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Abstract

We present an automated method for the static prediction of the runtime
error ‘deadlock or failure’ in concurrent constraint programs. Operationally,
the method is based on a new set-based analysis of reactive logic programs
which computes an approximation of the greatest-model semantics. Seman-
tically, the method is based on the connection between the inevitability of
‘deadlock or failure’ in concurrent constraint programs, finite failure in logic
programming and the greatest-model semantics over infinite trees.

1 Introduction

The concurrent constraint (cc) paradigm is a powerful concurrent program-
ming paradigm in which the — superficially unrelated — concepts of concur-
rency and constraints fruitfully interact (for entry points to the vast liter-
ature, see [25, 26, 8, 7]). On the one hand, concurrency can be a useful
programming abstraction for the hard task of writing constraint solvers. On
the other hand, the intrinsicly complex synchronization of concurrent pro-
cesses can be transferred to high-level, conceptually simpler logical constraint
problems. The cc paradigm makes it possible to turn these two reciprocal
dependencies into a useful programming tool. By now, several implementa-
tions exist; we are interested in particular in contributing to the development
of the freely available Oz System [19, 26].

It is evident that any kind of static analysis is desirable that can detect
errors or increase confidence in the correctness of programs. This holds in
general, and even more so in the traditionally untyped setting of concur-
rent constraint programming. More generally, we believe that concurrent
constraint languages have a high potential for automated verification be-
cause of the close connection with logic: computation states are described
by constraints and concurrent composition corresponds to conjunction.

In this paper, we first present a new set-based analysis for logic programs



that are intended to run possibly forever. We call such programs reactive.
We then apply the set-based analysis to the automated and static prediction
of an important kind of errors in cc programs, namely deadlock or failure.

Logic programs. The denotational semantics of a reactive logic program
P is defined by the greatest fixpoint of the Tp operator, which also is the
greatest model of Clark’s completion of P [18, 4], over the domain of infinite
trees. Reactive logic programs are called “perpetual processes” in [18]; we
use the term “reactive” coined in [24] referring to possibly non-terminating
behavior. The set-based analysis that we introduce uses co-definite set con-
straints [2]. In a first step, the analysis derives a co-definite set constraint pp
whose greatest solution approximates the greatest model of P. In a second
step, the analysis applies the algorithm for solving co-definite set constraints
from [2] and computes a representation of the greatest solution of p. The
values under this solution are sets of infinite trees; intuitively, these sets
describe supersets of the sets of possible runtime values in possibly non-
terminating executions of the program P. The values are, however, also
relevant for predicting a certain runtime behavior of P, as we explain next.

One can characterize finite failure of (possibly non-ground) derivations
over infinite trees precisely through the greatest model (see Theorem 3.1).
This characterization allows us to use the computed greatest solution of the
derived co-definite set constraint ¢p for diagnosing finite failure. Namely,
every fair derivation of the query p(z) finitely fails if the value of the cor-
responding variable is the empty set. (Note that finite failure over infinite
trees entails finite failure over finite trees.)

Concurrent constraint (cc) programs. We may carry over the approx-
imation result of the greatest model to cc programs. Its interpretation in
operational terms, however, needs some more care due to the possibility of
deadlock. The characterization of finite failure through the greatest model
still holds for cc programs without deadlock (Theorem 5.4). In general we
cannot statically exclude deadlock.

In cc programs, an inconsistent constraint store (viz., failure) is a run-
time error. This is in contrast with logic programming where failure is
part of the backtracking mechanism. Deadlock is a second kind of runtime
error. If we do not distinguish between either kind of error, i.e., take the
disjunction ‘deadlock or failure’, then we can apply the set-based diagnosis of
finite failure for logic programs. In summary, emptiness under the greatest
solution of the co-definite set constraint derived from the cc program P is
a sufficient condition for the inevitability of the run-time error ‘deadlock or
failure’. Or, more precisely, its computed greatest solution describes, for
each input variable z, a superset of the possible values of x in non-erroneous
input states.

The following sections investigate, respectively, some example programs,
finite failure for logic programs, the error ‘deadlock or failure’ in cc pro-
grams, the new set-based analysis together with its application as a diagnosis
method, related and, in conclusion, future work.



2 Examples

The following examples illustrate how our method of approximating great-
est models with co-definite set constraints tests the inevitability of certain
runtime errors. We first take the very simple program

p(X):=q(X), r(X).
q(a).
r(b).
The derived set constraint is, simplified, p CgAgCaAp CrAr Cb. Its

greatest solution for p is the empty set (and indeed, the query p(z) finitely
fails). Similarly, the program

yields the set constraint p C f(_,z) Az C f(;)l(q) NgC fz)ANa C g(; (p),
whose greatest solution for p is the empty set (since g(;;(f(Ml, Ms)) = 0 for
any set My, My). Now consider the following simplified stream program.

stream([X,Y|S]) :— Y = s(s(X)), computation(Y’), stream([Y]5]).
main(Z) :— stream([Z|T]).

Suppose we know that the predicate computation makes sense only for (trees
representing) odd numbers, whereas no such restriction is known for main
and stream. This invariant can be expressed by the following set constraint,
which may have been derived from another code fragment or externally pro-
vided by a program annotation.

computation C s(0) U s(s(computation)) (1)

We can approximate the set of non-failed computations of the program with
the constraint (where saﬁ(M) = {t | s(t) € M}, and similarly consaﬁ(M)
extracts the heads of all lists in M, and cons(;(M) the tails):

stream C cons(X, cons(Y,S)) A (2)

X C computation A X C saﬁ(saﬁ(Y)) A

-1 -1
Y C cons(l)(stream) NS C cons )

main C consag(stream) .

(stream) A

It is not difficult to see that the greatest solution of the conjunction of (1)
and (2) assigns to the variable main (as well as to X, Y, and computation)
the set of odd numbers. We obtain from this fact that, for example, the
query main(0) inevitably leads to a state where computation is called with a
wrong argument.



We now illustrate the necessity to consider infinite trees by another ex-
ample. Consider the reactive logic program P defined by p(f(z)) :— p(z).
The execution of the non-ground query p(z) does not fail, over the domain
of finite as well as over the domain of infinite trees. We derive the co-definite
set constraint op = p C f(x) Az C p. When interpreted over sets of finite
trees, the greatest solution of ¢p is the valuation assigning the empty set to
p. In the infinite tree case the greatest solution assigns to p the singleton
set containing the infinite tree {f(f(f(...)))}. That is, an interpretation of
the derived co-definite set constraint over sets of finite trees does not admit
a conclusion about finite failure of non-ground queries.

3 Logic Programs

Notation. We assume a ranked alphabet ¥ fixing the arity n > 0 of its func-
tion symbols f,g,... and constant symbols a,b, ..., and an infinite set Var
of variables z,y,z,.... We write Z for finite sequences of variables (whose
length equals the arity of f in f(Z). The set of terms over ¥ and Var is
Tx(Var);a term without variables is called a ground term. The set of infinite
trees over X is Tg°. By convention, an infinite tree is a tree whose branches
are finite or infinite. We use the meta-variable ¢ to refer to both, trees and
terms. We write as d_,® for the existential closure of the formula ® with
respect to all variables in ® but . We also assume a set Pred of predicate
symbols p. For better readability, we assume that all predicates are unary;
the results can easily be extended to the case without this restriction (for
example, by adding symbols that form tuples).

The Herbrand Base B is the set of all ground atoms over Pred and 73°,
i.e., B={p(t)|p € Pred,t € TX}.!

A logic program defines predicates through clauses of the form

p(t) :— p1(t1), ..., pn(tn) -

A complete program P is a set consisting of n, clauses for each predicate
p € Pred, each with the head p(¢;) and the body consisting of n;, atoms
pij(tij); we leave the index p as in t;, implicit for better readability.

We always implicitly refer to the completion of P [4] for the logical se-
mantics of P.

Np Ni,p
P = /\ Vz p(.’L‘) &~ \/ ELx( T =1t AN /\ pz'j(tz'j) )
pEPred i=1 j=1

A query s is a conjunction A, pg(tx) where the t; are terms. A ground
query is a query A, px(tr) such that all ¢ are ground. We use the predicate

'"What we call Herbrand Base is sometimes called Complete Herbrand Base [18], namely
when it needs to be distinguished from the set of ground atoms over Pred and finite trees.



constant true as the neutral element for conjunction: i.e., s = s A true. In
particular, the “empty query” is written as true.

An interpretation p (sometimes called a model) is a subset of the Her-
brand Base, p C B. Interpretations are ordered by subset inclusion. We
identify an interpretation p with the valuation p : Pred — 27% from predi-
cate symbols to sets of trees where p(p) = {t € T | p(t) € p}. A model of
the program P is a valuation such that the formula P is valid (in the usual
sense of logic). The greatest model of P, denoted by gm(P), always exists.

Operational Semantics. The logic program P defines a fair transition
system Tp = (S,7p) whose one-step transition relation is defined as usual
for derivations of logic programs or constraint logic programs [18, 16], with
the fair non-deterministic selection rule. Conjunction is operationally par-
allel composition, and disjunction is non-deterministic choice. The non-
determinism of the selection rule translates to the non-determinism of the
interleaving semantics; the fairness of the selection rule is exactly the fairness
of the transition system (which is thus captured precisely by the greatest-
model semantics). The set S of states consists of the possibly non-ground
queries (including true), and the failure state false:

S = {/\pk(tk) | Yk pi € Pred, ti, € Tx(Var)} U {false}
k

Similarly, P defines a fair ground transition system T35 = (S9,7%). The
states in SY are the ground queries including true and false. The transition
relation 7§ modifies the one of Tp such that after every step of 7p all variables
in the obtained state are substituted with ground terms.

We say that a derivation succeeds [fails] if if it ends in the state true
[false]. A query p(t) succeeds if there exists a derivation leading to the
state true; it finitely fails if every (fair) 7p derivation starting with query
p(t) leads to failure after finitely many steps. Given the program P, we
denote FF(P) the set of all queries p(¢) that finitely failed, and GFF(P) the
set of all ground queries p(t) € B that are ground finitely failed; i.e., every T3
derivation starting from p(t) reaches failure after finitely many steps. (Note
that in general, ground finite failure does not imply finite failure of some
ground instance.)

We can characterize the finite failure set of a program P over the do-
main 75° of infinite trees through the greatest model of P.

2The notion of queries considered here is not general enough to model arbitrary execu-
tion states of a constraint program over infinite trees. Since terms are finite, we can use
them only to model non-cyclic constraint stores. We gloss over this detail here since it is
not essential and repairing it would make the notation clumsy (see, however, [21]).



Theorem 3.1 (Characterization of finite failure over infinite trees)
Given a logic program P over infinite trees, the query p(z) is finitely failed
if and only if the value of p in the greatest model of P over the domain 7T%°
of infinite trees is the empty set; i.e., p(z) € FF(P) iff gm(P)(p) = 0.

Proof.  The only-if direction (the algebraic soundness of finite failure [18,
16]) is clear from the fact that gm(P)(p) = {t | p(t) € GFF(P)}.

For the other direction, first note that equations over infinite trees have
the saturation property, which is: an infinite set of constraints is satisfiable
if every of its finite subsets is [18, 17, 23].

Now assume that p(z) ¢ FF(P). It is sufficient to show that there
exists an infinite tree ¢ such that p(¢t) ¢ GFF(P). There exists an execution
starting in the state s = p(z) that does not lead to the failure state. That
is, there exists a transition sequence s = sg, S1,82,... such that (in the
terminology of constraint logic programming [16]) the constraint store ¢; of
every state s; is satisfiable. Since ¢; is stronger than ; 1 for ¢ > 1, this
implies that A, ¢; is satisfiable for all n. The saturation property yields
that also {¢; | ¢ > 0} is satisfiable. Let o be a solution of {; | i > 0}. The
transition sequence si, s, s5, ... that we obtain by instantiating the states s;
by the valuation « is a ground transition that does not lead to the fail state.
Hence, if a(z) = t, then p(t) ¢ GFF(P). O

Discussion. It would be surprising if the above theorem was a new
observation; since we have not found it in the literature, however, we feel
obliged to give its proof.

For comparison, Palmgren [23] has shown that every constraint logic
program over a constraint domain with the saturation property is canonical.
That is, gfp(Tp) = Tpl* holds (where Tp|“ Y ; T5(B)). Since gfp(Tp) =
B\ GFF(P) holds, this is sufficient to characterize ground finite failure over
infinite trees (see also [22]). It does not, however, yield the above theorem.
For illustration, consider the example (from [15]) p(f(z)) :— p(x). This
program is canonical over finite trees. Its greatest model over finite trees
assigns p the empty set. Thus p(t) € GFF(P) for all finite tree t, but p(z) ¢
FF(P), in violation of the statement in the theorem.

A similar remark applies to Jaffar and Stuckey’s result [17] that Tp |“
equals B\[FF(P)] where [FF(P)] is the set of ground instances of elements
of FF(P). This holds for all canonical programs over a solution compact
domain, and again the above example applies.

Finally, we want to mention that on can also come up with an alternative
(though, less direct and less natural) proof of Theorem 3.1 which uses Palm-
gren’s result [23] and the algebraic completeness of finite failure of ground
goals wrt. canonical programs. Here, the trick is to add a clause of the form
main:— p(x) to the program P.



4 Concurrent Constraint Programs

We consider concurrent constraint (cc) programs (see, e.g., [25, 26]) in a
normalized form such that we can employ a Prolog-style clausal syntax. This
is convenient when we establish a direct connection to logic programming.
We assume that every procedure p is defined either by a single fact p(t). or
by several guarded clauses of the form

p(z):— z=1t]pi(t1),...,pn(tn).

In such a guarded clause, we call =t the guard and pi(t1),...,pn(ty) the
body.

Since we are interested here only in the case where constraints C' are term
equations interpreted over infinite trees, as in the cc programming language
and system Oz [19, 26], the syntactic restriction that we enforce is a proper
one only in isolated cases (see Footnote 2). Generally, we can replace a tell
operation (e.g., the equation ¢ = ¢’ in the body of a clause in a cc program
in the style of [25]) by the call of procedures defined by facts.

The operational semantics of a cc program P is defined through a fair
transition system 75 which is the same as the one for logic programs except
for one difference: a selected atom p(t') in a query can be applied only if
there is a clause, say, p(z) :— = =t | p1(t1),...,pn(tn)., such that z = ¢/
entails 3, © = t;. The successor state of the query is, if the entailment
holds, defined in the same way as it is defined for a logic program with the
clause p(t) :— pi(t1),...,pn(tn). (For more definitions, see, e.g., [25, 26]).

Failure vs. Deadlock. An execution sequence deadlocks if it contains
a query p(t) that is never applied because none of the corresponding guards
is ever entailed. Note the analogy with failure: an execution sequence fails
if it contains a query p(¢) that is never applied because it does not unify
with any of the heads of the clauses of p. Either, failure or deadlock, is a
run-time error in cc systems. (Our method cannot directly be applied to a
program where deadlock is a desired feature of its execution behavior, and
not a bug. In our programming experience, however, this is rarely the case.)
We want to give a conservative approximation of all (initial) execution states
of cc programs for which either failure or deadlock is inevitable (i.e., every
possible fair execution sequence finally reaches a state in which, for fairness
reasons, an atoms needs to but cannot be applied, either because no guard
is entailed or because the successor state would be false). We can express
the set of all these states formally through a CTL operator, namely

AF({false}) = {s € S | every fair execution starting in s deadlocks or fails}

if we use the following convention. In every fair execution containing the
state s = A pr(tr), each atom pg () will be selected after a finite number
of steps. When the atom gets selected in, say, the state s’, then it must be
applied; if no clause is applicable, then the only successor state of s’ is false.



We obtain the logic program P from the cc program P by replacing each
clause p(z) :— @ =t [ pi(t1),...,pn(tn). With p(t) == pi(t1),...,pn(tn).
(which amounts to replacing the guard operator | with conjunction). This
is an abstraction in the following sense.

Proposition 4.1 If the query p(t) finitely fails wrt. the logic program P
obtained from the cc program P then it either deadlocks or fails wrt. P. If
the query p(t) succeeds wrt. P then it also succeeds wrt. P.

Proof.  Observe that every (finite or infinite) fair computation in P which
neither fails nor deadlocks induces a computation in P which does not fail or
deadlock, either. This can be made formal by a simulation argument which
exploits that whenever a selected query p(t) is applied with a guarded clause
in P it can also be applied with the associated unguarded clause in P. This
proves the second claim immediately, and also the first one by contraposition.

O

Proposition 4.2 (Characterization of finite failure or deadlock)
Given a concurrent constraint program P over infinite trees, the query p(z)
inevitably either deadlocks or fails in every fair execution if and only if the
value of p in the greatest model of P over the domain T° of infinite trees is
the empty set.

Proof. We combine Proposition 4.1 and Theorem 3.1. O

5 Set-based Analysis

Before we introduce the new set-based analysis, we need to recall the defi-
nition of co-definite set constraints from [2].

A set expression e is built up from first-order terms, union, intersection,
complement, and the projection operator.

e == x| f(&) | eUe | ene | e | f(;)l(e)

If e does not contain the complement operator, then e is called a positive
set expression. A set constraint (in the sense of [12]) is a conjunction of
inclusions of the form e C ¢€'.

Definition 5.1 A co-definite set constraint ¢ is a conjunction of inclusions
e; C e, between positive set expressions, where the set expressions e¢; on the
left-hand side of C are further restricted to contain only variables, constants,
unary function symbols and the union operator (that is, no projection, in-
tersection or terms with a function symbol of arity greater than one).

@ o= olalfe)
e, = x| f(e) | eUe | ene | f(;)l(e)



For comparision, a definite set constraint [12] is a conjunction of inclusions
e; C e, between positive set expressions, where the set expressions e, on
the right hand side of C are furthermore restricted to contain only vari-
ables, constants and function symbols and the intersection operator (i.e., no
projection or union).

We interpret set constraints over 275 | the domain of sets of infinite trees
over the signature 3. That is, variables denote sets of trees, and a valuation
is a mapping a : Var — 275", Tree constructors are interpreted as functions
over sets of trees: the constant a is interpreted as {a}, and the function
symbol f is interpreted as the function which maps sets Si,..., S, to the
set

f(Sl,...,Sn) = {f(tl,...,tn) |t1 € S1,...,ty € Sn}

The application of the projection operator for a function symbol f and the
k-th argument position on a set S of trees is defined by

f(;;(S):{t\Eltl,...tn: ty =t, f(t1,... th,... tn) € S}.

The symbols U, N and C are interpreted as usual. The union of set valuations
U; a; on variables is the pointwise union on the images of all variables; i.e.,
(U; @) () = Uy i (o).

We list three properties that are important in the proof of the soundness
of abstraction in the next section. (1) The solutions of co-definite set con-
straints are closed under arbitrary union. (2) Every co-definite set constraint
has a greatest solution if satisfiable. (3) Every co-definite set constraint with-
out inclusions of the form a C x is satisfiable.

The satisfiability problem for co-definite set constraints is DEXPTIME-
complete (as for definite set constraints). The algorithm given in [2] com-
putes the greatest solution of a satisfiable co-definite set constraint ¢ (written
as ¢Sol(p)) in the form of a tree automaton.

@p.  We will next describe the inference of a co-definite set constraint ¢p
from a logic program P. (Given a cc program P, we note ¢p the constraint
¢p inferred from the logic program P corresponding to P.) We assume
that the different clauses are renamed apart (if not, we apply a-renaming
to quantified variables). We introduce a fresh variable z; for each subterm ¢
appearing in the formula and then define the constraint ®(¢ C z) for a term
t and a variable z by induction on the depth of ¢. (The constraints derived
from the programs in the examples in Section 2 are syntactically simplified
for better readability.)

®yCz) = yCu
and for t = f(t1,...,tn):
tCa) = zCa A 2z, C [ () AB(t C 21)

A 2ty C foy(20) A ®(tn C 21,)



We define the constraint ¢p inferred from P as follows.

Np Nip

np
pop = A p=Utirn A N\ 2 C pij)
i i g

pEPred

Here, we treat both symbols p € Pred and = € Var as second-order vari-
ables which range over sets of trees. In the following, when we compare an
interpretation p with a valuation o of a set constraint, p C o means that
p(p) C o(p) for all p € Pred.

Theorem 5.2 (Soundness of Abstraction) For any logic program P,
the greatest model of P is smaller than the greatest solution of the co-definite
set constraint derived from P; formally: gm(P) C ¢Sol(pp).

Proof. We first define an abstraction T# of the Tp operator, and we
prove that gfp(Tp) C gfp(TI’f). Here, we extend valuations o over trees
to valuations a, over sets of trees by a(z) = {o(z)}. In the second part we
show that gfp(T#) C ¢Sol(¢p). That part exhibits an interesting connection
between the fixed point equation and the set constraint (cf. also [13]).

1. gfp(Tp) C gfp(T#). The Tp operator maps an interpretation p to
another one Tp(p) where, for all p € Pred,

To(o)p) = {t T 3)

Ja:Var = Tx Ji: t = aty),
T, o = tij € plpig) |

The greatest-model semantics and the greatest-fixpoint semantics of a
program P coincide. That is, the greatest model of P’s completion is the
greatest fixpoint of the operator Tp, gm(P) = gfp(Tp).

The Tif operator maps an interpretation p to another one T;f (p) where,
for all p € Pred,

T# = JteT <
»(P)p) { . 250 | A ®(ti; C @ig) Awij C p(pig)

Jo: Var — 275", Ji: t € o(t;), }

(4)

Here, we use new variables z;; as placeholders for p;; (for better legibility:

otherwise, p;; would appear as a variable on which both, ¢ and p are applied).

The variables * € Var now range over sets of trees. We write M,a = F

if the formula F' is valid under the interpretation with the valuation a on

the structure (with the domain) M. The formula F' above consists of co-

definite set constraints in conjunction with inclusions between variables and
constants p(p;;) (interpreted as the corresponding set).

Let p' = Tp(p) and p" = T#(p). Then p'(p) C p"(p) holds for all

p € Pred. This can be seen as follows. For every tree valuation a satisfying



the condition in the set comprehension for p/, the set valuation o, defined
by o(z) = {a(z)} satisfies the condition in the set comprehension for p".
Clearly, o4 (tij) € p(pij); we replace the inclusion t;; C p(p;;) by the equiv-
alent conjunction t;; = z;; A x;; C p(pi;), and if o, satisfies the equality
tij = xi; then also the weaker constraint ®(t;; C z;).

Hence, T;f is indeed an abstraction of T}, and, thus, gfp(Tp) C gfp(T#).
This concludes the first part of the proof.

2. gfp(T#) C ¢Sol(¢p). In order to show that gfp(T#) C gSol(pp), we
first reformulate the definition of T# as follows.

tEe)e) = U Ule@) 25,0 F A@(ty Cay) A 2y € plpig)}

a:Vara2T§O ¢ J

Fix p and let p" = Tﬁé(p).

Next, we exploit the fact that the solutions of co-definite set constraints
are closed under (arbitrary) union. This fact extends to formulas containing
inclusions with set constants on the right hand side, such as x;; C p(ps;)-
Note that for all ¢, the formula in question is satisfiable. We obtain that

p"(p) = Joi(t;) where o7 = gSol(/\ (ti; C zi5) Axij C p(pij))-
i J
Since all program variables are renamed apart, we have p”(p) = UU; o(t;)
where

o = gSol(/\ /\@(tij C :cij) Nzi; C p(pij)).
(]
Thus, we have p(p) = o(p) where
o = gSOl(p:Uti/\/\/\@(ti]’ gxi]-)/\xij gp(p,']')).
i i g
Again, since all program variables are renamed apart,
p'o= gSal( A p=Utin NN @(ti; Czij) A C ploig)).
pEPred [ i g

Here, we equate the interpretation p"” : Pred — 275 with a valuation o
interpreting a formula with predicate symbols p € Pred and tree variables
x € Var both ranging over sets of trees, and with constants of the form p(p;;)
standing for the corresponding sets. We omit any further formalization of
this setting.

Let pg be any fixpoint of T#, i.e., T#(pg) = po. This means that pg is a
solution (the greatest one, in fact) of

AN p=Uti A AN @(ti; C xij) A zij C polpij)-
pEPred i i g

That is, pg is a solution of wp. Hence, pg is smaller than the greatest solution
of pp. This is true in particular if py is chosen as the greatest fixpoint of
T# . This concludes the second part of the proof. O



Discussion: constraint logic programs. We might formulate the
above set-based analysis in the setting of constraint logic programs.

Tp Ni,p
P = /\ Ve p(x)<—> \/ El,m(x:a:,'/\xi:ti/\ /\p,’]’(m,’j)/\tijzxij )
pEPred i=1 j=1
Np Ni,p
pp = /\ pgx/\xzU:ci/\:vizti/\/\xijgpij/\@(tzj:xzj))
pEPred i=1 j=1

We see that disjunction translates to union (“z = U?ﬁl x; 7). Moreover, the
set constraint derived from the constraint x; = ¢; is syntactically the same,
whereas the set constraint ®(¢;; C x;;) derived from the constraint t;; = x;
is of a more complicated form (the reason is, intuitively, that z; belongs to
the head and the z;;’s belong to the body).

The only two properties required in the analysis framework are: (1) a
solution « of a constraint C' can be “lifted” to a solution o, of the set con-
straint ®(C) by setting o4(z) = {a(z)}, and (2) solutions of set constraints
are closed under arbitrary unions.

Operational interpretation. We now summarize the operational in-
terpretation of the result that is computed by the set-based analysis outlined
above.

Theorem 5.3 (Set-based analysis of finite failure) The query p(z) is
finitely failed in every fair execution of the reactive logic program P if the
value of p in the greatest solution over sets of infinite trees of the co-definite
set constraint @p derived from P is the empty set; ¢.e., for all predicates
p € Pred, if gSol(pp)(p) = 0 then p(z) € FF(P).

Proof. We combine Theorems 5.2 and 3.1. O

Theorem 5.4 (Set-based error diagnosis of cc programs)

The procedure p in the cc program P finitely fails or deadlocks if the value
of p in the greatest solution over sets of infinite trees of the co-definite set
constraint ¢pp derived from P is the empty set.

Proof. We combine Theorem 5.3 and Proposition 4.2. O

Types.  Using Theorems 3.1 and 5.2, the statements in the two theorems
above can be made more precise (but then maybe less succinct). Given the
greatest solution of ¢p, the value of the variable p describes an approxima-
tion of the set of argument terms ¢ for p in non-erroneous queries in the
following way. If the set of ground instances of the query p(¢) does not inter-
sect with the value of p, then the query p(¢) will finitely fail (inevitably fail
or deadlock, respectively). In this sense, the value of the variable p in the
greatest solution of pp denotes a type for the arguments of the procedure p.



6 Related Work

Previous work set-based analysis for logic programming has considered the
least model semantics only (see, e.g. [20, 12, 9, 1, 10]). Mishra’s analy-
sis [20] is often cited as the historically first one here. A comparison with
our analysis sheds a new light on this.

Mishra uses a class of set constraints with a non-standard interpreta-
tion over non-empty path-closed sets of finite trees to approximate the least
model of a logic program. Set constraints over path-closed sets share an im-
portant property with co-definite set constraints, which is: every satisfiable
constraint has a greatest solution. (This property holds over path-closed
sets even if n-ary constructor terms are allowed left of the inclusion. For
example, the constraint f(z,y) C f(a,a)U f(b,b) has a greatest model over
path-closed sets (which assigns both variables x and y the set {a,b}) while
it has two maximal but incomparable ones over the standard set domain.
Therefore, constructor terms with an arity greater than 2 have been excluded
from co-definite set constraints [2].)

Heintze and Jaffar [12] use the class of definite set constraints which
are dual to co-definite ones in the sense that they have a least solution if
satisfiable. They derive a definite set constraint p from a logic program P
such that its least model is safely approximated by every solution of ¢)p, and
best by the least solution. The values in a solution of ¥p describe supersets
of the possible runtime values in all successfully terminating executions.

Heintze and Jaffar [14] have shown that Mishra’s analysis is less accurate
than theirs in two ways, due to the choice of the greatest solution and due
to the choice of the non-standard interpretation, respectively. The proof of
the soundness of our abstraction carries readily over if we take Mishra’s set
constraints instead of co-definite ones. This means that Mishra’s approxi-
mation is so weak that it even approximates the greatest model. Mishra was
interested in terminating executions and hence considered logic programs
with respect to the least model semantics. He proves that “p(z) will never
succeed” if p is analysed to be necessarily empty. For the case of finite trees,
this is indeed all one can show. Owur remarks above imply that one can
strengthen this consequence by inferring that “p(z) will always fail”, pro-
vided that one takes non-empty path-closed sets of infinite instead of finite
trees.

For the analysis of concurrent constraint programs, various techniques
based on abstract interpretation habe been used (see, e.g., [8]) but none are
set-based. A first formal calculus for (partial) correctness of cc programs
is developed in [7]. The proof methods there are more powerful than ours
but not automatic. A thorough study of abstract diagnosis frameworks is
given in [5]; for now, we have to leave open their relation with this work.
The necessity to consider greatest-fixed point semantics for the analysis of
reactive systems has been observed by other authors and in the context
of different programming paradigms (see, e.g., [6, 11]). To our knowledge,



this is the first application of set-based analysis to reactive programs. The
application of the set-based analysis presented here, in combination with
the one of [13], to the verification of general CTL properties of pushdown
processes and other systems whose state can be modeled by ground queries
of logic programs is explored in [3].

7 Conclusion

We have presented a set-based analysis of reactive logic programs (over infi-
nite trees with the greatest-fixpoint semantics). This analysis is interesting
in its own right, as a particular instance of static analysis, type inference or
approximation of runtime values. It also helps to situate the existing fun-
damental studies of set-based analysis of (terminating) logic programs wrt.
the least model semantics.

Using the characterization of finite failure of logic programs over infinite
trees through the greatest model, and the connection between an error in cc
programs and finite failure, we have applied our analysis to obtain an auto-
mated method for the static prediction of an important kind of runtime error
(the disjunction of deadlock or failure) in concurrent constraint programs.

The realization of this framework for the Oz system, and its extension
to reactive Oz programs with non-cc features such as cells and higher-order
features is part of ongoing work. We have implemented a prototype version
(with an incomplete constraint solver); we have used it in experiments which
demonstrate its usefulness for finding bugs. More experiments are necessary
to find the right balance between the efficiency and the accuracy of the
diagnosis.

Finally, it has been an open question whether set-based analysis can be
formulated also in the setting of constraint logic programming ever since the
notion was coined in [13]. Our analysis might be a new starting point for
reserach in that direction (see also Discussion at the end of Section 5).
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