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Introduction
Consider a simple problem of sequencing a set of tasks on
a resource. Assume that each task has a deadline, and the
objective is to schedule each task so that it ends by it’s dead-
line. One way to view this problem is as a search in the
space of start times. Under this view we have a simple con-
strained optimization problem in which the variables are the
start times, the constraint is that no tasks can overlap, and
the objective is to minimize lateness.

A different way to view the problem is to abstract away
the start times, and consider just the ordering of the tasks on
the resource. Given any total ordering on the tasks, an op-
timal schedule consistent with the ordering can be obtained
in linear time by scheduling each task, in order, as early as
possible. Since each globally optimal schedule can be cre-
ated from its task ordering, the sequencing problem can then
be solved by searching in the space of task orderings. This
space is much smaller than the space of start times, since
a large number of obviously sub-optimal schedules, exactly
those with some gaps between some adjacent tasks, are not
even represented.

This change of representation brings the underlying
search and optimization problem more clearly into focus.
There is one resource and all tasks are competing for it. The
task ordering is essentially a priorization of the tasks. Tasks
then draw from the resource in the priority order to generate
a schedule.

The general principle here is that we can decouple an
algorithm for solving combinatorial optimization problems
into two parts: a priority generation algorithm and a greedy
solution builder. For most combinatorial optimization algo-
rithms one can write greedy algorithms that do a reasonable
job much of the time. They usually fail because they are too
greedy: e.g. they allow an early task to take a resource that
turns out to be critical to a later task. Intuitively, if we had
our priority order just right, a greedy solver would generate
an optimal solution. The essential idea behind abstract local
search (and other recent work such as that of (Clementset al.
1997)) is that we can iterate between using priorities as the
input to a greedy solution builder, and using the proposed
solution to intelligently update the priorities.

There is another, less obvious, advantage to the move to
priority space: it is more suitable to a local search (Aarts &
Lenstra 1997) than the space of start times. For example, a

small change in the start time of a task can generate multi-
ple hard constraint violations (that is, overlaps) that the local
search then has to somehow weigh against soft constraint vi-
olations (that is, lateness). Since all hard constraints are au-
tomatically enforced in the optimal schedules corresponding
to the task orderings, they can be simply evaluated by con-
sidering only the soft constraint violations.

Abstract local search (ALS) solves combinatorial op-
timization problems (Papadimitriou & Steiglitz 1982) by
making local moves in the space of abstract solutions. An
abstract solution (for example, a task ordering) is mapped
to a concrete solution (for example, a schedule) by a greedy
solution builder that, generally, enforces all hard constraints.
The concrete solution is then evaluated to determine flaws,
usually by measuring soft constraint violations. The flaws
in the concrete solution are used to generate modifications
(moves) in the abstract solution, that might reduce the flaws
in the concrete solution.

A key idea in this architecture, which is illustrated in Fig-
ure 1, is that flaws are detected in concrete solutions but
modifications are made in abstract solutions.

Detecting flaws in concrete solutions and using them to
drive modifications has been shown to be effective in sev-
eral local search applications (for example, GSAT for propo-
sitional satisfiability problems (Selman, Kautz, & Cohen
1993)). Mintonet al.’s informedness hypothesisattributes
the effectiveness of iterative repair to making use of im-
portant information about the current solution to guide the
search (Mintonet al. 1990). ALS operates in this spirit by
using concrete solutions to make information apparent about
concrete flaws to guide moves in the abstract space.

Modifications in abstract solutions are motivated by (i) the
smaller size of the abstract search space, and (ii) its greater
suitability for local search when the concrete solutions share
an intricate structure that is difficult to maintain by local
moves in concrete space. There are several requirements for
abstract local search to work well:

Tractable builder: There should be a fast algorithm that
maps any abstract solution to a feasible concrete solution
(that is, a concrete solution with no hard constraint viola-
tions).

Optimality-preserving abstraction: For any concrete so-
lution S there is some abstract solution that maps to a
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Figure 1: ALS architecture for combintorial optimization

concrete solution that is at least as good asS. Without
this property, it is clear that abstract local search can not
reach optimality.

Tractable analysis: There should be a fast algorithm that
identifies flaws in the concrete solution, and maps them
to possible modifications in the abstract solution.

The reasons for these requirements should be clear. How-
ever, as we will see, they may be relaxed in practical appli-
cations.

Background
Combinatorial optimization problems (Papadimitriou &
Steiglitz 1982) generally consist of a set of decisions that
must be made subject to a collection of constraints, and
a goal function that evaluates candidate solutions for their
“quality.” For example, we might have a set of tasks whose
start times are unknown (the decisions to be made) but which
must satisfy the constraint that certain tasks must precede
others (e.g. you have to sand the table before you paint it).
The goal function might be to minimize the total cost of the
proposed schedule.

Goal functions are sometimes expressed assoft con-
straints, that is, constraints that do not necessarily need to
be enforced, but if they are violated then some penalty is in-
curred. In this kind of encoding, the optimization criterion
is generally to minimize the sum of the penalties.

Many important combinatorial optimization problems are
NP-hard(Garey & Johnson 1979). Intuitively, this is because
all known methods for guaranteeing optimality are asymp-
totically equivalent in the worst case to an exhaustive enu-
meration of the space of all possible sets of decisions.

Local Search
Local search has been successfully used in solving many dif-
ficult combinatorial optimization problems, including satis-
fiability, planning, and scheduling (Aarts & Lenstra 1997).
The essential idea is to start with some initial state and itera-
tively modify the current state by making a promising local
move, until a final solution is obtained. A local move makes
only a small change in the current state, for example, by flip-
ping the truth-value of a single variable, or by offloading a
task from one resource to another. An internal evaluation
criterion based on feasibility and the external optimization
criterion is used to determine the best among several pos-
sible moves. An analysis of some important flaw, that is,

sub-optimality or infeasibility, in the current state is used to
generate moves that might rectify the flaw. Some diversifica-
tion technique, for example, heating in simulated annealing,
is generally used to avoid getting trapped in local optima,
for example, by allowing low probability moves that lead to
less optimal states. Finally, most local search implementa-
tions restart several times to further reduce the effect of local
optima.

Scheduling
The scheduling problem consists of a set of tasks1; : : : ; n to
be scheduled subject to a collection of constraints. A solu-
tion is a schedule giving the start time for each task (Garey
& Johnson 1979).

Each task is associated with a processing time indicat-
ing the duration of the task. The constraints are usually
sequencing restrictions, resource capacity constraints, and
ready times and deadlines(Slowinski & Weglarz 1989). A
sequencing restriction might state that taski must complete
beforej can begin. A resource capacity constraint states that
tasksi andj conflict (usually because both require the same
resource) and thus cannot be scheduled in parallel. A ready
time might state the earliest time at which taski can start. A
deadline is the time by which taski should be completed.

Depending on the application, resource capacities, ready
time, and deadlines, can each be either hard or soft con-
straints. However, the most common case, and the case we
focus on here, is where capacities and ready times are hard
constraints and the deadline is a soft constraint.

Abstract Local Search for Scheduling
Scheduling is, in a sense, a generalization of the simple se-
quencing problem discussed in the introduction. Tasks must
be assigned start times subject to capacity and ordering con-
straints. Since the objective is to minimize lateness, the nat-
ural thing to do is to order the tasks, and schedule each task,
in order, as early as possible subject to the hard constraints.
Both of the abstract local search (ALS) algorithms discussed
below are variants on this basic idea.

While discussing ALS for scheduling problems, we will
often use terms like abstract schedule, concrete schedule,
and schedule builder, where “schedule” replaces the more
general “solution.” Further, we will often omit “concrete”
from concrete schedule.

ALS Using Priority Vectors
A priority vectorp maps each taski to an integerp(i) that in-
tuitively represents the global “importance” of the task. Any

while some task remains unscheduleddot = highest priority enabled but unscheduled task;
schedulet as early as possible subject

to hard constraints;
end

Figure 2: SB(PV): Priority-vector based schedule builder



such priority vector can be mapped to a schedule using the
simple schedule builder SB(PV) given in Figure 2, where a
task is consideredenabledif and only if all of its predeces-
sors have been scheduled.

The priority-vector approach to scheduling satisfies all
the conditions discussed in the introduction. The schedule
builder SB(PV) is clearly tractable, since it builds a feasible
schedule inO(n2) time, wheren in the number of tasks (we
conjecture that the expected run time of SB(PV) would be
more likeO(n log(n)) but a formal proof of this is beyond
the scope of this paper).

Theorem 1 shows that the priority vector abstraction is an
optimization preserving abstraction.

Theorem 1: For any scheduling problem, and any sched-
ule s, there is some priority vector such that SB(PV) pro-
duces a schedule with total lateness less than or equal to that
of s.

Finally, analysis of a schedule can be done in a variety of
ways (Pinson, Prins, & Rullier 1994). For our implemen-
tation, we used a technique we refer to asgeneral critical
path analysis. If a task is late then its priority is increased
by an amountb that is calculated based on how late the task
is. Whenever we increase the priority on a task, if that task
could not be scheduled any earlier because of a precedence
relationship then the priority of that predecessor is increased
by b. If the task could not be scheduled earlier because
of a resource contention, then we increase the priority of
all tasks using that resource at that time byb=2. Both of
these rules are applied recursively (until the priority incre-
ment becomes negligible). The analysis calls the function
assignBlame(t; b), shown in Figure 3, for each taskt that is
late byb days.

The schedule-build-analyze cycle is shown in Figure 4.
This is basically a vanilla iterative improvement local search
enriched by an intensification strategy (Glover & Laguna
1993). Note that we assign blame for all due-date violations.
The thinking behind this is that running the schedule builder
on large problems is relatively expensive – at least compared
to flips in SAT problems – and we want to leverage the anal-
ysis as much as possible. An interesting variant of this (and
more in the spirit of GSAT) would be to assign blame for
just one due-date violation at a time and then rebuild the
schedule. A steepest-descent variant (perhaps computation-
ally too expensive for very large problems) would be to con-

proc assignBlame(taskt; int b)
increase priority oft by b units;
if t was late because of a precedence relation

with taskt2 thenassignBlame(t2; b);
else // t was late because of a resource contention

foreach taskt2 using the same resource ast:
assignBlame(t2; b=2);

end
end

Figure 3: Priority vector based schedule analysis

for i = 1 to max-restartsdo
initialize priorities;
for i = 1 to max-iterationsdo

build schedule for current set of priorities;
if this gives a new best schedulethen save it;

with prob.p return to best schedule ever seen;
foreach late taskt: assignBlame(t; days late);

Figure 4: ALS using priority vectors, top-level control loop

sider several ways to resolve each due-date violation, and
evaluate each.

The final piece of the puzzle is the initial assignment of
priorities. On large scheduling problems it turns out to be
worth the trouble to make sure that we start from a reason-
ably good initial priority vector in order to make the most
of our relatively limited computational resources. In the ex-
amples we have looked at to date, each task can be uniquely
associated with a “delivery” task that has a deadline (e.g. We
never have a situation in whicht1 has deadlined1 and must
precededt2 that has deadlined2. We also never havet1 pre-
cedingt2 andt3 each of which has a deadline.) We thus take
the initial priority of each task to be the arithmetic inverse of
the due date of the corresponding delivery task (i.e. tasks
with early deadlines are given the highest priorities). This
turns out to be a surprisingly good first-cut heuristic.

This approach to scheduling has been implemented and
run on problems involving over 30.000 tasks. We discuss
the results in a separate section.

ALS using Priority Graphs
A priority graph is a directed acyclic graph whose nodes rep-
resent tasks and arcs represent priorities: an arc from A to B
indicates that task A has higher priority than task B, that is,
the schedule builder should schedule task A before schedul-
ing task B (unless sequencing restrictions require that task B
must complete before task A).

Priority graphs represent a somewhat different kind of in-
formation than priority vectors. While the numbers in vec-
tors can encode relative strengths in priorities, the informa-
tion in graphs is purely relational, e.g. task A has higher
priority than task B. (Although it is possible to label the arcs
by numbers indicating their relative strengths, this extension
of priority graphs is beyond the scope of this paper.) An-
other difference is that while vectors force a decision on rel-
ative priorities between all pairs of tasks, graphs do not have
to commit to these extraneous priorities that are not moti-
vated by the analysis. Thus, ALS using priority graphs has
the flexibility of allowing more decisions to be made by the
schedule builder. This could lead to more effective use of
sophisticated schedule builders that would otherwise be un-
necessarily constrained by priority vectors.

Priority graphs are similar to disjunctive graphs (Balas
1969) which have been applied for several complete and
local re-optimization strategies for scheduling. In contrast
with previous work, changes in the priority graph are inter-
laced with domain-specific greedy scheduling.



Greedy Scheduling. The schedule builder starts with an
empty schedule and keeps scheduling tasks one at a time
until the schedule is complete. The next task to be sched-
uled is selected from the enabled tasks, using a customizable
task dispatching criterionthat uses a prioritized sequence
of heuristics to filter all available tasks. The selected task
is scheduled using a customizabletask scheduling criterion
that uses a prioritized sequence of constraints to guarantee
that hard constraints are satisfied.

A variety of dispatching criteria have been reported in
(Lawrence 1984). We have implemented the EST/EFT com-
bination of criteria for task dispatching: (i) select the task
that can start the earliest, and (ii) among those, select the
task that can finish the earliest.

We have implemented the following task scheduling crite-
rion: schedule the selected task on the first least-constrained
resource among those that can start at the earliest possible
time, without violating any capacity constraints. This pro-
vides an efficientO(n2) time schedule builder.

Schedule Analysis. The schedule analyzer selects the
most late task for flaw analysis. It determines all possible
direct causes for the delay, and suggests changes in the prior-
ity graph to offset those causes. It constructs alateness DAG
(directed acyclic graph) whose nodes consist of the late task
as well as all other tasks that could have contributed to the
lateness. ALS randomly selects a set of moves and eval-
uates each move by constructing new abstract and concrete
schedules. The most promising pair of schedules is used to
start the next iteration of local search. Meta-heuristic tech-
niques like tabu memory (Glover & Laguna 1993), are used
in a straightforward manner to improve the search.

Experimental Results
This section reports on experimental results on a class of
scheduling problems which arise in the domain of supply
chain planning. The problem under consideration is an ex-
tension ofResource Constrained Project Scheduling(RCPS)
(Slowinski & Weglarz 1989). The problem is parameterized
as follows. Given aren tasks andr renewable resources. Re-
sourcek has constant capacityRk, taskti has a duration ofpi during whichrik units of resourcek are occupied (no pre-
emption is allowed). Additionally, sequencing restrictions
(precedences) between tasks must be obeyed. The main ex-
tension with respect to the standard RCPS class are ready-
times and due-dates for tasks. As a consequence, the objec-
tive is to minimize a measure of the overall lateness rather
thanmakespan(the length of time from the start of the first
task to the completion of the last task). The goal is to assign
each task a start timesi such that all precedence and capacity
constraints are met and the total lateness is minimized.

Problem instances of this extended RCPS class are typi-
cally much larger than classical scheduling instances (tens
of thousands of tasks instead of on the order of one hundred
tasks reported in the RCPS literature). This is a challenge as
algorithms for scheduling (e.g. job shop scheduling) often
fail to scale up to this problem size.

We are limited by concerns for company propriety in what
we can say about the applications, but we can give limited

Algorithm Iterations Restarts Lateness Runtime
DBO NA NA 4710 d 9 s
SB(PV) NA NA 3930 d 6 s
ALS1 200 0 3663 d 93 s
ALS2 200 50 3600 d 4600 s

Table 1: Experimental results. Reported runtimes of double-
back optimization DBO, greedy scheduling SB(PV), and
ALS. The table reports number of iterations and restarts;
total lateness (in days) and runtimes in seconds CPU time,
averaged over 50 runs for ALS1, and 2 runs for ALS2.
results for one real-world problem in semiconductor manu-
facturing. This problem involves over 30.000 tasks that must
be scheduled on more than 20 resources.

Experimental results are given in Table 1. “DBO” refers
to the double-back optimization (Crawford 1996). Double-
back optimization works well on resource-constrained
project scheduling – where the objective is to minimize
makespan. However, DBO does not seem to work as well on
problems with multiple deadlines where the objective is to
minimize total lateness. The reason for this is not yet clear.
SB(PV) is the result of running just the scheduler builder
with the initial heuristics SB(PV) of Figure 2. ‘ALS’ is the
version of ALS with priority vectors. There are two key
tuning parameters for this version of ALS: the number of
restarts, and the probability that we accept moves that do
not improve the quality of the schedule. The number of it-
erations and the number of restarts were varied as shown
in the table. An intensification strategy (Glover & Laguna
1993) was performed by flipping a coin after each move and
returning to the best state ever seen with probability1=2.
Additional experiments have been performed with different
restart frequencies, and different noise levels, but the results
were not found to be qualitatively different.

Discussion
As discussed in the introduction, ALS works best in prob-
lem domains having three attributes: a tractable solutions
builder, optimality-preserving abstractions, and tractable
analysis routines. Although these restrictions are important,
each of them can be weakened.

Tractable builder: If the solution builder fails in some rare
cases to generate a feasible solution then this is not nec-
essarily fatal. One can give such priority vectors a very
low “score” causing the search to avoid them. Whether
this patch is workable in practice depends entirely on how
common such priority vectors are.

Optimality-preserving abstraction: For large problems
we can safely assume that we are not going to generate
optimal solutions. Thus abstractions that are “nearly” op-
timality preserving may be sufficient. The utility of such
abstractions can only be assessed by comparison of ALS
against other techniques.

Tractable analysis: If there is no way to map from soft-
constraint violations in the concrete solution to suggested



changes in the abstract solution then local search essen-
tially performs a weighted random walk. This may be ac-
ceptable, however, since undirected local search has been
used successfully in various domains.

Conclusion
Abstract local search is a useful technique for solving con-
strained optimization problems. It is particularly suited to
a problem domain where some fast deterministic algorithm
can map a set of priorities into a solution that satisfies the
hard constraints in the problem. ALS leverages off of sev-
eral observations:� The solution builder itself can encode a reasonable

amount of domain knowledge, allowing the higher-
level control (that is, the local search) to be domain-
independent.� The space of priority vectors offers a generic way to per-
form local search in complex domains. If there is an intri-
cate solution structure that is easy to obtain constructively,
but difficult to maintain by local repairs, priority space ap-
pears to be more suitable to local search than the space of
concrete solutions.� Optimal priorities cannot, in general, be determined a pri-
ori (if they can, and the abstraction is optimality preserv-
ing, then the optimization problem is tractable). However,
they can often be improved by an analysis of concrete so-
lutions. The general critical path analysis algorithm is an
example of such an analysis.� The solution builder can be efficient (at least in the do-
main of scheduling). Further, small changes to the prior-
ity vector can translate into large changes in the concrete
solution. Together these facts allow ALS to be used pro-
ductively on large problems.

Our experimental results demonstrate that ALS can per-
form meaningful optimization, compared to simple heuristic
techniques, on large scheduling problems of high complex-
ity. The utility of this approach is not limited to schedul-
ing however. We see potential application domains for ab-
stract local search in distribution planning, vehicle routing,
or multi-level scheduling problems. Recent work (Clements
et al. 1997) has examined superficially yet different problem
domains such as graph coloring.

Although some forms of priorities have previously been
used for representing schedules (Davis 1985; Syswerda
1991; Pinson, Prins, & Rullier 1994; Baar, Brucker, & Knust
1997), no general framework to integrate priorities into local
search has been proposed. We conjecture that the basic loop
of priorities feeding into a greedy solution builder and an
analysis technique that updates the priorities will be appli-
cable to a large class of constrained optimization problems,
and will scale to problems of realistic size and complexity.
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