all second-orderpre�xes of � in a constraint  is de�ned homomorphically:P(�;  ^  0) = P(�;  ) [ P(�;  0); P(�; t=t0) = P(�; t) [ P(�; t0)A context constraint  is called strati�ed if the set P(�;  ) contains at most oneelement for every �rst-order and second-order variable � in  .Theorem14 (Schmidt-Schau� 1994). Context uni�cation restricted to strati-�ed context constraints is decidable.Proof. This theorem has been �rst proved by Schmidt-Schau� [22]. A simplerproof has been proposed by L�evy [12]. However, at the time of submitting thispaper, the termination proof given there has not been agreed on to be complete.



5 CorrespondenceThe relationship of context uni�cation and equality up-to constraints over �nitetrees is formalized in this section. The only non-obvious fact we need is statedin Lemma 16.Proposition 15. There is a linear time transformation of equality up-to con-straints into satisfaction equivalent context constraints which preserves uni-formity, strati�cation, and the number of occurrences of �rst-order variables.Second-order variables may be introduced, but the introduced second-order vari-ables occur at most twice.Proof. This is a consequence of the following equivalence that can be used as atransformation rule when oriented from the left to the right:s1=s01=s2=s02 $ 9C (s1=C(s01) ^ s2=C(s02)) 2For reducing context uni�cation to the problem of solving equality up-to con-straints, we introduce generalized n-ary equality up-to constraints of the forms1=s01= : : :=sn=s0n for any n. These new constraints are interpreted with respectto the n-ary equality up-to relation �1=�01= : : :=�n=�0n, which holds if thereexists a context function  such that �i = (�0i) for i = 1 : : : n.Lemma16 (Coherence). The following equivalence holds in the structure of �-nite trees for all n � 1:s1=s01= : : :=sn=s0n $ ^i;j2f1;:::;ng si=s0i=sj=s0jA proof of this Lemma is given in Appendix A. In order to illustrate that thisLemma is non-trivial, we give the following example:f(a; b)=a=f(b; b)=b^ f(b; b)=b=f(b; a)=a� 6! f(a; b)=a=f(b; b)=b=f(b; a)=aIn this case, the coherence lemma is not applicable because the required assump-tion f(a; b)=a=f(b; a)=adoes not hold. This shows that the coherence lemma needs all pairwise equalityup-to constraints. Our proof has to take care of all of them simultaneously.Proposition 17. There exists a cubic time transformation of context constraintsinto satisfaction equivalent equality up-to constraints. This transformation pre-serves uniformity but neither strati�cation nor the number of variable occur-rences.Proof. We apply the following �ve transformation steps consecutively.



Step 1 We replace equations t=t0 by conjunctions X=t ^X 0=t0 where X;X 0are fresh, unless t is a variable. Thereafter, we replace equations of theform X=a(t1; : : : ; tn) by conjunctions X=a(X1; : : : ; Xn) ^ X1=t1 ^: : :^Xn=tn and equations X=C(t0) with X=C(X 0)^X 0=t0 where allX's are fresh.Step 2 We regroup the conjuncts into equations s1=s2 and conjunctionss1=C(s01) ^ : : : ^ sm=C(s0m) such that C occurs nowhere outside thisconjunction in the constraint.Step 3 We replace a conjunction s1=C(s01) ^ : : : ^ sn=C(s0n) by the for-mula 9C (s1=C(s01) ^ : : : ^ sn=C(s0n)): This is a satisfaction equiva-lent transformation since we assume that C does not occur elsewhere.Step 4 We apply the following equivalences as transformations from the leftto the right:s1=s2 $ s1=s1=s2=s19C (s1=C(s01) ^ : : : ^ sn=C(s0n)) $ s1=s01= : : :=sn=s0nStep 5 We apply the equivalence of Lemma 16 from the left to the right.All transformations above can be performed in linear time except step 5. Thisstep is quadratic and does neither preserve strati�cation nor the number ofvariable occurrences. All steps preserve uniformity except step 1. But we canslightly modify step 1 in order to preserve uniformity. It is su�cient to alwaysreplace equal subterms by the same variable. This needs a quadratic number ofequality tests that can be done in cubic time. 2Corollary 18. The satis�ability problem of equality up-to constraints is equiva-lent to context uni�cation.Proof. From Propositions 15 and 17. 26 One-Step RewritingContext uni�cation is closely related to the �rst-order theory of one-step rewrit-ing. The theory of one-step rewriting is a set of theories rather than a singletheory. Each of these theories is a subset of the same �rst-order language, whichcontains all so called one-step rewriting formulae that can be built from ex-pressions X!X 0 and the usual �rst-order connectives. Let � be a signature offunction symbols. A rewrite system R (over �) is a �nite set of rules s!s0, whichare pairs of terms s and s0 over the signature �. For every rewrite system R, thestructure AR is an extension of the structure of �nite trees with an additionalbinary relation. A formula X!X 0 is interpreted in AR with respect to the bi-nary relation �!R�0 on trees � and �0, which holds i� � rewrites in one step to�0 by using a rule in R.The theory of one-step rewriting with respect to R is the set of valid formulaeinterpreted over the structure AR. Treinen has shown in [26] that it is undecid-able if a one-step rewriting formula belongs to the 9�8� fragment of the theory



of one-step rewriting with respect to R. As proved recently, Treinen's result stillholds if the considered rewrite systems are restricted to be linear, right groundrewrite [14] or linear, Noetherian [29].For our purpose, we prefer to use one-step rewriting constraints rather thanone-step rewriting formula. A one-step rewriting constraint is a conjunction ofexpressions X!X 0 with s!s0, which holds in the structure of �nite trees (andits extensions AR) if the tree denotation of X rewrites in a one step to the treedenotation of X 0 by using the rewrite rule s!s0.Lemma19. In the structure AR, every one-step rewriting formula of the formVni=1(Xi!X 0i) is equivalent to a disjunction of one-step rewriting constraints.Proof. Let R = fsj!s0j j 1 � j � mg. The following equivalence holds over AR:n̂i=1(Xi!X 0i) $ n̂i=1 m_j=1(X!X 0 with sj!s0j)It is su�cient to compute the disjunctive normal form of the right hand side.Lemma20. Every one-step rewriting constraint is satisfaction equivalent to adisjunction of strati�ed equality up-to constraints.Proof. Consider the one-step rewriting constraint Vni=1(Xi!X 0i with si!s0i).Let fY 1i ; : : : ; Y m(i)i g be the set of variables occuring in si and s0i. We can assume[ni=1fXi; X 0ig \ [nj=1fY 1j ; : : : ; Y m(j)j g = ; by renaming the variable in si!s0iappropriately. The following equivalence holds for all 1 � i � n:Xi!X 0i with si!s0i $ 9Y 1i : : :9Y m(i)i (X=si=X 0=s0i)Thus Vni=1(Xi!X 0i with si!s0i) and Vni=1(X=si=X 0=s0i) are satisfaction equiv-alent. The latter equality up-to constraint is strati�ed because of the abovevariable disjointness condition.Theorem21. The positive existential fragment of the �rst-order theory of one-step rewriting is decidable.Proof. This follows from Lemma 19, Lemma 20, and Theorem 8.7 Examples for Solving Context ConstraintsWe present two simple examples that show how to solve context constraintsaccording to an algorithm given in Appendix B available in the full version ofthe paper. We give two examples, one example for ellipses in natural languagesand one for one-step rewriting.



For the analysis of the elliptic sentence Peter likes Riesling, Chardonnay too inSection 2 we have derived the following equality up-to constraint:X1=@(@(likes Riesling) Peter)) ^ X1=Riesling=X2=ChardonnayThis constraint is equivalent to the constraint '0 given by the following equa-tions: '0 = 9C ('1 ^X1=C(Riesling) ^X2=C(Chardonnay))'1 = @(@(likes Riesling) Peter))=C(Riesling)In the computation below, it is shown that there is unique solution for '1 thatmaps C to the context function  with (�) = @(@(likes �) Peter)). This contextfunction represents the semantics of too in the given elliptic sentence.@(@(l r) p))=C(r)false C 7! �Y:Y@(l; r)=C0(r)C 7! �Y:@(C0(Y ); p) p=C0(r)C 7! �Y:@(@(l; r); C0(Y ))
false@(l; r)=rC0 7! �Z:Z l=C00(r)C0 7! �Z:@(C00(Z); r) r=C00(r)C0 7! �Z:@(l; C00(Z))

false falseC00 7! �X:X trueC00 7! �X:XWe now give an example for solving a one-step rewriting constraint. We considera signature of two unary function constant a and b and the following constraint:X!Y with a(Z)!b(Z) ^ Y!X with b(U)!UThis constraint is equivalent to the context uni�cation constraint '2 with'2 = X=C(a(Z)) ^ Y=C(b(Z)) ^ Y=D(b(U)) ^ X=D(U)Below, we solve the following constraint '3 that is logically implied by of '2:'3 = C(a(Z))=D(U) ^ C(b(Z))=D(b(U))In the single non failed alternative, we obtain a cycle (up to renaming C 00 to C 0)without any exit to a solution. This shows that '3 and thereby '2 are unsatis-�able.



C(a(Z))=D(U)C(b(Z))=D(b(U))C0(a(Z))=UC 7! �Y:D(C0(Y )) a(Z)=D0(U)D 7! �Y:C(D0(Y ))C0(b(Z))=b(U) b(Z) = D0(b(U))C0(b(Z)) = b(C0(a(Z)))U 7! C0(a(Z)) falseD0 7! �Z:Z falseD0 7! �Z:a(D00(Z))
false C0 7! �Z:Z C00(b(Z)) = b(C00(a(Z)))C0 7! �Y:b(C00(Y ))
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A Proof of the Coherence LemmaWe present the proof of the Coherence Lemma, which is omitted in the confer-ence version of the present paper.Lemma 16 [Coherence] The following equivalence holds in the structure of�nite trees for all n � 1:s1=s01= : : :=sn=s0n $ ^i;j2f1;:::;ng si=s0i=sj=s0jProof. The cases n = 1 and n = 2 are trivial. The implication from the leftto the right is also trivial. We show the implication from the right to the leftfor n � 3. We assume trees �i and context functions ij such that the pairwiseequations �i = ij(�0i) and �j = ij(�0j)hold for i; j 2 f1; : : : ; ng and i < j. If there exists i 6= j such that �0i = �0j then�i = �j . By induction on n there exists a context function  with �k = (�0k)for all k 6= i. Thus, �i = �j = (�0j) = (�0i). It remains the case where all �0iare pairwise distinct. In this case, we have ij = i0j0 for all i < j and i0 < j0 asproved in Lemma 22.Lemma22. Let n � 3, �i; �0i be trees and ij context functions where i; j 2f1; : : : ; ng. If all �0i are pairwise distinct and �i = ij(�0i) and �j = ij(�0j) forall i < j then ij = i0j0 for all i < j and i0 < j0.Proof. The case n = 3 is solved in Lemma 23 and the case n > 3 trivially reducesto the case n = 3. 2Lemma23. Let �1; �2; �3; �01; �02; �03 be trees and 12, 23, and 13 context func-tions. If �01; �02; �03 are pairwise distinct and �i = ij(�0i) and �j = ij(�0j) for alli < j then 12 = 23 = 13.Proof. A path p is a sequence of integers. A path p1 is called a pre�x of p2 ifthere exists a path p02 such that p2 = p1p02. A proper pre�x of p is a pre�x of pthat is distinct from p. Two path p1 and p2 diverge if p1 is a not a pre�x of p2and p2 is not a pre�x of p1. Given a tree � we write �jp for the subtree of � atpath p and assume that such a subtree exists.Let pij be the path that leads to the unique variable occurrence in the term de�n-ing the context function ij . The paths p12, p13, and p23 cannot be proper pre�xesof each other. Otherwise, for the case p12 and p13 for example, �1jp12 = �01 and�1jp13 = �01, so that �01 would be a proper subtree of itself, which is not possibleover �nite trees. The other cases are analogous.We prove 12 = 13. The proof of the remaining equalities is symmetric. If p12 =p13 then 12 = 13 since 12(�01) = �1 = 13(�01). Otherwise (i.e. p12 6= p13), the



path p12 and p13 must diverge (they cannot be proper pre�xes of each other asshown above and they cannot be equal by assumption). If p12 = p23 then we get�01 = �1jp12 = �3jp12 = �3jp23 = �03 ;which contradicts �01 6= �03. Thus p12 and p23 must also be disjoint. This implies�01 = �1jp12 = �3jp12 = �2jp12 = �02 ;which contradicts �01 6= �02 such that p12 6= p13 is not possible in any case. 2B An Algorithm for Context Uni�cationIn this section, we present an algorithm that adapts Plotkin's string uni�cationalgorithm [21] for context uni�cation. This algorithm is correct and completebut does not terminate in the all cases we are interested in. However, it justi�esthe examples in Section 7.The algorithm operates on sets � of symmetric equations t=t0. In other words,we identify context constraints up to the following equality relation:t=t0 � t0=t ' ^  �  ^ '(' ^  ) ^ ' � ' ^ ( ^ ') ' ^ ' � 'Our algorithm operates as a state transformer. A state is a pair h�; �i where �is the set of equations and � is a substitution. The intuition is that � containsthose constraints that have still to be solved and that � represents a partialsolution of the initial context constraint. A uni�er for a set � is a substitution� such that �(t) is syntactically identical to �(t0) for each equation t=t0 in � .For a given context constraint � the starting state is h�; Idi. The constraint issolved if a �nal state of the form h;; �i can be reached by (indeterministically)applying transformation rules. A transformation rule is of the formt=t0 �! � j �which applied to the state hft=t0g[� 0; �0i yields the new state h�(� [� 0); ���0i.Here, we use a notation for describing context functions by means of (linearsecond order) �-terms. These are of the form �X:t where t is a second-orderterm such that the (�rst order) variable X occurs exactly once in t. If such a�-term contains no free variables it uniquely speci�es a context function. Weimplicitly assume that in performing a substitution �(� ) we also normalize theterms, i.e. we �-convert any subterms of the form (�X:t)(t0) that can occur whena context variable is replaced by a �-term. We note that a context constraint �has a solution if and only if � has a uni�er.The state transformation rules of our algorithm are given in Table 1. We callthe path of a context that leads to it's hole the context's exception path. Noticethat the rule Flex-Flex1 assumes that the exception path of the context C is apre�x of the exception path of C 0, so that t0 must be a subtree of t. For context



(Subst) X=t �! true if X 62 V (t) j X 7! t(Decomp) a(t1; :::; tn)=a(t01; :::; t0n) �! Vi=1::n ti=t0i j Id(Proj) a(t1; :::; tn)=C(t0) �! a(t1; :::; tn)=t0 j C 7! �X:X(Imit) a(t1; :::; tn)=C(t0) �! ti=C0(t0) j C 7! �X:a(t1; ::; ti�1; C0(X); ti+1; ::; tn)(Simpl) C(t)=C(t0) �! t=t0 j Id(Flex-Flex1) C(t)=C0(t0) �! t=C00(t0) j C0 7! �X:C(C00(X))(Flex-Flex2) C(t)=C0(t0) �! true j C 7! �Y:C1(a(�(X;C2(Y ); C3(t0)) ));C0 7! �Z:C1(a(�(X;C2(t); C3(Z)) ))where � is a permutationTable 1. A Correct and Complete Algorithm for Context Uni�cationuni�cation with constants of arity � 2 this rule does not su�ce, as two subtreesof some tree can live on diverging branches. The rule Flex-Flex2 covers thesecases by containing for each constant a of arity n and each permutation � ofn-ary sequences an instance with n� 2 fresh variables X.The algorithm is sound and complete (which we will not prove here) but hascertain disadvantages. Besides introducing a potentially very large search space,the Flex- Flex2 rule increases the size of a constraint even within the fragmentof context uni�cation where every variable occurs at most twice.The size of a context constraint (seen as a set) � is de�ned as follows (where �ranges over constants and variables of appropriate arity):size(�(t1; : : : ; tn)) = n+Pni=1 size(ti)size(ft1=t01; : : : ; tn=t0ng) =Pni=1 size(ti) + size(t0i)Under this de�nition of the size of a context constraint, the above algorithmwould not yield a termination result for the 2-occurrence fragment. We thereforepresent a di�erent algorithm in Appendix C, that uses n-ary context variables.C L�evy's AlgorithmWe modify our algorithm of the previous section such that it terminates forseveral decidable fragments of context uni�cation including the restrictions touniform context constraints (Theorem 11) and to the two occurence case (The-orem 12). The algorithm we present here can also be seen as a reformulation ofL�evy's linear second-order uni�cation algorithm for context uni�cation. We omitproofs of correctness, completeness, and termination, since these can be found



in [12]. There, it is also claimed that L�evy's algorithm terminates for strati�edcontext constraints (Theorem 14). But up to the time point of writing this paper,it has not become clear wether the proof sketch given in [12] can be completed.We now consider context variables C andD with arities n � 1 but possibly di�er-ent from 1. An (extended) second-order term t additionally admits applicationsof the form C(t1; : : : ; tn) where C is a context variable of arity n. An (extended)context constraint is a conjunction of equations t=t0 between extended second-order terms.A tree � is as before a ground �rst-order term. An (n-ary) context function  isa function from sequences of trees to trees that is described by an equation ofthe form (�1; :::; �n) = s[�i=Xi]ni=1 for all trees �1; :::; �nwhere s is a �rst-order term that contains a single occurrence of each variableX1; :::; Xn and no occurrences of any other variables. A solution to a contextconstraint is de�ned as before as an assignment � that satis�es all equationsof the constraint. We now use linear �-terms of the more general form �X:tin the substitutions of the algorithm, which as before are normalized when thesubstitution is carried out.Notice that the di�erent exception paths of an n-ary context cannot be pre�xesof one-another. Thus the Flex-Flex2 case of the �rst algorithm, with monadiccontext variables whose exception paths stand in no pre�x relation, can be neatlyrephrased so that the size of the problem can be better controlled, by writingC(t)=C 0(t0) �! true j C 7! �Y:C 00(t0; Y ) ; C 0 7! �Z:C 00(Z; t)In Table 2, our simple algorithm is reformulated for the more general problemof n-ary context uni�cation, following closely L�evy's [12] algorithm for linearsecond order uni�cation. In particular, the Flex-Flex rule has to account for allpossible pre�x relations between the holes of two contexts of arbitrary arity.To state the Flex-Flex rule correctly, we need a few auxiliary de�nitions. Let Pand Q run over sets of indices which are linearly ordered, so that we may writethem as P = fp1; : : : ; png and Q = fq1; : : : ; qmg respectively. These orderedindex sets correspond to the exception paths of two contexts. The expression tPstands for the sequence tp1 ; : : : ; tpn . For any P 0 � P , the expression tP 0 standsfor the sequence tpi ; : : : ; tpk , where tpj occurs in the sequence i� pj 2 P 0, andtpj occurs before tpl i� j < l. If the form of the members of such a sequencedepends on the index p via some function � we also use the notation �(p)p2P 0 ,presuming again that the order of P is preserved.For two sets of indices P;Q we need to de�ne admissible functions � that encodea possible pre�x relation between the two sets of exception paths of two contexts.We say that a function � : P [Q! }(P ) [ }(Q) is admissible if1. �(p) � Q for all p 2 P ,2. �(q) � P for all q 2 Q,3. �(r) \ �(u) = ; for r 6= u,



4. u 2 �(r) ) �(u) = ;.We need the following subsets of indices:P 0 =df fp 2 P j �(p) 6= ;g P 00 =df fp 2 P j �(p) = ; ^ :9q(p 2 �(q))gQ0 =df fq 2 Q j �(q) 6= ;g Q00 =df fq 2 Q j �(q) = ; ^ :9p(q 2 �(p))gThe imitation rule is also more complex than before. We need to guess a # :P ! }(Q) such that1. #(r) \ #(u) = ; for r 6= u,2. Sp2P #(p) = Q.We de�ne P 0 =df fp 2 P j#(p) 6= ;g for the Imitation rule, and let �(p) =dfC 0p(X#(p)) if p 2 P 0, otherwise �(p) =df tp. All variables introduced in the rulesare assumed to be fresh.(Subst) X=t �! true if X 62 V (t) j X 7! t(Decomp) a(tP ) = a(t0P ) �! Vp2P tp = t0p j Id(Proj) a(tP ) = C(t0) �! a(tP ) = t0 j C 7! �X:X(Imit) a(tP ) = C(t0Q) �! Vp2P 0 tp = C0p(t0#(p)) j C 7! �XQ:a(�(p)p2P )(Simpl) C(tP ) = C(t0P ) �! Vp2P tp = t0p j Id(FlexFlex) C(tP ) = C0(t0Q) �! Vp2P 0 tp = D0p(t0�(p)) ^Vq2Q0 t0q = Dq(t�(q))j C 7! �Y P :C00(Dq(Y �(q))q2Q0 ; Y P 0 ; t0Q00 ; Y P 00);C0 7! �ZQ:C00(ZQ0 ; D0p(Z�(p))p2P 0 ; ZQ00 ; tP 00)Table 2. L�evy's Algorithm for Context Uni�cationThe following properties of the algorithm were originally formulated by L�evy [12]for linear second order uni�cation. We state them here for Context Uni�cationwithout proof. The transfer of the results is based on a simple, but tedious,translation of Context Uni�cation into his framework.Proposition 24 L�evy. Soundness. If h�; Idi can be transformed into h;; �i,then � is a uni�er for � .Completeness. If � is a minimal uni�er for � then there exists a derivation ofh;; �i from the the starting state h�; Idi.



Termination. If � is either uniform or no variable occurs more than twice, thenthere exists no in�nite, cycle free derivation of h�; Idi (where cycle freeness isde�ned up to renaming of second-order variables).The proofs are carried out by L�evy [12] in some detail. Termination for the twooccurrence case can be seen by inspection of the rules, which shows that the sizeof the constraint does not increase in that fragment. Notice that the rules do notintroduce new constants. Thus, there are only �nitely many context constraintsof a given size to be considered. We can therefore avoid running into loops.
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