
Set-based Error Diagnosis ofConcurrent Constraint ProgramsAndreas Podelski, Witold CharatonikMax-Planck-Institut f�ur InformatikD-66123 Saarbr�ucken, Germanyfpodelski ; witoldg@mpi-sb.mpg.deMartin M�ullerProgramming Systems Lab, Universit�at des SaarlandesD-66041 Saarbr�ucken, Germanymmueller@ps.uni-sb.deAbstractWe present an automated method for the static prediction of the runtimeerror `deadlock or failure' in concurrent constraint programs. Operationally,the method is based on a new set-based analysis of reactive logic programswhich computes an approximation of the greatest-model semantics. Seman-tically, the method is based on the connection between the inevitability of`deadlock or failure' in concurrent constraint programs, �nite failure in logicprogramming and the greatest-model semantics over in�nite trees.1 IntroductionThe concurrent constraint (cc) paradigm is a powerful concurrent program-ming paradigm in which the { super�cially unrelated { concepts of concur-rency and constraints fruitfully interact (for entry points to the vast liter-ature, see [25, 26, 8, 7]). On the one hand, concurrency can be a usefulprogramming abstraction for the hard task of writing constraint solvers. Onthe other hand, the intrinsicly complex synchronization of concurrent pro-cesses can be transferred to high-level, conceptually simpler logical constraintproblems. The cc paradigm makes it possible to turn these two reciprocaldependencies into a useful programming tool. By now, several implementa-tions exist; we are interested in particular in contributing to the developmentof the freely available Oz System [19, 26].It is evident that any kind of static analysis is desirable that can detecterrors or increase con�dence in the correctness of programs. This holds ingeneral, and even more so in the traditionally untyped setting of concur-rent constraint programming. More generally, we believe that concurrentconstraint languages have a high potential for automated veri�cation be-cause of the close connection with logic: computation states are describedby constraints and concurrent composition corresponds to conjunction.In this paper, we �rst present a new set-based analysis for logic programs



that are intended to run possibly forever. We call such programs reactive.We then apply the set-based analysis to the automated and static predictionof an important kind of errors in cc programs, namely deadlock or failure.Logic programs. The denotational semantics of a reactive logic programP is de�ned by the greatest �xpoint of the TP operator, which also is thegreatest model of Clark's completion of P [18, 4], over the domain of in�nitetrees. Reactive logic programs are called \perpetual processes" in [18]; weuse the term \reactive" coined in [24] referring to possibly non-terminatingbehavior. The set-based analysis that we introduce uses co-de�nite set con-straints [2]. In a �rst step, the analysis derives a co-de�nite set constraint 'Pwhose greatest solution approximates the greatest model of P . In a secondstep, the analysis applies the algorithm for solving co-de�nite set constraintsfrom [2] and computes a representation of the greatest solution of 'P . Thevalues under this solution are sets of in�nite trees; intuitively, these setsdescribe supersets of the sets of possible runtime values in possibly non-terminating executions of the program P . The values are, however, alsorelevant for predicting a certain runtime behavior of P , as we explain next.One can characterize �nite failure of (possibly non-ground) derivationsover in�nite trees precisely through the greatest model (see Theorem 3.1).This characterization allows us to use the computed greatest solution of thederived co-de�nite set constraint 'P for diagnosing �nite failure. Namely,every fair derivation of the query p(x) �nitely fails if the value of the cor-responding variable is the empty set. (Note that �nite failure over in�nitetrees entails �nite failure over �nite trees.)Concurrent constraint (cc) programs. We may carry over the approx-imation result of the greatest model to cc programs. Its interpretation inoperational terms, however, needs some more care due to the possibility ofdeadlock. The characterization of �nite failure through the greatest modelstill holds for cc programs without deadlock (Theorem 5.4). In general wecannot statically exclude deadlock.In cc programs, an inconsistent constraint store (viz., failure) is a run-time error. This is in contrast with logic programming where failure ispart of the backtracking mechanism. Deadlock is a second kind of runtimeerror. If we do not distinguish between either kind of error, i.e., take thedisjunction `deadlock or failure', then we can apply the set-based diagnosis of�nite failure for logic programs. In summary, emptiness under the greatestsolution of the co-de�nite set constraint derived from the cc program P isa su�cient condition for the inevitability of the run-time error `deadlock orfailure'. Or, more precisely, its computed greatest solution describes, foreach input variable x, a superset of the possible values of x in non-erroneousinput states.The following sections investigate, respectively, some example programs,�nite failure for logic programs, the error `deadlock or failure' in cc pro-grams, the new set-based analysis together with its application as a diagnosismethod, related and, in conclusion, future work.



2 ExamplesThe following examples illustrate how our method of approximating great-est models with co-de�nite set constraints tests the inevitability of certainruntime errors. We �rst take the very simple programp(X):� q(X); r(X):q(a):r(b):The derived set constraint is, simpli�ed, p � q ^ q � a ^ p � r ^ r � b. Itsgreatest solution for p is the empty set (and indeed, the query p(x) �nitelyfails). Similarly, the programp(f( ;X)):� q(f( ;X)):q(f( ;X)):� p(g( ;X)):yields the set constraint p � f( ; x) ^ x � f�1(2) (q) ^ q � f( ; x) ^ x � g�1(2)(p),whose greatest solution for p is the empty set (since g�1(2)(f(M1;M2)) = ; forany set M1;M2). Now consider the following simpli�ed stream program.stream([X;Y jS]) :� Y = s(s(X)); computation(Y ); stream([Y jS]):main(Z) :� stream([ZjT ]):Suppose we know that the predicate computation makes sense only for (treesrepresenting) odd numbers, whereas no such restriction is known for mainand stream. This invariant can be expressed by the following set constraint,which may have been derived from another code fragment or externally pro-vided by a program annotation.computation � s(0) [ s(s(computation)) (1)We can approximate the set of non-failed computations of the program withthe constraint (where s�1(1)(M) = ft j s(t) 2 Mg, and similarly cons�1(1)(M)extracts the heads of all lists in M , and cons�1(2)(M) the tails):stream � cons(X; cons(Y; S)) ^X � computation ^ X � s�1(1)(s�1(1)(Y )) ^Y � cons�1(1)(stream) ^ S � cons�1(2)(stream) ^main � cons�1(1)(stream) : (2)
It is not di�cult to see that the greatest solution of the conjunction of (1)and (2) assigns to the variable main (as well as to X, Y , and computation)the set of odd numbers. We obtain from this fact that, for example, thequery main(0) inevitably leads to a state where computation is called with awrong argument.



We now illustrate the necessity to consider in�nite trees by another ex-ample. Consider the reactive logic program P de�ned by p(f(x)) :� p(x).The execution of the non-ground query p(x) does not fail, over the domainof �nite as well as over the domain of in�nite trees. We derive the co-de�niteset constraint 'P � p � f(x) ^ x � p. When interpreted over sets of �nitetrees, the greatest solution of 'P is the valuation assigning the empty set top. In the in�nite tree case the greatest solution assigns to p the singletonset containing the in�nite tree ff(f(f(: : :)))g. That is, an interpretation ofthe derived co-de�nite set constraint over sets of �nite trees does not admita conclusion about �nite failure of non-ground queries.3 Logic ProgramsNotation. We assume a ranked alphabet � �xing the arity n � 0 of its func-tion symbols f; g; : : : and constant symbols a; b; : : :, and an in�nite set Varof variables x; y; z; : : :. We write �x for �nite sequences of variables (whoselength equals the arity of f in f(�x). The set of terms over � and Var isT�(Var);a term without variables is called a ground term. The set of in�nitetrees over � is T1� . By convention, an in�nite tree is a tree whose branchesare �nite or in�nite. We use the meta-variable t to refer to both, trees andterms. We write as 9�x� for the existential closure of the formula � withrespect to all variables in � but x. We also assume a set Pred of predicatesymbols p. For better readability, we assume that all predicates are unary;the results can easily be extended to the case without this restriction (forexample, by adding symbols that form tuples).The Herbrand Base B is the set of all ground atoms over Pred and T1� ,i.e., B = fp(t) j p 2 Pred; t 2 T1� g.1A logic program de�nes predicates through clauses of the formp(t) :� p1(t1); : : : ; pn(tn) :A complete program P is a set consisting of np clauses for each predicatep 2 Pred, each with the head p(ti) and the body consisting of ni;p atomspij(tij); we leave the index p as in tijp implicit for better readability.We always implicitly refer to the completion of P [4] for the logical se-mantics of P .P � ^p2Pred 8x p(x)$ np_i=1 9�x( x = ti ^ ni;p̂j=1 pij(tij) )A query s is a conjunction Vk pk(tk) where the tk are terms. A groundquery is a query Vk pk(tk) such that all tk are ground. We use the predicate1What we call Herbrand Base is sometimes called Complete Herbrand Base [18], namelywhen it needs to be distinguished from the set of ground atoms over Pred and �nite trees.



constant true as the neutral element for conjunction: i.e., s = s ^ true. Inparticular, the \empty query" is written as true.An interpretation � (sometimes called a model) is a subset of the Her-brand Base, � � B. Interpretations are ordered by subset inclusion. Weidentify an interpretation � with the valuation � : Pred ! 2T1� from predi-cate symbols to sets of trees where �(p) = ft 2 T1� j p(t) 2 �g. A model ofthe program P is a valuation such that the formula P is valid (in the usualsense of logic). The greatest model of P , denoted by gm(P ), always exists.Operational Semantics. The logic program P de�nes a fair transitionsystem TP = hS; �P i whose one-step transition relation is de�ned as usualfor derivations of logic programs or constraint logic programs [18, 16], withthe fair non-deterministic selection rule. Conjunction is operationally par-allel composition, and disjunction is non-deterministic choice. The non-determinism of the selection rule translates to the non-determinism of theinterleaving semantics; the fairness of the selection rule is exactly the fairnessof the transition system (which is thus captured precisely by the greatest-model semantics). The set S of states consists of the possibly non-groundqueries (including true), and the failure state false:2S = f k̂ pk(tk) j 8k pk 2 Pred; tk 2 T�(Var)g [ ffalsegSimilarly, P de�nes a fair ground transition system T gP = hSg; �gP i. Thestates in Sg are the ground queries including true and false. The transitionrelation �gP modi�es the one of TP such that after every step of TP all variablesin the obtained state are substituted with ground terms.We say that a derivation succeeds [fails] if if it ends in the state true[false]. A query p(t) succeeds if there exists a derivation leading to thestate true; it �nitely fails if every (fair) TP derivation starting with queryp(t) leads to failure after �nitely many steps. Given the program P , wedenote FF (P ) the set of all queries p(t) that �nitely failed, and GFF (P ) theset of all ground queries p(t) 2 B that are ground �nitely failed; i.e., every T gPderivation starting from p(t) reaches failure after �nitely many steps. (Notethat in general, ground �nite failure does not imply �nite failure of someground instance.)We can characterize the �nite failure set of a program P over the do-main T1� of in�nite trees through the greatest model of P .2The notion of queries considered here is not general enough to model arbitrary execu-tion states of a constraint program over in�nite trees. Since terms are �nite, we can usethem only to model non-cyclic constraint stores. We gloss over this detail here since it isnot essential and repairing it would make the notation clumsy (see, however, [21]).



Theorem 3.1 (Characterization of �nite failure over in�nite trees)Given a logic program P over in�nite trees, the query p(x) is �nitely failedif and only if the value of p in the greatest model of P over the domain T1�of in�nite trees is the empty set; i.e., p(x) 2 FF (P ) i� gm(P )(p) = ;.Proof. The only-if direction (the algebraic soundness of �nite failure [18,16]) is clear from the fact that gm(P )(p) = ft j p(t) 62 GFF (P )g.For the other direction, �rst note that equations over in�nite trees havethe saturation property, which is: an in�nite set of constraints is satis�ableif every of its �nite subsets is [18, 17, 23].Now assume that p(x) 62 FF (P ). It is su�cient to show that thereexists an in�nite tree t such that p(t) 62 GFF (P ). There exists an executionstarting in the state s = p(x) that does not lead to the failure state. Thatis, there exists a transition sequence s = s0; s1; s2; : : : such that (in theterminology of constraint logic programming [16]) the constraint store 'i ofevery state si is satis�able. Since 'i is stronger than 'i�1 for i � 1, thisimplies that Vni=0 'i is satis�able for all n. The saturation property yieldsthat also f'i j i � 0g is satis�able. Let � be a solution of f'i j i � 0g. Thetransition sequence s0o; s01; s02; : : : that we obtain by instantiating the states siby the valuation � is a ground transition that does not lead to the fail state.Hence, if �(x) = t, then p(t) 62 GFF (P ). 2Discussion. It would be surprising if the above theorem was a newobservation; since we have not found it in the literature, however, we feelobliged to give its proof.For comparison, Palmgren [23] has shown that every constraint logicprogram over a constraint domain with the saturation property is canonical.That is, gfp(TP ) = TP #! holds (where TP #! T!i=1 T iP (B)). Since gfp(TP ) =BnGFF (P ) holds, this is su�cient to characterize ground �nite failure overin�nite trees (see also [22]). It does not, however, yield the above theorem.For illustration, consider the example (from [15]) p(f(x)) :� p(x). Thisprogram is canonical over �nite trees. Its greatest model over �nite treesassigns p the empty set. Thus p(t) 2 GFF (P ) for all �nite tree t, but p(x) 62FF (P ), in violation of the statement in the theorem.A similar remark applies to Ja�ar and Stuckey's result [17] that TP #!equals Bn[FF (P )] where [FF (P )] is the set of ground instances of elementsof FF (P ). This holds for all canonical programs over a solution compactdomain, and again the above example applies.Finally, we want to mention that on can also come up with an alternative(though, less direct and less natural) proof of Theorem 3.1 which uses Palm-gren's result [23] and the algebraic completeness of �nite failure of groundgoals wrt. canonical programs. Here, the trick is to add a clause of the formmain :� p(x) to the program P .



4 Concurrent Constraint ProgramsWe consider concurrent constraint (cc) programs (see, e.g., [25, 26]) in anormalized form such that we can employ a Prolog-style clausal syntax. Thisis convenient when we establish a direct connection to logic programming.We assume that every procedure p is de�ned either by a single fact p(t): orby several guarded clauses of the formp(x) :� x = t [] p1(t1); : : : ; pn(tn):In such a guarded clause, we call x = t the guard and p1(t1); : : : ; pn(tn) thebody.Since we are interested here only in the case where constraints C are termequations interpreted over in�nite trees, as in the cc programming languageand system Oz [19, 26], the syntactic restriction that we enforce is a properone only in isolated cases (see Footnote 2). Generally, we can replace a telloperation (e.g., the equation t = t0 in the body of a clause in a cc programin the style of [25]) by the call of procedures de�ned by facts.The operational semantics of a cc program P is de�ned through a fairtransition system T ccP which is the same as the one for logic programs exceptfor one di�erence: a selected atom p(t0) in a query can be applied only ifthere is a clause, say, p(x) :� x = t [] p1(t1); : : : ; pn(tn):, such that x = t0entails 9�x x = ti. The successor state of the query is, if the entailmentholds, de�ned in the same way as it is de�ned for a logic program with theclause p(t) :� p1(t1); : : : ; pn(tn): (For more de�nitions, see, e.g., [25, 26]).Failure vs. Deadlock. An execution sequence deadlocks if it containsa query p(t) that is never applied because none of the corresponding guardsis ever entailed. Note the analogy with failure: an execution sequence failsif it contains a query p(t) that is never applied because it does not unifywith any of the heads of the clauses of p. Either, failure or deadlock, is arun-time error in cc systems. (Our method cannot directly be applied to aprogram where deadlock is a desired feature of its execution behavior, andnot a bug. In our programming experience, however, this is rarely the case.)We want to give a conservative approximation of all (initial) execution statesof cc programs for which either failure or deadlock is inevitable (i.e., everypossible fair execution sequence �nally reaches a state in which, for fairnessreasons, an atoms needs to but cannot be applied, either because no guardis entailed or because the successor state would be false). We can expressthe set of all these states formally through a CTL operator, namelyAF(ffalseg) = fs 2 S j every fair execution starting in s deadlocks or failsgif we use the following convention. In every fair execution containing thestate s = Vk pk(tk), each atom pk(tk) will be selected after a �nite numberof steps. When the atom gets selected in, say, the state s0, then it must beapplied; if no clause is applicable, then the only successor state of s0 is false.



We obtain the logic program ~P from the cc program P by replacing eachclause p(x) :� x = t [] p1(t1); : : : ; pn(tn): with p(t) :� p1(t1); : : : ; pn(tn):(which amounts to replacing the guard operator [] with conjunction). Thisis an abstraction in the following sense.Proposition 4.1 If the query p(t) �nitely fails wrt. the logic program ~Pobtained from the cc program P then it either deadlocks or fails wrt. P . Ifthe query p(t) succeeds wrt. P then it also succeeds wrt. ~P .Proof. Observe that every (�nite or in�nite) fair computation in P whichneither fails nor deadlocks induces a computation in ~P which does not fail ordeadlock, either. This can be made formal by a simulation argument whichexploits that whenever a selected query p(t) is applied with a guarded clausein P it can also be applied with the associated unguarded clause in ~P . Thisproves the second claim immediately, and also the �rst one by contraposition.2Proposition 4.2 (Characterization of �nite failure or deadlock)Given a concurrent constraint program P over in�nite trees, the query p(x)inevitably either deadlocks or fails in every fair execution if and only if thevalue of p in the greatest model of ~P over the domain T1� of in�nite trees isthe empty set.Proof. We combine Proposition 4.1 and Theorem 3.1. 25 Set-based AnalysisBefore we introduce the new set-based analysis, we need to recall the de�-nition of co-de�nite set constraints from [2].A set expression e is built up from �rst-order terms, union, intersection,complement, and the projection operator.e ::= x j f(e) j e [ e0 j e \ e0 j ec j f�1(k) (e)If e does not contain the complement operator, then e is called a positiveset expression. A set constraint (in the sense of [12]) is a conjunction ofinclusions of the form e � e0.De�nition 5.1 A co-de�nite set constraint ' is a conjunction of inclusionsel � er between positive set expressions, where the set expressions el on theleft-hand side of � are further restricted to contain only variables, constants,unary function symbols and the union operator (that is, no projection, in-tersection or terms with a function symbol of arity greater than one).el ::= x j a j f(e)er ::= x j f(e) j e [ e0 j e \ e0 j f�1(k)(e)



For comparision, a de�nite set constraint [12] is a conjunction of inclusionsel � er between positive set expressions, where the set expressions er onthe right hand side of � are furthermore restricted to contain only vari-ables, constants and function symbols and the intersection operator (i.e., noprojection or union).We interpret set constraints over 2T1� , the domain of sets of in�nite treesover the signature �. That is, variables denote sets of trees, and a valuationis a mapping � : Var ! 2T1� . Tree constructors are interpreted as functionsover sets of trees: the constant a is interpreted as fag, and the functionsymbol f is interpreted as the function which maps sets S1; : : : ; Sn to theset f(S1; : : : ; Sn) = ff(t1; : : : ; tn) j t1 2 S1; : : : ; tn 2 Sng :The application of the projection operator for a function symbol f and thek-th argument position on a set S of trees is de�ned byf�1(k) (S) = ft j 9t1; : : : tn : tk = t; f(t1; : : : ; tk; : : : ; tn) 2 Sg :The symbols [, \ and � are interpreted as usual. The union of set valuationsSi �i on variables is the pointwise union on the images of all variables; i.e.,(Si �i)(x) = Si �i(x).We list three properties that are important in the proof of the soundnessof abstraction in the next section. (1) The solutions of co-de�nite set con-straints are closed under arbitrary union. (2) Every co-de�nite set constrainthas a greatest solution if satis�able. (3) Every co-de�nite set constraint with-out inclusions of the form a � x is satis�able.The satis�ability problem for co-de�nite set constraints is DEXPTIME-complete (as for de�nite set constraints). The algorithm given in [2] com-putes the greatest solution of a satis�able co-de�nite set constraint ' (writtenas gSol(')) in the form of a tree automaton.'P. We will next describe the inference of a co-de�nite set constraint 'Pfrom a logic program P . (Given a cc program P , we note 'P the constraint' ~P inferred from the logic program ~P corresponding to P .) We assumethat the di�erent clauses are renamed apart (if not, we apply �-renamingto quanti�ed variables). We introduce a fresh variable zt for each subterm tappearing in the formula and then de�ne the constraint �(t � x) for a termt and a variable x by induction on the depth of t. (The constraints derivedfrom the programs in the examples in Section 2 are syntactically simpli�edfor better readability.)�(y � x) = y � xand for t = f(t1; : : : ; tn):�(t � x) = zt � x ^ zt1 � f�1(1) (zt) ^ �(t1 � zt1): : :^ ztn � f�1(n)(zt) ^ �(tn � ztn)



We de�ne the constraint 'P inferred from P as follows.'P � ^p2Pred p = np[i ti ^ np̂i ni;p̂j �(tij � pij)Here, we treat both symbols p 2 Pred and x 2 Var as second-order vari-ables which range over sets of trees. In the following, when we compare aninterpretation � with a valuation � of a set constraint, � � � means that�(p) � �(p) for all p 2 Pred.Theorem 5.2 (Soundness of Abstraction) For any logic program P ,the greatest model of P is smaller than the greatest solution of the co-de�niteset constraint derived from P ; formally: gm(P ) � gSol('P ).Proof. We �rst de�ne an abstraction T#P of the TP operator, and weprove that gfp(TP ) � gfp(T#P ). Here, we extend valuations � over treesto valuations �� over sets of trees by �(x) = f�(x)g. In the second part weshow that gfp(T#P ) � gSol('P ). That part exhibits an interesting connectionbetween the �xed point equation and the set constraint (cf. also [13]).1. gfp(TP ) � gfp(T#P ). The TP operator maps an interpretation � toanother one TP (�) where, for all p 2 Pred,TP (�)(p) = (t 2 T� ����� 9� : Var ! T� 9i : t = �(ti);T1� ; � j= tij 2 �(pij) ) : (3)The greatest-model semantics and the greatest-�xpoint semantics of aprogram P coincide. That is, the greatest model of P 's completion is thegreatest �xpoint of the operator TP , gm(P ) = gfp(TP ).The T#P operator maps an interpretation � to another one T#P (�) where,for all p 2 Pred,T#P (�)(p) = (t 2 T� ����� 9� : Var ! 2T1� ; 9i : t 2 �(ti);2T1� ; � j= Vj �(tij � xij) ^ xij � �(pij) ) :(4)Here, we use new variables xij as placeholders for pij (for better legibility:otherwise, pij would appear as a variable on which both, � and � are applied).The variables x 2 Var now range over sets of trees. We write M; � j= Fif the formula F is valid under the interpretation with the valuation � onthe structure (with the domain) M. The formula F above consists of co-de�nite set constraints in conjunction with inclusions between variables andconstants �(pij) (interpreted as the corresponding set).Let �0 = TP (�) and �00 = T#P (�). Then �0(p) � �00(p) holds for allp 2 Pred. This can be seen as follows. For every tree valuation � satisfying



the condition in the set comprehension for �0, the set valuation �� de�nedby �(x) = f�(x)g satis�es the condition in the set comprehension for �00.Clearly, ��(tij) � �(pij); we replace the inclusion tij � �(pij) by the equiv-alent conjunction tij = xij ^ xij � �(pij), and if �� satis�es the equalitytij = xij then also the weaker constraint �(tij � xij).Hence, T#P is indeed an abstraction of Tp, and, thus, gfp(TP ) � gfp(T#P ).This concludes the �rst part of the proof.2. gfp(T#P ) � gSol('P ). In order to show that gfp(T#P ) � gSol('P ), we�rst reformulate the de�nition of T#P as follows.T#P (�)(p) = [�:Var!2T1� [i f�(ti) j 2T1� ; � j= ĵ �(tij � xij) ^ xij � �(pij)gFix � and let �00 = T#P (�).Next, we exploit the fact that the solutions of co-de�nite set constraintsare closed under (arbitrary) union. This fact extends to formulas containinginclusions with set constants on the right hand side, such as xij � �(pij).Note that for all i, the formula in question is satis�able. We obtain that�00(p) = [i �i(ti) where �i = gSol ( ĵ �(tij � xij) ^ xij � �(pij)):Since all program variables are renamed apart, we have �00(p) = Si �(ti)where � = gSol( î ĵ �(tij � xij) ^ xij � �(pij)):Thus, we have �00(p) = �(p) where� = gSol(p =[i ti ^ î ĵ �(tij � xij) ^ xij � �(pij)):Again, since all program variables are renamed apart,�00 = gSol( ^p2Pred p =[i ti ^ î ĵ �(tij � xij) ^ xij � �(pij)):Here, we equate the interpretation �00 : Pred ! 2T1� with a valuation �interpreting a formula with predicate symbols p 2 Pred and tree variablesx 2 Var both ranging over sets of trees, and with constants of the form �(pij)standing for the corresponding sets. We omit any further formalization ofthis setting.Let �0 be any �xpoint of T#P , i.e., T#P (�0) = �0. This means that �0 is asolution (the greatest one, in fact) of^p2Pred p =[i ti ^ î ĵ �(tij � xij) ^ xij � �0(pij):That is, �0 is a solution of 'P . Hence, �0 is smaller than the greatest solutionof 'P . This is true in particular if �0 is chosen as the greatest �xpoint ofT#P . This concludes the second part of the proof. 2



Discussion: constraint logic programs. We might formulate theabove set-based analysis in the setting of constraint logic programs.P � ^p2Pred 8x p(x)$ np_i=1 9�x(x = xi ^ xi = ti ^ ni;p̂j=1 pij(xij) ^ tij = xij )'P � ^p2Pred p � x ^ x = np[i=1 xi ^ xi = ti ^ ni;p̂j=1xij � pij ^ �(tij = xij) )We see that disjunction translates to union (\ x = Snpi=1 xi "). Moreover, theset constraint derived from the constraint xi = ti is syntactically the same,whereas the set constraint �(tij � xij) derived from the constraint tij = xijis of a more complicated form (the reason is, intuitively, that xi belongs tothe head and the xij 's belong to the body).The only two properties required in the analysis framework are: (1) asolution � of a constraint C can be \lifted" to a solution �� of the set con-straint �(C) by setting ��(x) = f�(x)g, and (2) solutions of set constraintsare closed under arbitrary unions.Operational interpretation. We now summarize the operational in-terpretation of the result that is computed by the set-based analysis outlinedabove.Theorem 5.3 (Set-based analysis of �nite failure) The query p(x) is�nitely failed in every fair execution of the reactive logic program P if thevalue of p in the greatest solution over sets of in�nite trees of the co-de�niteset constraint 'P derived from P is the empty set; i.e., for all predicatesp 2 Pred, if gSol('P )(p) = ; then p(x) 2 FF (P ).Proof. We combine Theorems 5.2 and 3.1. 2Theorem 5.4 (Set-based error diagnosis of cc programs)The procedure p in the cc program P �nitely fails or deadlocks if the valueof p in the greatest solution over sets of in�nite trees of the co-de�nite setconstraint 'P derived from P is the empty set.Proof. We combine Theorem 5.3 and Proposition 4.2. 2Types. Using Theorems 3.1 and 5.2, the statements in the two theoremsabove can be made more precise (but then maybe less succinct). Given thegreatest solution of 'P , the value of the variable p describes an approxima-tion of the set of argument terms t for p in non-erroneous queries in thefollowing way. If the set of ground instances of the query p(t) does not inter-sect with the value of p, then the query p(t) will �nitely fail (inevitably failor deadlock, respectively). In this sense, the value of the variable p in thegreatest solution of 'P denotes a type for the arguments of the procedure p.



6 Related WorkPrevious work set-based analysis for logic programming has considered theleast model semantics only (see, e.g. [20, 12, 9, 1, 10]). Mishra's analy-sis [20] is often cited as the historically �rst one here. A comparison withour analysis sheds a new light on this.Mishra uses a class of set constraints with a non-standard interpreta-tion over non-empty path-closed sets of �nite trees to approximate the leastmodel of a logic program. Set constraints over path-closed sets share an im-portant property with co-de�nite set constraints, which is: every satis�ableconstraint has a greatest solution. (This property holds over path-closedsets even if n-ary constructor terms are allowed left of the inclusion. Forexample, the constraint f(x; y) � f(a; a) [ f(b; b) has a greatest model overpath-closed sets (which assigns both variables x and y the set fa; bg) whileit has two maximal but incomparable ones over the standard set domain.Therefore, constructor terms with an arity greater than 2 have been excludedfrom co-de�nite set constraints [2].)Heintze and Ja�ar [12] use the class of de�nite set constraints whichare dual to co-de�nite ones in the sense that they have a least solution ifsatis�able. They derive a de�nite set constraint  P from a logic program Psuch that its least model is safely approximated by every solution of  P , andbest by the least solution. The values in a solution of  P describe supersetsof the possible runtime values in all successfully terminating executions.Heintze and Ja�ar [14] have shown that Mishra's analysis is less accuratethan theirs in two ways, due to the choice of the greatest solution and dueto the choice of the non-standard interpretation, respectively. The proof ofthe soundness of our abstraction carries readily over if we take Mishra's setconstraints instead of co-de�nite ones. This means that Mishra's approxi-mation is so weak that it even approximates the greatest model. Mishra wasinterested in terminating executions and hence considered logic programswith respect to the least model semantics. He proves that \p(x) will neversucceed" if p is analysed to be necessarily empty. For the case of �nite trees,this is indeed all one can show. Our remarks above imply that one canstrengthen this consequence by inferring that \p(x) will always fail", pro-vided that one takes non-empty path-closed sets of in�nite instead of �nitetrees.For the analysis of concurrent constraint programs, various techniquesbased on abstract interpretation habe been used (see, e.g., [8]) but none areset-based. A �rst formal calculus for (partial) correctness of cc programsis developed in [7]. The proof methods there are more powerful than oursbut not automatic. A thorough study of abstract diagnosis frameworks isgiven in [5]; for now, we have to leave open their relation with this work.The necessity to consider greatest-�xed point semantics for the analysis ofreactive systems has been observed by other authors and in the contextof di�erent programming paradigms (see, e.g., [6, 11]). To our knowledge,



this is the �rst application of set-based analysis to reactive programs. Theapplication of the set-based analysis presented here, in combination withthe one of [13], to the veri�cation of general CTL properties of pushdownprocesses and other systems whose state can be modeled by ground queriesof logic programs is explored in [3].7 ConclusionWe have presented a set-based analysis of reactive logic programs (over in�-nite trees with the greatest-�xpoint semantics). This analysis is interestingin its own right, as a particular instance of static analysis, type inference orapproximation of runtime values. It also helps to situate the existing fun-damental studies of set-based analysis of (terminating) logic programs wrt.the least model semantics.Using the characterization of �nite failure of logic programs over in�nitetrees through the greatest model, and the connection between an error in ccprograms and �nite failure, we have applied our analysis to obtain an auto-mated method for the static prediction of an important kind of runtime error(the disjunction of deadlock or failure) in concurrent constraint programs.The realization of this framework for the Oz system, and its extensionto reactive Oz programs with non-cc features such as cells and higher-orderfeatures is part of ongoing work. We have implemented a prototype version(with an incomplete constraint solver); we have used it in experiments whichdemonstrate its usefulness for �nding bugs. More experiments are necessaryto �nd the right balance between the e�ciency and the accuracy of thediagnosis.Finally, it has been an open question whether set-based analysis can beformulated also in the setting of constraint logic programming ever since thenotion was coined in [13]. Our analysis might be a new starting point forreserach in that direction (see also Discussion at the end of Section 5).
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