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Kurze Zusammenfassung

Oz ist eine anwendungsnahe Programmiersprache, deren Grundlage eine Erweiterung
des Modells nebenlaufiger Constraintprogrammierung um Prozeduren hoherer Stufe
und Zustand ist. Oz ist eine Sprache mit dynamischer Typuberprifung wie Prolog,
Scheme oder Smalltalk. Wir untersuchen zwei Ansatze, statische Typiherg fur

Oz zu ermoglichen: Mengenbasierte Fehlerdiagnose und Starke Typisierung. Wir
definieren ein neues System von Mengenconstraints Uber Featurebaumen, das fur
die Analyse von Recordstrukturen geeignet ist, und wir untersuchen das Erfillbar-
keits-, das Leerheits- und das Subsumtionsproblem fir dieses Constraintsyétem
prasentieren eine mengenbasierte Diagnose fur Constraint-Logikprogrammieding

fur nebenlaufige Constraintprogrammierung als Teilsprachen von Oz, und wir be-
weisen, dal’3 diese unvermeidliche Laufzeitfehler erkennt. Wir schlagem @ine
mengenbasierte Analyse fur eine grossere Teilsprache von Oz vor. Kompdement
dazu definieren wir eine Oz-artige Sprache genannt Plain, die ein exprestsities
Typsystem erlaubt. Wir stellen ein solches Typsystem vor und beweisen seaiiK

heit.






Zusammenfassung

Das Modell nebenlaufiger Constraintprogrammierung (Concurrent Constraint Model,
CC) stellt eine einfache und doch machtige Grundlage fur problemnahe nebenlaufige
Programmiersprachen dar. Die Expressivitat des CC-Modells wird echebtivei-

tert durch das Oz Programmiermodell (OPM), welches der ProgrammienspGc
zugrunde liegt. Oz subumiert etablierte Programmierparadigmen wie das der funk-
tionalen, der objekt-orientierten, oder der constraintbasierten Programmidnsig.
besondere verfugt Oz uber Ausdrucksmittel zur Programmierung von constraintba-
sierten Inferenzverfahren, die Uber alle aus der Constraint-Logikprogramgibe-
kannten hinaus gehen.

Oz ist eine Sprache mit dynamischer Typuberprifung wie Prolog, Scheme oder Small
talk. Das heil3t zum einen, dal? Oz eine typsichere Sprache ist, die die typkomeekte V
wendung von primitive Operationen garantiert; es bedeutet andererseitsz ¢aih®
statische Typuberprufung durchfuhrt. Dynamische Typuberprifung ist von Vorteil
fur die Einfachheit und Flexibilitat einer Programmiersprache, abersshweert die
Fehlersuche in Programmen. In dieser Arbeit untersuchen wir zwei Anséatische
Typuberprifung fur Oz zu ermoglichen: Mengenbasierte Fehlerdiagnose und Starke
Typisierung.

Mengenbasierte Fehlerdiagnose ist ein Programmanalyseverfahren, dedsmii
Programmierfehler schon zwibersetzungszeit zu erkennen. Das Verfahren wird
als mengenbasiert bezeichnet, weil es eine Klasse pradikatenlogischexl-oem
wendet, die Uber Mengen von Baumen interpretiert werden (sogenannte Mengencon-
straints). Der Entwurf einer mengenbasierten Programmanalyse vanlédt Schrit-

ten: Zunachst definiert man eine Klasse von Mengenconstraints, die fur dieegpege
Programmiersprache und das Analyseproblem angemessen ist. Dann definiert man
eine Abbildung von Programmen in diese Mengenconstraints und beweist, dal3 die
Abbildung bestimmte Laufzeiteigenschaften des Programms erhalt. Gathient-
wickelt man Algorithmen, um die verwendeten Constraints zu losen.

Wir definieren ein neues System von Mengenconstraints Uber Featurebaumses Di
Constraintsystem ist durch die Analyse von Records motiviert, die in Oz emeale

Rolle spielen, und die in Oz durch Gleichheitsconstraints Uiber Featurebanr@z
integriert sind. Wir untersuchen das Erfullbarkeits-, das Leerheits- un&dbsum-
tionsproblem fur Mengenconstraints Uber Featurebaumen und prasentierBeiiae

von Algorithmen und Komplexitatsergebnissen. Mengenconstraints tiber Featureb”
men sind von unabhangigem Interesse, Uber ihre Verwendung in der Programmanalyse
hinaus und insbesondere im Vergleich mit bekannten Mengenconstraintsystemen.

Wir geben eine mengenbasierte Diagnose an fur Constraint-Logikprogrammierung
und nebenlaufige Constraintprogramming als Fragmente erster Stufe von Oz. Als
Korrektheitsbeweis fur unsere Diagnose zeigen wir, daf3 sie nur Programuoek-zur”
weist, die einen unvermeidlichen Laufzeitfehler enthalten. Fur einssgré Teil-



sprache von Oz, die insbesondere Prozeduren hoherer Stufe mit einschlie3tygeben
eine Analyse an und illustrieren sie anhand von Beispielen. Das intere$8améki-
heitsproblem fur diese Analyse lassen wir offen. Durch die Prozeduren hi8teafe
wird das Korrektheitsproblem wesentlich schwieriger und die Beweisteehfiik den

Fall erster Stufe sind nicht mehr anwendbar.

Komplementar zu der mengenbasierten Diagnose untersuchen wir den Entwurf eines
streng statischen Typsystems fur Teilsprachen von Oz. Wir definiegam &hd wir
zeigen, dal3 ein expressives starkes Typsystem maoglich ist fur einen8prhe we-
sentliche Elemente von Oz kombiniert: darunter Prozeduren hoherer Stufschegi
Variablen und partiell determinierte Datenstrukturen, Zellen und Recdxdderer-

seits heben wir einige Einschrankungen von Plain gegentuiber Oz hervor. Plains Typ-
system unterstiitzt Recordtypen, Untertypen, polymorphe Typen hoherer Stufe, Modi
und Modus-Polymorphismus. Wir beweisen die Korrektheit unseres Typsystems mit
Hilfe eines Typerhaltungssatzes (subject reduction).



Short Abstract

Oz is a recent high-level programming language, based on an extension of the concur-
rent constraint model by higher-order procedures and state. Oz is a dynamically typed
language like Prolog, Scheme, or Smalltalk. We investigate two approachedkioign
static type analysis available for Oz: Set-based failure diagnosis amsiyping.

We define a new system of set constraints over feature trees that is apprtqriie
analysis of record structures, and we investigate its satisfialzliygtiness, and en-
tailment problem. We present a set-based diagnosis for constraint logic progrgmmi
and concurrent constraint programming as first-order fragments of Oz, and we prove
that it correctly detects inevitable run-time errors. We also propose dysantor a

larger sublanguage of Oz. Complementarily, we define an Oz-style language called
Plain that allows an expressive strong type system. We present such a tigre aysl

prove its soundness.



Vi



Abstract

Concurrent constraint (CC) programming is a simple and powerful high-level model
for concurrent programming. The expressiveness of the CC model has been conside-
rably extended by the Oz Programming Model (OPM) which is realised in the pro-
gramming language Oz. Oz subsumes well-established programming paradigms such
as higher-order functional and object-oriented programming, and it supports problem
solving facilities beyond those known from constraint logic programming.

Oz is adynamically typed language like Prolog, Scheme, or Smalltalk. This rifedns
Oz is a type safe language that guarantees type-correctness of primitivecayss fadit

that it lacks static (compile-time) type checking. This is advantageous falisity

and flexibility of the language but it complicates the debugging of programs. In this
thesis we investigate two approaches of making static type checking aedibali)z:
Set-based failure diagnosis and strong typing.

Set-based failure diagnosis is a method for program analysis with the goal & dete
programming errors at compile-time. The method is called set-based batans-

ploys set constraints, a class of predicate logic formulas interpretedetgeof trees.

The design of a set-based program analysis involves the following steps, dfies
defines a class of set constraints that is appropriate for the given language ama-the a
lysis problem. Second, one defines a mapping from programs to set constraints and
proves that this mapping preserves certain run-time properties of the programts

one provides algorithms to solve the constraints.

We define a new system of set constraints over feature trees. This consysdaTn
is motivated by the analysis of records, since Oz incorporates records asa data
structure through equality constraints over feature trees. We study tkgadmlity,
emptiness, and entailment problems for set constraints over featuramcpsovide a
number of algorithms and complexity results. Set constraints over featasstre also
interesting independent from their application in program analysis, and in caapari
with other systems of set constraints.

We present a diagnosis for constraint logic programming and concurrent constraint
programming as first-order fragments of Oz. We prove our diagnosis correct by show-
ing that it rejects only programs that contain an inevitable run-time errora Foger
sublanguage of Oz including higher-order procedures we present a diagnosis and illus-
trate it with examples. The interesting problem of proving correctness fatfalysis

is left open. In presence of higher-order procedures, the correctness problem becomes
fundamentally harder, and the proof techniques used for the first-order case fail.

Complementary to the set-based failure diagnosis, we consider the desigangf str
static type systems for sublanguages of Oz. We define Plain, and we show that an
expressive strong type system is possible for a language that combines key features
of Oz, namely higher-order procedures, logic variables and partially detedrdata
structures, cells, and records, and we highlight the restrictions of Plamrespect



to Oz. Plain’s type system supports record types, subtyping, higher-order polymor-
phic types, modes, and mode polymorphism. We prove its soundness through a type
preservation theorem.
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1. Introduction

1.1. Motivation

1.1.1. High-level Programming Languages

Computer programming is a complex task. This complexity can be reduced by a pro-
gramming language that provides expressive abstraction mechanisms, whiaganabl
direct and concise modelling of the application domain. Programming languages are
called high-level if they satisfy this requirement.

The design of high-level programming languages for concurrent and distributed pro-
gramming is an important challenge in computer science today. Many applicatens
naturally modelled in terms of multiple concurrent processes which procegslyla
independently but also need to synchronise and communicate with each other; as a
typical example, consider distributed multi-agent systems. Softwareapers|face

a quickly increasing demand for concurrent and distributed applications, dfpecia
since the advent of the world wide web.

Concurrent constraint (CC) programming [120, 180] is a simple and powerful high-
level model for concurrent programming. The expressiveness of this model has been
considerably extended by the Oz Programming Model (OPM) which is realised in
the programming language Oz [174, 195]. OPM subsumes well-established program-
ming paradigms as facets of a general model, for example higher-order functional
and object-oriented programming. By extension of OPM, Oz also supports problem-
solving facilities beyond those known from constraint logic programming [182, 183].

1.1.2. Static Program Analysis

Programming is prone to error. Human beings make errors, both due to the formal
activity of writing programs, and due to the intrinsic complexity of the applicati
domain at hand. Some of these errors can be avoided by appropriate programming ab-
stractions which help make programs shorter and easier to maintain. iegairors

can be very hard to find by testing or program inspection. Therefore, it is Oiestoa

have automated support for the static (compile-time) detection of programmnarg.e
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Oz is a dynamically typed language. This means that Oz is type safe in thanall pri
itive operations check the type of their arguments at run-time, but that Oz latks s
type checking. Dynamic typing is advantageous for simplicity and flexibility of the
language but it complicates the debugging of programs. The motivation of this thesis
is to make some static type checking available for Oz. For a language likthi9z,
problem has not been considered before.

We consider two methods for static analysis for Oz: Strong typing and set-kaked f

ure diagnosis. Both methods are somewhat dual to each @&treng typingaims at
proving that all operations in a program are always type correct, and to accept only
programs for which this proof succeeds. Duaflilure diagnosisaims at proving

that some operation in a program is not type correct, and to reject such programs as
erroneous. Strong typing yields a safety guarantee at the price of restrictiexpites-
siveness of the programming language. Failure diagnosis puts few or no restrictions
on the programming language but, as a trade-off, it does not yield a safety guarantee.

1.2. The Programming Language Oz

1.2.1. The Oz Programming Model

Concurrent constraint programming is a model of computation that views concurrent
processes as independent agents that communicate by imposing constraints on shared
variables [120, 180]. Constraints are bits of information that are accumulatie i
constraint store and that restrict the possible values a variable cartitakaore con-
straints, the smaller the set. In Oz, constraints are defined as filestformulas over

a fixed predicate logic structure: we refer to the constraint language and dae fix
structure jointly as @onstraint system

Concurrent processes synchronise on the fact that certain constraints onbdevaria
become entailed (logically implied) by the constraint store (“ask”). The caimt
store grows monotonically: constraints can be added (“tell”) but are nevacted.
This setup makes it easy to express complex and safe synchronisation ga8éins
and makes CC a powerful model of concurrent programming.

The Oz Programming Model (OPM) [195] is an extension of the concurrent constraint
model. The programming language and system Oz [174] is based on OPM with which
it was developed hand in hand. OPM makes two essential additions to CC: It adds
higher-order procedures and thus enables functional programming as known for ex-
ample from Scheme [48]. Second, it adds a cell primitive as a primitive fopoem
tation with state. In combination with higher-order procedures, cells etii@sible
object-oriented programming in a concurrent setting [91, 194].

By extension of OPM, Oz also supports features for problem solving with constraint
so that it subsumes the expressiveness of modern CLP languages like cc(FD) [207].
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cons 2

wine cons 1}/ \2*
colouy \yAear y \2 1 | Sos

red 1998 fst snd ) /

Figure 1.1.: Examples of Feature Trees

These features include primitives for the generation of choice points and for the en-
capsulation of complete computation states as building blocks for constraimt-base
inference engines [182-184], and constraint systems over feature trees, finii@ doma
constraints and finite sets of integers [146, 197, 210, 219]. In combination with higher-
order procedures and cells, this makes Oz a truly multi-paradigm languageawith
plications ranging from natural language processing, music composition, time tabling,
and the development of graphical user interfaces, to multi-agent systems and dis
tributed programming [93, 95,174, 209]). In this thesis we focus on OPM without
the constraint extensions, and we shall not discuss any distribution issues.

Oz is a dynamically typed language. This is partially due to its heritage fronuconc
rent constraint programming which is based on a traditionally untyped computation
model, and also to the initial focus of its developers on the expressivenesdwbf OP
and its new combination of computational primitives. The research presenteis i
thesis is motivated by the desire to provide some compile-time type checkigfor

or, more generally, for concurrent constraint programming.

1.2.2. Records and Feature Trees

Recordsare compound data structures whose components can be accessed by name.
This flexibility makes records an important data structure that is supportetiity
modern programming languages. Record-like structures also have a long tradition
computational linguistics [179, 190] for the analysis of the structure in natural lan-
guage.Feature treeg16, 20, 21, 197] model records: see Figure 1.1 for some typical
feature trees. Constraints over feature trees are predicate logiglésfor the descrip-

tion of record structures. This makes them suitable for the incorporationamti®mto
constraint-based languages [197], for example in Oz.

In Oz, constraints over feature trees play a central role, both for theiplesc of
records in everyday programming and for constraint programming. Therefore, we
take records seriously throughout this thesis. In Oz, records are supported through
the constraint system CFT of equality constraints over feature trees [197,PAé].
constraint language of CFT is defined as follows, where the synalasid f are drawn
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from sets ofabelsandfeaturesrespectively.

no= x=y | al | x{fi....fa} [ Xfly | niAn:
An equality constraink=y holds if x andy denote the same feature tree; a labelling
constrainta(x) holds if x denotes a feature tree that is labelled vétht its root; an
arity constraini{ f1,..., f,} holds if the denotation of has exactly the features €.,
fields) f1,. .., fn; and a selection constraixif |y states that the subtreexét featuref
isy. For example, the leftmost feature tree in Figure 1.1 is uniquely determindxtby t
following constraint (as the solution faj:

wine(x) A x[colourly A x[yearz Ax{wine colour} A
red(y) A 19982 A y{} AZ{}

1.3. Set-based Failure Diagnosis

1.3.1. Set-based Analysis

Set-based failure diagnosis is an instanceafstraint-basegrogram analysis. This
notion refers to a variety of techniques for static program analysis that redlee
reasoning about program properties to the solving of appropriate classes of predicate
logic formulas, callecconstraints Set-based analysis an instance of constraint-
based analysis that employs set constraints [i88], predicate logic formulas which

are interpreted over sets of trees. Set-based analysis serves eaiaggte run-time
properties of programs statically, for example type information: the set of value
program variable may adopt, or the set of values an expression may evaluate to.

Heintze coined the term “set-based analysis” in his PhD thesis [83]. Thanhist
set-based program analysis dates back to Reynolds in 1969, and Jones and Muchnik in
1979 [110, 176] who applied it to imperative languages, as well as to Mishra in 1984
who analysed logic programming languages [132,133]. Later, the application of set-
based analysis to logic programming was pursued by Heintze and Jaffar [82, 86, 87].
More recently, set-based analysis has been applied to functional languages §&, 38,
84,121,216, 218].

The typical setup of constraint-based program analysis consists of the follawpgy s
First, one defines a class of constraints that is appropriate for the given lan§eage.

ond, one defines a mapping from programs to constraints, for example by traversing the
abstract syntax tree of the program and associating constraints to evenmycbnigte
conjunction of these constraints is intended as an abstraction of the program poperti
under consideration. The correctness of this abstraction must be shown in agpird s
Finally, the constraint is solved in order to compute a compact representédtiba
analysis result. Solving a constraint usually means to chati&fiabilityor to compute

a distinguished solutionf the constraint. We apply set-based analysis to concurrent
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constraint programs [171]. The remainder of this section (Sections 1.3.2 through 1.3.4)
and a large part of this thesis (Chapters 2 through 5) is organised according tethe thr
steps mentioned above.

One well-known example for constraint-based program analysis is Wand'’s foromulat
of type inference for the simply typedcalculus [213]: It derives equality constraints
over finite constructor trees from a program, solves them by unification, angdtacce
a program if the accumulated constraints are all satisfiable: in this tbeeseonstraint
associated with a program describes its most general type. The correesdsstates
that execution of “well-typed programs does not go wrong” [123].

Constraint-based program analysis enjoys a great popularity [5, 88, 157]. Thisys partl
due to its general setup, in which the description of program properties in tegos-of
straints and the reasoning about them is nicely decoupled: soundness of the abstraction
and algorithmic properties of the constraint solving process can be explained and stud-
ied separately. More specifically, set constraints are expressiadasnalism, but

have a simple and intuitive semantics. In comparison with the generaaetistier-
pretation framework [53] set constraints are often more intuitive (dveagh abstract
interpretation is general enough to express certain set-based analyses [54])

Theoretical investigations of the various classes of constraints used impragialysis
usually focus on the satisfiability problem. More recently, alscettt@ilment problem

(logic implication) has received some attention [13, 65, 89, 140, 141, 143, 173]. Entail-
ment is interesting in program analysis because it provides explanation forainhstr
simplification: simplification means to replace a constraint by a smafierwhich is

either logically equivalent and retains all solutions, or which is entaifetiratains

the distinguished solution(s). Entailment has also been proposed as a mechanism to
explain subtyping opolymorphic constrained typg27, 121, 203]. This is relevant to

the type checking of module interfaces with polymorphic types.

1.3.2. Set Constraints over Feature Trees

Standard set constraint [85] are interpreted in the domain of sets of finiterwchost

trees (Herbrand). For the set-based analysis of constraint languages twey feses

(i. e, records) we define a new class of set constraints which are interpretesktyef
feature trees. This system is calledR&r,U) (read “FT-include”). Since Oz allows

for infinite (cyclic) records as in Figure 1.1, our constraint system admits ethw
contain infinite feature trees. A second important reason for infinite teetheifact

that concurrent programs may be designed for infinite execution and hence are not
expected to terminate. For example, the following program scans an infiretarst
which it expects to contain feature trees labelled withr b.? Infinite streams can be

1In most of the examples to come we use Prolog-style clausal syntagxamples that rely on
higher-order procedures, we switch to a different, roughly Schemenitaion.
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modelled by infinite feature trees.
scar(xs) < xgheadx A xgtail|xr then process$x), scar(xr)
process$x;) «+ a(x1) then §
proces$xz) < b(xp) then §

The syntax of set constraints over feature trees is defined as follows.

b= XCxU..Uxn | XfIX | ax) | x{f} | ¢1Ad2
This constraint language is defined like the language of CFT constraints, extended by
inclusion constraints of the formCx;U. . .Ux,. Equations<=y can, of course, still be
expressed bx C yAy C x. The semantics is appropriately lifted to the set domain:
a labelling constraina(x) holds if x denotes a set of feature trees all of which are
labelled witha at the root; an arity constrainx{ f1...., f,} holds if x denotes a set
of feature trees, all of which have exactly the featufgshrough f,, at their root; a
selection constrain{f |y states thax denotes a set of feature trees all of which have a
featuref at their root, and the set of all corresponding subtrees equals the denotation
of y.2 Inclusion constraintsCx;U. . .UX, are interpreted as usual.

The closest relative of this constraint system is the system of co-defihderssraints
of Charatonik and Podelski [44]. Another close relative of set constraints extmré
trees is the system ET(read “FT-sub”) of ordering constraints over feature trees [143].
For a detailed comparison with related constraint systems see Sectiona®I31B.2.

1.3.3. Solving Set Constraints

We investigate algorithms and complexity issues for various fragments of iocorse
straints over feature trees. We consider the emptiness problemyhether or not a
variable denotes the empty set in all solutions of a constdgiimt symbolsp = x=0.

We show that this problem is DEXPTIME-hard in general and polynomial when union
constraints are omitted. We also consider the entailment problems of the ferdy

and¢ = Ix¢’ for set constraints over feature trees without union constraints. We give
an incremental entailment test with polynomial complexity if only the congsaif |y,

a(x), andxCy are admitted, we show that entailment becomes coNP-hard when arity
constraintx{ f} are added, and that entailment becomes PSPACE-hard when existen-
tial quantification is added (even without arity constraints). The entatipeblem

for the full system remains open.

We also define the system of constraints over non-empty sets of featurehiaees t
obtained by excluding the empty set from the interpretation domain. We consider this
non-standard domain of non-empty sets of trees for two main reasons. On the one
hand, our application in program analysis suggests to treat the empty set &gah ill

2For discussion on the semantics of the selection constraint see Se@tib2 3.
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value (the “empty type”). On the other hand, excluding the empty set helps simplify
technical arguments: we construct our algorithms for the union-free fragments of set
constraints over feature trees by detour through the corresponding systems where the
empty set is excluded. We apply techniques that have been developed for systems of
tree constraints, in particular for ET[16, 141-143, 145, 197]. We also observe that

the first-order theories adquality constraint®ver feature trees and oveon-empty

setsof feature trees coincide.

1.3.4. Set-based Failure Diagnosis for Concurrent Constraint
Programming

We apply set constraints over feature trees to the analysis of constrainamogwer
feature trees. The objective of the analysis is to detect programming,enmrqatic-

ular such errors which inevitably lead to a run-time error. This choicey@tome

clear below. We consider three Oz-style languages of increasing complexisy; Fi

a language corresponding to constraint logic programming (CLP), then a concurrent
constraint (CC) programming language, and finally OPM. All three languages support
records through CFT constraints [197].

In the CC model as well as in OPM, an inconsistent constraint store is coedider
programming error. This is in contrast to traditional (constraint) logic programm
where failure is part of the backtracking mechanism. A CC program has cergainly
error if every fair execution leads to failure. Furthermore, our progrargmxperience

with Oz indicates that we should also consider a program erroneous that does not fail
only becaussome application blocks forever.

1.3.4.1. Constraint Logic Programming

The basic idea of our failure diagnosis is illustrated by the following CLP program

p(x)

a(x)
q(y) < b(y) (P1)
rz) < p(2). q(2)
Whenever the procedure (or predicaté$ called, execution will eventually fail since
no feature tree can be labelled with batlandb. In CLP terminology, the calt(z)

is finitely failed (Since we focus on concurrent programming without backtracking,
we favour the view that the procedureontains an inevitable failure.) We detect this

%
<_
%

b
p
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failure as follows. We derive from the program the set constraint
pPCx A a(x) A
qCy A bly) A
rcz A zCp A zCq
and observe that it entaifs=0. From this fact we deduce thafz) is finitely failed for
all zand reject the program. A similar but slightly more complex program is this one:
p(x) < X[f]x, ax)
a(y) <= yifly, b(y) (P2)
r(2) < p(2), a(2)
The set constraint associated with this program is the following one.
pCx A X[f]X A a(xX) A
qCy A YIElY A bly) A
rcz A zCp A zCq

Again, this analysis entails= 0. This crucially exploits the fact that the semantics of
o[f]o’ requires all trees i to have the featuré. If x[f]y had only projection seman-
tics, this analysis had a non-empty solutionfdsee Exampl®s4;3 on Page 94).

1.3.4.2. Concurrent Constraint Programming

The essential difference between CLP programs and CC programs is thattéhe lat
may have guarded clausp§x) < n then S. Roughly, such a clause tests whether the
constraint or its negation holds for the argumentf an applicatiorp(z). If n holds,
execution ofp(z) can commit to this clause and proceed v8thf —n holds, then this
clause becomes irrelevant for executiorp(f). Otherwise, the clause is said to block.

We define the analysis of CC programs through the analysis of an approximating CLP
program. This CLP program is obtained from the CC program by transforming condi-
tional guards into tell statements. For example, the CC prodpaelow is approxi-
mated by the program® above. Intuitively, this approximation ignores the synchroni-
sation behaviour of guards.

p(X) < X[f]x then a(x)
q(y) < ylf]y then b(y) (Ps)
r(2) « p(2). q(2)

The interpretation of the analysis result needs more care now due to the pgssibilit
that a guarded clause blocks. For instance(Zf is called on a free variablg then
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the clauses op and q both block forever: the constraint store will not accumulate
any information orz and hence will never entat{f|z or its negation. In general, we
cannot statically exclude this possibility, and hence we obtain a weakerctwss
result for CC or CLP: from the fact that the analysis enta#® we deduce that every
application ofr is finitely failed or blocks forever.

1.3.4.3. Oz: Higher-order Concurrent Constraint Programming

OPM extends CC to a higher-order programming language: procedures are first-class
data structures that can be passed as arguments to a procedure and returasdlas a r
For example, consider the following statemént:

(proc X (Y. 2) (proc z(u) utagly)) (Ps)

This program binds to a binary procedure with formal argumegtandz. Applica-

tion of this procedure returns a unary procedure in the second argument. This second
procedure asserts that its unique argumeista feature tree with featutag leading

to the first argumeny of the procedure. We analysé>, as follows?

dp, = XCproc(argry, argz:z) A zCproc(argy:u) A ultagly

An application of the procedureto two variabless andw, followed by an application
of w to x will lead to a failure due to the assertion that ffrecedure xhas afeature
tag:

Palx(vw) [w(x) — —  (procXx(y.2) ...) | XtagV| ...
We analyse this statement as follows.

dp, A proc(X) A Xargixy A x[argy)xe A vCxg A WCxa A
proc(w) A wlarg;|wy A XCwy

This constraint entails that= 0 (because there exists no feature tree that has exactly
the featuresrg; andarg, but at the same time the featussy). We conclude that the
statemenP;, | x(v,w) || w(x) will inevitably fail and reject it.

Our analysis is weak with respect to the analysis of higher-order procedurhe as t
following example illustrates. The procedure

(procx (v.2) (y 2)) (Ps)

3We discuss our analysis for CLP and CC based on a Prolog-style clansax f programs. For
OPM we switch to a Scheme-style syntax that is more convenient to deahighler-order program-
ming. Embedding CC programs into OPM is straightforward.

4The term notation is used for conciseness here, as an abbreviation for asteaiobover feature
trees. For examplesCproc(args:y, arg:z) abbreviates the constrairtC X' A proc(X') A X [arg1]y A
X' [arg2zA X {argl arg2} for a fresh variable'. For the formal definition of this notation see Chapter 2.
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that applies its first argumento its second argumeatis analysed by the constraint

xCproc(arg,’y, arg:z) Aylargsy' A proc(y) A y{arg;} A zCy

which reveals thay must be a unary procedure (expressed by the consyarg; }).
Now assuming a binary procedure on integers whose analysis is

dinc=  inc C proc(argy:int, arg,:int),
and consider the following statement:

Ps || (xincv) (Pe)

Our analysis of this program in conjunction wiph,c will not entail v C int, and so

not find out thay must be an integer: the relationship between the formal arguments
andz, and hence between the actual omesandy, is lost here. The reason is that
we only propagate informatioffom the formal argumentso the actual arguments

of procedures, and not vice versa. In principle, this order could be inverted for in-
put arguments. However, the modee(, input or output) of procedural arguments is
not syntactically apparerit constraint programs, much in contrast to functional lan-
guages: unification and constraint solving allow for data flow in both directions, and
all procedural arguments can, in principle, be input, output, or both. A staiale
analysis however, seems to requires a full-fledged control-flow analysis for Oz [191],
which is out of scope of this thesis.

On the other hand, the accuracy of the analysis can be easily improved by annotating
procedures with type information. Such annotations can be fit nicely in the constraint
framework, when modelled as prescriptive constraints that a program misfy sat

in addition to the constraints derived by descriptive means. For examplepihe ¢
straint¢i,c above can originate from the analysis of another statement as well as from
an explicit type annotation anc.

Our analysis for OPM is a reasonable extension of our analysis for CC. The cosectne
problem for this analysis, however, is harder than in the first-order case dbe to
lack of a denotational semantics for OPM. We leave the correctness problem open;
instead, we illustrate our method with examples and provide style conventidns tha
summarise the intuitions underlying it. The analysis for Oz has been implemanted i
an experimental prototype with an incomplete constraint solver. The feasitfithe
analysis in a development system remains to be explored.

1.4. Strong Static Typing for Oz

Complementary to set-based failure diagnosis, we investigate the pibgsitidlesign-
ing an OPM-style language that has a static type system similar to functamugidges
like ML or Haskell [130, 162].

10
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1.4.1. Static versus Dynamic Typing

A typeis a set of data objects with a common structure that allow the same set of
operations. Typical types are the set of all integers, and the set of all retatds t
have a field namedddress The attempt to apply an operation to a data structure

of inappropriate type (such as the attempt to multiply a record by 2 or to sakect t

field addressfrom the integer 42) is called fype error A programming language

is calledtype safef it is checked whether or not the primitive operations are applied

to arguments of proper types, and if their behaviour is well-defined even if the types
are not the expected ones: Thus type errors are detected at least at run-tamg. M
modern programming languages are type safe in this sense. In unsafe languages, such
as assembly languages or C [112], programs may behave randomly after a type error.

A programming language is commonly callgtéticallyor dynamically typediepend-

ing on whether (most of) theype checkings done at compile time or at run time.

A language is calledtrongly typedf all type checking is done at compile-time so
that the run-time system can safely ignore type3ypical examples for statically
typed and type safe languages are the functional languages SML and Haskell, the con-
current language Pict, the imperative language Modula-3, and the object-oriamted la
guage Java [35, 78, 130, 162, 169]. Amongst the dynamically typed languages there are
the logic programming language Prolog, the functional language Scheme, the object-
oriented language Smalltalk, and the concurrent languages Erlang and Oz [17,48, 77,
195, 200].

Strong typing is usually formalised in two steps. First, one determinesuthime
situations that one wants to excludetgse errors Second, one definestygpe system
consisting of a language tfpe expressiorend a set ofyping rules Type expressions
describe run-timénvariantsof a program such as “the identifiealways refers to an
integer”. At compile-time, every relevant program phrase (identifiersns, expres-
sions, statementsic) is assigned a type, either automatically or according to explicit
program annotations. &ype checketries to verify the corresponding invariants using
the typing rules, and a successful proof guarantees the impossibility of type errors.

A disadvantage of strong typing is the additional level of complexity that a type system
adds to a language. One source of complexity is simply the formal language of type
expressions which must be mastered by programmers to provide type declarations and
to understand error messages. Automated type inference as in SML [55, 12Ztablevi

this problem because it relieves the programmer from many type declaratidns. O
course, the programmer must still understand the type language.

To date, type systems for expressive object-oriented programming languagasgare f
complicated and require many type declarations (seg, [1] for recent references).
Another problem is the fact that it is impossible to define a type checker thahtdes

5Since all strongly typed languages in this sense are statically typed, any statically typed
languages are strongly typed, static and strong typing are often usedysyously.

11
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on all programs and accepts exactly those programs that will never exhibit arren-ti
type error (the absence of run-time type errors is an undecidable problem). As-a trade
off, a strong type system enforces a decidable discipline that must rejecttypay
correct programs and hence restricts the expressiveness of programming language.

The case is dual for dynamically typed languages. Their main strength is thégxeat

ibility with which they support the encoding of high-level programming abstractions,
based on only a small set of simple primitives. This makes dynamically tigred
guages ideal as platforms for rapid prototyping and teaching of programming concepts
(see, for instance, the text books based on Scheme [2, 68]). On the other hand, tracing
down a programming error can be a lengthy undertaking and can make the absence of
compile-time type checking painfully apparent.

1.4.2. Types for Oz

As a dynamically typed language, Oz freely supports features that would coraplicat
strong typing. We focus on the combination of features that sets Oz apart fromaits re
tives, namely logic variables introduced by explicit declaration, firmssprocedures,
constraints, and parallel composition. In contrast to constraint logic programmi
Oz has higher-order procedures and explicitly declared logic variables; inasbntr
to functional programming, Oz has logic variables and constraints; and in caiotrast
thetr-calculus [129], communication and synchronisation in Oz is through shared logic
variables instead of message exchange over channels (see also Section 5.4.1).

It is straightforward to devise for Ozrmonomorphidype system, which assigns ex-
actly one type to every identifier. It is also possible to adapt an ML-gtglgmorphic

type system [55, 123], which assigns type schemes to certain procedures. Thissequir
some more care but works if one follows Wright [217] for the interaction of polymor-
phism and logic variables (see Section 6.3.2). ML-polymorphism is too weak, how-
ever, to type check a number of programs that we found important in the programming
practice of Oz. For instance, polymorphic procedures (or objects with polymorphic
methods) cannot be placed in a cell, assigned to an object’s state vavrad®@at along

a channel. This considerably restricts the flexibility of object-oriented pnogriag

and the communication patterns in a concurrent or distributed language. Secondly,
ML-polymorphism cannot type check many convenient higher-order or object-oriented
programming abstractions (seeg, [101, 166])°

Therefore, we consider a type system with univehégher-order polymorphitypes
[76,177]. We also assumesalbtypingorder on types: type systems with subtyping
allow operations defined on a tyfieto be applied to all objects whose type refiffes

This is not to say that no object-oriented programming at all is passitih ML-polymorphism.
O’'Caml [175] is a language that supports object-oriented programmitigML-style polymorphic
types, but it requires all methods to have a monomorphic types. wdgice that Haskell's type
classes [80] can express some form of inheritance.

12
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(“subtypes” ofT). Subtyping isg. g, used to type check the assignment of an integer
value to a variable of type number (given that “integer” is a subtype of “number”). The
combination of higher-order polymorphic types with subtyping [32, 36] is especially
convenient in object-oriented programming. For instance, a procedure thaeieaniv
object and sends it the messageshould have a type that admits as argunerry
object implementing the methad Subtyping is a flexible way to achieve this.

As these examples indicate, one must statically know the data flow to makef use
polymorphism and subtypingd$signsubtypes to supertypesu$efunctions at sub-
type”, “specialisenputarguments before application”). In (pure) functional languages
the data flow is given by the syntactic structure of the program. In constraint)logi
programming and in Oz this is not the case. Unification and constraint solving have
a bidirectional nature, and procedural arguments can be input, output, or both. The
need to statically know the data flow in programs lead us to the definition of, Rla
language with higher-order procedures, cells, records, and pattern matclei@hége

ter 6). The key change in which Plain differs from Oz is that the equality cansbn
variables is replaced by(aingle) assignmerstatement

X:=Y.

Execution ofx:=y does notunify the current bindings ak andy but blocks untily

is bound to some data structure and thards xto the same data structure, too. This
is a considerable restriction of Oz as a constraint programming language iculaart
with respect to feature tree constraints. But Plain still admits coatioutwith partial
information; for example, through records with embedded logic variables.

(local (y, z) x:={hay, tl:z} | ...)

Like in Oz, Plain’s procedures do not statically distinguish between input amaibut
arguments. So the type system must enforce a strict statite disciplinen presence

of higher-order polymorphism and subtyping. To this end, we adapt Pierce and San-
giorgi’s mode system for channels [165] to a language with logic variables. We do
not consider the type inference problem for Plain, which is very likely to be undecid-
able [214].

1.4.3. Failure Diagnosis versus Strong Typing

The two methods for program analysis, strong typing and set-based failure diagnosis,
are roughly dual to each othe&trong typingaims at proving that all operations in a
program are always type correct, and it accepts only programs for which this proof
succeeds. It is desirable to accept as many type correct programs as pdsgikile

is absolutely necessary to not accept a single type incorrect program. Daglise
diagnosisaims at proving that some operation in a program is not type correct, and
it rejects such programs as erroneous. It is desirable to detect as margyriyyzeas

13
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Figure 1.2.: Failure Diagnosis versus Strong Typing

possible, but ideally no type correct program is rejected. The extreme casgigen
by a strong type system that accepts no program at all, and a failure diagnosis syste
that accepts all programs.

Figure 1.2 illustrates this point of view, and it also gives a pictorial sumroétize
material presented in this thesis. The complete oval represents alapregn a given
programming language. Assuming a fixed notion of type errors, the fat line separates
the sets of programs that have a type error from those that do not. As mentioned
above, the set of type correct programs is undecidable so that some approximation is
fundamentally needed: strong typing approximates the set of type correct programs,
while failure diagnosis approximates the set of type incorrect progfams.

A strong type system accepts the more type correct programs the more expressive it
is: this dimension is indicated by the arrow superscripted “Various Type 1@gste
Higher expressiveness usually comes with more complicated type expressions and
typing rules and with more expensive type checking probldvionomorphictype
systems (as knowre. g, from Pascal) are fairly inexpressive and often not satisfac-
tory in practice. More expressive type systems are obtained by adding diffenerst

of polymorphismfor instanceparametric polymorphismas in ML [55, 123],subtype
polymorphismas studied in object-oriented programming languages [31], or mixed

"This duality does not, in general, withstand formal scrutiny. Thisi@nly due to the fact that
strong typing and failure diagnosis do not talk about the same claggeérrors. First, the precise dual
of being provably free of type errors pssiblycontaining an error, whereas our failure diagnosis for
CC checks whether a progranevitablycontains an error.

14
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forms [32, 36]. A major goal of research in this area is to find expressive typensys
with a decidable, hopefully efficiently decidable, type checking problem whose type
expressions remain intelligible to programmers.

Analogously, failure diagnosis detects the more type errors the more accutasely i
can describe the run time behaviour of programs. In set-based program analysis this
is the case the finer-grained and the more expressive the set description laisguage
chosen. The expressiveness of such a language depends on the choice of set opera-
tors provided €. g, union, intersection, projection, complementation). Again, highly
expressive set description languages can become very complex and expensale to de
with. For example, the satisfiability problem for standard set constrairitgiing all
mentioned set operators is NEXPTIME-complete [10, 19, 40]. One major goal of re-
search in set-based analysis is to find constraint systems which aresxereut can

be efficiently solved. Preferably, some application-relevant probleraslitailment
should be efficiently decidable, too.
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1.5. Contributions

1.5.1. Summary

The underlying motivation of the research reported in this thesis is the question:

How can we provide some static type checking for the dynamically typed
language Oz or, more generally, for a concurrent constraint language with
higher-order procedures?

We tackle this question from the complementary points of view given by strong typing
and failure diagnosis. Our contributions to these two areas correspond roughly to the
two programming paradigms that are most closely related to Oz, namelyrdoigras

of functional and logic programming. Notice that Oz actually subsumes both of them.

Strong typing for languages with higher-order procedures has been studied extensively
in the context of functional programming languages and is applied very successfully
there. So a natural rephrasing of the search for a strong type system for Oz is:

How can we adapt strong type systems developed for functional language
to a language based on logic variables?

The language Plain that we design in Chapter 6 answers this question for an eepress
type system with higher-order polymorphism and subtyping.

A main focus of the research in set-based analysis was on logic programming la
guages. Since the logic programming tradition has had a major impact on the develop-
ment of Oz and since (constraint) logic programming is an important sublanguage of
Oz, itis reasonable to ask:

How can we adapt set-based analysis techniques from logic programming
languages for a failure diagnosis of Oz?

There are several aspects to this questi@nWhich constraint system is appropriate
for an analysis of Oz?ii) How does a (set-based) failure diagnosis look for first-order
fragments of Oz, and how can one generalise the diagnosis to a language with higher-
order procedures®iii) What kind of correctness result is obtained and how can one
prove it?

As an answer tdi), we propose a new constraint system over sets of possibly infinite
feature trees and analyse it in detail. This investigation constitutesya part of

this thesis. Answeringii), we define an analysis for first-order concurrent constraint
programming, and we extend it to OPMii ) As a correctness result, we show that the
analysis for CLP detects finite failure, and that the analysis for CC ddteit¢sfailure
unless an application blocks forever.
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1.5.2. Technical Summary

In this section we summarise the technical contributions of the thesis.

1.5.2.1. Set Constraints over Feature Trees

We introduce a set constraint systemdfar,U) (read “FT-include”) with three dis-
tinguishing properties that distinguishes it from the set constraints that ardyusual
considered in the literature.

e Constraints are interpreted over sets of feature trees, instead ofuzostrees
as usual. This makes our constraint system suitable for the analysis of records
in programming languages, and for the analysis of feature tree constraints in
constraint programming. The analysis of tuples as a special case of records
remains possible.

e Constraints are interpreted over sets of infinite trees, instead of ings as
usual. This is necessary for the analysis of infinite data structures as they ar
common in constraint logic programming. It is also needed to establish a rela-
tion between the denotational and the operational semantics of constraint logic
programs with possibly non-terminating computations.

e Every constraint is satisfiable and has a greatest solution: This makesrthe ¢
straint system appropriate for the analysis of concurrent programs that specify
infinite computations. Our constraint system shares this property with the co-
definite set constraints [44], which can be embedded into set constraints over
feature trees such that emptiness in the greatest solution is preserved.

We also consider a non-standard system, callegf(@r,u) and read “FT-include-
nonempty”, of constraints ovaron-empty sets of feature tree©ur motivation is
threefold:

e The investigation of constraints over non-empty sets is a conceptual contribu-
tion which credits the central role that emptiness plays in the solving of set con-
straints and in set-based program analysis.

¢ Constraints over non-empty sets can help to simplify technical argumemts. W
consider both constraint solving and entailment first for fragments $f(Bfl; U)
and derive the related results for Far, U) from them. Charatonik and Podelski
have proven decidability for set constraints with intersection by detour through
set constraints over non-empty sets [42].

e By the exclusion of the empty set, we establish a close relationship between
constraints over trees and constraints over non-empty sets of treestid¢alpar
the first-order theories of equality constraints over both domains coincide.
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1.5.2.2. Solving Set Constraints

We consider fragments of the systemdtar, U) with restricted constraint languages,
denoted by F¥(ar), FTc(U), and FT-, and we provide algorithms and complexity
results for these as well as for the corresponding fragments Bt &TuU).

e We investigate incremental constraint solving which is important for modular
program analysis.

¢ We show that the satisfiability problem for ¥Tar) (no union constraints) can
be solved in incremental cubic time and provide an appropriate algorithm. By
extension of the satisfiability test for ETwe obtain an incremental algorithm
to compute the greatest solution of andf@r) constraint and to decide empti-
ness. The algorithm is shown to have polynomial complexity of degree 4. We
observe that the satisfiability problem for Ffar,U) and the emptiness prob-
lem for FTc (ar,U) are DEXPTIME-hard, and we conjecture that a DEXPTIME
algorithm can be derived from the literature.

e We give an incremental algorithm that solves the satisfiability problem for pos
itive and negative F* constraints (neither union nor arity constraints) in cubic
time; this implies that also the entailment problem is solvable in cubie.tifhe
proof relies on the independence property of this constraint system which we
show. We apply the result for ETto prove that the entailment problem for £T
can be solved by an incremental algorithm in ti®@?).

e We show that the entailment problem of set constraints over feature trees be-
comes coNP-hard when arity constraints are added, and that it becomes even
PSPACE-hard when existential quantifiers are added. Both hardness results
carry over to FE(ar): the entailment problem for FT(ar) is coNP-hard, and
the entailment problem for FTwith existential quantifiers is PSPACE-hard.

All results hold independent of whether the constraints are interpreted overdmit
infinite trees.

1.5.2.3. Set-based Failure Diagnosis for Oz

We present a method for automated set-based failure diagnosis for concurrent con-
straint programs over feature tree®(, records) in terms of set constraints over feature
trees.

e To date, set-based analysis for constraint (logic) programs has focussed on the

least-model semantics of terminating programs. Since we are intermegies-
sibly non-terminating computations, we consider the greatest model semantics.
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1.5. Contributions

We show that our analysis safely approximates the greatest model of constraint
logic and concurrent constraint programs.

e We relate the greatest model semantics of constraint logic programs oveeinfini
trees to finite failure. We conclude that our analysis safely approximates the
inevitability of failure for constraint logic programs, and that it approximédtes t
inevitability of failure for concurrent constraint programs unless an application
blocks forever.

e We also discuss generalisation of our correctness result to larger fragyofent
Oz. For a large part of Oz we present a set-based analysis in terms of set con-
straints over feature trees and we give examples to illustrate itspipgieness.

1.5.2.4. Strong Typing for Logic Variables

We define a sublanguage of Oz called Plain to which standard strong type systems
known from functional programming can be applied.

e We give a strong type system with record subtyping, universal higher-order poly-
morphism, and mode polymorphism, and we prove a type preservation and a
type safety result.

¢ Plain pinpoints some aspects in the definition of OPM which complicate strong
typing, and it marks a starting point from which strongly typed OPM-style lan-
guages can be developed.

e Plain’s expressiveness is comparable to that of Pict, a recent concungmatse
based on thercalculus. Thereby, Plain contributes to relating two prominent
concurrent programming models: concurrent constraints and process calculi.
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1. Introduction

1.6. Publication Remarks

Several of the results presented in this thesis have been obtained in catilator
with my colleagues Joachim Niehren, Witold Charatonik, Andreas Podelski, amnd Ge
Smolka, or are influenced by this collaboration. Some of them have partly been pub-
lished before. This section lists the relevant papers and reports. | wkaltblthank

my co-authors for the permission to use part of the material therein.

Some of our results for set constraints over feature trees have been devieloped
dering constraints over feature trees. We adapt them to a set constraam sigat is
more flexibly applied to program analysis.

1. MULLER, MARTIN, JOACHIM NIEHREN, & ANDREAS PODELSKI (1997). Or-
dering constraints over feature trees. HAroceedings of the8 International
Conference on Principles and Practice of Constraint Programn{i@g’97),
edited by G. Smolka, vol. 1330 akcture Notes in Computer Scienpg. 297—
311, Schlol3 Hagenberg, Linz, Austria. Springer-Verlag, Berlin.

This paper defines and investigates the constraint system(feéad “FT-sub”) of or-
dering constraints over feature trees and presents algorithms for decitigfigsgity
and entailment in cubic time. The corresponding results féfF) and FT® (Theo-
rems 3 and 12 on Pages 34 and 54) have been adapted from this paper.

2. MULLER, MARTIN, JOACHIM NIEHREN, & ANDREAS PODELSKI (1997). In-
clusion constraints over non-empty sets of trees. Theory and Practice of
Software Developmer{TAPSOFT'97), edited by M. Bidoit & M. Dauchet,
vol. 1214 ofLecture Notes in Computer Sciengg. 345-356, Lille, France.
Springer-Verlag, Berlin.

This paper defines and investigates the constraint system Ines of inclusioranusstr
over non-empty sets of constructor trees. It was the first to investigatoastraints

over non-empty sets. It also contains the observation that the first-ordeiethebr
equality constraints over infinite constructor trees and over non-empty sefndge
constructor trees coincide (corresponding to Theorem 23 on Page 87). The satisfiabil-
ity test for FT< was inspired by the one for Ines. In particular, the detailed complexity
analysis of the satisfiability test for Bar) is adapted from there (see Section 2.2.3

on Page 39). -

3. MULLER, MARTIN & JOACHIM NIEHREN (1997). Entailment for set con-
straints is not feasible. Tech. rep., Programming Systems Lab, Unateis™
Saarlandes.
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1.6. Publication Remarks

This report proves that entailment for Ines constraints (as well as for asehcon-
straints [85]) is coNP-hard. The coNP-hardness result on entailment @(ﬁ)’
(Theorem 16 on Page 62) has its origins here.

4. MULLER, MARTIN & JOACHIM NIEHREN (1998). Ordering constraints over
feature trees expressed in second-order monadic logimtémational Confer-
ence on Rewriting Techniques and ApplicatiR$A98), edited by T. Nipkow,
vol. 1379 ofLecture Notes in Computer Scienpp. 196-210, Tsukuba, Japan.
Springer-Verlag, Berlin.

5. MULLER, MARTIN, JOACHIM NIEHREN, & RALF TREINEN (1998). The first-
order theory of ordering constraints over feature trees.Prbteedings of the
13" |[EEE Symposium on Logic in Computer Scie(ld€S'98) . IEEE Com-
puter Society Press. To appear.

Both papers investigate, amongst other issues, the entailment problem stéméxai
quantifiers for the constraint system £TPaper (5) show this problem to be coNP-
hard in the case of finite trees and PSPACE-hard in case of infinite Treegaper (4)
shows that the hardness proof of paper (5) can be transformed such that it applies to
both the case of finite and infinite trees. The PSPACE-hardness resultsfoakd

FTc with existential quantifiers (Theorem 20 on Page 74) have been adapted from
there.

6. PODELSKI, ANDREAS, WITOLD CHARATONIK, & MARTIN MULLER (1998).
Set-based error diagnosis of concurrent constraint programs. Tech. rep., Pro-
gramming Systems Lab, Universitat des Saarlandes.

This paper gives an analysis for concurrent constraint programs over infinitelesnstr
tor trees and shows that the analysis safely approximates the greatest mduel of
program. It observes that finite failure can be characterised by the dreatesl
semantics and so proves that the analysis correctly approximates a ruertoné
concurrent constraint programs. To a large extent, Chapter 4 is based on this paper.

7. MULLER, MARTIN (1996). Polymorphic types for concurrent constraints.
Tech. rep., Programming Systems Lab, Universitat des Saarlandes.

8. MULLER, MARTIN, JOACHIM NIEHREN, & GERT SMOLKA (1998). Typed
concurrent programming with logic variables. Tech. rep., Programming Sys-
tems Lab, Universitat des Saarlandes.

The second report defines the language Plain along with a type system with higher-
order polymorphic types, modes and subtypes, and is the basis for Chapter 6. A main
insight underlying Plain is the fact that a type system with higher-order polymorphism
and subtyping only works in presence of static data flow information; this insight was
formulated earlier in the first report.
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1. Introduction

1.7. Overview

In Chapter 2 we introduce feature tree constraints to model records in cahpn@i
gramming, and we define set constraints over feature trees. We alstgateshe
satisfiability and the emptiness problem for fragments of this system. In &hapt

we consider the entailment problem in addition. Chapter 4 defines a set-basesl fall
diagnosis for constraint logic programming and concurrent constraint programming
in terms of set constraints over feature trees. Chapter 5 generdisdailure di-
agnosis to higher-order procedures, and hence to OPM. Chapter 6 complements the
work on set-based failure diagnosis by designing an Oz-style language with higher-
order procedures and logic variables with a static type system. Chapterséesse
the achievements of this thesis and outlines some directions of future reségrch.
pendix A introduces some basic mathematical concept and notation.

We imagine three paths through this thesis. The reader interested in searuiastind

their formal properties should read Chapters 2 and 3. The reader interesétdased
program analysis should read the definitional parts of Chapter 2, and then proceed to
Chapters 4 and 5. The reader interested in typed concurrency with logic earcs

read Chapter 6 independently. To understand the comparison of Plain with OPM, the
reader may want to read the introduction to OPM in Chapter 5. All paths maynend i
Chapter 7 on future work.
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2. Set Constraints over Feature Trees

2.1. Constraint Systems over Feature Trees . . . . ... .. .. 25
2.2. Solving Constraints over Non-empty Sets of Feature Tes 30
2.3. Dropping the Non-emptiness Restriction . . . . ... ... 43

Feature treeg16, 20, 21,197] are a kind of trees which is appropropriate for the de-
scription of record-like structures. The picture below shows two typicdufe trees.

cons

colour yine year 2
N /N

red 1998 fst

A feature tree is a possibly infinite tree with unordered marked edges amdnaiked
nodes. Edge labels (calléglature$ are functional in that the edges departing from the
same node must be pairwise distinct. The node marks are ¢ablets The feature

trees above mention the featuredour, year, 1, and2, and the labelgvine red, 1998

cons fst, andsnd Feature trees are more general than constructor trees: by using as
features consecutive positive natural numbers starting frazonstructor trees can be
modelled as feature trees (see the second tree above). Featuredgebsinfinite.

Some of them, theational feature treesan be represented by finite cyclic directed
graphs The graph on the left hand side below describes a feature tree that models the
infinite list [1,2,1,2,...], while the graph on the right hand side represents the type of
integer lists/ist(int) = nil + congint, list(int)):

1‘/con*\ /+ ‘\2

N N

cons nil cons
2 int

In the concurrent constraint language Oz, records are modelled as featuranidees
incorporated through the system CFTfe&ture constraint§197,210]. Feature con-
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2. Set Constraints over Feature Trees

straints are a predicate logic formalism for the description of objects byalles of

their attributes. Feature description languages and feature logics of vkinoigshave

a long tradition in natural language processing [109, 179, 190, 193]. Their use for the
integration of records in constraint languages is more recent [14, 15, 197].

In this chapter we present a new set constraint system that is appropriate éoathe
lysis of records and, more specifically, for the analysis of constraint prograers ov
feature trees; hencet constraints over feature treeShe constraint system consists
of labelling, selection, arity, union, and inclusion constraints.

Traditionally, set constraints have been considered over the domain of bnisérac-
tor trees.

Our main motivation to considéeature treess the analysis of feature tree constraints
in Oz. In CFT, the selection constrairjf |y plays a central role. It asserts that
denotes some feature tree with a featfireeading to the denotation of, without
mentioning the label at the root af to assert the label at the root wf there is a
labelling constraina(x). Our system of set constraints over feature trees has a similar
selection constraindf |y stating thai denotes a set of feature trees with featfignd
thaty denotes the projection afat f. In standard set constraint [85], the most closely
related projection constraimtC a(*fl)(y) denotes projection both at the featurend

the tree constructaa. Therefore, the projection constraint is not appropriate for the
analysis of feature selection constraints.

Our interest ininfinite treesis also motivated by the program analysis for Oz: since
Oz provides for infinite data structures, we must be able to handle sets of infinite
feature trees. Secondly, infinite trees are needed to give meaning to nongkeng
computations.

Finally, the separation of constraints on labels and features adds flexibsigt-based
analysis. For instance, one can integrate analyses along different dimensioas-by pl
ing different bits of information under different associated features. Thébiliey

of selection constraints was also found convenient by Flanagan and Fefi@isan
analysis of Scheme [64, 65].

Every set constraint over feature trees is satisfiable and has agjreaiigion. The

latter property is crucial for the analysis of non-terminating programs as Wesslea

in Chapter 4. Our system shares this property with its closest relatisagshthe set
constraint systems, the system of co-definite set constraints [44]. Set auiSSbkeer
feature trees can be viewed as a refinement of co-definite set constraiatslogy

to the fact that CFT refines the constraint system RT [50] of equations ovenahti
constructor trees [197]. We show that co-definite set constraints can be embedded
into set constraints over feature trees such that the greatest solupi@sesved, and

we conjecture that the embedding actually preserves validity for arbiiratyorder
formulas.

This and the following chapter investigate in detail the system of set comistrover
feature trees. We also consider a system of set constraints over the dufnmain-
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2.1. Constraint Systems over Feature Trees

empty sets of feature treashich has the same constraint language but comes with the
global restriction that every variable denotes a non-empty set. The tecimatiation

for this is that it is sometimes simpler to solve constraints in two stepere the

first step considers non-empty sets only and the second step adds the reasoning about
emptiness. We obtain some of our results for constraints over non-empty settioéfe

trees first, and then derive the corresponding result for the set constragrmsykich

admits the empty set. Also Charatonik and Podelski [42] have proven decigédnilit

set constraints with intersection by detour through set constraints over nog-ssigpt

of trees.

We give anO(n®) algorithm to decide satisfiability for union-free constraints over
non-empty sets of feature trees. For the corresponding system which admitspttye em
set, we derive a®@(n*) algorithm to compute the greatest solution and to decide the
emptiness problem, (that is, whether or not a variable denotes the empty set in the
greatest solution of a constraint). We consider union constraints only briefly and sho
that the emptiness problem for the complete system of set constraints ouee feaés

is DEXPTIME-hard.

Additional motivation to pay special attention to the empty set includes thaafol

ing. First, our application in program analysis suggests to treat the empty set a
an undesirable value: a variable that cannot adopt any value at run-time has the
“empty type” and is bogus. Second, the empty set can be the reason for efficiency
problems and the motivation for ad-hoc optimisations. For example, the implication
a(x,y)Ca(X,y) = xC X Ay Cy vxC0v yCo0 that is valid over sets of constructor
trees is sometimes replaced aik.y)Ca(xX,y') — xCX AyCy for efficiency reasons

(e.g, in [12], an analogous optimisation is used in a solver for a kind of set con-
straints). This simplification is unsound because it does not preserve bdiigfitt is

sound, however, when variables are interpreted over non-empty sets.

Finally, the domain of non-empty sets is related to the domain of trees. Weitetkjd
by adapting several techniques directly from the constraint systemadfbrdering
constraints over feature trees [141, 143, 145]. We also show that the firstioedees
of equality constraints is the same when interpreted over trees or non-eetptyfs
trees.

The discussion of related work is postponed to Section 3.3 in the following chapter

2.1. Constraint Systems over Feature Trees

2.1.1. Feature Trees

We assume a s’ of variablesranged over by, y,z and a signature that defines a
set L of labelsranged over by, b,c, and an infinite seff of features ranged over
by f,g,h. We base our definition of feature trees on the notion of pathgatA pis
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2. Set Constraints over Feature Trees

a finite sequence of labels. Tleenpty paths denoted by and the concatenation of
pathsp andp’ aspp’; we haveep = pe = p. Given pathg andq, p’ is called aprefix

of pif p= p'p” for some pathp”. Note that every non-empty tree domain contains
the empty patle. A setP of paths isprefix-closedf, for all pathsp andp/, pp € P
impliesp € P. A tree domairis a non-empty and prefix-closed set of paths.

A feature treex is a pair(D, S) consisting of a tree domaid and functionS: D — L
from D into the labelsZ, called aabelling. Given a feature treg, we writeD; for its
domain andS; for its labelling; hencea = (Dy,S;). We identify the functiors; with
the set of pairgp,a) such thatS;(p) = a. The set of features defined at the root of
a feature tree is called thearity of T: ar(1) = Dy N F. For every feature treewith

p € D we denote witht. p thesubtree oft at path p Formally:

T.p =def ({P' | PP €D}.{(P.a) | (pP.a) €S}) if pe D (2.1)

We call a feature tree finite if Dy is finite, andinfinite otherwise. A feature treeis
calledrationalif it has only finitely many subtrees and is finitely branchineg,, if the
set{f | existsf : pf € D¢} is finite for all p. The set of all feature trees is denoted
by 7 where# and L remain implicit.

The setI of constructor treesan be defined along the same lines. We do not elaborate
on this definition but only remark that constructor trees are isomorphic to éstabaas
whose features are the natural numi@rand which conform to an arity function:

L — N; afeature tree is said toconformtoa: L — N if {n | pne D;} ={1,....n}

whenevel(p,a) € S; anda(a) = n. The corresponding embedding of constructor trees
into feature trees is denoted .

2.1.2. Equality Constraints over Feature Trees (CFT)

We recall the definition of the feature constraint system CFT [197]. The abstrac
syntax of CFT constraints is defined as follows:

ni= x=y | ax | x{f} | Xfly | niAnz

CFT constraints) are conjunctions of so-callggrimitive constraints. We calkk=y
an equality, a(x) a labelling, X[f]y a selection andx{f} anarity constraint The
constraint system CFT is defined by the constraints above and their intdmpratdahe
following structure. Its domain i 7, the equality symbok is interpreted as equality
on FT, every labela [resp, every arity{f}] is interpreted as a unary predicate
[resp, {f}], and every feature is interpreted as a binary prediffdtsuch that the
following holds.

T[f |7 iff .f=1
a(T) iff (e,a) €S
T{f} iff ar(1) = {f}
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2.1. Constraint Systems over Feature Trees

We identify this structure with its domain and wri#e7 for both. The constraint sys-
tem FT is the subsystem of CFT that one obtains by dropping the arity constraint [16,
21]. The concept of aff T -valuation satisfying a constraint(or, equivalently, being

a solution ofn)), writtena =+ 1, is defined as usual. For instance, every solution of
the constraint below mapsto the feature tree on the right hand side.

wine(x) A x[colourly A X[yearz A wine
dydz| x{wine colour} A colou/ \:ear
red(y) A 19982 A y{} AZ{} red 1998

We also usdeature terms &is a generalisation of first-order terms [197]. Their syntax
is defined as follows, where we always assume that the features in a seduarmce
pairwise distinct.

t:= x | a(fi)
Occasionally, we writ@ as an abbreviation ofCx for an arbitrary variable. We also

use equational constraints of the foxsat whose meaning is defined by an existential
formula[[x=t] as follows.

x=a(fyty,.... fatn)] = aAx{fr,....fa} A AJixfily  (2.2)
i=1

n
[x=a(frty,.... futa...)] = alx)A A vixffily (2.3)
i=1
For a typical example consider
[x=cong1ly,2mnil)]]= 3y (congx) Ax{1,2} AX[1]yAX[2)Y Anil(y) AY{})
This constraint determines separately the labed x, the arity{1, 2}, and the associ-
ated subtreeg andz. This separation of labelling, selection, and arity constraints in
CFT enable a more fine-grained description of trees than that possible withoealiat

constraints over infinite constructor trees [50]. When wesa( f:f) in the sequel,
we mean the corresponding CFT formijle=a( f:f)] unless otherwise stated.

2.1.3. Set Constraints over Feature Trees (FI(ar,U))

We write P(FT) for the powerset of the domaifi 7 of feature trees. Elements of
P(FT) are denoted by. For every set of feature trees such thpte D; forallt € o
we defineo.p as theset of subtrees.p of treest in . Formally:

O.p =def {T.p| TE€OT} if Vieo:peD;. (2.4)
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2. Set Constraints over Feature Trees

The class otonstraints over sets of feature traeslefined by this abstract syntax.
b= xCxqU..Uxq | XX | ax | x{f} | o1Ad2

These constraints are defined like CFT constraints extended by inclusion cussifa

the formxCx;U. . .Uxa. (Equationsx=y can, of course, still be expressedy yAy C

x.)x As in CFT, we call the primitive constraint$f]|x, a(x), andx{f} selection

labelling, andarity constraints The primitive constrainkCxiU...UX, Iis called an

inclusion Given a constraind, we write 7(¢), £L($), and ¥ (¢) for the variables,

labels, and features occurringgn Thesizeof a constraint is defined as the number
of symbolsj. e, variables, labels, and features occurringin

The constraint system ETar,U) is defined by the constraint language above and
their interpretation in the first-order structure which lifts the intetggren of labels,
arities, and features fromf 7 to P(¥ 7). Its domain is?(¥7), the inclusion and
union symbolsC andu are interpreted by set inclusion and set union, every label
[every arity{ f}] is interpreted as a unary predicat@resp.{f}], and every feature is
interpreted as a binary predicafésuch that

o[f]o’ iff o.f defined and’ = {1’ | It € o : 7[f]T'}
a(o) iff Vieo:ar)
o{f} iff vieo:t{f}

Again, we identify the structure of FTar, U) with its domain®(F T).8

The name FE(ar,U) reflects the collection of set operators in addition to labelling
and selection constraints. By restricting the constraint language, we d&saiex-
pressive subsystems. For example-Far) is the restriction of FE (ar,U) that does
not contain union constraints, and £FTontains neither union nor arity constraints.
So F1c(ar) corresponds to CFT just as FTcorresponds to FT. The definition of a
P(F T)-valuationa being a solution ob, writtena =47 ¢, is the usual one.

We use theequality constraint xy as an abbreviation foxCy A yCx. Sometimes

we admit— as a primitive constraint for falsity, since we cannot express it (Proposi-
tion 2.1). We also use inclusion constraints et which mention a feature tertrand
whose meaning is defined by the following existential formulas over set coristra

[xca(f:H)] = x{f} A a /\Elyl A [yict]) (2.5)

[xca(f:f..)] = ) A /\Ey, (X[filyi A [yiCt]) (2.6)

8Most specific for our system is the interpretation of feature selectiquaiticular in contrast to the
standargrojectionconstraini C a&l(y) considered in the literature. For motivation and illustration of
the semantics af[f]o’ compare Proposition 2.5 below, and Section 3.3.1.2.
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2.1. Constraint Systems over Feature Trees

2.1.4. Constraints over Non-empty Sets of Feature Trees
(FT®(ar,u))

We call FT?®(ar, U) the constraint system that we obtain when we restrict the interpre-
tation domain of FF(ar,U) constraints taP* (7 7), the domain of non-empty sets

of feature trees. We read BEar,U) as “FT-include-nonempty”. Again we identify
the structure of FT%(ar, U) with the system Fi¥(ar, U) itself. In analogy to the nota-
tion used above we write ¥(ar) and FT® for the subsystems of E¥(ar, U) without

union constraints, and without union and arity constraints.

2.1.5. Basic Properties

We mention a number of basic properties of the constraint systemsaF.lJ) and
FT2(ar). Constraint solving will be considered in the following chapter.

Proposition 2.1 (Least Solution)

Every FT-(ar,U) constraint is satisfiable. The valuation which maps all variables to
the empty set is a solution of everyH&r,U) constraint.

Proof. A simple check of all primitive constraints. O

Notice that in contrast to Fd{ar, U) constraints a satisfiable Fqar) constraint need
not have deastsolution: all singleton sets are minimal but incomparable elements
with respect to set inclusion.

Proposition 2.2 (Solutions are Closed under Unions)

The set of solutions of any ETar,U) or FT¢%(ar, U) constraint is closed under point-
wise union (possibly infinite).

Proof. Given an FE (ar,u) or FT2%(ar,uU) constrainty and a se6 of solutions of,
one easily checks that the pointwise union of the elemen&sattisfies all primitive
constraints inp. O

In contrast, neither FI(ar,u) nor FT2%(ar,u) constraints are closed under inter-
section. For instance, the constramtC yU z has the solutionsx and a’ with
a(x) = a(y) = {a},a(z) = {b}, anda’(y) = {b},a’(x) = a’(z) = {a}, whose inter-
section is not a solution since it assigh® y andz but {a} to x.

The next property is crucial for our set-based analysis as described in Chhptets.

%In [142] we have anticipated the system™&nd suggested that it should be called I7e%(); we
do not follow this suggestion here, to point out the different aamst languages of FF and Ines, and
to stress the relationship to ETar,U). Notice, however, that we only consider the union-free fragments
of FT®(ar,U) in this thesis.
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2. Set Constraints over Feature Trees

Proposition 2.3 (Greatest Solution)
Every F1c (ar,U) or FT¢%(ar,U) constraint has a greatest solution.

Proof. Since, by Proposition 2.1, every FTar,U) or FTX¥(ar) constraint is sat-
isfiable, the set S¢b) of solutions ofd is non-empty. So the pointwise union of all
solutions in Sdld) is a well-defined set-valuation and, by Proposition 2.2, a solution
of ¢. O

There is a close relationship between emptiness in the greatest solutisatesfidbil-
ity over non-empty sets of feature trees. For anylenote withgsol¢) the greatest
solutionof ¢ over?(F 7).

Proposition 2.4 (Greatest Solution and Empty Sets)

For all FT¢ (ar,U) constraintsh: The greatest solution d@f maps some variable to the
empty setfx € ¥ : gsol$)(x) = 0) if and only ifp is non-satisfiable oveP™ (F 7).

Proof. If, for somex, gsol¢)(x) = 0, thenx denotes the empty set in al( F T )-
solutions ofd. Henced is non-satisfiable oveP™ (¢). Vice versaif gsol$)(x) # 0
for all x, thengsold)(x) # 0 is also aP™ (F 7T )-solution of¢. O

Another interesting relationship between CFT constraints ard§(&fl) constraints is
the following one. It states that, with respect to a collection of CFT caims, the
satisfiability of a sequence of equality constraints can be characteridbd bgtisfia-
bility of a sequence of inclusion constraints. (In this statement, we idesxdyy CFT
constraint with a set constraint over feature trees by replaciagwith x CyAy C X.)

Proposition 2.5

Letns,...,Nn be satisfiable and variable-disjoint CFT constraints not containing the
variable y. If the constrainf\[_;(ni Ay C X) is satisfiable overP™ (FT), then the
constraintAl’ ; ni A /\i”;llxi = X1 is satisfiable overF 7.

Proof. One uses the greatest solution of the set constyging(ni Ay C x;) (Defini-
tion 3 on Page 36) to construct a solution/dt ; ni A A1 % = Xi41. O

This proposition would not hold if the semanticsaif |6’ would not requires. f to be
defined. For a counterexample see the analysis of Exagigon Page 94.

2.2. Solving Constraints over Non-empty Sets of
Feature Trees

In this section, we devise an incremental algorithm to decide satisfjatilRT*(ar)
constraintsx C y, x[f]y, a(x), andx{f} in cubic time. In Section 2.3 we derive an
emptiness test for k{ar).
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Intuitively, a satisfiability test isncrementaif the input constraint can be input piece-
wise without changing the complexity measure [185]Let a satisfiability test with
complexity O(f(n)) be given, assume a sequence of constraipt$,. .., dx with
respective sizesy,....n,, and ask for everyn € {0,...,k} whether the conjunc-
tion A", ¢; is satisfiable. The naive solution to this problem is to run the satis-
fiability test on all these conjunctions. This approach has worst-case complexit
O(=K _of(ZMm)), or simplerO(k- f(n)) if n= =X ;nj is size of the complete con-
junction andk is the length of the sequence. In contrast, an incremental algorithm can
build upon its work to check of\" ; ¢; to decide/\i:mﬁlq)i more efficiently, such that

the total complexity of the problem does not exc€¥d (n)).

2.2.1. Satisfiability

The main algorithmic problem to be solved is to guarantee termination infuesé
infinite trees.

Example 1 (Termination Problem)
Pick two distinct labels # b and consider the constraint

XX Aa(X) Ay[fly Ab(y) AzCxAzCy (2.7)

This constraint is non-satisfiable over non-empty sets: the denotatibmast be a
subset of the denotations wfandy and hence of their intersection. Since no feature
tree can be labelled with bothandb, the denotations of andy must be disjoint and
hencez must denote the empty set. To detect the inconsistency in (2.7) we derive the
following constraints step by step:

Z[f1Z (from zCx andx[f|X whereZ fresh)

ZCX NZCY (from Z[f]Z, x[f]X andy[f]y andzCx andzCy)

a(Z) Ab(Z) (from ZCxX Aa(X) andZCy Ab(y'))

When we apply a similar argument to the constraint

YCXAX[f]x (2.8)

we run into a loop, as the reader can easily verify. The critical stepasfaning here
is the first one above which introduces the fresh variable

OIncremental algorithms are synonymously cakedling, in contrast tooff-line algorithms that re-
ceive their input at once.
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2. Set Constraints over Feature Trees

(Ref) XCX

(Trang XCYyAyCz — xCz

(Incl-Nondig xCy — X)y

(Symm-Nondi$ x|y — y[x

(Quasi-Trang XCYyAX |z — ylz

(Desc-Inc) X[FIX AXCyAY[flyY — XCY

(Desc-Nondi$ X[FIXAXNyAy[fly — X[y

(Clash-Sort axX) AX[ynblyy — - ifa#b
(Clash-Arity-) XfIX Axfyry{g} — - if f¢{g}
(Clash-Arity-I1) x{fAx)fyay{o} — - if {f}+#{g}

Figure 2.1.: Satisfiability of FT**(ar) Constraints

The reason for the inconsistency of (2.7) is the disjointness of two sets thatjaneck

to have a non-empty intersection. In order to reason about this phenomenon in a termi-
nating manner, we introduce an additional primithan-disjointnessconstrain J[ y.

We also consider as a primitive constraint in this section.

o= — | xjiy | x&x' | Afx | a) | x{f} | ¢1A¢2
The semantics of |{ y is defined as follows.

o =prqy Xy iff  a(x)na(y) #0

Notice that non-disjointness is not transitive. Bethand the non-disjointness con-
straintx [{ y are expressible in FF, since

— + I@x)Ab(x)) ifa#b
XJy <+ 3Fz(zCxAzCy)
are valid FT®-equivalences. In Fd(ar), neither of them holds; in particular, notice

that the formulalz(zCx A zCy) holds vacuously in FZ (ar) (pick the empty set as the
denotation of) while its left does not hold in general.

Figure 2.1 contains axiom schemes which define an infinite set of axioms. Every axiom
is either a primitive constraint, or the implication between a constraithisgprimitive
constraint of the fornxCy or x | y. These axioms describe the satisfiability problem
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

of FT”ge(ar). In a subsequent step we shall interpret these axioms as rewriting rules to
yield a satisfiability check of FF(ar) constraints.

Proposition 2.6 (Soundness)
The structureP* (FT) is a model of the axioms in Figure 2.1.

Proof. By a routine check. For illustration, we prove the statement for rule
(Quasi-Trans). The implications below follow wikt}{ y «» 3z(zCx A zCy) and transi-
tivity of set inclusion.

XCYAX )z < XCYyA3IV(VCXAVCZ) —  3V(VCYAVCZ) <  X)z

We consider the remaining axioms informally. Axioms (Refl) and (Trans) holasinc
set inclusionC is a partial order. Axiom (Incl-Nondis) states that inclusion implies
non-disjointness. This does not hold over the domain of arbitrary sets of featese tre
since the empty set is included in every set but also disjoint with ewry Non-
disjointness is symmetric (Symm-Nondis) since set intersection is cortiveutax-
ioms (Desc-Incl) and (Desc-Nondis) state that set projection at a é&eaigra homo-
morphism with respect to set inclusion and non-disjointness. The axiom (Clagh-Sor
states that labelling is a partial function. Axioms (Clash-Arity-1) anth&B-Arity-II)
state that two sets with incompatible arity restrictions must be disjoint O

Figure 2.1 induces a naive fixed point algorithm on sets of primitive constraints that
computes the closure of an input constraggnuinder the given axioms. (Here, we
identify a constraint with the set of its primitive constraints.) In orderthos fixed-

point to be finite we restrict applicability of the reflexivity axiom x to those variables
which actually occur in a given constraint; thus, no fresh variables aredinted.

Call this algorithmS. We call astepof this algorithm the addition of a new primitive
constraint to some given constraint according to one of the axioms. A constraint is
called S-closedif the algorithmS cannot proceed. The fixed-point of a constraint
under algorithn® is called itsS-closure If some axiom (A) does not apply to a set of
primitive constraints, it is calle@-closed or closed under (A)

For illustration on how the algorithm works we consider two examples.

Example 2 (Satisfiability Test)

Assumea # b. Reconsider the constrairff X A a(X') AY[f]y A b{y') A zZCx A zCy
(wherea # b) from above (2.7). From this constraint, algorittrderivesz |f x by
(Incl-Nondig), y [ x with (Quasi-Trang, and eventually- via (Clash-Sort. Now con-
sider another non-satisfiable constraint:

a(x) AX[FIXAZCXAZCY AY[F]Y A b(Y) (2.9)

In several steps as above, algorithmerives from (2.9) the non-disjointness constraint
X Jly. Then it derivex ||y via (Desc-Nondi$and— via (Clash-Sor}.
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Proposition 2.7 (Termination)

If ¢ is an FT%(ar) constraint of size n, then algorith§ terminates after at most
2-n?+ 1 steps.

Proof. If ¢ has sizen, then it contains at mostvariables. Since algorithi®does not
introduce fresh ones, it may add at matconstraints of each of the forms)/y or
xCy and possibly-. O

Proposition 2.8 (Completeness)

Every S-closed FPS(ar) constraint which does not contain is satisfiable over
PHFT). -

Proof. The proof is postponed to Section 2.2.2 beginning on Page 35. Its structure
is as follows. First, we define a syntactic notion of path consistency on costra
(Definition 2) and show that eveBtclosed constraint not containingis indeed path
consistent (Lemma 2.12). Second, we show that every path consistent constraint is
satisfiable (Lemma 2.11). O

Theorem 3 (Decidability and Complexity for Satisfiability of FT2%(ar))

The satisfiability problem of FXf(ar) constraints of size n is decidable and has incre-
mental time complexity @3) and space complexity (@?).

Proof. By Proposition 2.6¢ is equivalent to it$-closure. Hence is inconsistent if
theS-closure ofp contains—. Otherwisep is satisfiable by Proposition 2.8. Singe
terminates for all input constraints by Proposition &Z7s an effective decision pro-
cedure. The complexity statement is detailed in Section 2.2.3 beginning on Page 39.
There, we use a table of quadratic size to show that we can implement ¢gpry s

of algorithmS such that it takes tim®(n). This yields an overall time complexity

of O(n3). O

In the incremental case, this complexity statement relies on the assurtipdt appli-
cability of (Clash-Arity-Il) can be checked in linear time. This is tase under one of
the following conditions.(i) No arity constraint ever occur§ij) the size of the arity
constraints is bounded, @ii ) the arity constraints list the features according to a fixed
order. Under any of these preconditions, the equality test for two afifipand{g} in

the side condition of rule (Clash-Arity-11) can be checked in at most lineze ©(n).

If none of these assumptions hold, the equalityf 6f and{g} requires timen-logn
such that the time complexity of the satisfiability test rise®ta®- logn).

34



2.2. Solving Constraints over Non-empty Sets of Feature Trees

Finite Trees

The satisfiability test for F}®(ar) can be adapted to the case of finite trees by extend-
ing the algorithm with the following occurs check axiom scheme:

(Occurs XCXAALL6 CYiAYi[fiXit1) A1 CX —  — n>1

We can implement this occurs check such that we stay in incrementalQimg

and space®(n?). This can be done by means of reachability constraints of the form
Ty which state that there exists> 1, variablexy,...,X,;1 andys,...,Yn, and

featuresfy, ..., f, such that

XCXAALL (X% CYiAVi[fi]Xip1) AXnpr C Y

holds. There are at moSn?) such constraints; so Theorem 3 carries over to the finite
tree case.

2.2.2. Completeness of the Satisfiability Test

In this section we complete the proof of Proposition 2.8. It relies on two syntactic
properties of FT®(ar) constraints, called path reachability and path consistency that
we define first. For everg-closed constraing not containing— we then define a
mapping from variables into non-empty sets of feature trees (see Definitiand3)
show in Proposition 2.10 that this is the greatest solutiof. of

Throughout this section we use the notion “constraint” to mearf*f&F) constraint”.

Definition 1 (Path Reachability)

For all paths p and constraint$, we define a binary relati01$>p between variables,
where xj)»p y reads as “y is reachable from x over path pdit

xj)»sy if xCyed

xLey it Xflyeo
x2 if exists z such that¥, z and 2%

For all paths p and constraint$, we define a blnary relgtmfﬁ between variables
and labels a [finite sets of featuré$ }] where x«»p a[x~>p {f}] reads as "a[{f}]
can be reached from x over path pgri:

x&pa if x#gpyand ay) € ¢,

xj)»p {f} if x&py andy[f} € ¢
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2. Set Constraints over Feature Trees

Finally we derive, for all paths p, a unary relation&p which says that a variable “x
has path p inp™:

x&p if existsy such thatagp y

x&pf if existyg such that x?»p {g} and fe {g}

Example 4 (Path Reachability)
Let ¢ be the constraint
xCyAx{f,g,h} Aaly) AX[flunx]glzA Zf]xAb(z)
and observe that, among others, the following reachability relations hoid for

x&sy, x&gz, x&gfx, x&gfy,

X’&hv X’&gf{f-/g-/h}

xﬂle a, xj)»g b, X’j)/)gf a

In the proof of Lemmas 2.11 and 2.12 we make implicit use of the following simple
property of path reachability.

Fact 1 If x ’&fp y then there exists z such thafg(f ZA z&p y.

Definition 2 (Path Consistency)

We call a constraintp path consistenif the following two conditions hold for all
xy€ VYV, abe L,ge F and pe F*.

1. Ifx&p a, x|y ¢, and y&p b then a=b.
2. Ifxf&pf, X}ye€ ¢,and y&p {g}, then fe {g}.

Definition 3 (Greatest Solution)

Assume a path consistent constrapntlosed under (Refl) and (Incl-Nondis), and de-
fine for all xe ¥

DY =ger {p| X’&p} S =ger {(p.a) | X’&p a}
Furthermore, for all x define a set g$él)(x) of feature trees as follows:
1. DfcD, and $CL }

gsold)(X) =ger {T _ o
2. Vp:if x~>p{g} then ar(t.p)={0}
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Lemma 2.9 @sol¢) is well-defined)

If ¢ is a path consistent constraiptwhich is closed under (Refl) and (Incl-Nondis),
then forallxe ¥, pe ¥*,abe L, f € F andg € P(¥) it holds that

1. (p,a) € g and(p,b) € S imply a= b.

2. pfe D? and x&p {g} imply f € {g}.

Proof. Path reachability statements only hold for variables which actually oonaur
Hence, in both casesCx € ¢ andx |/ x € ¢ due to the asserted closure conditions
(Refl) and (Incl-Nondis). The claims now follow immediately from the deftmitof
path consistency. O

This lemma shows that, for ale 7/, §<’ is a partial labelling orDi’. Hence there

exists at least one feature tree extending it so gsal ¢)(x) is a non-empty set of
feature trees.

Proposition 2.10 (Greatest Solution)

The valuation gsa@b) is the greatest solution of evegyclosed FT€ constraint not
containing—. -

Proof. Follows from the combination of the Lemmas 2.11 and 2.12. O

Lemma 2.11 (Closedness and Path-Consistency Imply Satisfiability)

For every (Refl), (Trans), (Incl-Nondis), (Desc-Incl)-closed and path ctargison-
straint¢ not containing—, gsol ) is the greatest solution.

Proof. Let ¢ be (Refl), (Trans), (Incl-Nondis), (Desc-Incl)-closed and path congiste
By (Refl) and (Incl-Nondis)-closedness and path consistegsyl¢) is a variable
assignment into non-empty sets of feature trees, as Lemma 2.9 shows. Hyehaeri
gsold) satisfies all primitive constraints i Maximality is obvious.

CasexCyec ¢: Forally, if y&py’ thenxf&py by the definition of path reachability.
. b o
Thus,Dgsorg)(y) € Dgsole)(x)--+ Similarly, for alla [{g}], if y~pa [y~>p {3}]

thenx&p a [x&p {g}] by the definition of path reachability. Thusyseyg)(y) €
Lgsold)(x - IN combination, we obtain thasol¢)(x) € gsold)(y).

Casex[fly € ¢: We prove the following two equivalences for @llz, andb:

1. x&fpz iff y&pz

UFor sake of clarity, we drop some of the superscrigtadn the proof.
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2. Set Constraints over Feature Trees

2. x&fpa iff y&pa
P o
3. x~¢p{ag} iff y~p{g}

The first property implie®gso(¢)(y) ={p|fpe Dgsol9)(x) } and the second one
is equwalent td—gsol(q) {( ) | (f P, ) € I—gsol (x) }

1. If y«»p zthenx&fp zsincex[fly € ¢. Supposa&fp z. By definition of

path reachability there exigt andy’ such that

xLex. XY, and y&pz.
Reflexivity and transitivity, that is, (Refl)- and (Trans)-closedneds ahd
xf&e X imply thatxCx € ¢. (Desc-Incl)-closedness ensuygsy’ € ¢ such
thaty %, zholds.

2. If xf&fp athen there existssuch thaixfgfp zanda(z). The first equiva-
lence impliesy&p zand thusyj)»p a. The converse is simple.

3. Similar to the previous case.

Casea(x) € ¢: Reflexivity, i. e., (Refl)-closedness dff, implies thatxCx € ¢. Thus
x&s asuch thate,a) € Ly.

Casex{f} € ¢: If ge {f}, thenx &8 g by definition of path reachability, and hence
g € D¢ for all T € gsol¢)(x). Conversely, ix{f} € ¢ thenx#t£ {f}, such that
x&s gimpliesg € {f} by path consistency.

Casex [y € ¢: We have to show that the dgtULy is partial function and that, for all
P, x&p {f} andy&p gimply g € {f} (and vice versa witlx andy swapped).
For both, path consistency suffices.

Thusgsol ¢) is a solution ofp. O

Lemma 2.12 (Closedness Implies Path-Consistency)

A constraint is path consistent whenever it does not contaiand is closed un-
der (Incl-Nondis), (Symm-Nondis), (Quasi-Trans), (Desc-Nondis), and the tlasde c
rules (Clash-Sort), (Clash-Arity-1), and (Clash-Arity-11)

Proof. Let ¢ be a constraint not containing, and assume that is closed under
the rules (Incl-Nondis), (Symm-Nondis), (Quasi-Trans), (Desc-Nondifs{ESort),
(Clash-Arity-I), and (Clash-Arity-Il). The proof is by induction over pathd_etx, v,
a,b, f, andg be arbitrary.
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Casexfﬂlp a,xjfyea, andxfi"Lp b:

If p= ¢ then there exist,m> 0, X1,...,Xn, Y1,...,Ym Such that
XCXIA. . AXn—1SX A alXy) € ¢ and

YEYIA. . AYm-1CYm A D(Ym) € ¢

Rules (Incl-Nondis), (Symm-Nondis), and (Quasi-Trans)-closedness imply
thatx, [ ym € ¢; this can be shown by a simple induction oveandm.
Hencea=Db since¢ is closed under (Clash-Sort) but does not contain

If p= fq then there exists there exigty', X/, andy”’ such that:

x&g X, X[f]X" € ¢, x”&pa, and

y ey, Yiily €6,y Lob.

Sincex |y € ¢ we havex ||y € ¢ by definition of path reachability and
(Incl-Nondis), (Symm-Nondis), and (Quasi-Trans)-closedness (see case
p=¢). (Desc-Nondis)-closedness thus impli€s/y’ € ¢ such thata=b
follows by induction hypothesis.

Casex&p {f}, x)yec o, andx&p g: The proof is similar to the previous case, of
course using axioms (Clash-Arity-I/Il) instead of (Clash-Sort). O

2.2.3. Incrementality and Complexity of the Satisfiability Test

We complete the proof of Theorem 3 by proving the following Proposition. Through-
out this section we use the notion “constraint” to meang¥ar) constraint”.

Proposition 2.13 (Complexity for Satisfiability of FTZ)

Algorithm S can be implemented in spacgr®) and incremental time complexity
O(n3) where n is the size of the input constraint, provided one of the following holds:

¢ No arity constraint ever occurs.
e The size of arity constraints is bounded.

¢ The arity constraints list the features according to a fixed order.

Otherwise, every step of algorithfncan be implemented such that it has incremental
time complexity @ logn).
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We organise algorithrf as a rewriting on pairs of the forif, S) whereP andS are
calledpool andstore PoolP and storeS are data structures for primitive constraints
as described below. In what follows below, we confuse pools and stores with the
constraints they represent.

To start out, we fix an input constraify and consider the non-incremental case. The
incremental case is dealt with then.

2.2.3.1. The Non-incremental Case

Initially, the pool contains all primitive constraints containeddig and the store is
empty. In order to decide satisfiability ¢f we start with the paifd, T). A reduction
step(P,S) ~ (P, S) consists in picking a primitive constraiptfrom P, and then
applying all rules ofS to Sandp. Reduction terminates with an empty pool or the
detection of an inconsistency; that is with one(df,S) or (P,S) where— € S. We
denote the reflexive transitive closure-ofby ~*.

Call a pair (P,S)ocally closedf Sis closed under one-step consequences with respect
to algorithmS. Reductionis smallest binary relation on paif®, S) closed under the
following rule:

(PS ~  (P\{U}AS,SAW)

if S contains all one-step consequenceSofu underS
which Sdoes not already contain.

Lemma 2.14 (Invariants of Reduction)
Reduction performs equivalence transformations and preserves local closure. That is,

1. If (P.§~ (P,S)and(P,S) is locally closed, the(P’, S) is locally closed, too.

2. If (P,.S) ~ (P, S), then PAS and PA S are equivalent.

Proof. Straightforward using correctnessSf O

Corollary 5 (Correctness)

1. If (R T)~*(T,S), then S iS-closed and equivalent to P.

2. If (R, T)~* (P,S) where— € S, then P is non-satisfiable.

Proof. Inmediate from Lemma 2.14. O
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Data Structures

Now let us consider the data structures for pool and store more closelyy,Liet,

andn, be the cardinalities o¥/(¢o), 7 (o), andL(¢o), respectively, and let be the

size ofpg. Thepool can be implemented such that selection and deletion, as well as
addition of arbitrary primitive constraints can be performed in constaet®@). We
assume thstoreto consist of the following components.

=

. An array of sizen, containing arity constraints{ f } (at most one per variable);
2. an array of sizey, containing label constrainggx) (at most one per variable);

3. atable of sizey - n;s containing selection constraint§ |y (at most one per vari-
able and feature);

4. atable of siz@? containing ordering constrainksy;

o

a table of size,? containing non-disjointness constraimtgy.

Access Operations

The store can be realised with tables and arrays of boolean values sucprasidie
for the following operations.

1. Add a primitive constraint in timé&(1),

2. given a variable, test the presence of a label constraitt) and retrieve it in
time O(1);

3. given a variable, test the presence of an arity constraifif} and retrieve it in
time O(1);

4. given a variable and a featurd, test the presence of a selection constrdiiy
and retrieve it in0(1);

5. test the presence of an inclusig@y or a non-disjointness constrairt{ y in
time O(1);

6. given a variable, retrieve the set of alf such thaiCy or yCxis in the store in
time O(ny);

7. given a variable, retrieve the set of aly such thatx {y is in the store in
time O(ny).
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Furthermore, for arbitrary symbols (features, labels, and variablesawarrange for
on O(1)-test of whether it occurs i at all.

Every primitive constraint and store can have at nmgt) one-step consequences
with respect tcS. For instance, consider axiom (Desc-Incl):xjf|X is fixed, then
(Desc-Incl) has at mosD(n,) one-step consequences, andxfy is fixed, then
(Desc-Incl) has at mosd(n¢) one-step consequences. In both cases ther®@are
sinceny,n; < n. As the reader may want to check, this implies that for all rules but
(Clash-Arity-Il) the one-step consequences of some primitive constraint atmrex
can be computed in tim@®(n). Now consider rule (Clash-Arity-1I). We can check
applicability of this rule in timeD(n) if one of the following holds.

¢ If no arity constraint every occurs.e., if we consider satisfiability of Fge con-
straints only, rule (Clash-Arity-Il) never applies.

o If the size of arity constraints is bounded, then the {dgt# {g} takes constant
time (in the size of the bound).

e If the arity constraints list the features according to a fixed order, theretst
{f} # {0} takes timeO( 7 (¢)) = O(n).

If the size of the arity constraints is unbounded, and the features in the arityaiotsst
are not statically ordered, we must define an order dynamically and order theefeat
in {f} and{g} before we compare them. In this case, the {dgt+ {g} takes time
O(ns -logns +n¢) = O(n-logn).

There are at mosd(n; - n\2, +2-n2+n - ny) distinct primitive constraints. But since
algorithmS derives only primitive constraints of the forrCy andx |y, there are

at mostO(n,?) proper addition operations on the store. The pool is extended only
when some new primitive constraint is added to the store, h@tog?) times. In
each case, there are at m@gh) new consequences. Hence, the pool may grow up to
O(n®) primitive constraints in the worst-case. However, for most of these ¢haal
butO(n?)) one only needs to do th@(1) test to notice that they are already contained
in the store. Hence, the overall complexity is

O(1-n+n-n?) = Ond.

2.2.3.2. The Incremental Case

Now let us check that our analysis remains true for the incremental version of our
algorithm. In an incremental algorithm, the input constraint can be added piseden

the pool. Note that our algorithm is already insensitive to the order in which tpremi
constraints are picked from the pool. The additional complication is that the number
of symbolsny, ns, andn in ¢ is not known statically. However, by replacing the
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static tables and arrays by dynamically extensible hash tables we daguatiintee

the complexity estimations on the access operations [60]. In the previous seaion, w
have assumed the input constrapgt and hence, ns, andn, fixed. The argument,
however, is valid forarbitrarily large ny, ns, andn;. Hence, running the described
algorithm on the conjunction of a sequence of constraints

¢07 ¢17 ¢27 "'7¢m

can never cost more tha(n®) wheren is the overall size o\™, ;. So, the algorithm
has arincrementatime complexity ofO(n®).

2.3. Dropping the Non-emptiness Restriction

We extend our results from set constraints over non-empty sets of featusedrbe
full domain of possibly empty sets of feature trees. Essentially alltesalry over,
with the notable exception that the satisfiability test now becomes an esptest.

The detour through the non-standard domain of non-empty sets is worthwhile. In this
section we shall see that the emptiness test for(Ef) is more complicated than the
satisfiability test for FT*° since it requires an explicit propagation of non-emptiness
information!?

2.3.1. Emptiness Test

Since every F (ar) constraint is satisfiable, a satisfiability test forH@r) does not
make sense. Instead, we transform the satisfiability test f8f( &if) into anemptiness
testfor the F1(ar). This is done in Figure 2.2 which uses a new ternary constraint of
the formx |/, y with the following semantics:

o =pry XHy iffa(x)naly) #0va(z) =0

So,x |f,yis equivalent to the formulany=0 — z=0. Furthermorex=0is used as an
abbreviation of(x) A b(x) for arbitrarily fixed distinct, b.

Notice in passing that the constraimt)fy is not equivalent to the formula
3z(zCx A zCy) overP(F T) sincedz(zCx A zCy) is trivially true over possibly empty
sets. More stronglyx /[ y is not expressible in FI(ar). To see this, notice that a
set is non-disjoint with itself exactly if it is non-empty. Henkel x is equivalent
to x # 0, whereas F¥(ar) constraint cannot express emptiness (otherwise,(&fl)
could also express the inconsistent constrai#td A a(x) A b(x), in contradiction to
Proposition 2.1 ).

127 similar observation holds for the polynomial result on entailmenHTc in Section 3.1 that we
obtain by detour through F¥.
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(Refl) XCx

(Trang XCYyAyCz — xCz

(Symm-Nondi$ X,y = Y[,X

(Incl-Nondig xCy — XY

(Quasi-Trang XCX AX ),y — X,y

(Desc-Inc) XX AXCYyAY[flY — XCY

(Desc-Nondi XFIXAXL,YAYElY — XY

(Empty-Sorj aX) AX[,yAblyy — z=0 ifa#b
(Empty-Arity-I) XfIXAx),yry{g} — z=0 if f¢{g}
(Empty-Arity-I) — x{T}Ax},yry{g} — z=0 if {f}#{g}
(Empty-Prop-) x=0AX[fly — y=0

(Empty-Prop-1) x=0Ay[f]x — y=0
(Empty-Prop-Il) x=0AyCx — y=0
(Empty-Prop-I1Vj X=0AX),y — z=0

Figure 2.2.: Emptiness Test for Fi(ar)



2.3. Dropping the Non-emptiness Restriction

Now consider Figure 2.2 more closely. Axioms (Refl) through (Empty-Arity-Il) are
obtained by straightforward adaptation from Figure 2.1. The most interesting axiom
is (Ines-Nondis) which now derives from an inclusiany the constraink Jf, y stating
thatx is empty ifx andy have an empty intersection. The clash axioms are modified to
infer emptiness now, and axioms (Empty-Prop-I) through (Empty-Prop-1V) propagate
emptiness along all primitive constraints. CBlithe fixed point algorithm induced

by the axioms in Figure 2.2 with the additional control that the axiom (Refl) is only
applied to occurring variables.

Theorem 6 (Emptiness Test for FT(ar))

AlgorithmE is sound and complete, and it can be implemented such that it decides the
emptiness problem of ETar) constraints in incremental time (@) and space @d).
In more detail:

(Soundness) The structur® 7 7) is a model of the axioms in Figure 2.2.

(Complexity) If¢p has size n, then algorithif terminates after at most @°) steps,
each of which can be implemented to take at most linear time.

(Completeness) # is anE-closed constraint witly =7y X=0, then x=0 € ¢.

Proof. Soundness follows easily by inspection of the rules. The complexity statement
can be proven just as Theorem 3 in Section 2.2.3. The higher degrees of the polyno-
mials are due to the fact that there is a cubic number of constraints of thexfigyym

where there were only quadratically many of the fotifly before. Completeness is
shown as Proposition 2.17 below. a

Theorem 6 holds under the same preconditions as Theorem 3 (see the remark on
Page 34): if the size of arity constraints is unbounded and a static order on the fea-
tures cannot be assumed, then the incremental time complexagnfs logn) rather
thanO(n).

In order to complete the proof, we need some additional machinery. For every FT
constraintp let Empty¢) = {x | x=0 < ¢}, and obtainp_o from ¢ by first dropping

all constraints that mention a variable Empty¢), and then replacing all remaining
constraintx Jf,y by x  y.

Proposition 2.15 (Eliminating Empty Variables)
Let¢ be anE-closed FE (ar) constraint. Ther_o is satisfiable ove®" (F 7).

Proof. One shows thap_g is S-closed (and does not contair) so thatd_.p must be
satisfiable ove?™ (¥ ') by Proposition 2.8. O
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Lemma 2.16 (Extending?™ (F T) solutions)

Let$ be anE-closed FT (ar) constraint andx be a* (¥ T)-solution of_.¢. Extend
a to o’ by mapping all xc Empty$) to the empty set and all remaining variables
x € V(¢) to an arbitrary non-empty set. Theri =51 .

Proof. If ais a®* (¥ T)-solution of$_.o thena’ is a®P(F T)-solution ofp.p. One
checks for all primitive constraints that mention a variabl&Empty¢) thata’ is a
solution for it. Hence' =47 1) ¢. O

Proposition 2.17 (Completeness of the Emptiness Test)
If ¢ is anE-closed constraint witly =47 Xx=0then x=0 € ¢.

Proof. Let ¢ beE-closed and assume thet0 ¢ ¢. This means that ¢ Empty(¢).
By Proposition 2.15, there existsf (¥ 7)-solutiona of ¢..¢. By Lemma 2.16, then
there exists & (¥ T)-solutiona’ of ¢ that extendsr and satisfies’(x) # 0. Hence

O FEp(rq) X=0. O

Finite Trees

In analogy to the case of non-empty sets (see Page 35) we can adapt the emstiness te
in Figure 2.2 for FE (ar) to the case of finite trees by an occurs check axiom.

(Empty-Occurs X C XAAL1(X C Vi AYilfilXii1) AXnr1 C© X — x=0 n>1

and we can implement it such that we stay in incremental @fré) and spac®©(nd).
So Theorem 6 carries over to the finite tree case.

2.3.2. Solving Union Constraints

Theorem 7 (Hardness of Satisfiability for FT- (ar,U))
The satisfiability problem of R{ar, U) constraints is DEXPTIME-hard.

Proof. By reduction of the well-known DEXPTIME-complete emptiness problem of
the intersection of two deterministic top-down tree automata [69, 185]. O

We do not elaborate on the details of this proof, because similar reductions have been
given to prove DEXPTIME-hardness for co-definite set constraints and faroset
straints with intersection [42,44,58]. Given these completeness resuisalso a

good guess to assume DEXPTIME-completeness.
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Conjecture 8 (Complexity of Satisfiability for FT - (ar,U))
The satisfiability problem of Ri{ar, U) is decidable in DEXPTIME.

The source of this high complexity is the union constraint; so it is natural to consider
weaker approximations of union. The most prominent one is Mishra’s interpretation
of set constraints over over the non-standard domapati-closed setd 32]. In this
interpretation, all set expressions denote the smallest path-closed ssimérdetir
standard set interpretatidd. For instance, the ternfi(a,a) U f(b,b) is interpreted

by the set{ f(a,a), f(a,b), f(b,a), f(b,b)}. Unfortunately, the satisfiability problem

of co-definite set constraints interpreted over path-closed sets remaXBDME-
complete [44].

It is tempting to consider an even weaker approximation of union which would,
for example, interpret the terrh(a,a) Ug(b,b) by the set{f(a,a), f(a,b), f(b,a),
f(b,b),0(a,a),g(a,b),g(b,a),g(b,b)}. This approximation may be interesting if its
complexity is strictly smaller than DEXPTIME. We conjecture this totbe case,
since, as it seems, this constraint system cannot encode the emptiness prolblem of t
intersection of two deterministic top-down tree automata.

13This approximation is also called Cartesian closure or tuple-disivébapproximation [132, 220].
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In this chapter, we investigate the entailment problem for union-free fragnoéour
system of set constraints over feature trees. We give an algorithm tbedadiailment

¢ = ¢/ for FT® (no union or arity constraints) in tim@(n3) and we derive an entail-
ment test for FF that takes timed(n*). For both FT®(ar) and FT-(ar) (with arity
constraints but no union constraints) we show that entailfent¢’ is coNP-hard,
and for both FT¢ and FT- we show that entailment with existential quantification
¢ = Ix¢’ is PSPACE-hard. All results hold over both the domains of sets of finite
trees and sets of infinite trees.

Entailment is interesting in program analysis because it provides explanatioarf-
straint simplification [13, 65, 89, 140, 141, 143, 173]. Simplification means to replace
every constraind by a smaller one which is either entailed pyand retains the dis-
tinguished solution(s), or which is logically equivalentdtand retains all solutions.
Retainingall solutions is crucial for a modular program analysis where the analysis
of a complete program should be equivalent to the combination of separate analysis
results for program components.

Consider some typical simplification steps. If a constraint entails the ¢gbatween

two variables, then one of them can be replaced by the other one and then be elimi-
nated. This strictly reduces the number of occurring variables and has an iatenedi
impact on all further constraint processing. One also needs to get rid of \eariabl

a constraint whose denotation is irrelevant for the analysis, provided the ¢éohstra
satisfiable so that there exists an appropriate denotation at all. Sinceauables

are often existentially quantified, this simplification implies minimgsthe number of
existential quantifiers.

If the constraint system allows only “flat” terms likgx,y) that have only variables
as immediate subterms, then terms likg(a,b)) are “flattened out” with auxiliary,
existentially quantified, variables; for example, a constrainbliké (g(a)) is replaced

49



3. Entailment for Set Constraints

by the formulady3z(x=f(y) Ay=0(z) Az=a). In this case, constraint simplification

may involve entailment with existential quantification of the fapra- Ix¢’; for exam-

ple, to show thaf (a, x) is an instance of (y,x) one may have to check that f (a, x)
entailsdy(z="1(y,x)).

Entailment has also been proposed as a mechanism to explain subtyping on so-called
polymorphic constrained types [27, 121, 203]. There, entailment with existential quan-
tification is used to model subtyping on polymorphic types with constrained quantifi-
cation; for example the typex\ ¢.t (read: “typet for all X that satisfy”) is a subtype

of YW\ ¢'.t' if x=t A ¢ entailsIy(x=t' A ¢’) for a fresh variable.

These applications of entailment have motivated the research for complatienent
tests for various constraint systems and the related complexity questiorssis3ine
is a fundamental one, but it also has some practical impact: complete emtatkests
correspond to optimal constraint simplification algorithms that could alwapstorm
a constraint to an equivalent one with minimal size.

The design of complete entailment tests was more difficult than many cbeesuex-
pected. Henglein and Rehof showed that the entailment problem of so-callddstiuc
subtyping constraints over finite trees is coNP-complete [89]. We have adapied t
proof technique to show coNP-hardness of the entailment problem for two systems
of set constraints (Ines [142] and atomic set constraints [85]) in [140]; furthermor
we showed for a system of ordering constraints over feature trees that #ienent
problem with existential quantifiers even becomes PSPACE-complete [141, 145]. W
present both hardness results in the context of our system of set constraintsaever fe
ture trees. Very recently, Henglein and Rehof showed that entailmentrémtigal
subtyping constraints over infinite trees to be PSPACE-complete [90].

Luckily, constraint simplification needs not be optimal if it is “good enough” and can
be implemented efficiently. From this point of view, the mentioned intractstyig-
sults encourage the investigationsafund approximationsf entailment for constraint
simplification. For the application in subtyping constrained types these resalts s
to be more serious, since there complete entailment plays a crucial role tbwadide
typedness.

As an aside notice also that the entailment problem is needed for a constréem sys
to be integrated into concurrent constraint programming, because entailmenhgxplai
the semantics of CC-conditionals (“ask”).

3.1. Entailment with Polynomial Complexity

We show that the entailment problepn=g+ 57 ¢’ for FTZ® has cubic complexity.

We also prove that F¥f-constraints have the independence property of negated con-
straints [50, 115, 116]: We conclude that even the satisfiability problem for positive
and negative FI constraints remains within the same complexity.
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3.1. Entailment with Polynomial Complexity

o Fa(x) iff existsx such thatCx Aa(X) € ¢
¢ - xCy iff xCyed or x=y

dFx)y iff xjfye¢ or x=y

¢ X[fly iff ¢FyCxflanddt+x?[f]Cy

whered - x Cy[f] iff existX,y suchthak C X AY[fIXAY Cyed
dHxAf]Cy iff existxX,y suchthax C X AX[fly AY Cye ¢

Figure 3.1.: Syntactic Containment for Ff

In order to decide entailment =4+ () ¢’ between F}Ee constraints we must first
decide satisfiability o, since entailment is trivial ib is non-satisfiable. As we shall
prove, the entailment problem for E‘Eﬁs not harder than its satisfiability problem.

3.1.1. Syntactic Containment

Let us writep for the primitive FT constraints.

Loou=xcy | oxfty [ XX [ alx)

An FT2€ constraintp entails another ong’ if and only if ¢ entails all primitive con-
straints ind’. As it turns out, the constraint system/FTs so weak thap only entails
primitive constraints that are alreadyntacticallycontained ing (Proposition 3.2).
Since primitive entailment is linear (Lemma 3.3), this yields an increatemitail-
ment test that takes quadratic time in the sizé d@f ¢ is S-closed, and cubic time in
general.

Figure 3.1 defines the notion that a constraisintactically contains jwritten¢ + L

Example 9 (Entailment of Selection Constraints)

As an illustration for the most complicated case

of syntactic containment, namely the one dealing u ¢ x C v
with selection constraints, define the following  f | | f
constraint (depicted to the right) and observe that C vV Cy
it entailsx[fy.

yCu AU[f]u AUCXAXCVAVEIV AV Cy (3.1)
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3. Entailment for Set Constraints

In order to show that syntactic containment coincides with entailment, weshast
in particular that syntactic containment is complete with respect toleraai. Before
we show this, notice the impact of arity constraints:

Example 10 (Syntactic Containment with Arity Constraints)

Syntactic containment is no longer complete if arity constraints are added.ticupar
lar, constraints may entail many non-trivial inclusions then. For instanceidsorike
following judgement:

a() Ax{}AaY) AV} Eer(rr) XCYAYCX (3.2)

We must show that no primitive constrainis entailed by an F* constraintp that

is not already contained ip. To show this it suffices to find a solution ¢fthat con-
tradictsp. More strongly, we show that there is a single solution that contradicts all
suchp at the same timaNe show this by means of a satisfiable formula that strength-
ens$ and entails the negation of all relevantSuch a formula is called saturated. Its
existence will also give us the independence property fGFFT

Lemma 3.1 (Existence of a Saturated Formula)

For every satisfiable Fge constraintd, there exists a formula Sdt), called asatura-
tion of ¢, with the following properties.

1. Safd) is satisfiable.
2. Satd) =p+(r7) 9
3. v If V() C V(9), thend 7 pimplies Sa) =g+ (ra) 1.

Proof. The constructive existence proof of G} is technically involved and post-
poned to Section 3.1.2 which begins on Page 55. There, Definition 5 defines a formula
Sa{¢) in such a way that Sah) entails$ by construction. Lemmas 3.4 and 3.5 prove
that Sat¢) is satisfiable. The third claim follows from Lemma 3.7. O

Proposition 3.2 (Entailment = Syntactic Containment)

Entailment and syntactic containment coincide for primitivE¥€bnstraints xC y, X f
y, ax), and %f)y: if ¢ is anS-closed constraint not containing and p is a primitive
constraint, therp \:?ﬂfrf) p if and only if$ - .

Proof. It is easy to see that syntactic containmergasiantically correcfi.e., ¢ -
implies¢ ):{_p+(¢r[) 1. It remains to show that syntactic containmenségnantically
completdi. e, ¢ =+ (g7 Himpliesd - ). So, assumé = . If V(n) Z V(¢) thenp

is of the formxCx or x f x such thatp - pis trivial. Otherwise, assum®' () C V().

Now let Sat¢) be the saturation formula postulated by Lemma 3.1. By Property 2,
¢ =p+(r7) Himplies Satd) = . With Property 1, this yields S@li) #p+(r) —H,

and Property 3 implieg - . a
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3.1. Entailment with Polynomial Complexity

Lemma 3.3 (Primitive Entailment is Linear)

Given anS-closed constraing of size n, we can compute a representatiof of time
O(n) that allows to test syntactic containmept- p for selection constraints in time
O(n), and for all other p in time Q1).

Proof. In a linear operation we enter all primitive constraintgimto the data struc-
tures described in Section 2.2.3. The complexity statement for labelling, anity
inclusion constraints immediately follows directly from the propertiefieftata struc-
tures. To check containment of a selection constrafiy, we proceed as follows.

1. Check whether there exists 7/(¢) such thazCx € ¢, and then whether there
existsZ such thar[f]Z € ¢ andyCZ € ¢, and

2. check whether there exists 7(¢) such thakCz € ¢, and then whether there
existsZ such that[f]Z € ¢ andZCy e ¢

Clearly,x[f]y is syntactically contained it if and only if both checks succeed. Since
there are two tests for every varialde 7(¢), this is a linear-time operation. O

Theorem 11 (Independence for FT°)

The constraint system BThas the following independence property: for every k
and constraints, ¢4, ...y, it holds that

k
it ¢lprrr) /O then 30,1<i<Kk:dE=pi(rr)0i

=1

Proof. Assumed =p+(g7) \/}<:1¢i. If ¢ is unsatisfiable we are done. Alsodif\ §;
is nonsatisfiable for somg then

k

k
O Eprrr) VO it O Eperry VO

i=1 i=1,i#]

Hence we can assume, without loss of generality, phandd A ¢; are satisfiable for
alli, and thatp is S-closed and does not contain If there exists ansuch that - pfor

all pwith p e ¢, thend ):{_p+(¢¢) ¢; and we are done by Proposition 3.2. Otherwise,
there existgy € ¢; for everyi such thatp t# . Let Satd) be the formula postulated
by Lemma 3.1. Without loss of generality, we can assumeh@t) C 7/(¢) for all

i. Hence? (k) C V(¢i) implies Sat$) = - by Property 3. Therefore:

k

Sat) o+ (57 \ i

i=1
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3. Entailment for Set Constraints

Since Satd) is satisfiable and entailjs (Properties 1 and 2), this contradicts our as-
sumption tha =p+ (77 Vieg Oi- O

The independence property of negated constraints is a fundamental property of con-
straint systems, which intuitively says that the constraint system cannassxgis-
junction [105]; this can drastically simplify reasoning with disjunctivenfatas. We

do not investigate the independence property in its own right (but see the retmark a
the end of this section). For more details and further references on independence
see [42,105].

Theorem 12 (Entailment and Negation for FT2°)

If &,01,.... 9k k> 1are FT2° constraints with sizes,m, ..., ng, then satisfiability of
O A =01 .. Ay is decidable in time @®+n- 5K nj) and space @? + 2K ;).

Proof. If ¢ is non-satisfiable thep A ~d1A... A=y is trivially non-satisfiable.
By Theorem 3, satisfiability o can be decided in tim®(n®) and spaceD(n?).
Now assume) to be satisfiable an8-closed. By the Independence Theorem 11,
b A=d1A...A-dk is non-satisfiable if and only § =4+ #7) ¢i for somei, and this is
equivalent tap = p+(#7) W for somei and all primitive constraintp € ¢;. By Propo-
sition 3.2,¢ \:?ﬂfrf) piff ¢ -, hence it suffices to decide syntactic containment for
everyp contained in some;. For eachi, there areD(n;) many suchu to be tested
for syntactic containment, each of which takes ti@@) by Lemma 3.3. Hence non-
satisfiability ofgp A—d1A. .. A—¢k can be tested in an additional tird¢n- zik:l ni). The
overall time complexity adds up ©(n3+ n- Z!‘Zl ni), and the total space complexity
isO(n?4n-yk  m). O

Corollary 13 (Satisfiability of Positive and Negative FTg'e Constraints)
If ¢ and¢’ are FT2° constraints with sizes n and,then entailmend =p+ (57 ¢ is

decidable in time @3+ n-n') and space @2 +1v).
Finite Trees

Theorem 12 carries over to the domain of finite trees. In order to apeek: s ¢’

we just need to bring into closed form with respect to algorithé plus the oc-

curs check (Occurs) on Page 35. The second step remains unchanged: Simply check
whether all primitive constraints iff are syntactically contained in the closurepof

Conjectures on Independence

We conjecture that the independence property holds f@f(&N) if we are given an
infinite set of labels, and even remains to hold when existential quantifeeeslanitted
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3.1. Entailment with Polynomial Complexity

(thatis,¢ = V/; 3% ¢; implies\/; ¢ = 3x ;). For F1c (ar), independence fails because
a(x) Aaly) =xCyVyC x holds. For FP(ar) with a finite setL = {a,...,a,} of
labels, independence also fails becawfpA ai(y1) A ... Aan(yn) Ept(ga) YICXV
...VynCx. Given an infinite set of labels, however, independence f&fFF) may

well hold.

We have two reasons for these conjectures dif@r). First, Charatonik and Podelski
have shown that set constraints with intersection have the independence pndpsrty
interpreted over non-empty sets of trees [42] and given an infinite signatethas
domain, set constraints with intersection subsume the constraint system Ineksiof
sion constraints over constructor trees [142], and Ines is closely retate®%(ar).
For the extensibility with existential quantifiers we draw intuition from te&ated
constraint system K [143] (see Section 3.3.2). The constraints of-Fdoincide
with FT2® constraints but their interpretation is over the dom@if of feature trees.
We have shown in [143] that EThas the independence property without existential
quantifiers, and that independence fails in presence of existential quantifieasha-
sic counter example for independence with existential quantification indées not
work for FTP 14

3.1.2. Saturation

We complete the proof of Proposition 3.2 by constructing a saturated formula as pos-
tulated by Lemma 3.1. To this end, we employ operafar&ndl; on constraints.

The operatof ; is defined such thdt,(¢) disentails alli except selection constraints
(that is, those of the form |y, xCy, anda(x)), which are not syntactically contained

in ¢ (Lemma 3.6). The operatdr is necessary to also disentail selection constraints.
Given a constraind, '1(¢) extends it such thdix(I1(¢) disentails all relevant. In

a sensel 1 serves as a “preprocessor” fios.

Definition 4 ("1 and ')

Let ¢ be a constraint. For all 6 7(¢) and fe F(¢) let w; be a fresh variable.
Depending on this choice we defifig(¢) as follows, where cl denotes tBeclosure
of a constraint:

F1(0) =der  cl(® A A{Xflws [ xe V(9), f e F()})

Furthermore, let y and » be distinct fresh variables,jaand & be distinct labels,
and for every pair of variables,y € 7(¢), let fy and fy be fresh features. We define

14 The corresponding FF formulaa(y) AyCx — b (b(2) A zCx) v a(x) (wherea # b) is notvalid: if
a# candb # ¢, then the sefa, c} satisfies the left hand side of the implication but none of the désgun
on the right hand side.
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M2(¢) depending ony Vo, ag, ap, fy, fyy as follows:

M2(0) =det & A A{Xf]w A =Y (YIRY) [ d ZyCx xye V(d)} (D)
A MXEylva A Yifglva [ 9 Xy, Xy € V(9)} (2)
A NXHve A xliva [ Vae L pFax), xe V(9)} (3
A ag(vi) Aap(va) (4)
Example 14 (Contradicting Feature Selection Constraints)
For illustration ofl 1 andl" > consider the constraint
Oconra =det  X[f]XAYCX (3.3)

which is S-closed up to trivial and non-disjointness constraints and which does not
entail x[f]y. In order to disentaik[f |y we first computd 1(¢) by addingx[f v+ and
Y[f]vyt t0 dcontra @nd then computing th&-closure. NowJ 1(¢contra) is (Up to trivial
and non-disjointness constraints)
M(Pcontra) = X[FIXAYTXAX[F]vxs AY[F vy sA (3.4)
Vy £ SVt A Vxf CXAXCVy e A YC Vgt
Observe thaf 1(§contra) does not containy; Cy; that is, I 1(Gcontra) 1 Vxi Cy. Now

clause(1) of I'2(I1(dcontra)) disentailsvys Cy by asserting thay allows selection at
featurefy while vyt does not. Hencé,>(I" 1(§contra)) also disentails(fy.

Lemma 3.4 (Properties ofl 1)

Let ¢ be anS-closed constraint not containing. Thenl"1(¢) is satisfiable and satis-
fies the following two properties for all primitive constraints p:

1. If¢ #pand¥(u) C V(¢), thenl1(d) i .
2. If o Xx[fly, thenl1(d) t/ yCvxs or F1(0) H wi Cy.

Proof. Let n be the cardinality of the s&t = {w¢ | x€ V(¢) andf € F(¢)} and fix
an enumerationar from {1,...,n} intoV. Then consider the following sequence of
constraints

bo = ¢

dn = cl(dn 1 AX[f]ws)  if n>0andvar(n) = Vg

Apparently"1(¢) = ¢n. In order to show thdt,(¢) is satisfiable, we give an inductive
construction of the form of thé;, for all i, and show that each of them is satisfiable.
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¢o is S-closed and hence satisfiable by assumption. For the induction step, assume that
di_1 is S-closed for ari, 0 < i < n, with var(i) = v. We show thath; = cl(¢i_1 A
X[f]vxf) = di_1 where

dica = dia A X[F]vir A Vs SV AV Jf it (4.1)
A Mz | di1 -z C X[} (4.2)
A MwiCz ] ¢ia b xAf] C Z} (4.3)
AN Nt fzAaz)vwe | ex.y: o1 Fy?fl Czandx [y € ¢i1} (4.4)
AN Nt fzAz)we | ex.y: o1 FyCX[flandz)fy€ ¢i1}  (4.5)

It is clear thatdi 1 is contained ind;, hence it suffices to show thdf ; is S-
closed. Thes-closedness of; is proved by a case distinction. (Refl) follows from
clause (4.1), and (Symm-Nondis) follows from clauses (4.4) and (4.5). The descend
axioms (Desc-Incl) and (Desc-Nondis) do not applypto; since no selection con-
straint onvys is added, and the clash axioms does not applyifq because no la-
beling or arity constraints ow; are added. We check the remaining cases (Trans),
(Incl-Nondis) and (Quasi-Trans).

(Trans) Assum@CvAVvCw € di_1. We must show thatCw € ¢i_,. We make a case
distinction depending on which of the variabley, z equalvy;.

If u,v,w=# Vs, thenuCvAvCw € ¢i_1. Hence, due tdb-closedness ob;,
uCw € ¢;_1, and thereforeiCw € ¢; 1.

If u=v=Vys, thenuCw = v CVy € ¢; 1 follows from clause (4.1).

If u=v=wyandw # s, thenuCw = wsCw € ¢i_; follows from the as-
sumption thavCw = W CW € ¢i_1. The caseau # Vs andy = Z = V¢
iS symmetric.

If u= vyt andv,w # Vs, thenuCv=v;Cve d; 1 implies, by clause (4.3), that
di—1 - x?[f] C v. By S-closedness of;_1 (Trans) it follows thatp;_1 -
x?[f] C wand hence, by clause (4.3) agaitw = vyt CwW € ¢i_1.

The caseav = vyt andu, Vv # vy is symmetric, using clause (4.2) instead of
clause (4.3).

If u,w# w; andv = s, then, by clauses (4.2) and (4.8),-1 - u C x[f] and
di—1 F x?f] C w. By S-closedness ob;_1, (Trans) and (Desc-Incl), it
follows thatuCw € ¢j_1 and henceiCw € ¢i_;.

(Incl-Nondis) Assume&Cv € ¢;_1. We must show that j{v e ¢; ;.
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If u,v# vy, thenujfve ¢i 1 follows from S-closedness af; 1.
If u=v=v¢, thenu)/ve ¢; 1 follows from clause (4.1).

If u=wt andv # s, then, by clause (4.3)i—1 - x?[f] C v. By S-closedness
of ¢i_1, (Refl) and (Incl-Nondis)x ) x € ¢i_1 and hence, by clause (4.4),
Ufv=wys Jfve di 1.

The caser = w¢ andu # s IS symmetric, using clause (4.5) instead of
clause (4.4) and JJu € ¢;_1.

(Quasi-Trans) Assume)/[VAV C w e ¢;_1. We must show that [fw € §; 1.

If u,v,w+# Vs, thenu jfw € ¢;_; follows from S-closedness aof; ;.

If u=v= v andw# v, then, by clause (4.3)pi_1 - x?f] Cw. By S-
closedness of;_1 we know thatx |f x € ¢i_1 and hence, by clause (4.4),
ujfw= vy Jfwe di_a.

If v=w= vy andu # v, thenu fw = u}{ w; € ;1 follows from u }fv =
ujf ks € b 1.

If u=w= Vs andv# Vs, then u Jfw = w; || wr € ¢i_1 follows from
clause (4.1).

If w= vy andu,v # w;s, then by clause (4.2)i—1 F v C x[f], and hence, by
clause (4.5)u jfw=u vk € ¢;i 1.

If u=ws andv,w# vs, then u [ v = v J{ v could have been added by
clause (4.4) or clause (4.5).

(4.4) Then, by clause (4.4), there exigtsuch thath;_1 - V' ?[f] C v and
XV € ¢;j_1. By S-closedness af;_1 (Trans),di_1 - V?[f] C w, and
hence, by clause (4.4) againffw = v Jfw e ¢i_;.

(4.5) Then, by clause (4.5), there existssuch thatd;_; -V C X[f]
andv )[V € ¢i_1. By S-closedness ofpi_1, (Quasi-Trans) and
(Symm-Nondis),w |V € ¢j 1, so thatu Jw = v Jfw e ¢i_1 by
clause (4.5) again.

If v=vys andu,w # s, then u jfv = u |f vw; could have been added by
clause (4.4) or clause (4.5). The argument is similar to the previous one.

Now we check properties (1) and (2)Iof(¢). In both cases, we prove the contraposed
claim.

1. Assume thaf1(¢) Fpand ¥ (p) C 7(¢). We show that i p by case distinc-
tion overpL.
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H=XCyorpu=x|y: If F1(¢)F pthenpei(dp) orx=y. If x=y, then triv-
ially ¢ - p. Otherwise, ifx # y, note that all basic constraints which are
contained in"1(¢) but not in¢ contain at least one fresh variable. Hence
fromx,y e V(1) C V(¢) we obtainu € ¢, and thereforé - .

n=a(x): If F1(¢)+ a(x) then there exists a variabtesuch thakCx' A a(xX') €
1(d). By inspection of the form of 1(¢) = ¢, one obtains that € V(¢)
and hencea(X) € ¢. In combination with the assumption th@&t(p) C
V(¢) which givesx € V(¢) we conclude thap - a(x).

u=Xx[fly: If F1(¢) - x[f]y then there exist variablesu’ andv,V such that

M1(d) H UCXAXCV,
F1(¢) - yCu AV Cy, and
ulfJu AV[fIV € T1(9)

By assumptiong,y € V(1) C V(). Alsou,ve V() holds sincd 1(¢p) =
¢, contains no selection constraints on fresh variables.

We can without loss of generality assume thiat’ € 7/(¢). In this case
¢ - x[f]y follows easily.

To see why we can assumaeV € V(¢), supposel € V(). Thenu' = vy¢
by construction of 1(¢) = ¢,: Let var(ws) =i. Then by Clause (4.2)
di—1 Fy C u[f] which means that there must exist variables’ € 7(di_1)
such thayCw Aw[f]w AwCx € ¢;_1. Hence, we can replagew for u, U’
above and obtain the same situation up to renaming. By induction over
var(vyt) we find replacement fou',v in V(¢). The argument for is
dual.

2. Assume thalf1(¢) - zCvys andl1(¢) - v Cz Then by clauses (4.2) and (4.3)
there must exist variablgsy',u,u’ € 7 (I'1(¢)) such that"1(¢) -z C x[f] and
M1(¢) - x?[f] C z By definition of syntactic containment these assumptions
imply '1(¢) - x[f]zand hence, by case (1) aboge; x[f|z 0

O

Lemma 3.5 (", Preserves Satisfiability)
If ¢ is S-closed and does not contain, thenl(¢) is satisfiable.

Proof. Let ¢r be the constraint part df>(¢), i.e., with existential quantifiers and
negated constraints dropped. It is not difficult to see ¢§iratioes not contair- and
thatdr is S-closed up to trivial constraintsCx andx }f X) and symmetric compatibility
constraints. Note in particular, that the fresh featugesccur only once i 2(¢) (and
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3. Entailment for Set Constraints

hence neither (Desc-Incl) nor (Desc-Nondis) applies), and that the fresheed,,
occur exactly twice il 2(¢), namely in selections atandy, for which neitherx ffy
nor, by (Incl-Nondis)-closedness ¢f xCy or yCx occur ing.

Hence, by Proposition 2.1@sol¢r) as defined in Definition 3 is a solution ¢f. It
suffices to check thasol(¢r) also satisfies the negated selection constraints added in
clause(1) of '2(d).

Assume—-3y (y[fx]y) € [2(d), hence alsa(fx|vy € I's(d) and¢ t# yCx. S-closedness
of ¢ and¢ t/ yCx imply thaty;ie X an hencey%8 x holds. Sincefy has a unique
occurrence i 2(¢), this implies thay % fy, and hencd, ¢ Dgsolor)(y)- O

Lemma 3.6 ("2 Contradicts Non-selection Constraints)

Let ¢ be anS-closed constraint which does not contai) and let u be a primitive
constraint of the form ¥y, xCy, or ax). Thenlz(9) =p+rq) 1 if and only if

b 7 p.

Proof. If M2(¢) Ep+(rq) "M thend i/ pby Lemma 3.5 and correctness of syntactic
containment. For the inverse direction we inspect the definitidrp@f).

Clause (1) If$ t# xCy, thenl2(¢) disentailsxCy by forcing x to have a featurdy
whichy must not have.

Clause (2) Ifp I/ x}{'y, thenl»(¢) disentailsx ||y by forcingx andy to have a common
featurefyy such that the subtrees wandy at fyy are incompatible.

Clauses (3) and (4) Bt/ a(x), thenl»(¢) disentailsa(x) for every label by forcing
X to contain at least two trees with distinct label. O

Definition 5 (Saturation)
Letd be anS-closed constraint not containing. Thesaturation Sat) of ¢ is defined
by

Sa(dp) =det M2(C1(9)).

Lemma 3.7 (Saturation Characterises Syntactic Entailment)

Let¢ be anS-closed constraint not containing, and let p be such tha'(p) C V().
Then¢ i/ pimplies Sah) =p+(ra) M.

Proof. Let Satd) = M2(F1(d)). If ¢ I/ pthenT1($) I/ p holds by case (1) of
Lemma 3.4. Ifiis not a selection constraint, th€a(1(9)) =p+(#) ~K holds by
Lemma 3.6. Otherwise, let= x[a]y. Hence, one of 1(¢) t/ vxaCy or I'1(¢) I/ yCxa
holds by case (2) of Lemma 3.4. By Lemma 3.6, eithgll 1(9)) F=p+(57r) “Vxaly

orM2(l'1(¢)) Fp+ () “YCVxa holds, and hence agai(T1(¢)) Fp+(y7) " O
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droa(x) iff x=0c¢, ordpta(x
dFoxCy iff x=0c¢., ordpFxCy
doxfly iff x=0€¢andy=0c¢, or¢trxfly

Figure 3.2.: Syntactic Containment up to Emptiness fordtar)

3.1.3. Dropping the Non-emptiness Restriction

We show that entailment for I=Tcan also be decided in polynomial time, more pre-
cisely, in timeO(n*). We obtain this result by extending the corresponding result for
FT2® and it seems that a direct proof would be substantially more involved.

The key to the polynomial complexity result is an extension of our notion of syntactic
containment. Figure 3.2 extends the definition of syntactic containment in Figure 3.1
and defines a relatiop -o 1 between FE constraints and primitive constraintg |y,

a(x) or xCy. If ¢ ¢ p holds we say thap contains p up to emptinessSyntactic
containment up to emptiness suffices to characterise entailment for FT

Proposition 3.8 (Entailment = Syntactic Containment up to Emptiness)

The notions of entailment and syntactic containment up to emptiness coincide for prim-
itive constraints: If is anE-closed FTE constraint and p is a primitive constraint,

thend =q 57 1 if and only if o p.

Proof. The direction from right to left (soundness) is clear. For the direction from
left to right (completeness) assume that there existsd’ such thatd 7y p. From
Proposition 2.15 we know that.g is satisfiable ove®* (7). By Proposition 3.2
we know thatd bé{_pﬂfrf) U Hence there exists & (¥ T)-solutiona of ¢ such
thata =g+ 5y —H and hence alsa =g (¢ 7) -1 By Lemma 2.16, the extensiar

of a that maps all variables iBmpty¢) to the empty set and all other variables to non-
empty sets is &(F 7T)-solution of¢. We show by case distinction over the possible
forms ofpthata’ =g 7) —W This means thap =y (77 Land hence o yr) ¢'.

H=a{x): Sinced t/p a(x), we know thaix  Empty¢). Thereforea = 1) ~a(x)
impliesa’ =g (¢ 7) ~a(x).

n=x[fly: Since¢ t7p X[f]y, we know thak=0¢ ¢ ory=0 ¢ ¢. We consider two cases
(the remaining one is symmetric).

If x=0¢ ¢ andy=0¢ ¢: Thenx,y ¢ Empty¢), and therefore = 5) —X[fly
implieSO(' ):T(T‘T) —\X[f]y
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3. Entailment for Set Constraints

If x=0¢ ¢ andy=0 ¢ ¢: Thenxe Empty¢p) andy ¢ Empty¢). Hencea’ maps
X to the empty set angto a non-empty set. Therefor®, =p(ra) Xy

n=xCy: Sinced /o xCy, we know thatx=0 ¢ ¢. By a case distinction on whether
or noty=0 € ¢ as in the previous case we obtain that (o) =XCy implies

o' Ep(ga) ~XCY. 0

Theorem 15 (Entailment for FT¢ is Polynomial)
Letd and¢’ be FTc constraints whose sizes are n arld Then entailmenp =5 )
¢’ is decidable in time Q* +n-n') and space O +n').

Proof. By Theorem 6, we can compute theclosure in¢ in time O(n%) and
spaceO(n3). By Proposition 3.8 it suffices to test syntactic containment up to empti-
ness for all primitive constraints i@/, of which there are at most. In analogy to
Lemma 3.3, we can assume the&losure ofp to be represented such that every such
test takes at most linear time. Hence the overall procedure take®finfie-n-n') and
spaceO(n34n'). m

Finite Trees

Theorem 15 carries over to the case of finite trees: we must only adapt tledpof
checkingd ):{_p(?rf) ¢’ so that it computes the closure ¢fwith respect tcE and the
occurs check axiom (Empty-Occurs) on Page 46. The second step remains unchanged.

3.2. Hardness Results on Entailment

The complexity of entailment between set constraints becomes coNP-hard ritlien a
constraints are added. This is proven in Section 3.2.1 fer(&if) and in Section 3.2.2

for FT2(ar). Using the same proof technique, the corresponding results can be be ob-
tained for inclusion constraints over sets of constructor trees [140] and foinsema

for FT2® with existential quantifiers (see Section 3.2.3). Section 3.2.4 strengthens this
result by proving PSPACE-hardness for the entailment problem with existgotiat
tification; this result holds even without arity constraints.

3.2.1. Entailment with Arity Constraints is coNP-hard
We prove the following result.

Theorem 16 (Entailment for FT2%(ar) is coNP-hard)
The entailment problem =+ (77 ¢’ for FT2%(ar) is coNP-hard.
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Proof. Follows from Proposition 3.9 on Page 64. O

Corollary 17 (Satisfiability of Positive and Negative FT**(ar) Constraints)
The satisfiability problem of positive and negativ%_?(ﬁir) constraints is coNP-hard.

For the proof, we reduce the complement of the propositional satisfiability problem
SAT to an entailment problem between¥{ar) constraints. Crucially, the reduction
uses arity constraints. This implies Theorem 16 because SAT is NP-conguetally

the very first problem for which NP-completeness was proven [52]. The reduction
is based on an idea of Henglein and Rehof [89]. They have considered entailment
between ordering constraints over finite constructor trees with the ssdcdtuctural
subtyping order.

3.2.1.1. A Complication of Entailment

Before we give the proof of Theorem 16, notice that it is in contrast to the paper [41]
which claims polynomial complexity for entailment (over the domain of non-empty
sets offinite constructoitrees). The algorithm given there is incomplete. This incom-
pleteness is not easily fixed. The next example illustrates a complicatiomadieent.

The following is a valid entailment over ¥ar)-constraints; notably one that de-
pends on the implicit non-emptiness restriction for the denotation of

xCa(fiy) AxCa(fz) naly) AV} Eer(rr) YCZ (3.5)

A possible argument is as follows: since the denotaticnishon-empty, the intersec-
tion of the denotations gfandz must be non-empty. The constraédy) A y{} implies
thaty denotes the singleton sg}. By non-disjointness of andz, the denotation of
must at least contaia. ThusyCzis entailed. By a similar argument, the following
entailment proposition can be shown valid forffar).

xCa(fy, gy") AYCb(f:Z, gZ'yAZCanZ{}A

‘:fp-}—(’r}‘q‘) ZcV (3.6)
xCa(f:Uu, gu") AU Cb(f:v, gV’

The variablesZ andV are related to each other throughwhich does not denote a

singleton set itself. Ratheigr some patlt{hereff) does selection from the denotation

of x yield a singleton. Notice that two distinct features: g are necessary to describe

this situation.

This example also illustrates the problem of the algorithm in [41], transpostugk to
feature tree notation. Roughly, the algorithm in [41] derives singleton informdton,
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3. Entailment for Set Constraints

example by reasoning as follows:
a(x) Ax{} — singleton(x)
a(x) Ax{f} AX[f]lyAsingleton(y) —  singleton(X)

singleton(y) Ay jJfz — yCz
But as we have seen, the derivation of constraimigleton(x) does not suffice for a
complete entailment algorithm. Rather, one needs a path-based argument like
singleton(Z) AX~¢ Z AX~g V. —  ZCV.

This is what the algorithm in [41] fails to do. Hence, the entailment in Exarf®
is correctly detected, while the entailment in Exam(@®) is not.

3.2.1.2. The Reduction

We assume an infinite set of boolean variables ranged over b% clause Cis a

finite disjunction ofliterals u or —u. We writefalsefor the empty clause. Aolution

of a finite conjunction of clauses is a boolean variable assignment under which each
of the clauses evaluates timwe. The clause satisfiability problerBAT is whether a
given conjunction has a solution. Without loss of generality we assume that no clause
contains both a literal and its negation.

Proposition 3.9 (Reducing SAT to Entailment for FT2%(ar))

For all x € V there exists a functio®y from clauses C and integers k to existential
FT2(ar) formulas such that for all C:

1. The size of«(C.k) is proportional to k.

2. For all SAT problemg\{_, C; over k variables the following holds if y:
n n
/\ Oy (Ci, k) A Dy(falsg) =p+ g7y XCy  iff /\ Ci is non-satisfiable.
i=1 i=1

Theorem 16 is an immediate corollary of this Proposition. To see this, notite tha
the size of the entailment proble®y(Ci, k) A ®y(falsg = p+ 57y xCy is O(k-n) and
hence polynomial in the size of the given SAT problem.

Before we prove the Proposition, we illustrate the basic idea by an examplad@ons
the following clauses over three boolean variahlgal,, andus, and observe that
Ci1 ACy is satisfiable whil&; ACo AC3 is not.

C1 =def —U1VUs,
C2 =def —U1V-uUz, and

C3 =def U1
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x[1]y Aa(x) A x{0,1}

Jy
Aady) Ayi} 0 A1
&)Y
i YI0lyoAZlYo A a(yo) A Yo{O,1} / O\a

Jy1 / \1

1 0,1
| viwnzsn nabe) Ao O/a\l O/a\l.

207 Aaz) A 20,1} all N aff
37

ANalZ) A Z{}

Figure 3.3.: An Example for the Reduction of SAT to Entailment for<liar)

Now fix distinct variables< andy. Proposition 3.9 claims the existence of formulas
Dy (Cy1, 3) through®y(Cs, 3) and®dy such that

Dy (C1,3) A BPx(C2, 3) AN Dy(false3) FEpr(rr) XCY  (3.7)
©y(C1,3) A Px(C,3) A Dy(Ca,3) A Dy(falsed) =pipr) XCy  (3.8)

The formulady(Cy, 3) (to be defined) and the form of its greatest solution are depicted

in Figure 3.3: the formula on the left asserts all feature trees in the desotatk

to have at least the paths and labels of the tree on the right; at the mentioned paths
they may have at most features 0 and 1, and no feature at all at the mentiomedfpat
length 3.

The maximal paths correspond to the boolean valuations; ahroughus under
which C; evaluates tdalse[89], where the features 0 and 1 correspond to the truth
valuesfalseandtrue. Similarly, as the empty clause evaluategatse underall val-
uations, the formul&y(false 3) constraingy to the set of trees that have exactly the
paths in{0,1}2 and are completely labelled with As there is only one such tree,
call it 13, dy(false 3) entails thay = {t3}. (This only holds because the empty set is
excluded fromP* (F T); over?(F T) only the inclusioryC {13} is entailed. See also
Section 3.2.2.)

Likewise, the formulady(Cy,3) A Dy(Cp, 3) A Dy(Cs, 3) will constrainx to {13}, and
hence (3.8) will be valid. In contras®«(Ci,3) (and alsody(Cq, 3) A Dy(Cp, 3)) are
less restrictive with respect to than ®y(false 3) is with respect toy, and hence
Dy (Cq,3) A Dy(false 3) %+ (1) XCy as well as (3.7) hold.
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3.2.1.3. Proof of Proposition 3.9

This proof covers this whole section. Let us first formalise the intuition gimghe
example above. We fix a labaland three distinct featuresDand 2, and we confuse
the truth valuetrue andfalsewith the features 1 and 0, respectively. (The feature 2 will
be used only farther below.) We represent every boolean valugtorq uy, ..., uc} as
the following pathp'é.

IOE =def  B(Uk)...B(u1)

We say that a feature treecontains a valuatior3, written 3 € 1, if the following
conditions hold.

1. ar(T.pE) =0

2. Vp,pa prefix ofp'é : (p,a)eS and ar(t.p) C{0,1}
By generalisation, we say that a treeontains a set B of valuationgrittenB C T, if

VB € B: B € 1. The injective functiom establishes a correspondence between the sets
of boolean valuationB and the set3 (B) of feature trees containir,

T(B) =det {T]ifBCT}

For instanceT ({0, 1}¥) is the singleton set containing just the complete binary feature
tree of depttk over the features 0 and 1 which is completely labelled with

Now assume that the functiaby has the following properties.

o =p+irr) \ Ox(Cik) iff  a(x) CT(Sol—= A G)) (3.9)
i=1 i=1
o (g Oy(falsek) iff  a(y) =T({0,1}%) (3.10)

Lemma 3.10

If, for all x € V/, there exists a functiof®, with properties (3.9) and (3.10) then clause
(2) in Proposition 3.9 holds.
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D(C.k) = Dy(pk)
dyue) = x{}rax
Dy(1p) = x{0,1} Aa(x) A IxK (X[AX A Dy (p))
D (0p) = x{0,1} Aa(x) A Ix (X[O]X A Dy (p))
&Jx(Zp) = x{0,1} Aa(x) A IxgxaxXz (X[1]x1 A X[0]x2 A X1 CX3 A X2CX3 A &Dxa(p))

Figure 3.4.:Reducing SAT to Entailment for F'f(ar)

Proof.

n

/\ ©x(Ci,k) A ®y(false k) =p+ g7y XCy
i=1
n
iff Vo if a=pera) [\ Px(Ci k) A Dy(false k) thena(x) C a(y)
i=1
n
iff Vo if o =perq) \ Px(Gi,K) A Py(false k) thena(x) € T({0,1}¥) by (3.10)

i=1
n

iff  T(Sol(= A\Gi)C T({0,1}% by (3.9)

i=1

n
iff /\ Ci is non-satisfiable
i—1

For the downward implication of equivalence marked (3.9) note that, by Property (3.9)
every valuatior with a(x) = T(Sol(—= AL, Ci)) is a solution ofA]’ ; D4(C;,k). The
upward implication follows directly from (3.9). For the upward implicationloé tast
equivalence note that Sel A, C) = T({0,1}¥) if A_,C is non-satisfiable. For the
downward implication first note that

VBC {0,1}X: T(B) # 0
which implies thatd # T(Sol(—-A™,Gi)). HenceT(Sol(—A",C)) = T({0,1}¥)

sinceT ({0,1}K) is a singleton set, and Sel A, C;) = {0,1}K sinceT is injective.
Thus A" ; G is non-satisfiable. 0

It remains to show that there are indeed formubg$C, k) with Property (3.9) whose
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size is proportional té. For everyi,1 <i < kand every claus€ over{us,...,ux} let
6(C)=1 if-yinC
6(C)=0 ifyinC
6i(C) =2 otherwise.

This is well-defined because no claWdeontains bothy; and—u; for a boolean vari-
ableu;. Every claus€ corresponds to the parbé given by

PE =der  &(C)...81(C).

The definition of®y(C, k) by recursion ovelpé is given in Figure 3.4. Since every
step of this definition introduces at most three new variables, these formwikasika
proportional tok.

It is easy to verify directly that every solutiom of ®y(falsek) satisfiesa(y) =
T({0,1}%), so that Property (3.10) holds. Note also, that Property (3.10) is a con-
sequence of Property (3.9) sinté{0,1}¥) is a singleton such that(y) C T({0,1}¥)
impliesa(y) = T({0,1}%) over non-empty sets.

Observe thap\[L; ®x(C;, k) A ®y(false k) is always satisfiable, for example by every
valuation mapping botk andy to T ({0, 1}¥). Hence we know that a greatest solution
exists by Proposition 2.10.

Lemma 3.11
For all clauses C over k variables and all x:($0—C)) = gsol @« (C,k))(X).

Proof. We show by induction ovek that, for allx, T, and all clause€ overk variables
Sol(—=C) Ct ifandonlyif T €& gsol®y(C,k))(X).
Casek = 0: We have
dy(falsek) = dDy(e) = x{}raX

By definition of So[—C) C T, the fact that the only valuation over O variables is
the empty one, and the definition gdol ®(false k)), we reason as follows.

Sol(—false Ct iff Sol(true) C 1
iff €€Dy, (g,8) €S, andar(t) =0
iff  gsol dy(falsek))(x)
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Casek > 0: The claus€ can have one of three forms,C’, —-u, vV C’, orC’ for some
clauseC’ over variablesy,_1,...,u;. We only consider the case = ux Vv C'.

The other cases are similar. For ease of reading, we introduce the following

abbreviations for alf € F:

Di.f = {p| fpeDy} fDr = {fp|peD}
S.f = {(pa)|(fpa)eDd S = {(fp.a)|(p.a)eS}

If C=uVvC, we have

Oy (C,k) = x{0,1} Aa(x) AIX (X[O]X A Dy (C' k—1)) (3.11)
Fix a freshx'. By definition of So[—C) C 1 and by induction assumption we
have that
Sol(—-C) Ct

iff  Sol(=(uVvC))Ct

1. Dy=D;.0,S =S.0

2. ar(1)={0,1}, (,a) e S
1. Dy=D.0, Sy =5.0

2. ar(1)={0,1}, (e,a) € &

iff  31:Sol(-C') C v and {
iff  3t":t € gso(Py(C'k—1))(X) and {

It remains to show that this is equivalentite gsol ®x(C,k))(x).1°
(=) By definition of the greatest solutior!, e gsol ®, (C'.k— 1))(x) holds if
and only if:
3. Do, (c'k-1)(x) € Drs So,cryx k1) € Sr, and
4. for allpandf: if ®y(C',k—1)F X ~p {f} thenar(t.p) = {f}.
Given equation (3.11), we conclude frdh, (3) and the definition of path
reachability that
Do,ck)(X) = ODo,ck-1)(X) € 0Dy C 0(D:.0)
So,c®) = 0Sp,ck-1(X) € 0S C 0(S.0)

Further, ifdy(C, k) - x~p { f}, then there two possibilities:

Dt
S

N 1N

15Here, we allow path reachability with respect to existential formdiasstead of just constraints,
if the mentioned variables are freedn For instance, we writ8y3z(xCy A y[f]zA zCX) F X~ ¢ X.
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3. Entailment for Set Constraints

1. If p=gand{f} = {0,1}, thenar(t.p) = {0,1} = { f} follows from
(2).
2. If @y (C' k—1)FX ~y {f} for somep’ with p=0p’, thenar(t'.p') =
{f} follows from (4). FurthermoreD;.0 = Dy in (1) implies that
ar(1.0p') = ar(t'.p’), hence agaiar(t.p) = { f}.
In combination ®x(C,k) - x~»p {f} impliesar(t.p) = {f} for all p and
f, and thus € gsol ®y(C,k))(x).
(<) For the converse, we assumes gsol ®x(C,k))(x) and sett’ = 1.0.

Then we check that satisfies(2), that T satisfies(1), and thatt’ €
gsol @, (C,k—1))(X). O

Lemma 3.12
Let Ai;Ci be a SAT problem over k variables. Then:

Vo d Eer (g /n\ ®4(Ci,k) ifandonlyif o(x) gT(Sol(ﬁ/n\Ci))
i=1 i=1

n

n
Proof. We show that the greatest solution Af ®x(Ci) equalsT (Sol(—~ /\ Ci)).

i=1 i=1
n n n
gsol /\ &x(Gi.k) ﬂ gsol ®y(Ci, k) since /\ ®x(C;.k) sat.
i=1 i=1 i=1
by Proposition 21

{t | Sol(-C;) C 1} by Lemma 311

I
NDE

1

= {t] USOl(ﬂQ)QT}

- frlsd-AC)CT)
i=1

~ T(Sol=AG)) 5
i=1

3.2.2. Dropping the Non-emptiness Restriction

We show that the same reduction idea of SAT to entailment applies, with sligdht
fications, also to the case of possibly empty sets of trees.

Theorem 18 (Entailment for FT(ar) is coNP-hard)
The entailment problem =) ¢’ for FTc(ar) is coNP-hard.
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®ZCk) = Dpk)

Die) = [xCz

®Z(1p) = x{0,1} ra(x)AIX (XX A DZ(p))

®Z0p) = x{0,1} Ara(x)AIX (XO]X A DZ(p))

&Ji(Zp) = x{0,1} Aa(x) A Ixgxaxz (X[1]x1 A X[0]x2 A X1 CX3 A X2 CX3 A &3)2(3 (p)
P(false = P(pKee)

®y(2p) = N(y) A3y (LY AYOlY APy (p)

de) = |y=z

Figure 3.5.: Reducing SAT to Entailment for RT{ar)

Corollary 19 (Satisfiability of Positive and Negative F1-(ar) Constraints)
The satisfiability problem of positive and negative constraints(&r) is coNP-hard.

The proof is by adaptation of the proof of Theorem 16 in the previous section. There,
we have exploited that we can express singleton sets with( & constraints. This is

no longer the case for KT ar) constraints. For illustration, observe that the following
implication holds over non-empty sets of feature trees:

x{}ra() Ayt raly)  Eergr) XCYy (3.12)
Over possibly empty sets it does not. Only a weaker implication holds:
x{}ra)Ay{inaly)  Fergr)  XCYVycex (3.13)

In analogy, Property (3.10) on page 66 does not hold @&(e¢f7') because the empty
set is always a solution faby(false k). Only the following weaker equivalence holds.

a pra) Py(falsek) iff  a(y) C T({0,1}4) (3.14)

If the constraint system can express non-emptiness, we can correct thishgas-
quiring X to denote a non-empty set in thelause of Figure 3.4:
dy(e) = x#£O0AX{}AalX) (3.15)

Unfortunately, in FT (ar) we cannot express non-emptiné8&sWe adapt Proposi-
tion 3.9 as follows in order to prove Theorem 18.

18|n contrast, set constraints over constructor trees can if the signatusérsoconstants. Therefore,
the adaptation (3.15) indeed works for standard set constraints as wersfigt0]. There, of course
dy(€) is defined as=a.
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3. Entailment for Set Constraints

Proposition 3.13 (Reducing SAT to Entailment for FTc (ar))

For all x,y,z€ ¥ there exists a functio®Z from clauses C and integers k to existential
FTc (ar) formulas, and an existential ETar) formula¢’§(faI3e) such that for all C:

1. The sizes aob(C,k) and ¢’§(false) are proportional to k.

2. For all SAT problemg\[_, C; over k variables the following holds if y:

n n
/\ ®%(Ci.k) A@(false) =pr () xCy  iff A\ G is non-satisfiable.
i=1 i=1

The reduction is given in Figure 3.5. It adapts the reduction of Figure 3.4 ie-the
clause, and gives an special definition for the formula associated witlethsetalse
Instead of forcing all maximal paths % (C, k) to the singleton sefa}, it asserts
all maximal paths irdZ(C, k) to be included in the fixed, and all maximal paths in
¢’§(false) to be equal t@. The proof of Proposition 3.13 is completely analogous to
the proof of Proposition 3.9, except that all notions related to valuations (suah as:
containsf3, B C 1, T(B), etc.) must be made relative to some sdhat denotes the
valuation ofz.

3.2.3. Entailment with Existential Quantifiers is coNP-hard

We apply the idea of the two previous sections to the entailment proliiems: ;1)

Ix¢’ and¢d ):,_p( FT) Ix¢’ with existential quantification but without arity constraints
and show them to be coNP-hard, too. The idea still rests on Henglein’s and Rehof’s
idea from [89], but the details are original. The reduction works for both sets of infi-
nite trees and sets of finite trees. In the following section, we impiagerésult by
showing entailment with existential quantification to be even PSPAC&-har

With existential quantification, the reduction of SAT to an entailment problezarbes
simpler. In the previous sections we have encoded an inconsistent SAT problem by a
set such that all trees in the set haactlyall paths in{0,1}* and are either com-
pletely labelled witha or such that selection at all the paths{l 1}* yields the same

set. With existential quantification it suffices to encode an inconsistehipsgblem

by a set of trees which contaat leasta given set of paths.

Proposition 3.14 (Reducing SAT to Entailment for F‘Ige with Existentials)

For all x € ¥ there exists a functioly from clauses C and integers k to existential
FT”Qe formulas such that for all C:

1. The size o¥x(C,K) is proportional to k.
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3.2. Hardness Results on Entailment

W(C.k) = AL P(p)

Py (e) = true

Getpx) = UK ADy(p))

Wy(fp,x) = 3IX(XOIX APy (p))

PP = FaTexa (X[Uxa A X0 A X CX3 A X2 Cxa A W ()

Figure 3.6.: Reducing SAT to Entailment for ng’?’with Existential Quantifiers

Jy [ Xy 1

Yo \

%y Y[Olyo A zCYo O/\l
1

37 | Y[Ay1 A zCya : :

0 0
37 707 / /

Figure 3.7.: An Example for the Reduction of SAT to Entailment for FTvith Exis-
tential Quantifiers -

2. For all SAT problemg\{__, C; over k variables the following holds:

n n
/\ Wx(Ci.k) o+ (7 a) Wx(false k) iff /\ Gi is non-satisfiable
i=1 i=1

Note the distinction of this Proposition to Proposition 3.9: while the latter reg)the
conjunction of\[L; Wx(Ci, k) andWy(false k) to entail the (quantifier-free) constraint
xCy, Proposition 3.14 requirgki’_; Wx(Ci, k) to entailWy(false k) which does contain
existential quantifiers.

The functionWy is defined in Figure 3.6. Again, the size of the formiagfalse k)

and Wy (C.k) is O(k-n), i.e, polynomial in the size of the given instance of SAT.
Their construction is similar to the one of Figure 3.4 but, as promised aboilystr
simpler since it does not mention arity constraints or label constraints ataiclause

Cy = —u1 V uz over variablesi, up, andus which we considered above will now be
mapped to the formul&x(Cy,k) in Figure 3.7. In every solution o¥y(Cy, k), all
feature trees in the denotation wimust have at least the paths in the tree depicted
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3. Entailment for Set Constraints

on the right; they may have further paths and arbitrary labellings, though. In order to
justify this reduction, we must adapt Property (3.9) which does no longer apply.

We say that a feature traeveakly contains a valuatio, written3 €y, 1, if
Vp, p a prefix opr :p€eD;.
By generalisation, we defif@Cy, T if V3 € B: B €y T, and similarly we define
Tw(B) =det {1 [BCwT}
Note thatT,,({0,1}¥) is not a singleton anymore. Then the following properties hold.

n n

o Eprirry \ Wx(Ci k) iff a(x) C Tw(Sol(- A G)) (3.16)

i=1 i=1

Lemma 3.15

If, for all x € ¥/, there exists a functiolW, with properties (3.16) then claug@) in
Proposition 3.14 holds.

Proof.

n
/\ pr(Civk) ‘:[P+(:’}'r]“) LPX(faIse k)
i=1
n

iff  Vod=pera) \ Wx(G,K) impliesa =g+ (gq) Wx(falsek)

i=1
n
iff Voo =perq) \ Wk(Ci k) impliesa(x) C To({0,1}) by (3.16)

i=1
iff  Tw(Sol(= A\ Gi)) € Tw({0.1}%)
i=1

n
iff /\ Ci is non-satisfiable by3.16) O
i=1

The remainder of the proof is closely following the lines of the one in Section 3.2.1.
We do not elaborate on it further since the following section contains a strorsygi. re

3.2.4. Entailment with Existential Quantifiers is PSPACE-hard
We prove the following results.

Theorem 20 (Entailment with Existential Quantifiers is PSPACE-hard
The entailment problem =g+ (#7) FX¢1 for both FTc and FT2° is PSPACE-hard.
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3.2. Hardness Results on Entailment

Proof. Follows from Proposition 3.16 on Page 75. O

Corollary 21 (Negation and Existential Quantification for FT - and FT¢)

Satisfiability of positive and negative existentialgFTormulas, and emptiness of
positive and negative existential FTformulas is PSPACE-hardp(A ~3x1$1 A ...

—3Xnbn).

We reduce in linear time the inclusion problem between regular languages REG ove
finite words to the entailment problei=+#7) 3%¢’ over FT2°. Since the problem
REG is well-known to be PSPACE-complete [70, 103], this proves PSPACE-tsrdne
of entailment with existential quantifiets.

Interestingly, the reduction works both for the case of sets of infinite trees dimitef
trees: Notably, it is possible to encode the Kleene star without referrimgfitote
trees. This is in contrast to our earlier result fordHIL41] that suggested the need for
infinite trees (or sets of infinite trees) for the encoding of the Kleene starcoivel
drop this restriction in [145].

We consider regular expressions over a finite sulfg€t # defined as follows:
R = ¢ ‘ f | R* | RIUR ‘ RiR> wheref € %o

Note that7o C # allows arbitrary large alphabets singeis assumed to be infinite.
Every regular expressidR defines a non-empty sét(R) of finite words overfy.

Proposition 3.16 (Reducing REG to Entailment with Existential Quantifiers)

Let x and y be arbitrary variables. For every pair of regular expressiopaifd R
there are existential F¥ formulas®(x, Ry,y) and ©(x, Ry, y) whose sizes are linear
in the sizes of Rand R, such that

O(X.Ry,Y) Fo+(r7) O(X.Rp,y) ifandonlyif L(Ry) C L(Ry).

3.2.4.1. First Solution: Infinite Feature Trees

An immediate idea of the proof is to encode every regular set of words (ovardeat

as a set of feature trees all of which share the regular structure: namely sucHlthat a
trees ino contain all paths in2(R) and are labelled witla at all paths inZ(R). For
instance, one may encode the finite §tl11} as the set of all feature trees with

{(1a),(111a)} C S.

17Essentially the same proof also applies to entailment far.Flhe details will be discussed at the
end of this section.
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3. Entailment for Set Constraints

and the infinite sefe,1,11,...} as the set of all feature trees with

{(¢,8),(1,8),(11a),...} C .

This information can conveniently be represented by a single feature tree [Ii4d]
set described thus is given by all feature trees that contain at leasiftingation in
this tree. Here are some typical regular expressions and the associagd tre

fU AN foh .
g /\a g f
h AQ
i 9 2
(fug* (&) (fg*h)* X ?f

A consequence of this encoding is, however, that infinite regular languages are neces-
sarily encoded by sets of infinite trees. Hence, for sets of finite treesrtbagling only

works forstar-freeregular expressions that induce finite languages; since the inclusion
problem for languages defined by star-free regular expressions is coNP-comglete, w
obtain only coNP-hardness for the entailment problem over sets of finite treegeB

can do better.

3.2.4.2. Better Solution: Finite and Infinite Feature Trees

Instead of encoding a regular languageR) by a set of feature trees all of which have

all paths in£(R) and are labelled witla there, we encode it by a setof feature

trees that contains one tree that has all the ppths (R) and is labelled witta there.
Intuitively, this is dual to the encoding above. The regular language is not encoded by
an upper bound on the sets (which affects the shape of all contained trees) bat a low
bound (which asserts the existence of one).

The proof covers the remainder of this section. In Figure 3.8 we define an existentia
FT2® formula®(x, R,y) for every regular expressidRand variables.y. The formula
O(x.R)y) clearly has size linear in the size Bf Define theprojection p (o) of a

seto to some pattp by p~1(o) = {U' | existstc 0: T.p="T1'}.

Lemma 3.17

Leta be a variable assignment and R a regular expression. ﬁﬁeﬁﬂf([) O(x,R YY)
ifand only ifYp € L(R): p~1(a(x)) D a(y).

Proof. By structural induction oveR. Leta be a variable assignment.
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3.2. Hardness Results on Entailment

O(x.g,Y) = X2y

O(x, f,y) = Jz(x2zAZfly)
OX,R1IUR2y) = O(XR1Y) AO(XRyY)
O(x,R",y) = 3Fz2(zDYyAO(zRz) AXD2)
O(X,RiR2,Y) = J2(0(x,R1,2) AO(z Ry, Y))

Figure 3.8.: Reducing Inclusion of Regular Languages of Finite Words to Entailment
for FT2° with Existential Quantifiers

& OfFpr(gr) OXeY) Iff  aFpi(gq)x2y
iff e '(a(x)=a(x)2a(y)

fo o =prrr) O fy) iff O Fprrq) FZ(XDZAZf]y)
iff  30:0,2 0 =pi(gq) X221 Zfly
iff  Jo:fL(a(x)) D aly)
For the downward implication notice thatz+— o \:w(f(f) x2zAZflyimplies
thato.f is always defined, and thdt *(a(x)) D f~1(o); hencef 1(a(x)) D
f=1(0) D a(y). For the upward implication simply set= f~1(a(x)).
R OFp+rr) OXRYY)
iff o =p+(rq) I2(2D2YNO(ZR ) AXD 2)
iff 30:0,z2— 0p+(rr) Z2YNO(ZR Z)AXDZ
iff 30:0,2— 0 =g+ (gq) 22yAXDzandvpe L(R): p~H(0) D0 (IA)
iff Jo:a(x)DoAcDa(y)andvpe L(R):pL(o)Do (**

(The upward implication of the last equivalence holds sind®) C L(R").
The downward implication holds sine# € £(R) : p~1(0) D o impliesvp,q e
L(R):q Y(p~Y(0)) 2 g %(o) D 0, and so on.) The last formula (**) is equiva-
lent to

Vpe L(R): p Hax) 2a(y) (3.17)

The downward implication is simple. For the inverse direction assume (3.17)
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3. Entailment for Set Constraints

and define
0 =det [P Ha(¥) | peL(R)}

Now, a(x) = €~ 1(a(x)) D o holds by definition since € £L(R*), ando D a(y)
holds sincevp € L(R*) : p~1(a(x)) 2 a(y). Furthermore, for alp € L(R"),
and

p~i(o) = {U|existstco:t.p=1}
= {t|Vae L(R): T ep *(q Ha(x))}
= (Wap™(a(x) lgeL(R)} 2 o©

RIURz: O =p+(g7) O(X,RIURR,Y)
iff o =p+(ra) OXR1Y) AO(X Ry, Y)
iff Vpe L(Ry):p~H(a(x) 2a(y) andvg e L(Rp) :q~(a(x) 2 a(y)
iff Vpe L(RLURy): p Y(a(x) 2a(y)

RiR>: Note that we have assumédR;) # 0 and L(Ry) # 0.

o Fp+(r7) O(X R1R2,Y)
iff o =p+rq) FZ(O(XR1,2) ANO(Z Ry, Y))
iff 30:0,2— 0 =p+(57) O(XR1,2) AO(ZRy,Y)

iff 3s VpeL(Ri)VaeL(Ry): p H(a(x)) D oandg (o) Da(y) by (1A)

Due to our assumption that(R;) and L(Ry) are non-empty, the last clearly
formula is clearly equivalent tap € L(R;Rz) : p~1(a(x)) D a(y). O

3.2.4.3. Proof of Proposition 3.16
Let a andb two distinct labels.

(=) Assume thatZ(Ry) ¢ L(Ry), so that there existpg € L(Ry) such thatpy ¢
L(Ry). Define a valuatiom by

aly) = {a}

a(x) = {r

D; = prefix-closuré£(RiURp))
Vpe L(Ry):T1.p=a Vqe L(R\Ry) :t.g=b
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where prefix-closureS) is the smallest prefix-closed supersetSofClearly, a
defines a valuation into sets of feature trees. From Lemma 3.17 we obtain that

O Ep+(rr) O RLY), ando e+ 57y O(X,Re.y), because, *(a(x)) = {b}
and{b} 2 {a}. Hence®(x,Ry,y) = O(x,Ry,y).

(<) AssumeL(Ry) C L(Ry). Then apparently for atk
(Vpe L(Ry):p Ha(x) 2a(y)) implies (Vpe L(Ry):p H(a(x) 2a(y)).

By Lemma 3.17, this is equivalent to saying that forcathe following holds: if
o =p+(rr) O(X R, Y) thena Eq+ (g 7) O(X, Ry, Y); thatisO(X, Ry, Y) =p+ (g
O(x, Rz, y). D

3.2.4.4. Dropping the Non-emptiness Restriction

We check that Proposition 3.16 also holds for the domain of possibly empty sets of
feature trees. We check Lemma 3.17 again: the interesting direction is tHeoane

left to right. To show this, piclR and an?( ¥ 7')-solutiona of ©(x,R y). We make a
case distinction on emptinessafx) in order to prove

Vpe LR :p Ha(x)) 2 a(y) (3.18)

a(x) = 0: By induction oveR one shows that this impliesy) = 0 under the assump-
tion thata =»(7r7) O(X,Ry). Hence (3.18) holds trivially.

a(x) # 0: If a(y) = 0 then again (3.18) holds trivially. Otherwise, one checks that
is a®P*(FT)-solution of©(x,R,y). Then (3.18) follows from Lemma 3.17.
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3. Entailment for Set Constraints

3.3. Discussion and Related Work

3.3.1. Set Constraint Systems

In this section we compare set constraints over feature trees witasthset con-
straints. We briefly survey classes of standard set constraints (for exbeistive
overviews see [5, 88, 157]), and we consider two standard set constraints osaig,cl
namely projectionxga(‘lg(y) and term inclusiona(x,y)Cz

3.3.1.1. Standard Set Constraints

A general set expressionie built from first-order terms or a(€), unione; U ey,
intersectione; N e, complemeng®, and prOJectlora( )( e) [85]. All set constraints
mentioned below are interpreted in the dom&ir") of sets of constructor trees. The
denotation of the projection teragjg(o) is defined by

-1

a(k) (0) =def {T ‘ Eh—lv -5 Tns a(T17 e Te=1, T Tigea, - - ,Tn) € 0} (319)

where 1< k < n = ar(a), and yC (ﬂ(x) holds under a?(T)-valuation a if
a(y)Ca (x)). A general set constrairis a conjunction of inclusions of the form

eC €. /& positive set constraints built from positive set expressiorteat do not

contain the complement operator. d&finite set constrair[85] is a conjunction of

inclusionsg C e between positive set expressions, where the set expressioms

the right hand side of an inclusion are furthermore restricted to contain onibles,

constants and function symbols and the intersection operator (that is, no projection

or union). Heintze and Jaffar have called this class definite because ewisfiable

constraint of this class has a least solution.

Charatonik and Podelski [42] define the classeif constraints with intersectiofis-
clusions between set expressions built from variables, constructors, arseatien

only) and show them to be equivalent to definite set constraints. They also define the
class ofco-definite set constrainfd4] whose (flattened) syntax is as follows:

Y= acx | xCyiU...Uyn | xCa(®) | xCayg(y) | WAy

An essential property of co-definite set constramts is that they have a gjreate-

tion if satisfiable (over finite as well as infinite trees). This propéstgual to the

least model property of definite set constraints; hence the name “co-definitadr-Ot

wise, both systems are not dual to each other. Devienne, Talbot, and Tison [58, 59]
have extended both definite and co-definite set constraints by so-called membershi
expressions. Membership expressions are set comprehensions whose body is an ex-
istentially quantified conjunction of inclusion& e between first-order terms and set
expressions.
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At the lower end of the scale of expressivenedemic set constraintare inclusions
between first-order terms and no further set operators [BBJusion constraints over
non-empty seties [142] are inclusion between first-order terms (their syntax co-
incides with the syntax of atomic set constraints) interpreted over non-esefsyof
trees.

3.3.1.2. Projections

The selection constrainif |y in our set constraint system ETar,U) corresponds to
the projection constraintga(’k%(y) in standard set constraints. There are two differ-

ences, though.

First, recall that the constraixif |y requires all trees in the denotationto have
the featuref. In addition, it constrainy to the projection of at f: sox[fly is a
constraint on botkx andy. In contrast, the projection constra'm;a(‘kl(x) does not
restrict the possible values xffor every value ok there is a solution ga*kl(x). An
alternative set-up of our constraint system would have used two constraiepsésent
the meaning ok[f]y, namelyy = f ~1(x) to express projection dtandx[f]] to require
definedness of. The latter one and the labelling constraix) are used to define
non-trivial sets. In standard set constraints, this is expressedtltgrmsuch asa(y),
where the denotation @f{(01,...,0y) is defined as follows.

a(01,...,0n) =def {a(t1,...,Tn) | TL € 01,...,Tn € On} (3.20)

A third alternative would have been a system based on feature terma(lfke),
a(f:x...), (f:x), and(f:x...) whose denotation is defined similar to (3.20) with the
additional flexibility that label, feature, and arity information can belfrecombined

or piece-wise omitted. Amongst these alternatives, the systenfaflU) is intrigu-
ing by its simplicity and its similarity to the feature constraint sgs€FT over trees
which it analyses. Furthermore, the semantics of selection constraiRfs-ifar, U)
seems most appropriate for the analysis of selection constraints of CFTxaseple
Dsaii3 On Page 94.

An interesting property of the selection constraint is the validity of thewalg im-
plication over?(F 7).

X[fly — (x=0+ y=0) (3.21)
Given two distinct feature$ andg, we can even express that emptiness of one variable

is equivalent to emptiness of another one (we exploit this in Chapter 4):

dz(ZfIxAZgly) < (Xx=0<y=0) (3.22)
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In contrast, the projection constraxita *11(y) does not entak=0«>y=0, since it has
a solution that mapg to the se{ b} andx to the empty set. However, in combination
with a set constructorCa(y) a similar formula (albeit constructor dependent) hdfds:

xga(yl,y)Aylga(‘ﬁ(x) —  (x=0+ y1=0) (3.23)

In FTc(ar), we can express the projection constrati(_ﬁa@(y) as follows:

[xCad(y)] =der X (X[KxAa(xX) AXCy) (3.24)
Theorem 22 below makes precise what “expressing” means. Intuitivelylitapahd
selection constraints in encoding (3.24) separate the two services of the iproject
operatora *k%: applied to a seu, first determines a subsst of o of trees that are
labelled witha and have & subtree, and then collect the' subtrees of all the trees
ing’.19

Constructor trees can be embedded into feature trees; denot§ with — 77 the
canonical embedding which we have mentioned on Page 26. On constructor trees, the
constraint system CFT is a refinement of the constraint system RT of infinitagonst

tor trees [50] that is used in Prolog Il [51]. To show this, it was proven in [1B&{

the embedding-] (extended to first-order connectives) preserves validity of arbitrary
first-order formulas over RT.

Analogously, FTE (ar,U) refine co-definite set constraints in a sense made precise by
the following theorem. Ifo is a P(7)-valuation then lefa]] the 2(F T')-valuation

that maps alk to {[[t]] | T € a(x)}. Consider the embedding] of co-definite set
constraintap into FTc (ar,U) constraintsp as defined by the clauses (2.5) and (2.6)
on Page 28 and clause (3.24) above.

Theorem 22 (Embedding Co-definite Set Constraints wrt. Greatest Sotions)

For all co-definite set constraintg without constraints of the form&x, the greatest
P(‘T)-solution ofp and the greates®( ¥ 7)-solution coincide up to the canonical
embeddind]-]] of constructor trees into feature trees:is the greatest solution aff if
and only if[a] is the greatest solution diy].

Proof. Straightforward. O

Notice that this theorem would fail to hold if the semanticoffflo’ did not require
all trees ing’ to have the featuré. As an experiment, assuming the slightly weaker

18The inverse implication, of course, does not hold because the rightdidgedoes not mention the
labela.

Notice in passing, that the inverse inclusiapt(y) C x cannot be expressed in FTar). Doing
so0,e. g, in order to embed definite set constraints [85], would probably reguierm-based constraint
syntax as mentioned on the previous page.
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definition: o[f]o’ if and only if o’ = {tT' | 31 € & : 1[f]T'}; then the greatest solution of

xCalyyAny=baxCa(zgnz=c

would mapx to the empty set (ib # c), while the greatest solution of
xCy nafy) AY{1} AYTIyAb(y) Ay{}
xCZAa(Z) NZ{1} AZ[LzAc(2) AY{}

would mapx to the set of all feature trees that are labelled aithut that do not have
the feature 1.

Co-definite set constraints can express inconsistency, for example by
ACXAXCh & — ifa#b.

whereas this is impossible in ETar, U). In particular, FT (ar,U) constraints cannot
express the co-definite set constraanix. However, it can be expressed in the first-
order theory of FE (ar,U) as follows:

Fy(aly) Ay{} A—=b(y) Aycx)  whereazb.

We conjecture that, using this trick, we can embed the full first-order theocp-of
definite set constraints into the first-order theory of-far, U) such that validity is
preserved.

3.3.1.3. Finite versus Infinite Trees

Consider the following two constraints:

N1 =det Xf]X
N2 =def xga(’l%(x)

Over sets of finite trees, the ETar, U) constraintn, impliesx=0, because for every
solutiona the selectior(x). f must be defined anai(x).f C a(x) holds; hence every
tree ina(x) must have the infinite patiff ... and therefore be infinite. In contrast, the
projection constraim has the solution(x) = {b,a(b),a(a(b)),...} which is a set of
finite trees only.

3.3.1.4. Term Inclusion and Greatest Solutions

The set constraira(x, y)C0 (expressible aa(x,y)CzA zCaA zCh if a# b) has two
maximal but incomparable solutions over sets of constructor trees, namely the one
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3. Entailment for Set Constraints

that map one variable to the empty @etind the other one to the full domai(7).
Maximality holds for both because the following equivalence is valid.

axy)Cd + (x=0vy=0) (3.25)

In other words, the constraiatx, y) C0 has no greatest solution because emptiness of
andy is not independent from each other. Similarly, the constrijrty)C f (a,a) U
f(b,b) has two maximal solutions but no greatest one.

Co-definite set constraints (over sets of constructor trees) and inclusiotracotss
over sets of feature trees are two options to avoid this dependency. A thioth aptd
exclude the empty set [142].

Co-definite set constraints.If only constants or monadic terms are allowed on the
left hand side of an inclusion, the critical dependency cannot arise.

Constraints over sets of feature treesThe co-definite set constraiatx,y)C0 cor-
responds to the RI{ar) constraintzC0 A z{1,2} A a(z) A Z]1]x A Z[2]y which
entailsx=0 A y=0 (that is, thatboth xandy denote the empty set) due to for-
mula (3.21).

Constraints over non-empty sets of treeslf the empty set is excluded from the in-
terpretation domain, there are greatest solutions even if terms aretedl ot
the left of an inclusion. For example, when Mishra’s set constraints (see Sec
tion 2.3.2) are interpreted over non-empty path-closed sets, the critical depen-
dency cannot arise. To see this, observe éiety) Cz ++ gga(‘ﬁ(z) AyCa,(2)
is a valid equivalence over path-closed sets (for the simple proof, see [43])

The independence of emptiness between neighbouring projections can also simplify
the satisfiability test for systems of set constraints. Notice that th@nfmlg implica-
tion between co-definite set constraints is not valid.

a(x1, X2)Ca(yr, Y2) — (xaCy1A%Cy2) (3.26)
In contrast, the analogous FTmplication
X[UX AXCYyAY[1ly — XCy (3.27)

is valid, and is part of the satisfiability check for £{lar) presented in Section 2.2.1.
Notice that implication (3.26) does hold over sets of constructor trees under the addi-
tional assumption that bothh andx, denote a non-empty set. So it is a valid implica-
tion in the constraint system Ines [142] that excludes the empty set globally from the
interpretation domain of all variables.
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3.3.1.5. Decidability and Complexity of Set Constraints

Various decidability and complexity results have been obtained for differasses of
set constraints. For many the complexity of the satisfiability problem foruthelbss
of standard set constraints is very high.

Heintze and Jaffar [85] show the satisfiability problem for definite set canssrto

be decidable, thereby giving the first decidability result for a class of setraamtst

Aiken and Wimmers show the classpdsitive set constrainte be decidable in NEX-
PTIME [10]. Gilleron, Tison, and Tommasi prove decidability for the satislis
problem of positive set constraints using so-called tree set automata [7efjmBaa,
Ganzinger, and Waldmann [19] have noticed the equivalence of positive set auisstrai

to a certain first-order theory called theonadic classand could thus show the sat-
isfiability problem of positive set constraints to be NEXPTIME-completatet, the
decidability result has been extended to include negated inclusion consegirdg's

by various researchers [8, 39, 75, 199], and to projection by Charatonik and Pachol-
ski [40]. None of these extensions changes the worst-case complexity of the satisfia-
bility problem. Aiken, Kozen, Vardi and Wimmers, have studied complexity ti$%a
ability for various subclasses of positive set constraints [7], defined hyctests on

the arities of the function symbols in the given signature.

Charatonik and Podelski show that the satisfiability problem of both set constraint
with intersection and co-definite set constraints is DEXPTIME-competed4]. The

result on set constraints with intersection has also settled the comyptéxhe sat-
isfiability problem of definite set constraints. Devienne, Talbot, and Tison [58, 59]
have applied tree automata techniques to solve set constraints with mbipleers
pressions (with respect to both the greatest and the least model semamdics)uld

show that membership expressions do not change the DEXPTIME-completeness of
the satisfiability problem for either definite or co-definite set constraintsffect the
greatest-solution property of co-definite set constraints.

The two set constraint systems without any set operators apart from termucbiost,
atomic set constraints and inclusion constraints over non-empty sets Ines [85, 142]
have a cubic satisfiability problem [142]. For atomic set constraints, thistneas
implicit in the existing literature [84, 85]. In contrast to the polynomial Satbility,

the entailment problem for both classes is infeasible: we show it to be coidP-ha
in [140].

3.3.2. Tree Constraint Systems

In this section, we compare systems of set constraints with systems obtrsgaints,

both with respect to equality constraints and ordering constraints. Figure 3:9 sum
marises the relationship between some of the mentioned constraint systemiees

and sets of trees. The constraint systems occupy the nodes of the cube. They are
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feature trees

FTc(ar,u),
FT- clar,L)
/ FTc(ar), ...
FT FTe )
ar,=
CFT s
ordering constraints
tree constraints set constraints
equality constraints
tree prefixes co-definite sc,
types Ines, ...
7/
FT%(ar,=
RT clar.=)
Ineq=)

constructor trees

Figure 3.9.: Related Tree and Set Constraint Systems

86



3.3. Discussion and Related Work

arranged along three dimensions that tell whether a constraint system talks @fout c
structor trees or feature trees (top — bottom), about equality or an orderatgmnel
(front — back), and about trees or sets of trees (left — right). The edges of the cube do
not imply any further formal relationship between the constraint systerhg aades.

3.3.2.1. Equality Constraints over Sets and Trees

Set constraints over non-empty sets of trees are closely related toasohsystem
over trees. This relation is tightest on the fragment of equality consraihtwas
noticed in [142] that the first-order theories of CFT and Ines coincide when their con-
straint languages are restricted to equality constraints. The analogousheasisl

for FT2(ar) and CFT. Intuitively, the following Theorem 23 says that we can solve
equality constraints over Ef(ar) by unification. (Of course, we do not obtain the
quasi-linear complexity of unification [197] by simply applying our algorithm to an
equality constraint witkx=y replaced bCy A yCx.)

Theorem 23 (First-order Theory of Equality Constraints)

The first-order theories of equality constraints (including arity constraints) ovay f
ture trees and over non-empty sets of feature trees coincide.

Proof. This follows from the fact that all axioms of the complete axiomatisation of
CFT [20, 197] are valid for non-empty sets of feature trees.

Amongst the five axioms of the theory CFT in [197], four are immediately seen to
hold over?* (#7T): Functionality of featuresyxvywz(x(f]y A x[f]z— y=2), clash
between different labelsyx(a(x) A b(x) — —) if a # b, clash of feature selection
at a tree with inappropriate arityxvy(x[f]ly A x{g}) if f ¢ {g}, and the axiom
vxvy(x{ fg} — JyxXfly). The first three are actually part of our satisfiability test for
FTc(ar) in Section 2.2.1. The fifth one is based on the notiodeterminantsA de-
terminant is a conjunction of the form=ay(f1:y;) A ... A xa=an(fn:y,) for pairwise
distinct variablexy, . . ., Xn, and looks as follows (wheréb denotes the universal clo-
sure ofd):

VA, .. Xn(a=a1(F1:¥1) A ... Axn=an(Tn:¥,)) (3.28)
Its validity in P* (FT) is again easily seen. 0

Notice that axiom (3.28) does not hold (and so Theorem 23 fails) when the empty set
is admitted. For example, consider the following instance of (3.28),

vxvydlz(z=a(f:x.gy)) = Vxvy3lz(a(z) Az{f,g} AZf]XAZQy).
and notice that it does not hold ov&( ¥ 7'), because

o =prr) ~32(z=a(fix,gy)) if a(x) =0anda(y) # 0.
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3.3.2.2. Set Inclusion Constraints versus Tree Ordering Constraints

The constraint system ETof ordering constraints over feature trees (not sets) is the
second closest relative of ETar,U) [141, 143, 145]. In particular the fragment £T
is, roughly, F transformed into a set constraint system.

The constraints in FT coincide with those in FI¥ (no arity and no union constraints)
where inclusion constraints_y are replaced by the inverse tree ordering constraints
y<x. FT< constraints are interpreted over feature treagose labelling functiot.

may be partial on the tree domdi. The ordering constraint is interpreted by

1<t iff D;CDyandL; CLy (3.29)

In the following chapter, we exploit the close relationship between tree reomist
and set constraints over non-empty sets by applying techniques to the solving of set
constraints that have been originally developed for tree constraint systems.

¢ The satisfiability test for FI%(ar) in Section 2.2.1 is essentially the same as the
one we have given for ET[143].

e Surprisingly, also the cubic entailment test for FTan be transferred almost
unchanged to F‘;F [143]; see Section 3.1.

e The same holds for the coNP- and PSPACE-hardness results for entailment with
existential quantification [141]; see Section 3.2.

¢ An extension of FT, called F1 (sort), that allows the labels of feature trees
to be partially ordered is discussed in [137]. It was shown that the shtigfia
test for FTx (sort) remains polynomial under certain assumptions on the partial
order of labels. It seems straightforward to also extend the satisfyatieit for
FT2(ar) to FT®(ar, sort) along the lines of F (sort).

Notice in passing that higher fragments of the first-order theory of &Td FT2° do not
coincide (see the Footnote 14 on Page 55.) Faor,R¥e have shown that entailment
with existential quantification is PSPACE-complete, both for the casesité fand
infinite trees [141, 145]; the full first-order theory of ETs undecidable, in both the
finite tree and the infinite tree case [145]. Forl®ar) and F1-(ar), the decidability
question and a precise complexity characterisation of entailment wittessia quan-
tifiers is open. Undecidability for the first-order theory ofdar, U) is likely [186].

3.3.2.3. Ordering Constraints over Feature and Constructor Trees

There are different options to extend the donfainf constructor trees by an ordering.
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e One option is to enlarge to also contairtree prefixe$142], that is constructor
trees that may have unlabelled maximal paths. Tree prefixes can be ordered na
urally according to equivalence (3.29). @nthis ordering collapses to equality.

e A second, equivalent possibility is to distinguish a special constant sysreal
define an order by requiring

o < f(f) and f<t iff fE)<fE)  (3.30)

for all f and tree sequencéd’ of appropriate length. Paths leadingstgorre-
spond to maximally unlabelled paths in tree prefixes.

¢ A third option is to fix an ordek on labels and to consider the ordering
1<t iff Dy=DyandlL; <Ly (3.31)
wherel; < Ly extends< path-wise to trees.

Orders on various classes of constructor trees have been considered in the conte
of type systems for programming languages [34, 134]. Mostly, types are modelled
by finite constructor trees over a signature that contains a binary function symbol
(arrow), where the ordering on trees with the arrewas their top-level constructor

is monotonic (covariant) in the second position but antimonotonic (contravariant) i
the second one (see also Page 158 for the subtyping rule on functions). In this context,
the orderings (3.29) and (3.31) roughly correspond to what is calbedstructural
andstructural subtypingHenglein and Rehof show entailment of ordering constraints
with respect tostructural subtyping to be coNP-complete [89] for finite types, and,
more recently, for infinite types [90]. None of the corresponding hardness results
relies on the arrow constructor. The entailment problemmtor-structuralsubtyping
constraints is PSPACE-hard [90] but the exact complexity is open.
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We consider a concurrent constraint programming language over records, that we
model by means of the constraint system CFT [197] over possibly infinite featage tre
As common in concurrent programming, we consider non-terminating computations
meaningful. Typical examples for applications that are intended to run forevedenc
operating systems or web servers. We define a set-based analysis fongiada in
terms of set constraints over feature trees, and we prove that itslétedhevitability

of a class of run-time errors. We proceed in two steps: First, we con$idesublan-
guage that contains only unguarded clauses and thus corresparmssteaint logic
programming104]. This allows us to use results from the theory of (constraint) logic
programming [105, 118] to prove correctness of our analysis for this fragment. Sec-
ond, we adapt our result twoncurrent constraint programsy considering guarded
clauses.

Constraint Logic Programming. The standard semantics for terminating constraint
logic programs is given by tHeast modebf theircompletior{46, 118]. This choice is
natural for programs that always terminate because the least model is giviépioy a
cedure applications. (., goalg that terminate successfully in finite time. Tradition-
ally, constraint programs have been interpreted @inée trees(even though modern
Prolog dialects have followed Prolog Il [50, 51] in providing constraints oveniiefi
constructor trees).

In contrast, the standard semantics for possibly non-terminating constramplagi
gramg? is given by thegreatest modedf the completion. Moreover, the natural inter-

20In logic programming the termperpetual processdsas been used synonymously [118].
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pretation of non-terminating logic programs is ovginite trees[118]. The greatest
model is needed to give semantics to infinite computations that build datausésiof
arbitrary size. For example, an infinite data structure is needed to exglanfinite
stream of messages.

So far, set-based analysis for (constraint) logic programs has focussednometiang
computations and hence striven to approximate the least model semantics [69, 86—
88,132]. Heintze and Jaffar state explicitly that they do not see any use fdegjrea
models [87]. Furthermore, set-based analysis has usually considered (cykstgae
programs over finite trees. We base our set-based failure diagnosis on greatest mod-
els and constraints over infinite trees.

With every CLP progranD we associate a set constraint over feature t¢gesuch
that the greatest solutiagsol¢p) of ¢p is an upper approximation of the greatest
model of the program’s completion.

gm(D) C gsol¢p)

In order to prove this, we apply a technique that is well-known from abstraairg-
tation [53]. We associate to every CLP progr@nover feature trees an abstract pro-
gramD¥ over sets of feature trees and prove that the semantics of the lattenfipar
approximation the semantics of the former. More preciselyifD) andgm(D#) are
the greatest models & and D, respectively, then for every predicate sympahe
maximal element igm(D¥)(p) includesgm(D)(p). Second, we prove that the great-
est model of the abstract progrddfi and the greatest solution ¢f coincide (again,
up to the projection to maximal elements).

We can relate this approximation result of ttienotationalsemantics to thepera-
tional semantics by characterising finite failure ovwginite treesthrough the greatest
model?? This allows us to infer finite failure of the CLP program from emptiness of
some variable igsol¢d).

Our analysis of CLP programs is more flexible than the one that we give in the pa-
per [171]. There, we require the constraints in program clauses to be solved before
they can be analysed; here, we show how to analyse CLP program which freely use
constraints in unsolved form.

Concurrent Constraint Programming. The analysis of CC programs is given by
the analysis of the CLP program that we obtain by transforming all conditional guards

21 An analysis for Prolog Il that approximates theastmodel overinfinite trees seems to be much
more difficult than it occurs at first glance. This is due to the fact thatitefirees are defined by a
greatest fixed point construction, so that a corresponding analysisl lwaué to approximate the least
fixed point of an operator that refers to the greatest fixed point of anotleetltn “alternation” seems
to make the analysis considerably harder.

22While results of Jaffar and Stuckey on infinite tree logic prograngnaire closely related [107], the
exact result that we show seems not to be explicit in the literature. Seerséct.4.2 for details.
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into tell statements; this means that our analysis ignores the synchronisatigiobeha

of conditional guards. This is one reason for our interest in inevitable failure: dst m

CC programs with non-trivial recursions (over lists) say, the correspondifCa-

gram that approximates it has more failed computation branches. Hence, diagnosing
possible failure in the CLP program would not imply possible failure in the original
CC program (see also Section 4.2.3).

While we can carry over the approximation result of the greatest model, thatiopex
interpretation ofysol ) needs some more care: in CC programs, there may be state-
ments whose reduction blocks forever because a synchronisation condition is never
satisfied. For such CC programs in which every application can eventeallce,

our characterisation of finite failure through the greatest model still holdseSve
cannot guarantee statically that application will not block, we must weakeresuit r

for CC programs: We show that emptinesg#ol ¢) implies finite failure in every fair
execution of a CC program unlesshere is an application that blocks forever.

In concurrent constraint programming, failure is considered a run-time erraiglini
contrast to CLP where failure is part of the backtracking mechanism. A CC pnogra
has certainly an error if every fair execution leads to failure. In oagg@amming ex-
perience with Oz, programs are also erroneous if they do nobiiéyl becaussome
application blocks forever. In other words, emptinesg$ol¢) correctly approxi-
mates a run-time property in CLP and CC programs that is useful for debugging.

4.1. Set-based Failure Diagnosis for CLP over Infinite

Trees
We define our set-based failure diagnosis in Figure 4.4 on Page 101. Before we discuss
it in detail, we consider some examples where we suppress irrelevant iathetiail.

The reader unfamiliar with CC and CLP may want to consult the definition of the
language in Section 4.1.2 before reading on.

4.1.1. Examples
4.1.1.1. Basic Examples

We call a procedure finitely failed if every fair execution of an applicatiop(x)
inevitably leads to a failure. The procedysan Dsyjj1 is obviously finitely failed in
this sense (i # b):

P(X) « a(x) Ab(x) (Drail1)
With Dx,ji1 Wwe associate the following ETar,U) constraint (thexnalysisof Dsgj1):

pPCx A a(x)y A b(x)
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from which we infer finite failure ofp by noticing that it entailp=0. Slightly less
obvious but similar is the finite failure of procedureén Dsyjj:

P(X) < a(x) (Drail2)
a(y) < b{y)
r(2) < p(2), q(2)

The constraint associated wiby,j» states that every actual argument of the proce-
durep [g] must allow labelling witha [b], and thatz must be a valid argument for both
procedurep andg.

pPCx A alx) A
aCy A b{y) A
rCzA zCp A zCq

Since this constraint entaits=0, we conclude that is finitely failed. The procedure
is also finitely failed in the next example which is still a little momplicated:

p(x) < X[f]xX' Aa(x) (Dtail3)
a(y) < yifly Ab(y')
r(2) < p(2), q(2)

The analysis 0Ds4j3 is this one:

pCx A X[f]X A a(xX) A

acy A YIfly A by') A
rcz A zCp A zCq

We reject the program because its analysis entaitsd. Notice that this were not

the case if the semantics off |0’ did not require all trees io to have the featuré.
Assuming the weaker semanticgf]o’ if and only if o’ = {t' | 31 € o : T[f|T'}, the
analysis ofDg,3 would have a solutiot with a(p) = a(x) = {a,b(f:a)}, a(q) =

a(y) ={ab(f:b)}, anda(r) = a(z) = {a}.

As the progranDg,j1 above indicates, our analysis can deal with clauses contain-
ing non-satisfiable constraints. More generally, we do not require the consiraints
clause bodies to be solved before they can be analysed: our analysis is invariant unde
equivalence transformations of CFT constraints. For instance, the analysestofd
programs below is the same.

p(x) < X[f]y, X[f]z (Dsoive?
p(X) — X[f]y-/ y=2 (DsolveZ)
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4.1.1.2. Guarded Clauses
Now consider a program with guarded clauses.

P(X1) - N1 then a(x1) (Dsusp2
P(X2) ¢ N2 then b(xp)
r(2) « ¢(2), p(2)

In Dsusps the procedure is considered erroneous. Its body requizée be labelled

with ¢, but at the same timeshould allow labelling with eithea or b according to the
clauses op. The analysis

PCx1UX2 A alx1) A b{xz) A
rCznc(z NzCp A...

detects this because it entaits0. On applicatior (u) it is not clear, however, whether
any of the clauses qf will ever be executed. If both guards or n» are never entailed,
the label inconsistency with respectuowill not be exhibited. So the fact that the
analysis ofDgyspi1entails emptiness afimplies finite failure of the procedureunless
the application of to proceduneblocks forever.

The next program shows a similar phenomenon. There is no way to execute applica-
tions of p andg on the same argumentvithout failure.

p(X1) <= N1 then a{xy) d(y1) < na then c(y) (Dsusp2
P(X2) < N2 then b(x2) q(y2) < N4 then d(yz)
r(2) « p(2), d(2)
The analysis detects this the constraint associatedDytkpoentailsr =0:
PCX1UX2 A alxg) A bixz) A

aqCy1Uy2 A c{yr) A d(y2) A
rczAzCp A zCg A ...

4.1.1.3. Infinite Trees

A program that explicitly talks about infinite data structures is the following one.

p(x) < X[f]y, p(y) (Dinf1)
Reduction of the applicatiop(z) will enter an infinite recursion, which will constrain
to a feature tree with an arbitrarily long but finite pathf¢d. The program is determin-
istic and will never fail. This program is accepted since its analysis doesentailx
ory to be empty:

pCx A X[fly A yCx
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In comparison, consider the following program and its analysis:
p(x) «— X[f]x (Dinf2)
pCx A X[f]x
Execution ofp(x) will instantaneously terminate and constraito an infinite tree
containing the patffff ... f. The greatest solutions of the analyse®Pg§; andDin
coincide, but the need for (sets of) infinite trees has different reasoBg;rint is due

to an infinite computation approximating an infinite tree with arbitrary amoyrand
in Din2 due to a cyclic constrairfe

For a more realistic example consider the following procedure that reads areinfini
stream of variables (constructed with the featureadandtail, and the labehil) and
then executes eith&j or S, depending on whether the variable is labelled @it b:

scar(xs) < xgheadxA xgtail|xr then proces$x), scar(xr) (Dscan
processx;) < a(X) then §
process$xy) «+ b(xz) then S
The associated constraint is this one:
scarcxs A xgheadx Axdtail]xr A XC processA xrCscanA
process x; Uxa A a(x1) A b(xz)
In the context oDscanboth of the following clauses are erroneous.
p(u) « ultaillwAwheadw A c(w'), scar(u) (Dscan))
q(v) « V]taillwA nil(w'), scan(v) (Dscand

An applicationp(y) (wrt. Dscang) Will fail since in procedurep a list is constructed
and passed tecanwhich contains an element that is not labelled vatr b. An
applicationg(y) (wrt. Dscan? Will fail since the argument passedgoanin procedure
cannot be an infinite list.

The analysis 0Dscan1 contains the following constraint and, in conjunction with the
analysis 0Dgcan entailsp=0.

pCu A ultaillw A viheadw A c(wW) A uCscanA...
Similarly, the analysis oDgcan2cONtains
qcv A Vtaillw’ A nil{w’) A vCscanA...

and entailgy=0 in conjunction with the analysis @scan

23As another remark to Footnote 21 on Page 92, notice that an analysislag Rrapproximating
the least model over infinite trees would probably have to distitghis program®ins1 andDinso.
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4.1. Set-based Failure Diagnosis for CLP over Infinite Trees

Programs D C set of all clausep(x) < S
Statements S = n (Tell Statement
| p(X) (Application)
| S, S (Parallel Composition
| skip (Null Statement
Constraints n = x=y | aXx) | xfly | x{f} | niAnz
Configurations C = vDn[ S
Variables vV C vV (V a finite set

Figure 4.1.: Syntax of CLP(CFT): Constraint Logic Programming over Feature Trees

4.1.1.4. Procedure Clause and Program Points

The procedure in the progranDcheice below is not finitely failed. Accordingly, the
analysis 0D¢heice does not entail)=0 so that we accept the program.
P(X) < skip (Dchoice)
P(X) <= ax), b{x)

Yet, whenever the second clausepakill be executed, failure will inevitably occur. In
order to detect this, we can introduce a new procedure for each clapsgielding

p(X) < P'(X) p'(X) < skip (D::hoice)
p(x) < p"(x) P’ (%) < a{x). b(x)
In this program p” is finitely failed, corresponding to the fact ththie second clause
of p in Dehoiceis finitely failed. Accordingly, the analysis @ ;.. entailsp”=0.

4.1.2. Constraint Logic Programming over Feature Trees

We assume a sét of variablesranged over by, y, z, and an alphabe® of constants,
ranged over by, g, which we callprocedure names
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4. Set-based Failure Diagnosis for CLP and CC

S =99 (S S), S =S (S S) skip. S= S
V=V nEnR S=S
VDn[ S= Vv'Dn[] S

consistent renaming of bound variables

Figure 4.2.: Structural Congruence of CLP(CFT)

4.1.2.1. Syntax

We define a simple concurrent constraint language over feature trees with unguarded
clauses, which we consider as a concurrent constraint language without gu#sis.
operational semantics is defined by a transition system that corresponds tonterrdt

one for a constraint logic programming language. Therefore, we call this language
CLP(CFT). We shall also borrow the logic semantics of CLP for this languagg, a
make use of standard concepts from the CLP literature [105, 118].

The abstract syntax of CLP(CFT) is given in Figure 4.1. A progiaoonsists of a set

of clauses x) < Swherex is called theformal argumentandSthe clausebody?®

Every clause body consists of a set€ofstraints) andprocedure applications (x);

in p(x), the variablex is called theactual argumenof p. As constraint system we

fix CFT. We consider only unary procedures for ease of notation. This does not restrict
the expressiveness of the language if the constraints can express pairing: fon€FT t
is the case if we assume at least two distinct features.

The formal argument of a clausep(x) < Sis bound with scop&. All other variables
occurring inSare implicitly bound withinSby an existential quantifier. The variables
free in a statement & a constraint are denoted by'S) andfv(n). A clausep(x) + S
does not contain any free variable.

Given a program of the for® = p1(X1) < S1,..., Pn(Xn) < Sy, we denote withp
the set{ p1, ... pn} of procedure names definedin We define thaefinition of pin D
written Def(p,D) as the set of all clausg¥x) «+ Sin D. A configuration VD[] S
consists of a stateme8t aconstraint stora), a collection of procedure definitiol
and a seV¥ of variables such thdw(S) Ufv(n) C V holds. Configurations describe
computation states. A configurati®Dn [| Sis well-formedif for every application
p(X) in D or Sthere is a corresponding procedyre #. Throughout this chapter, we
use the term “configuration” to mean “well-formed configuration”.

We identify statementS, definitionsD, and configuration€ up to consistent renaming
of bound variables and we assume once and for all that bound variables 8 @Any

2%\We add guards in Section 4.2 and obtain a language that is essentially thettahchoice lan-
guage ALPS considered by Maher in [120].
25The symboD should allude to “definition”.

98
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vDn[Jn" — VDnAnR'[] skip (TELL)
vDn[] p(x) — VUN(S)\{y} Dn[] Sx/y] (APPLY)
if p(y) <~ Se D andVnfv(S) C {y}
vDnl] S — VDN [ S
vDn[ S, S — VDN % S

(CLOSURE)

Figure 4.3.: Operational Semantics of CLP(CFT)

or C are pairwise distinct and distinct from the free variables. Furthermaéjentify

S D, andC up to the smallesstructural congruence= that satisfies the equations
given in Figure 4.2; structural congruence makes parallel composition of stateme
commutative and associative with neutral elenskit; two definitions are congruent
if they are identical up to consistent renaming of variabkesgnaming), and two
configurations are congruent if all their components are.

4.1.2.2. Operational Semantics

The operational semantics is given in terms of a one-step reduction redaticonfig-
urationsC. Reduction— is defined in Figure 4.3 as the smallest binary relation on
configurations that satisfies the axioms(T) and (APPLY), and that is closed under
the inference rule (COSURE).

Tell. A tell statement) reduces without synchronisation by conjoiningdo the cur-
rent store. For technical reasons, we allow the constraint store to become non-
satisfiable.

Apply. If the procedure is defined inD, then reduction of an applicatiqe(x) picks
one of the clausep(y) + Sin D nondeterministically, and replacegx) by
Sy/x|, that is by the clause bod$ with the actual argument replacing the
formal onex. The second side condition requires that the local variablé& in
are fresh for the current configuration before they are added to the set of used
variables. Hence the bound variables may need renaming before reduction can
take place.

Closure. In combination with the structural congruence, the closure rule states that the
next reduction step fdr Dn [] Scan indeterministically deal with any application
or tell statement irs.
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4. Set-based Failure Diagnosis for CLP and CC

For illustration of rules (ELL) and (APPLY), letD = p(x) « x[f]yAa(y) and consider:

{z1DT[ p(2), b2 — {y.Z}DT Zflyra(y), b(z)
— {y.z1D Zf]yraly) Ab(z)[] skip

The final configuration in this example contains a non-satisfiable constraint stmte. S
a configuration is callethiledwhich is considered a run-time error. This is in contrast
to constraint logic programming where failure is an integral part of the searctnol
mechanism (backtracking).

If an applicationp(x) has reduced with respect to one of multiple clausgs tifen this
choice is never undone. One says that our languagedramitted choice semantics
Notice that a committed choice without guarded clauses is not overly usefalatiqa.
For example, itis not clear how to define the length predicate on lists suchwmatld
terminate on every finite list. As mentioned initially, we are integdsn CLP(CFT)
programs aselaxationsof concurrent constraint programs (see Section 4.2).

4.1.2.3. Computations and Finite Failure

A computatioris a maximal (and possibly infinite) sequence of configurati@ng' ,,
n < oo, such that there exist, D, n, andSwith

Ci= VDn[]S and Vi<n:C —Ci1.

A computation(G)i,, is calledfinitely failed [105,118] if there exists a (finite)
n’ < n such that the constraint store in configurat@p is inconsistent. A compu-
tation (Gi){ is calledfair if every statement thatanbe reduced in some configura-
tionGC;, i < n, is eventually reduced. Thenite failure set Fip of a given progranD is
defined as follows:

FFo =det  {p | {X} D T[] p(x) is finitely failed p € P, x arbitrary}
We say that a procedugec P is finitely failedif p € FFp.%®

4.1.3. Set-based Failure Diagnosis

We formulate our analysis in terms of set constraints over feature tsedsfimed in
Chapter 2. We also use the notatiea0+«y=0 as an abbreviation for a corresponding
set constraint as defined on Page 81.

The analysis is defined in Figure 4.4 as a map@rfgom CLP(CFT) program® to
existential formulas over set constraints. With every program varialvkeassociate a

260ur definition of FFp deviates slightly from the standard literature [105], where théefifsiilure
set is a set of “constrained atomg{x)<+n rather than a set of predicatdsfp = {p(x)+n | fv(n) U
{x} DnJ] p(x) is finitely failed}. We use a more coarse-grained definition that suffices for our purpose
and simplifies notation.
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4.1. Set-based Failure Diagnosis for CLP over Infinite Trees

A(D) = A\ A(Def(p,D))
peTo ]
ADef(p.D)) = Ix..Ia(PSXU...UXa A \AY(S))

i=1
if Def(p,D) = p(x1) < S1, ---, P(Xn) < S

andxy,...  Xnp pairwise distinct

A(S) = TASG A A x=0<y=0) if {y} =f(S\{x}
ye{y}

AQ(X)) = xCq

A(n) = n

A(S, S) =  AS)NAS)

Figure 4.4.: Set-based Failure Diagnosis for Constraint Logic Programs over Feature
Trees

fresh constraint variable, and we write this constraint variable algoEhis simplifies
notation and eases reading. We also use procedure names as constraint vditebles
analysis interprets parallel compositiofi‘as conjunction.

Procedures. The analysis of a procedupedefined byn,, clausesp(x) <+ S, 1 <i <
np, considers all clause bodi&s separately; for each, a fresh variable; is
introduced with respect to whic§ is analysed: ifA%(S) entailsx; = 0, then
every call to this clause will be finitely failed. The constrapiix; U...U X,
states that all possible arguments fomust be possible arguments for one of
the clauses. If all the are constrained to the empty set, then sp.i$n other
words, if all clauses op are finitely failed, then procedueis finitely failed?’

Clause. The analysis of a statemeftwith respect to a variabbemakes the existential
quantification of the variables ifv(S) explicit, and then states that all these
variables should denote the empty set if and onkydbes:

N\ *x=0<y=0
ye{y}

2IThe existential quantifiers reflect the variable scope. This is technicalMgogent and it avoids the
need to supplement constraint simplification by a reachability analysis agdmple in [173]. For the
purpose of failure diagnosis alone, we could as well introduce a frashble wherever an existential
quantifier occurs.
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4. Set-based Failure Diagnosis for CLP and CC

Essential for our purpose is the direction from right to left: if any ofytkefv(S)
denotes the empty set and hence indicates a failure in stat&rtbetx should
be forced to denote the empty set, too.

Application. The analysis of an applicatiog(x) states that the actual argument
must be valid for the procedurg In other words, the possible values foare
bounded by the set of possible values that the formal argument of the progedure
can take without failing.

Constraints. The analysis of a constraintis justn itself. This exploits the fact that
we identify every CFT constraint with a set constraint over featuestvehere
x=Yy is replaced bxCy A yCx.

Our analysis reflects the fact that constraintsatinprogram variables may be the
reason for finite failure of a procedure, not only the formal parameters of procedures
For illustration consider the following example.

Example 24 (Analysis of Failure on Local Variables)
Consider the procedure definition

p(X) A a<y>, b<Y> (Dlocfail)
with its associated analysis (slightly simplified):
PEX A Jy(y=0+p=0Aay) Ab(y))

If a+# b, then every reduction of the bodyx), b(x) will lead to failure; that is, every
computation ofp(x) is finitely failed and thugp € FFp,,,.- The analysis detects this
becausa(y) A b(y) entailsy=0, which, in combination witly=0« p=0, entailsp=0.

Example 25 (Binary Trees)

In the following program the proceduras finitely failed.
p(x1) < x1=a(1:b,2:b) q(y) < y=a(1lb,2:c) (Dcomp
p(x2) < Xe=a(1l:,2:c) Hz) < p(z). dz)

Finite failure ofr is detected through the analysis which enta#4:

rcz A zCa(l:b,2:b)ua(l:ic,2:c) A zCa(lb,2:c)

4.1.4. Correctness

Our failure diagnosis is correct in the sense that whenever it entails esgpthsome
procedure then this procedure is finitely failed.
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Theorem 26 (Detection of Finite Failure)
For all CLP(CFT) programs D and all p: If fD) =p(5q) p=0, then pe FFp.

(Notice that a implied statement says that whenever the analysis of a ELPfo-
gram is non-satisfiable over non-empty sets of feature trees, then thedihute set
of D is non-empty: fA(D) =g+ 47) — thenFFp # 0. Cf. also Proposition 2.4.)

In the proof of Theorem 26 we exploit that CLP programs have a logic semantics that
is closely related to their operational semantics. The logic semastidsfined in
Section 4.1.4.1. The proof relies on two insights:

1. Emptiness in the greatest modeh D) of CLP(CFT) programs indeed implies
finite failure: this is stated in Theorem 30 and proven in Section 4.1.4.3.

2. The greatest solutiggsol A(D)) of the analysi#\(D) is an upper approximation
of the greatest model @: this is shown as Theorem 31 in Section 4.1.4.4.

Both theorems rely on the saturation property [159] of constraint systems thabis i
duced in Section 4.1.4.2. Now the proof of Theorem 26 is as follows.

Proof. If A(D) Ea(7) P=0, thengsol(A(D))(p) = 0. Hence, by Theorem 31, it
holds thagm(D)(p) = 0, and this impliep € FFp by Theorem 30. 0

Finally notice that a corollary of Theorem 26 is the analogous statement for IR (C
over finite feature trees: Every finitely failed computation of a CLP program over
infinite trees also is a finitely failed computation over finite trees.

4.1.4.1. Logic Semantics and Consequence Operator

Every programD is associated dogic semanticsgiven by a first-order formula
complD) over CFT constraints. If the definition of procedyrén a progranD is

Def(p,D) = p(X) < S, ..., p(X) < S
and{y;} = fv(S)\{x} for alli, 1 <i < n, thencomp(p) is defined as the predicate

complp) =det VXP(X) <> (V1S V ... V IV S)

where parallel composition “,” is interpreted as conjunction. The conjunction eéthe
formulas for all proceduregin D is called Clark’s completion [46]:

complD) =get  /\ complp)
pedh

Let D be a program. AD-interpretation! is a function from?; to subsets off 7
and it induces an extensiof{ ¥ 7)) of the structure? 7 in which everyp € B is

103



4. Set-based Failure Diagnosis for CLP and CC

interpreted as the predicaltép). Interpretations are ordered by pointwise set inclu-
sion. We denote a®p the greatesb-interpretation, which maps afl € P to F7:28

A D-interpretation! is a modelof D if comp[D) is valid in the structure (¥ 7).

In this case we writd = D (instead of /(¥ 7) = complD)). Likewise, we briefly
write I,a = Sif compl(S) is valid in I under a valuatiom. The greatest model of a
programD always exists and is denoted gy(D). We writeD = @ if the formula®

is valid in every model oD.

The consequence operatorp T (Po—P(FT)) — (Po—P(FT)) is defined as fol-
lows, for all D-interpretationd and allp € Pp:

p(x) < Se D, and

To(1)(p) =det (T€FT IL[t/XIyS if
{y} = V(S\{X}
Here,[1/x] denotes theF 7 -valuation that maps to T and all other variables to itself.
Thew-times iterated application db to Bp is writtenTp | ®.

w
I° =gt () To"(BD)

n=1

SinceTp is a monotonic operator on the complete latti@ 7 7), C), the Knaster-
Tarski fixed point theorem guarantees the greatest fixed gfpfilp ) of Tp to existand
to coincide with the greatest postfixed poinflef(i. ., the greatest with 7 C Tp(1)).

4.1.4.2. The Saturation Property

A constraint logic program is callecknonical[106] if the greatest fixed-point of its
consequence operator can be obtained by at mdagtrations fromBp, that is, if
gfp(To) = Tpl®. In general, only inclusiogfp(Tp) C Tpl® holds. Palmgren shows

that every constraint logic program over a constraint system X is canonicélagxhe
saturation property ([159, Theorem 3.11], see also Theorem 29). A constraint system
has thesaturation property® if for all infinite number of constraintgy,na, . . .

00 n
/\ ni is satisfiable ifand onlyif ~ Vn< e : /\ njis satisfiable
i=1 i=1

Proposition 4.1
The constraint systems CFT and&&r,U) have the saturation property.

28The notationBp alludes to (Herbrand) Base [118].
29The saturation property has nothing to do with the the notion ofatibn used in Section 3.1.
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Proof. The claim for CFT follows from the fact that the set $f7 -valuations is a
compact metric space (with the order on valuations defined pointwise and in analogy
to the case of constructor trees [118]). The claim forFr. U) is trivial, since every
(finite or infinite) selector set constraint is satisfiable (Proposition 2.1). O

This proposition specifically holds for infinite trees.  The situation is diffefer
some other popular constraint systems: For instance, equational constraintsiteer fi
or rational constructor trees do not have the saturation property.

Example 27 (Saturation fails for Finite Trees)

Fix infinitely manyxy, Xz, ... distinct variables and an arbitrary featuire .
and define, for ali, the constraing; by | f

Ni =def Xi[f]Xi+1 X1

Then every finite conjunctiop\"_, n; is satisfiable over finite feature trees,
while the infinite conjunction\;> ; n; is not.

_if

Example 28 (Saturation fails for Rational Trees)

Fix infinitely many distinct variablegs,y;.y2.Y,..., a fea- P
ture f, and infinitely many distinct featurefg, fo, ... different }1/| f
from f. Define, for alli, the constraing; by ‘T, -

Ni =det  YilfYisa AVi[filYi y1= Tg/| f
e

Then every finite conjunctiop\]_, n; is satisfiable over ratio-
nal feature trees, while the infinite conjunctigyt ; n; is not.
Note that every solution of;> ; n; must assign tg; an infinite

tree which contains, for each of the featufgsa subtree with b
featuref; at its root. aLf
The failure of saturation does not depend on the availability of g/ | f
infinitely many features. For example, given featugeg f, z1= bg a
labelsa # b, and distinct variableg = Z',...,2~* for all i, we / :

, g _a '
can also define: /

Ni=det Z[flz172[gJZ AR(ZY Az (g2 Ab(Z) b

Theorem 29 (Palmgren: Saturation and Canonicity)
Every program D over a constraint system with the saturation property is canonical.

Proof. See Palmgren [159]. O

Lemma 4.2
For all CLP(CFT) programs D: grtD) = Tp“.

Proof. Proposition 4.1 and Palmgren’s Theorem 29 imply tfatTp) = Tp|“. This
implies the claim in combination with the fact thgfp(Tp) = gm(D). 0
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] n satisfiable and
vDn[]S —4 VDR[]S if ¢ (GROUND)
n a grounding of) w.r.t. V

Figure 4.5.: Ground Reduction of CLP(CFT)

4.1.4.3. Characterising Finite Failure

We show that, for CLP(CFT) programs, emptiness in the greatest solutiQuiiaéent
to finite failure in the following sense.

Theorem 30 (Greatest Models and Finite Failure)
For all CLP(CFT) programs D and all g ?»: gm(D)(p) = 0 if and only if pe FFp.

Proof. gm(D)(p) = 0 is equivalent toD = —3xp(x) and hence to&'t € 77 : D |=
—p(1). By Proposition 4.3 this is equivalentta € F 7 : p(1) € GFFp and, by Propo-
sition 4.4, top € FFp. O

For the proof of the necessary Propositions 4.3 and 4.4 we need some additional ma-
chinery first. Letr] range over possibly infinite conjunctions of CFT constraints with
existential quantifiers, and note that every feature tre@n be characterised by a for-
mula ] (in the sense thdt(f) = {x} and every solution aff mapsxintot). We callfj

ground w.r.t. Vif all solutions off coincide on allk € V. A configurationvVDn[] Sis
calledgroundif n is ground w.r.tV. We call a constrainfj agroundingof n w.r.t.V

if N is ground w.r.tV, entailsn and has the same free variables)as

We now generalise the notion of configuration slightly by allowings a constraint
store. Aground computatiof105, 118] is a maximal sequen¢g;){,, n < o, such
that there exis¥, D, n, andSwheren is ground,

Ci= VDn[] s, and Vi<n:CG —o—4Ciy1.

A configurationC is called[ground] finitely failedif all fair [ground] computations
issuing fromC are. Theground finite failure set GHl- of a progranD is defined as
follows

GFFo —gef {p(r) {x}Dn]] p(x) is ground finitely failed }

a =nimpliesa(x) =1, p€ P,
Figure 4.5 defines groundingrelation between configuratiol® andC, that holds
if C, andC, are the same except for the constraint store, where ti@tiefa grounding

of that ofC,. Ground reductions defined as the compositieh- o — 4 of reduction
with grounding.
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Ground reduction is interesting for us due to its close relation to the logicreemma
of programs. By a classical result from (constraint) logic programming, thewoih
holds (seee. g, [105, Theorem 6.1 (7)]).

GFFb = Bp\Tpl® (4.1)
In combination with canonicity, we obtain the following proposition.

Proposition 4.3

For all CLP(CFT) programs D, & Pp, andt € F7: D = —p(1) ifand only if f(1) €
GFFp.

Proof. D = —p(1) if and only if t ¢ gm(D)(p). This is equivalent ta ¢ Tpl“(p)
by Lemma 4.2 which is clearly equivalenttce (Bp\Tpl®)(p). By Equation (4.1),
however, this holds if and only (1) € GFFp. O

The next proposition states that the finite failure set and the ground finite fagure s
for CLP(CFT) programs coincide. While this is not a difficult result we have nat bee
able to find it in the literature.

Proposition 4.4 FF and GFF coincide for CLP(CFT))
Forall p € Po: p € FRpifand only if VTt € F7 : p(1) € GFFp.

Proof. The implication from left to right holds, since every finitely failed computa
tion of {x}Dn[] p(x) induces a finitely failed computation ¢k}Dr[] p(x) if A is a
grounding ofn w.r.t. {x}. For the converse, assumpeZ FFp and let(Ci);> ; be a fair
computation withC; = {x}DT [|] p(x) that is not finitely failed. (The case of finite
computations is simpler.) Let, for al| n; be the constraint store &;. Since the
computation is unfailedy; is satisfiable for alfinite i < n. Hence,A;” n; is satisfi-
able by Proposition 4.1. N = ;> ,fv(ni), then there exists a grounding Af* on;
w.r.t. V; hence there exist groundings of all n; w.r.t. fv(n;). From these we can
easily construct an infinite fair and unfailed ground computation{ 0D n1[] p(x).
Hencep(t) ¢ GFFp.3° m

30An alternative proof can be based on Jaffar and Stuckey’s result [107] whighthat, for pro-
gramsD over infinite treesTpl® equalsBp \[FFp] where[FFp] is the set ofjround instancesf FFp

(Fo) = o(1) {x} ufv(n)Dn[] p(x) is finitely failed, and

there is a solution of n with a(x) =1

By standard results from constraint (logic) programming, this téswlies thafFFp) = GFFp. Thus,
it remains to show thdEFp](p) = 77 if and only if p € FFp. To prove the non-trivial direction from
left to right we need an argument based on saturation similar to the one¢heted above.
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4.1.4.4. Approximating the Greatest Model

We show that the greatest model of an arbitrary CLP(CFT) program is apprexmat
by the greatest solution of the associated analysis.

Theorem 31 (Approximating the Greatest Model)
For all CLP(CFT) programs D: grfD) C gsolA(D)).

Proof. We apply a technique which is well-known in abstract interpretation [53]. We
associate to every prograhover CFT an abstract prograbi over FTc (ar,U) and
prove that the consequence operdtgrapproximategp. Let the function sup map a
D#-model to aD-model that maps evenyc Py to the maximal element igm(D#) (p).
Then the fact thaipy» approximatedp implies

gm(D) C supogm(D¥)
(Proposition 4.10). Then we characterise our analysis thrgogb*) (Corrollary 32)

supogm(D¥) = gso(A(D))
and concludgm(D) C gsolA(D)).3* O

The rest of this section is devoted to the completion of this proof. For simpheé
shall assume throughout this section that every procedure is defined by exactly two
clauses

Def(p,D) =gef P(X) < S1, P(X) + S
where{y;} = fv(S)\{x} and{y,} = fv($)\{x}

Generalisation to the-ary case is straightforward. We abstract the multiple clause
definitionDef(p, D) by a single claus®ef(p, D)* which is defined as follows:

Def(p.D)* =det  P(X) <~ Bp

XCXg UXp A
Bp =def Aye ) X1=0y=0 A Si[x1/X] A
Ayey,) X2=0<y=0 A S[x2/X]

Theabstract program B associated with a prograinis given by the set dbef(p, D)*
for all p € Pp. The associated operatdy: is defined likeTp with Bp replaced by
Bow = P(P(FT)).

Lemma4.5
For all CLP(FTc(ar, U)) programs D: gniD¥) = Ty

31This deviates from the proof given in [171] which shows the resiudicdly.
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Proof. From Proposition 4.1 and Palmgren’s Theorem 29 we olgfiD*) = T« ©.
The claim follows fromgm(D¥) = gfp(Tp#). 0

The abstraction of aff 7-valuationa to a®( ¥ T)-valuationo” is defined byo*(x) =
{a(x)}, and the abstraction of@-interpretation! to aD*-interpretation/” is defined

by I*(p) = P(1(p)).

Lemma 4.6
For all 7 -valuationsa, all p € Pp, and all interpretationd’:

1. Ifa =57 N thena® gz N.

2. Ifa(x) € I(p) theno®(x) € I*(p).

Proof. The first claim is proven by a simple check of all primitive constraintee T
second is obvious by definition af’. O

Propositions 4.7 and 4.8 establish two essential properties of the abstract p@fgram
In combination they show that every postfixed point Bf induces one ofTpy«
(Lemma 4.9).

Proposition 4.7 (Singleton Property)
Forall D, I, and pc ®p: If 1 C Tp(I)andt € I(p) then{t} € Tox(1%).

Proof. Let p€ B andt € I(p). Assumel C Tp(7). Without loss of generality we
assume that
ItX =rr IS

Pick T such that/[t/X|[T/y,] =7 S and definex = [1/x][T/y;]. From Lemma 4.6
one easily obtains

"o Epgr S

Furthermore, sinca” mapsx and all variables i{y; } to a non-empty set, we have
It Eerr Negyy) X=00Y=0/S;

Clearly, this implies

XCX1UXo A
PO/ Eerr) X% | 39 Ayegy,) X=0y=0A Si[x1/X] A
o Ayegy,) X=0y=0 S[x2/X]

109



4. Set-based Failure Diagnosis for CLP and CC

because we can extefid} /x| by mappingx; to {1}, y; to a¥(y;), and all ofx, andy,
to the empty set. But this is just

" {1} /X Ep(r 1) Ix13%23y,3Y,Bp
which by definition ofDef(p,D)* implies {1} € Tp«(I¥). O

Proposition 4.8 (Union Property)

For all D and all D#-interpretations]: If 7 has a greatest element for allgp?p, then
To#(7)(p) also has a greatest element for allga?o.

Proof. Let pe€ B andoy,...,0n € Tpx(J)(p). Let p(x) < S be the unique clause
for pin D* and let{y} = fv(S)\{x}. Definea;(p) = 0j, andomaxp) = UL, 0i. By
definition of Ty« this implies that

Vi,1<i<n: J,0;=3yS.
It suffices to show that

]aamax}: 378

This can be shown by a structural induction o$eror the base case given by con-
straintsn we exploit the fact that solutions of ETar, U) constraints are closed under
unions (Lemma 2.2); for the base case given by applicayswe use the assump-

tion that7 has a greatest element and, hence, is closed under union, too. O

Proposition 4.9 (Abstraction Property)
For all D and D-interpretations/: If 1 C Tp(1) then F C Tos(1%).

Proof. Assumel C Tp(I), and letp € P, ando € I*(p). We have to show that
o € Tpx(I#)(p). By definition of I# we know thatvt € o: T € I(p). By the Singleton
Property we know thatt € o : {1} € To#(I#); soo € Ty (I*) follows from the Union
Property. O

Let the function sup map every € P(P(FT)) to its greatest element if it exists.
Somewhat sloppily, we also use sup as a function that m&dsiaterpretations to a
D-interpretation sufy ) = I where, for allp € #p, I(p) = supJ(p)).*?

Proposition 4.10 (Abstraction of Greatest Models)
For all D: gm(D) C supogm(D¥).

32sup is to counterpart of the abstraction function which, in the abstrpiretation framework, is
called theconcretisatiorfunction.
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Proof. Sincegm(D) = Tp]® by Lemma 4.5gm(D) is a postfixed point ofp; i. e,
gm(D) C Tp(gm(D)). By Proposition 4.9, this impliegm(D)* C Ty«(gm(D)#), so
gm(D)#is a postfixed point ofp«. But sincegm(D¥*) = Ty | is the greatest postfixed
point of Ty, we obtaingm(D)# C gm(D¥). By the Union PropertygmD® is closed
under unions, and hengen(D) C supogm(D¥). O

Now we show that, for all CLP(CFT) progrars every postfixed point ofy» induces
a solution induces a solution 8fD) and vice versa. As a consequence, we obtain that
the greatest model @* coincides with the greatest solutionAfD) up to sup.

Lemma 4.11 (Postfixed Points and Solutions Coincide)
For all CLP(CFT) programs D, all B-interpretationsy and # 7 -valuationsa:

1. If 7 is closed under unions, thehC Tp«(7) impliessupo =p(¢7) A(D).
2. Ifa l=p g7y A(D) thena® C Tpx(a™).

Proof. Fix D, let p € b, and defined |x By = Ix13%23y,3y,Bp. Notice thatd |x By is
of the form

Ix1 X (XCxa UXe A By A B3)
and thatA(Def(p, D)) is of the form
Tx1 I (PCx Uxo A AL A A?)

where theBl, andA' are identical, except th# contains a constraint of the forpC
if and only if Bip contains an applicatiogyy).

1. If 7 C Tp#(J), thenforallo € 7(p): 7,[0/X =p(¢7) 3xBp- By the Union Pro-

perty and sincd is closed under unions, this impligs[sup(J(p))/X =e(r)
3 |x Bp, so there existiy, 0o with

7,[sur s (p)) N[o1/xall02/%]  =prr) XCxaUse A B A B,

Definea = [sup J(p))/X|[01/x1][02/%2]. From supd(p)) C 01U 02 we easily
obtain sup 7. a ):{_p(?rf) pPCx1 UXo. It remains to check that

supeJ. [01/x1][02/%] =g o) ALAAZ.

Let q(y) be an application iIBip, i € {1,2}, and leta’ extenda such that7,a’ =
q(y). Thena'(y) € 7(q) holds. Since7 is closed under union, this implies

a’(y) € supg(q), and hence suy,a’ =p(r) Y C P
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2. Ifa ):T(TT) A(D), then there existi, 02 such that

alo1/xi][02/%2]  Eerr) PCXAUXe A AL A A
Leto € a¥(p). To provea” C Ty« (a¥) it suffices to show that
o, [0/X][01/xa][02/%] Eprr) XCXaUXe A By A B3

Define B = [0/X][01/%1][02/X2]. By definition of ¥, o € o*(p) impliesa C
a(p). Froma(p) C o1 U0 we obtain that ):T(TT) XCXp UXo. Now let
yCq be an inclusion occurring i@\, i € {1,2}, and leta’ be an extension of
a[01/x1][02/%2] such thatd’ =p( 44y yCd. Hencea'(y)Ca(q) which implies
that o’(y) € a*(q); so there exists an analogous extengtdrof 3 such that
o, B pirr) A(Y)- =

Corollary 32 (Characterisation of Set-based Analysis)
gsolA(D)) = supogm(D¥)

Proof. By Lemma 4.11, casg), gsolA(D))* is a postfixed point off,+ and hence
gsol(A(D))* € gm(D¥) since gm(D*) is the greatest postfixed point @fs. By
Lemma 4.11, casél), gm(D¥) is a solution ofA(D) since it is closed under unions.
Hencegm(D¥) C gsolA(D)). O

4.1.5. Analysing Constructor Tree Equations

Our analysis naturally generalises to constructor tree equations:

n

AP(x=a(y1,....¥n)) = a(¥) Ax{1,....n} A A Xily; (4.2)
i=1

This analysis is natural since it is just our analysis of constraints up to the cahoni
interpretation of constructor tree equations as CFT constraints (see Pagel#y). T
corresponding analysis @&a(y) in terms of co-definite set constraints would be

AP(x=aly1,....¥n)) = XCal(yr.....yn) A\ ViCa;;(x) (4.3)
i=1

In terms of FT(ar,U) constraints, there is no reasonable alternative to (4.2). There
seems to be an alternative to the analysis (4.3) in terms of set constrantonstruc-

tor trees, though: one might wonder whether it is possible to strengthen the analysis of
equations by mapping equations to equations.

112



4.1. Set-based Failure Diagnosis for CLP over Infinite Trees

Programs D C set of all guarded clausg®gx) < n then S

Figure 4.6.: Syntax of Guarded Clauses

VDn[] p(x) — VU{z} Dn[] Ix/y] (GUARDAPPLY)
; { p(y) ' then S € D. (S)\{y} = {2}
VNiv(S) C{y}, n =¢7 F2('[x/Y])

Figure 4.7.: Operational Semantics of CC(CFT)

[]-o

AP(x=a(y)) xCa(y) Aa(y)CX (4.4)

The immediate advantage of deriving stronger equality information is that equations
can be handled much more efficiently than inclusion constraints. This analylsey-
ever, incorrect because it invalidates Theorem 26: the proB@gibelow contains no
finitely failed procedure, but the analysis according to (4.4) is non-satisfiable.

p(x1) < x1=a(b,b), q(y) <= y=a(u,v), p(y) (Destr)
p(X2) < X2=a(c,c), r(z) < z=a(b.b), q(z)
S(2s) + z=a(c, ), d(z)

The analysis oDcs; according ta4.4) is:
pCa(b,b)Ua(c,c) A
gCy A yCa(u,v) A a(u,v)Cy AyCpA
z=a(b,b) A zCq A zs=a(c,c) A zCq

This constraint is non-satisfiable, because it entails
a(b,b),a(c.c) C a(u,v) C a(bb)ualc,c)

which is non-satisfiablex andy must not denote the empty set sirad®, b)C f(x,y)
implies bCx andbCy. Since f(x,y)Ca(b,b) Ua(c,c) eithera(x) = a(y) = {b} or
a(x) = a(y) = {c} must hold In both cases, eith&fc,c)C f(x,y) ora(b,b)Cf(xy) is
not satisfied.
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4.2. Set-based Failure Diagnosis for CC over Infinite
Trees

We now consider the concurrent constraint language that we obtain by extending the
language CLP(CFT) by guarded clauses. We adapt the analysis and the correctness
proof. A guarded clauséas the form defined in Figure 4.6. Call CC(CFT) the corre-
sponding extension of CLP(CFT). Apparently, unguarded clauses are the speeial cas
of guarded clauses with trivial guards:

p(X) < y=ythen S

The operational semantics of application with guarded clauses is adaptegdia &i7.

Guarded Apply. Reduction of an applicatiop(x) may pick a claus@(y) < n’ then S
only if the constraint storg in the current configuration entaitg.

Define, for every prograrD the unguarded approximatiamg(D) by replacing every
guarded clause with an unguarded one whie¢e is replaced by parallel composition:

(n then S ~ n, S

Then define the analysis of a CC(CFT) progrBrwvia the analysis of its unguarded
approximationA(D) = A(ug(D)).

4.2.1. Blocked Reduction or Finite Failure

In contrast to unguarded clauses, it is possible that an applicationnever re-
duces because the guards of all clausep afe never entailed. We say thatx)
blocks forever Call a procedure blocked foreveif in every computation issuing
from {x}DT ] p(x) at least one application will block forever. For a trivial example
consider the following statement.

p(x) < a(x’) then b(x')
q(y) < p(2)

No computation issuing from a call tpcan accumulate enough informationzin the
constraint store to entail or disentait' a(x'). Hence the calp(z) will never reduce.
For another example consider:

p(X) < X{f]y, p(y)
q(y) < Z[f]zthen skip
r(2) < p(2). d(2)

%
%
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Reduction of the applicationu) will constrainu to a tree with a finite patfff...f of
arbitraryfinite length; yet, the guardif]u in the clause ofy (which asks whethex
denotes a tree with anfinite pathfff...) will never be entailed.

Hence, for CC(CFT) our correctness result must be weakened with reepbet rte-
sult for CLP(CFT). It still shows that and to what degree certain rur-trors are
detected.

Theorem 33 (Detection of Finite Failure or Blocked Reduction)

For all CC(CFT) programs D: If AD) =p(s#7) p=0 then p either finitely fails or
blocks forever.

Proof. By contradiction. Assum&(D) =»(57) p=0and suppose that there is a com-
putation(C;)' ; of {x}DT[] p(x) which does neither finitely fail nor block forever.
Clearly, this computation induces a computatiomgfD) that neither fails nor blocks
forever, since application of an unguarded clause is possible without any side condi-
tion. Theorem 26 implies that(ug(D) does not entail emptiness for any procedure,
and thereforé\(D) = A(ug(D) does not. O

4.2.2. Blocked Reduction and Run-time Errors

In most cases, an infinitely blocked application can be considered erroneadsr U
this assumption, Theorem 33 states that our analysis indeed detects certtimerun-
errors in concurrent constraint programs automatically. Studies in the expresss

of concurrent computation may take an alternative point of view, namely thatlkdoloc
application simply is not observable and thus (observationally) equivalent tobty e
programskip. For example, encodings of lazy functional computation with logic vari-
ables [152, 170] block the reduction of statements thahateneededor the overall
result. In these encodings, all blocked statements coufdinciple be woken with-

out the danger of inducing additional run-time errors. More delicate are encodings of
choice [150, 158]. For example, the program

p(X) < a(x) then §
p(X) < b(x) then S
. p(2)...
is, from this point of view, equivalent to the parallel composition
p(X) < a(x) then §
q(Xx) < b(x) then S
..p(2),q2...
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because the involved guards are mutually exclusive so that githeor q(z) is guar-
anteed to block forever. The correctness of such choice encodings cruciedyosl
the fact that at most one of the encoded brancBesrS) is executed because they
might perform incompatible operations.

For programs that rely on blocked reduction as a programming technique and hence
do not consider it an error, Theorem 33 can still be used to explain our analysys. Ho
ever, it may be necessary to interpret emptiness in the greatest sa@atemwarning
rather than an error message. The information that some computation isdinofdite
becauset does block forever is important debugging information anyway.

4.2.3. Inevitable Failure versus Possible Failure

Apart from theinevitability of errors it would we useful to also obtain information
about thepossibilityof errors (that is, whether there existsleast ondinitely failed
computation of a program). This is true in particular for non-deterministic language

Can we improve Theorem 33 accordingly? The answeawoisince our analysis ap-
proximates conditional guards as tell statements. In most cases, this apgroxima
yields programs that trivially have one failed computation. For illustrationcadhiat
many programs operating on lists will contain a guarded choice of the typical form:

p(X1) + x3=nil then §
p(X2) + Xo[heady A xo[tail|zthen S

The procedure expectsx to be constrained to a (tree modeling a) list; in this case
it does not block forever and is (supposedly) unfailed. In its unguarded abstraction,
however,

p(x1) <= x1=nil, S
p(x2) + Xo[heady A xoltaillz, S

the applicatiorp(x) has one trivially failed computation ¥is constrained at all; even
if xis properly constrained to a list and has lahi&lor cons

4.2.4. Inevitable Failure as a Debugging Criterion

The choice of inevitable failure as a criterion for faultiness of a program dessome
discussion. Why, in particular, is it not possible to do without the set-baseysenal
altogether and simply run the program for a limited amount of time?

In the CLP case, the answer is mostly positive: If a CLP program is ineyifaiid,
then every run of the program will eventually exhibit it. Of course, it is dilfico
know beforehand whether the running program or the constraint solver will exhibit this

116



4.3. Related Work

error earlier, but in practice there is a certain chance that simplymgrthe program

is the better alternative. On the other hand, if a CLP program fails then one kinatvs

it is possiblyfailed, which is a stronger diagnostics in the CLP case and hence clearly
desirable.

In the CC case, the answer is negative: Simply running a CC program is not sfficie
to detect the error “inevitable failure or blocked reduction”: If one observeeakbt
application during program reduction one does not kiigwvhether this application
will indeed blockforever, and(ii ) even if one can prove this one does not know whether
an error is preventeldy the factthat the application blocks (in other words, whether
an error would occur could the application be unblocked).

A second question may come to mind: Why not simply test a CC program by running
its unguarded approximation insteacd., by ignoring synchronisation during testing?
This is not useful, since possible failure of the CLP approximation is not an ititeges
debugging criterion as shown in the previous section.

4.3. Related Work

In the logic programming community, the status of types is more controversiairthan
the functional programming community. In particular, the notion tyjee erroris less

clear in logic programming than it is in functional languages, since the semanftic
logic programs is based on predicate logic in which every syntacticallyfametied
expression has a meaning. In operational terms, there is no inherent distinction be
tween type error and a logfailure in logic programming. For an overview of several
approaches to types in logic programming see Pfenning’s collection [164], and the
recent report by Meyer [122].

Yardeni and Shapiro [220] were the first to suggest that a type in logic programming
should be an upper approximation of the program’s least model semantics. Similarly
our failure diagnosis computes types of CC programs as upper approximations of the
program’sgreatest model semanticsSuch types pertaining to the denotational se-
mantics of programs have been calEmantic typeby Heintze and Jaffar [87], in
contrast to types pertaining to the operational semantics. Yardeni and SHgdio [
gave a tuple-distributive abstractidp of the consequence operaffy. Heintze and
Jaffar [85] defined an operat@p based on set-substitutions and showed that is more
accurately thaiYp approximated the least model semantics.

Mishra gave an analysis for logic programs in terms of constraints path-clesged s
and proven that his analysis approximated the least model semantics [132]bdédmas
noticed, however, that his analysis was so weak that it rather approxinha&tedeat-

est model semantics [87,171]. The characterisation of the greatest modeltissma
(for logic programs over infinite trees) in terms of finite failure, as weshdigcussed

it above, is original to our paper [171]. Yardeni, Fruhwirth, Vardi, and Shapiro [69]
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characterised the membership problem in the least model of a logic programbnr a s
class of so-called unary-predicate programs based on tree automata. DevVisong,
and Talbot present an implementation of their analysis based on tree aut@0tta |

Charatonik and Podelski [45] show that set-based analysis can be used to approx-
imate temporal properties of logic programs that are intended to describe possibly
non-terminating computations.
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In this chapter, we extend the failure diagnosis from CC to a large sublanguage of Oz
with higher-order procedures, cells, feature tree constraints, and condstidina is,

our analysis comprises essentially the whole Oz Programming Model (OPMYaccor
ing to [195], except that we fix CFT as the underlying constraint system in order to
incorporate records. OPM is considerably more expressive than CC due to the pres-
ence of higher-order procedures (and cells). Nonetheless, the extension of oer failur
diagnosis is rather smooth. This is a desirable situation because it allows wmeer-

stand the analysis for the simpler first-order fragment first.

On the other hand, the problem of correctness of our diagnosis for OPM becomes fun-
damentally harder in contrast to CC due to the presence of higher-order procedures.
The correctness proof for CC in the previous chapter is based on the logic semantics
borrowed from constraint logic programming. An analogous argument is not available
for Oz since there is no denotational semantics for Oz, even with cellsiget®aNo-

tice also, that it is not easily possible to reduce a program with higher-orderdaroes

to a first-order program. Therefore, a correctness proof for OPM probably hagi® ar
directly on the operational semantics.

In an experimental implementation of our analysis for Oz, we have found it useful
for debugging and the automated detection of errors. We illustrate the analysis by
number of examples, and we provide a set of style conventions that summarise the
intuitions underlying the analysis. The material presented in this chapter leaplan

rative character for two reasons. First, we leave open the question obhmante the
diagnosis correct. Second, the integration of our diagnosis into a production quality

33t is an open research problem how such a denotational semantics wouldKepkilparticular
since it would have to subsume the denotational semantics of both €l@rabda calculus.
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compiler and its feasibility and scalability needs to be explored. So the pnotie
automated failure diagnosis for Oz is left unsettled, but we hope that this cleapter
serve as a source of inspiration for future research.

We also take a closer look at conditionals. As we shall see, a careful mnafys
conditionals is crucial for the accuracy of the failure diagnosis. More spdbyjfitze
immediate extension of our analysis from CC to OPM (with higher-order procedures)
yields a less accurate analysis, in particular due to the analysis of condstidkeh
remedy, we provide a simple syntactic condition on conditionals to avoid this problem
More generally, we notice that both cost and accuracy of the analysis can beallsast
improved if the data flow through conditionals is statically known. This data flow
information includes the knowledge which variables the conditional guards depend
on, and which variables become constrained (their value is provided) during iexecut
of a conditional clause.

The constraint setting makes it easy to improve the analysis by annotatinglea

with type information. Such an annotation is a predicate that describes the possibl
values which a variable isxpectedr intendedto take. Annotations nicely fit in the
constraint framework as they can be interpretedrascriptiveconstraints on the pro-
gram, in addition to the constraints derived from the program by pule$criptive
means.

5.1. The Oz Programming Model

In this section, we recall the definition of OPM, where we mostly follow Sasl
paper [195]. The reader familiar with Oz and OPM may want to skip the follow-
ing section and proceed directly to Section 5.2. We do not give many examples on
programming in Oz, but refer the reader instead to the other publications oh&z, t
demos that are part of the Oz distribution [91, 174], as well as the examples iior Pla
in Section 6.1.3.

5.1.1. The Computational Setup

Concurrent computation in OPM is organised in terms of processes, taikatls

over a shared store. Each thread represents an independent unit of concurrent compu-
tation with its own control structure. The shared store is the means through tite
threads communicate and on which they synchronise.

thread ... thread

N/

store
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The store contains possibly partial information about the values which a vamnayle
take on. According to the different kinds of information, the store is partitioned in
three segments, called thenstraint storetheprocedure stor@nd thecell store

The constraint store hosts a conjunction of first-order formulas that wearatraints
Typical constraints include equations between variables k=y), and between vari-

ables and atomic entities such as integers and symbolic constants. In panteul
assume a class of constants caltieanes The procedure store maps names to proce-
dures, and the cell store maps names to cells. The only way to update the obnstrai
store is tatell it a new constraint, which means to add it as a new conjunct to the store.
Procedure and cell store are updated whenever new procedures and cells are defined.

If the constraint store does not entail (logically imply) any constraints oniahtaix

apart from equality to other variables, thers calledunbound If the constraint store
implies equality of a variable and some data structure (such as a name)jsreatled
bound tothis data structure. b is bound to a name mapped to a procedure or a cell
we also say that is bound to a procedure or a cell. The constraint store is required
to remainsatisfiable The attempt to tell a constraint that is inconsistent with the store
is called afailure and is considered a run-time error. The constraint store is organised
such that one can only add new information to it but never retract any: the amount of
information in the constraint store growsonotonically

Synchronisation between threads is through the constraint store only. A thread can
block until some constraint is entailed by the constraint store. Due to the monogonici
property, this implies that synchronisation conditions are safe: if such a conwtion
true once, it will stay true forever. No race conditions can occur. Thisakdds

the straightforwardairness conditiorthat every reducible thread must eventually be
reduced. Like the constraint store, the procedure store grows monotonicallyaghere
the cell store does not. This is intentional, since it is incorporated into OPktlgxa

for supporting computation with state change which is essentially non-monotonic. But
a direct synchronisation on the cell store is carefully avoided.

5.1.2. The Base Language

We assume a sé’ of variablesranged over by, y,z and a set\’ of namesranged
over byn. Figure 5.1 defines the syntax of the basic OPM statem&ntJypi-
cal constraints are denoted by The statementproc X (y) S) defines aprocedure
with identifier x formal argumenty, andbody S The statementx y) applies a
procedure with identifiex to the actual arguments. The conditional statement
if (3X1N1 then S;) 4 (IX21n2 then S) consists of twayuarded claused*

34Notice that OPM according to [195] does not have such a choice consthereas Oz has one. We
consider it here because it makes the embedding of CC(CFT) programsiiMdr®ial. The analysis
is not substantially affected by this choice.
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S = (local (X) S) (Variable Declaration

\ S| S (Parallel Composition

\ skip (Null Statementt

| (procx (y) S) (Procedure Definition
(Xy) (Procedure Application

\ if (3X1n1 then §) + (IXon2 then S) (Conditiona)

| n (Tell Statement

| (cell xy) (Cell Definition)
(exchxy 2 (Cell Exchangg

Figure 5.1.: Syntax of OPM Statements

In a guarded clausgixn then S) we call 3xn the guardandSthe body We identify
3xn with n if X is an empty sequence. The statemgntl x y) defines acell with
identifierx andinitial content y Theexchange statemefixch X y 2) operates on a cell
with identifier x and providez as the new content of andy as reference to the old
content ofx.

According to [195], OPM is parametrised with respect to the underlying canistra
system. We fix constraintg to be drawn from the feature tree constraint system CFT
defined in the Chapter 2. In this context we treat names simply as labels which, i
portantly, do not have a concrete notation in OPM.

In a procedure definitiofproc X (y) S) and a declaratiofiocal (y) S) the variabley
areboundwith scopeS:3® In a guarded claus@yn then S), the variableg are bound
with scopen andS. Free and bound variables of a statentgate defined as usual and
denoted byiv(S) andbv(S).

Computation in OPM proceeds by reduction on statements. It emplapseaieaving
semanticsmeaning that only one statement reduces at a time; there is no simultane-
ous reduction of more than one statement. The atomic reduction steps are defined as
follows.

35The fact that the notion of “bound variable” can mean both “bound in a statémetbound in
the store” will not lead to confusion since the first one is a staticephand the second one a dynamic
concept. We are aware that we could resolve the ambiguity by distliggibetween identifiers (static)
and variables (dynamic) but avoid this for simplicity.
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Variable Declaration. The reduction of a declaration statemélatcal (X) S) is un-
synchronised; it picks fresh variablgand replaces the declaratigncal (X) S)
by the statemerffly/X] that is obtained fron$ by simultaneously substituting
for all free occurrences ofin S

Null Statement. The null statemergkip does not reduce and is not observable.

Tell Statement. Reduction of a tell statementis unsynchronised; it reduces ¢kip
aftern was successfully told to the current store.

Procedure Definition. Reduction of a procedure definitiofproc x (y) S is un-
synchronised; it chooses a fresh nameextends the procedure store by
(proc n (y) S) and tellsx=n to the constraint store. Note that it is the constraint
store (not the procedure store) that will exhibit the failure if another definition
with identifierx has been executed before.

Procedure Application. A procedure applicatiofix y) synchronises on the fact that
x is bound in the constraint store. Xfis bound to a nama and the procedure
store containgproc n (y) S), then the application is replaced Bjy/X]; that is,
by the procedure bod§ with the actual argumentgreplacing for the formal
onesX. The situations that is bound but not to a name, or thais bound to a
name that is not mapped to a procedure are run-time errors.

Conditional. A conditionalif (3X1n1 then S;) 4 (IX2n2 then &) synchronises on one
of two conditions. If the current constraint store entails one of the guidg
(i = 1,2) then the conditional is replaced local (X)) S§). If it entails both
guards, then reduction of the conditionalngleterminate This choice is never
undone (“committed choice”). If the current constraint store entails the negation
of both guards, a run-time error is flagged.

Cell Definition. Reduction of a cell definitioficell X y) is unsynchronised; it chooses
a fresh nama, extends the cellcell ny), and tellsx=n to the constraint store.

Cell Exchange. Reduction of a cell exchangexch x y 2 synchronises on the fact
thatx is bound in the constraint store. *fis bound to a nama and the cell
store containscell ny), then this entry is updated foell n z), and the exchange
statement is replaced lyy=y'. The situations that is bound but not to a name,
or thatx is bound to a name that is not mapped to a cell are run-time errors.

Synchronisation on cells is as simple as synchronisation on procedures. x@ce
bound to a cell, the exchange statement does not synchronise at all. It enables commu-
nication between producer and consumer of the cell content and delegates all synchro-
nisation to these two.
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Patterns t o= a(fif) | aft...) | (f:0) | (fi..)
Statements S = ... | casexof (tgthen §)+ (tothen S;) (Case

Figure 5.2.: Syntax Extension for Pattern Matching

Cells add a second form aideterminisnto OPM; when multiple concurrent threads
perform an exchange on the same cell, then the final cell content depends on reduction
order. Multiple cell exchanges do not interfere with each other, though. Mutual ex-
clusion of concurrent operations on a cell is guaranteed, since an exchange performs a
read and a write operation on a cell in an atomic step.

5.1.3. Names

Names serve different purposes in OPM. First, they provide an interfacede con-
straints, which bear a first-order logic semantics, and procedures andvekith
have none. As a consequence, they supponrdayped equality tedest at all data
types (similar toeq in Scheme) that is particularly convenient in object oriented-
programming where one can test for object identity:

if (obj=selfthen S) +...

Third, names moddbcationsat which cells are located. This is essential since there
may be multiple references to the same cell, and every operation on thaucs!
be visible to all of them. Finally, OPM provides a primitive operation tcateenew
names, independent of the definition of procedures and cells, as unique tokens.

Since there is no explicit notation for names, names behave just as constant symbols
with the additional guarantee that they are globally unique and cannot be forged. In
combination with lexical scoping, the generation of new names is a flexible meghanis

to ensure privacy in an untyped setting. (In typed languages some of these seawvices

be offered by abstract data types.)

5.1.4. Case Statements

Figure 5.2 adds some syntactic sugar to madsk statementsith pattern matching

A case statement likease x of (t1 then ;) + (t2 then ) provides elegant support for

the decomposition of records and is common in functional programming languages. A
pattern tis a partial description of a feature tree. More specifically, the ladeloe
omitted if unknown, and an ellipsis is used if the available features areonqpletely
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known. Incase clausesuch aga(f:X...) then S) and(a(f:X) then S), the variablex
are bound with scop& In this context, the variablésare also calle@attern variables

Pattern Matching. A variablex matches patterrt if x is bound to a feature tree that
has all the labels and features mentioned ifor example, a feature teraf:y)
is matched by every tree that has at least the lalaeld the featurd at the root.

Case Statement.Reduction of a case statemare X of (t1 then S;) + (t2 then )
synchronises on the fact that the current informatiox onthe constraint store
matches one of the patteryor t>. The situation that will never matcht; ort;
is a run-time error.

Case statements are not primitive in OPM, since pattern matchingjig egpressed as
an entailment problem. For example, a variabieatches a pattewan f1:x; . .. fn:Xq...)
if the constraint store entails

a(x) A 3yiX[f1]ys A ... A 3ynX[fn]yn

or, equivalently, x=a(f1:xq,..., fnixn,0:y) for some featuregy and variablesy.
The variablex matchesa(fi:x1,..., faXy) if in addition the constraint store en-
tailsx{ fq,..., fo}; that is, if the constraint store entails

a(x) Ax{f1,..., fn} AIyaX[f1]ya A ... A 3YnX[fn]Yn-

or, equivalentlyx=a( f1:x1, ..., faXy). So case statements can easily be expressed with
the conditional of the base language. For example,

case X (a(f:y...) then §) + (b(g:2) then &)
is equivalent to the guarded conditional below, provided xhatl/(t1) U V/(t2).
if (Jy(a(x) AX[fly) then §) + (Fz(b(x) Ax{g} AX[0]Z) then )

5.2. Set-based Failure Diagnosis

The analysis is defined in Figure 5.3 as a mappghfgom OPM statementS to ex-
istential formulasA(D) over FTc (ar,U) constraints. The analysis uses the following
criterion to mark programs as dubious and reject it.

Rejection Condition. A programD is no good ifA(D) is non-satisfiable over non-
empty sets of trees.

In the remainder of this section we explain the analysis stepwise alondwstnating
examples®

36In addition, most of the examples from Section 4.1.1 can be easily adapthd tompositional
OPM syntax. However, the analysis of a CC(CFT) program accordinggaré&i4.4 is more accurate
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A(n) =N

AS | S) = AS)NAS)

A((local (X) S)) = IXA(S

A((procx (y1...¥n) S)) = 3y1...3yn(XCproc(arga:yi,...,arg,:yn) AA(S))
proc(X) Ax{arg;.....arg,} A

A((X Y1...¥n)) = 321..3Z0 | xargzA... AXarg,|zaA
y1CzA ... AYnCn

A(if 3N then S) = A((local (R)n || 9))

A(if (3X1n1 then §) + (IX2n2 then ))
YY1 UY2 A

= W1IV2 | A(ExeN1then ) [Y1/Y] A

A(3X2n2 then S)[Y, /Y]
if {y} = fv(if (3x1N1 then S1) + (Ix2N2 then S))
A((cell xy)) = cell(}) Ax{}

A((exch Xy 2) = cell(x) Ax{}

Figure 5.3.: Set-based Failure Diagnosis for OPM

126



5.2. Set-based Failure Diagnosis

5.2.1. Constraints, Parallel Composition, and Declaration

There is no surprise as to the analysis of parallel composition and of constthmts
analysis of constraints exploits again the fact that every CFT constraitédsaa
FTc(ar) constraint,

Declaration. In the analysis of variable declaration note that the assextidz-p=0
is dropped; it was used in Chapter 4 to relate emptiness of a local variable to
emptiness of the analysis of the enclosing procedure.

In presence of global variables, this technique of localising inconsistencee G-
dures does not work anymore. For examplezle¢ a global variable and consider the
following program (where is an arbitrary variable):

(procx (1) a(2)) || (procy (-) b(2)) (Dglobal)

Apparently, the proceduresandy have an inconsistent view as to the value of the
global variablez. However, this does not imply that eithes u) or (y v) are finitely
failed: none of them is. Only in combination of both indeed yields a finite failure:

(xu) [l (yv)

Therefore, our rejection condition take#l variables into account. Intuitively, this
means that we consider a great number of program points in addition to the call points
of procedures.

5.2.2. Procedures, Applications, and Conditionals

Since procedures are first-class in OPM, they can be referred to ablesiwhich

may also occur everywhere else in the program. Hence the analysis must be able
to constrain variables to denote procedures of appropriate arity. For this purpose,
we introduce a new labglroc and an infinite number of (pairwise distinct) features
argq,arg,, . .. that may not occur everywhere else in the program.

Furthermore, we allow procedures with arbitrary arity in this chapter.fiFst-order
procedures, a simple syntactic test can guarantee that all of them are apiphied

the correct number of arguments. In presence of higher-order procedures, we must
explicitly reason about procedure arities.

Procedures. The analysis ofproc x (y) S) states thak is a procedure with arity,
and that all of its formal arguments must be consistent with the use of the formal
argumentys, ..., ynin the procedure bod$ Notice that the body of a procedure
is analysed independent of whether it is applied or not.

than the analysis of the corresponding OPM program according to FigBrd-or further illustration,
see Section 5.3.
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Application. The analysis of a procedure applicationy) states thax is a procedure
that has arityr and that allows all possible valuesyés arguments.

Single Clause Conditionals.A conditional that consists of only one clause is as-
sumed to be used for synchronisation. That is, it is assumed that its guard will
eventually be entailed and, therefore, that its body is executed in evecpia-
putation.

Binary Clause Conditionals. For conditionals with two (or more) clauses we assume
at least one of its clauses is eventually executed. Conditionals are analysed
clause-wise. The occurring variables are renamed to avoid any unwanted de
pendency between the clauses to arise whose execution is mutually exclusive.

Case Statements.The analysis of case statements is defined via their translation to
the basic conditional form (see Page 125).

In Section 5.3 we consider possible refinements of the analysis of conditionals.

5.2.3. Caells

The indeterminism provided by cells and conditionals is different: While condigsona
make the choice between multiple clauses locally explicit, the choice batmeilti-
ple exchanges on the same cell is implicit. This complicates the analysiiofrce
comparison with the analysis of conditionals. In case of conditionals, the anafysis
its clauses is combined in a union constraint. This is, in general, imposeibtelfs
which leave the choice implicit. It makes the analysis of cell contents a lgkdee
instead of a local one as the analysis of conditionals. Locally, we can only digiae
information on cells.

Cell Definition. For the analysis of cells we introduce a special labkl The analysis
of a cell definition(cell x y) derives thak must denote a cell, but we derive no
constrains oly.

Cell Exchange. From (exch x y 2 we derive thatx must denote a cell, but no con-
straints ony or z.

This analysis is fairly weak as it does not derive any information about thef sat-
ues that a cell may hold during its life time. This may be improved lyjohal data
flow analysighat can delimit the set of references to a given cell. Alternatjyely-
grammers could provide an annotation restricting the possible values that theisna
accepts for a cell.
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5.2.4. Examples

To acquaint the reader with the modified syntax, we start with the exabglefrom
the previous chapter in OPM syntax:

(proc x (X) a(x')) (Drail2)
(procy (') b{y'))
(procz(Z) (x Z) || (y Z)).
As analysis 0Dx4j2 we obtain:
proc(X) A x[argy]xX A a(x) A

proc(y) Aylarg;ly A by') A
Zcx A ZCy

We rejectDs,ji2 since its analysis entais=0.

5.2.4.1. Procedures vs. Records

Consider a program that useboth as a procedure and as a record identifier.
(procx (y) §) || a(x) (Dtypeerr])

The analysis rejects the progrddgpeerr1 Since the associated constraint entai#g.
proc(X) A a(x) A...

Similarly, field selection on a procedure is rejected:

(procx (y) ) || X[f]z (Dtypeerr2)
The associated constraint is this one:

proc(X) A x{arg;} A X[flzA...

5.2.4.2. Arity Mismatch

The procedur®g» contains an arity mismatch.

(procx(z122) S) || (x y) (Dar2)
The analysis derives the following constraint, which entei#g.

x{args,arg,} A x{arg;} A...
Similarly, programs that contain two applications with different asiaee rejected:

(xy) [ (X z22) (Dar3)
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The failure indicated by the fact that the analysi®gf; entailsx=0 is not necessarily
exhibited at run-time; it is possible that no application with illegal awiil ever be
executed Rather, ifx is never bound, both applications will block forever and are
considered erroneous for this reason.

A third related example illustrates the requirement that all procedurescgshgute
about the values of their joint global variables.

(proc X (X) (u X)) | (procy (y) (U yy)) (Dar4)

The procedure in Dar4 expectau to be a unary procedure, whyeappliesu with two
arguments. The analysis entails-0 by a similar argument as for the two previous
examples.

5.2.4.3. Higher-order Procedures

In the following programx is a higher-order procedure that takes a procedure and
applies it to a single argument. The applicat{@nu) is erroneous sinceis bound to
a binary procedure.
(procx(y) (y 2)) | (x u) | (proc u (viv2) S) (Dars)
The error is detected because the analysBf entailsu=0.

xlargyly A y{arg;} A uCy A u{argg,argp} A-...

5.2.4.4. Multiple Procedures

Execution of two definitions for the same variable like in

(procx () S1) || (proc x(2) &)

will lead to a failure due to the attempt to bixao two different names. Our ana-
lysis detects many such situation$) If |y| # |z|, the analysis will forcex to denote

a unary and a binary procedure at the same tirtie. If S; and S, use their argu-
ments at different types, emptiness»oWill be entailed. For illustration, consider
(proc x (y) a(y)) || (proc x (¥') b{y')). Figure 5.8 on Page 137 gives a refinement of the
analysis of procedures (in a different context) which can improve the accaofdboyg
analysis in cases like this.

5.2.45. Conditionals

The following conditional is considered erroneous because guard and body do not
agree: the guard tests for some condition and the body contradicts it. If this dause
ever committed to, it will inevitably lead to failure.

if (FyXflyAa(x) then b(y))+...
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Program  (proc length(x n)
if  x=nil then n=0
+ 3y3z x=congy, 2) then (local (m) (length zmM | (inc mn))

Analysis  lengthCproc(arg;:x,arg,:n) A
XCx1UX2 A nNCniUm A lengthClength Ulengthp A
x1=nil A N1=0 A Xp=congy,z) A
lengthp[arg;Jur A lengthparg,juz A zZCug A mCup A

inclarg;|v1 A inclargy|vo A mCvy A NCVs

Figure 5.4.: Analysing the Procedure Length.

The following example is similar and rejected for the same reason.

if (a(x) then (X y))+....

A particularity of our analysis is that we reject a conditional clause whiateiger
executed because its guard is known to be inconsistent. For example:

if (a(x) Ab(x) then S) +...

The Procedure Length. Figure 5.4 gives an OPM procedure that implements the
functionlengthand its analysis, in which we have dropped the existential quantifiers
for better readability. We also assume that is statically known to be bound to a
binary operation on integers; therefore we decide to treads a constant symbol, in
contrast to the variableength This global type assumption can be expressed by the
constraint

incCproc(argy:int, argy:int) .
Simplification of the analysis déngthyields the solved form
lengthCproc(arg;:x,arg,:n) A xCnilucongy,z) A nCint.
Its greatest solution fdengthis
proc(arg;:nil Ucong1,1),argyint).

where we writel instead of?(F T) for better legibility. The expected type of length
is proc(list(1),int) wherelist(X) is the greatest solution of the equation

L= nilucongX,L).
So the approximation is indeed correct.

Arity Constraints. We have used arity constraints at different places in the analy-
sis. They are indispensable exactly where arity constraints syntagicalr in the
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program: that is, in tell statements where records are constructed andditicnal
guards where records are decomposed.

Everywhere else, we could get rid of them. For example, to catch the astpatch

in programDg,2, the analysis does not necessarily require arity constraints. Rather, we

could introduce another special featareand use the integers as labels to derive
A((procX(Y1...¥n)S)) = 3y1...¥n(XCproc(ar:n,argy:yi,...,arg,:yn) AA(S))

In this case, the analysis &f» would entail thatax'3x” (x[ar]xX' A 1(X') A X[ar]x" A
2(xX")) and hencex=0. Similarly, an additional labaioneand an analysis of feature
selection of the form

AXfly) = XflyA-3X (X[ar]X AnongX'))

could be used to justify rejection @ypeerr2 Without the need for arity constraints.

A third option to treat this phenomenon is to deriveroc(x) from x[f]y, and

to assume thaa(x) A —proc(x) is satisfiable for alla # proc whereas, of course,
proc(X) A —proc(X) is not. A more general treatment would assume an order on the
labels,e. g, a lattice €f.[137]).

5.2.5. Style Conventions

We give an informal summary of the principles that underly our analysis. These prin-
ciples can be seen as style conventions which a programmer should adhere when ap-
plying the analysis in order to avoid spurious error messages.

Everygoodprogram should
1. never reduce to a configuration with an inconsistent constraint store.
2. not contain statements that are unfailed only because they block forever.

3. contain only conditionals such that at least one of its clauses allows unfailed
execution.

4. not contain procedures that are unfailed only because they are never applied.

5. contain no set of procedures which disagree about the values of their joint global
variables.

6. not contain any guarded clause whose guard is inconsistent with its body.

7. contain only conditionals with consistent guards.

The first two principles should be familiar from Chapter 4 where we diagnodeddai
or infinite suspension as run-time errors of CC programs. Underlying the clauses (3)-
(5) is the decision not to accept any statement that is only correct becasisever
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executed: Conditionals with clauses that are all in conflict with the cor@xtlo

not abide by this principle; neither do procedures with an inconsistent Ebdyr
multiple procedures that cannot be executed concurrently because they do not agree
on their joint global variable5). Principle(4) corresponds to our analysis of finite
failure in the previous chapter: a finitely failed procedure inevitably failsutonly if

itis applied. If Principlg5) is violated in a given program, then the program is unfailed
only if some procedure is never applied. We want to prohibit this situation, justified
by the intuition that a procedure should allow an arbitrary number of applications.
Clauses (6) and (7) need further explanation.

Both Principles (6) and (7) reject a conditional claggehen S) if the statemeng||S

is inconsistent with its context, independent of whether it is executed atrad trEat-

ment of guards is clearly related to the unguarded approximation of Section 4.2. In
addition, it implicitly introduces a program point for each conditional clause idstea
of just one for the complete conditional. In the CC-case, this corresponds to the intro-
duction of auxiliary predicates as discussed in Section 4.1.1.4.

For programs that are hand-written by humans, the principles seem to be easy.to obey
They may not be stable under program transformations such as partial evaluation or,
more generally, they seem less convincing for automatically generated p&gha

this case, however, it seems still worthwhile to report violation of theseeiples; in
particular, since the programmer is always free to ignore the warnings anatexee
program nonetheless.

5.3. Conditionals Revisited

Reconsider théengthexample in Figure 5.4 and notice thahgth is unconstrained.

For this reason, the analysis cannot infer the expecteditypl for the first argument.

In thelengthrexample, the variablzonly occurs as an argument of the recursive appli-
cation oflength zremains unconstrained, too. This weakness is due to the pessimistic
operation of renamingll variables free in a conditional for the analysis of its clauses.

It is pessimistic since it ignores the possibility of variables which hheesame value
during executions of all conditional clauses.

This section shows that it is important to exploit some data flow informati@nder
to improve the accuracy of the analysis of conditionals. The next examples should
illustrate this point.

Recursion and Data flow. Most recursive procedure on lists have a form similar to
this one.

(proc X (y) if (y=nil then skip) + (3z y{cdr]zthen (X 2)))

Clearly, x is bound to a procedure whenever the second clause of the conditional is
executed. This fact is crucial for the analysis of this statement to becasate as the
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YEY1UY2 A
A (Funa then 5) + (Fenz then %)) = A((3RuN1 then S1))[5/) A
A((FRallz then 2))[5,/5]
if {y} = non®P(if (3x1N1 then S1) + (3X2N2 then S))

Figure 5.5.: Analysing Conditionals with respect to Parameters

one for the corresponding first-order statement.

Procedure Calls. A similar weakness applies to all procedure calls that occur in only
one of two branches of a conditional. For example, from the program

(proc X (y) if (N1 then (p xy)) 4 (N2 then (q x)))

the analysis in Figure 5.3 will not deduce tlxandy should denote integers — even if
the analysis of the procedure definitigmandq yields that both are binary operations
on integers.

The Base Case of a RecursiorThe procedurdorall applies its second argument as
a unary procedure to every element in the list that it receives as tharfjignent.

(proc forall (xs, p)
if ~ xs=nil then skip
+ Ix3Ixr(xgheadx A xgtail|xr then (p x) || (forall xrp))

Theintendeduse offorall implies thatp is bound to a unary procedure whenever the
second clause of the conditional is executed. In general this cannot be guaranteed. In
addition, ifforall receives the empty listil as the first argument it cannot fail, inde-
pendent of the second argument. This is the case because the higher-order apgument
is not used at the base case of a list recursion. Therefore, our analysis wajexit r

an application such ggorall nil 42) as finitely failed.

In a first-order setting, this example is well-known to the logic programmingiem
nity (e. g, see [149]), where an analysis such as ours does not find out that the ternary
appendprocedure expects lists in the second and third arguments.

(proc append(xs ys zs)
if  xs=nil then zs=ys
+ IxIxrxgheadx A xdtail|xr then
3z3zr(zgheadx A zgtail|zr || (append xr ys 2

The analysis of conditionals can be improved a lot if (some) data flow informition
statically known; that is, if it is known
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lengthCproc(arg;:x,arg,:n) A

XCx1UX2 A nCngUNpA

x1=nil A n1=0 A xp=congy,z) A

lengtharg;Jus A lengtHargo|ux A zCup A mCup A
inclarg;Jvi A inclarg,|va A mCvy A NCvsp

Figure 5.6.: Analysing the Procedure Length with respect to Parameters.

e on which variables it depends which clause a conditional is committed to
(tested,

e and which variables may be constrained on execution of the clagses (
strained.

All other variables can be assumed constant for all executions of the conditietal.

us call these variablgsarameters of the conditionalThe values of parameters are
(neither conditions nor results) not related to the conditional branching of control, but
they are simply accessed. Hence it is reasonable to adopt the

Parameter Principle. Parameters should not be renamed.

Figure 5.5 improves the analysis of conditionals accordingly, usonP(S) to de-
note the subset df/(S) containing all non-parameters 8f There are two important
advantages in knowing conditional parameters.

1. The analysis derives fewer union constraints and more equalities instaazk He
the analysis becomes strictly more accurate.

2. The constraint solving becomes simpler. Since the treatment of inclusion con-
straints is substantially more expensive than that of equality constréietsyeér-
all cost of constraint solving may drop significantly; this is in particular sogif
make the reasonable assumption that most variables occurring in a conditional
are parameters.

It is clearly undecidable whether a variable in a conditional is a parametss this
depends on run-time properties of procedures. So we cannot hope for anything better
in general than an approximation of parameter-hood. One obvious such approximation
IS this one:

Parameter Approximation. View those variables as parameters that occur only as
procedure identifier in applications or as cell identifier in exchange statements
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A(x of t then §) = JX(X=t AA(9))if fv(t) = {X}
A(case X of (t1 then §;) + (to then ) returny) =
Ix1 XCX1UX2 A YCY1 UV, A

3
S | A of t then S1) [y /xa/x) A

W2\ A(x of to then S)[V,/¥][X2/X]

Figure 5.7.: Analysing Case Statements

Figure 5.6 shows the adapted analysis oflémgthprocedure. The key improvement
with respect to Figure 5.4 is shaded grey. Simplification of this constrailusyie

lengthCproc(arg;:x,arg,:n) A xsCnil Ucongy,z) A nCint A zCX.
The greatest solution féaengthof this constraint is

proc(arg;:list(1),arg,:int)
which, in this case, is exactly the expected type.

Syntactic Sugar. The parameter approximation above considers variables as non-pa-
rameters whenever they occur in constraints or in conditional guards. Thigibugaf
rather pessimistic, and somewhat annoying given the central role that cotssplay

in OPM. Constraints are used both to construct and to decompose data struedures.
example, the selection constraiit]y constrains botlx andy in general. Frequently,
however, it is used as a selection functionxp@ssuming thax is bound to a record

with field f. In this casex[f]y expresses a new constraint onlyyori'When used such,

the variablex in x[f]y is a parameter in a conditional like

if (N then (local (y) X[fly|| (y 2))+....
but this is not acknowledged by the given approximation. As a second example, as-
sume that the variablemapandfold are bound to library procedures on lists. Then
they behave as constants and hence are parameters in the following conditeanal ev
though they occur in an equational constraint.

if (x=mapthen (X y1¥2¥3))+...
To further improve the analysis, we have three options.

Annotations. Enrich the syntax by special conditional forms (or other program an-
notations) which make intended parameters explicit. In functional programdathe
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A((proc X (Y1...¥n) S)) = 3Ty(XCproc(n:n,argy:y1,...,arg,:yn) AA(S))n fresh

A((X V1Y) = proc(x) Ax{n.argy.....arg,} A AL i Cx(arg]

A(if (3% N1 then S1) + (T2 then ) =

YEYy1UY2 A

A((FxLn1 then S))[y1/Y] A

A((3%2N2 then $))[¥/Y] A

Ayey isdef (y) then y=y1 Ay=Yy,
whereisdef (X) = 3y (X[n]y A isname(X))

and{y} = fv(if (3x1n1 then &) + (IX2N2 then S))

3y13Ys

Figure 5.8.: Analysing Conditionals with Automated Parameter Detection

flow through conditionals is statically clear. In OPM this is not the cas¢eaas one
could let the programmer provide (unchecked) data flow information by marking the
intended return parameters explicitly.

case X of (t1 then §;) + (to then S) return'y

Given such annotations, all variables excephdy can be treated as parameters. The
corresponding analysis is given in Figure 5.7. Notice that the annotatiamn y

Is essential, because the variables constrained by a conditional are notisghyact
determined either.

Conditional Constraints. Detect parameters during constraint solving by means of
conditional equations. A solution for the special case of procedures is given in Fig-
ure 5.8 using names. The definition of the prediéstef assumes another predicate
isname(X) that holds exactly for names.

Control Flow Analysis. Determine conditional parameters bgantrol flow analysis
The design of a full-fledged control flow analysis for Oz is an interesting relséapic
of its own.
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5.4. Related Work

5.4.1. Programming Languages and Models

The history of models for concurrent computation reaches back into the 60’s and 70’s
to the net theory of Petri [163], and to work on buffered communication between se
guential processes by Dijkstra [61], Brinch-Hansen [28], and Kahn [111]. The more
recent development of high-level models for concurrent computation and program-
ming can be summarised by two main lines of research: one of them is based on
process calculi and the other one on the concurrent constraint model.

5.4.1.1. Process Calculi

Process calculi and process algebras provideeasage passingrodel of concur-

rent computation (see [126] for references). Most influential amongst them is the
T-calculus by Milner, Parrow, and Walker [128,129]. Tiwecalculus generalises
and simplifies Milner’'s CCS [124, 125], th@alculus of Communicating Systenis

also draws intuitions from Hewitt and Agha’s actor model [3, 96] that formuldtes t
early vision of concurrent computation as organised in terms of concurrent precesse
(calledactorg that communicate freely by exchanging messages. CCS is influenced
by Hoare’s language CSP [99, 100]J@dmmunicating Sequential Processaswhich

the communication models of occam [30] are based.

In thete-calculus, messages are received along channels, and channels can be passed
as messages. This allows treealculus to express process mobility and to model dy-
namically reconfigurable networks of processes (that is, new processes caatee cr
dynamically and then be communicated with). It also subsumea-tadculus, one

of the most important models of deterministic computation [127]. Channel commu-
nication is synchronous in that both sender and receiver will block until a message
has been exchanged. For the development of programming languages, asynchronous
versions of thetrcalculus [24, 102] (where the sender does not block) have been con-
sidered. For instance, the languages Pict and join calculus [67,169] are based on an
asynchronous versions of tmecalculus.

5.4.1.2. (Constraint) Logic Programming

Logic programming is based on the vision of computation as deduction [114], and
took some of its original motivation from an application in natural language process
ing [49]. Logic programs are interpreted as predicate logic formulas from the Horn
clause fragment and operationalised by SLD resolution and backtracking séhaech.
language Prolog is almost synonymous with the logic programming paradigm. A key
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contribution of logic programming to the field of programming is the concepiof

tially determined data structureshat is data structures with embedded (logic) vari-
ables which act as place holders for unknown values. As computation proceeds, the
logic variables are further instantiated via unification, so that the datatstes get

more and more refined.

Logic programming was developed further in two directions. Jaffar and L§$8é}
defined theconstraint logic programmingcheme CLP(X) which parametrises logic
programming over a constraint system X while retaining most of its propertres.
CLP(X), unification is generalised satisfiabilitychecking and solving of constraints
for the constraint system X. This parameterisation made a variety of newstiat-
tures available in logic programming, by way of new constraint systems over nesmber
(integers and reals), booleans, trees (infinite trees, feature tsees)and others. This
greatly enhanced the usability and the efficiency of logic programming in problem
solving. For entry points into the related research see [23, 105, 208].

5.4.1.3. Concurrent Logic Programming

Another line of research took off from the insight that logic variables are an ssipee
concept to model complex communication and synchronisation patterns in concurrent
programming. For instance, by synchronising on a logic variable to become bound one
can express data driven computation as considered in data-flow languages [57]. Thi
expressiveness was first recognised in Relational Language [47]. Subsequésdly, i

to the development of a plethora of concurrent logic programming languages [189], in
particular with tailwind from ICOT’s decision to use a concurrent logic prograng
language for their ambitious Fifth Generation Project.

Concurrent logic programming gave up the identification of computation and deduc-
tion. The speculative exploration of alternatives with backtracking se@ddn't
know” non-determinism) was replaced by synchronisation eachmitted choice
(“don’t care” non-determinism). Committed choice means that the choice of one al-
ternative branch of computation cannot be retracted. A variety of synchronigaittion
terns were proposed and operationally specified, some of them quite involved [189].
In 1987, Maher [120] made a breakthrough in showing &mailmentbetween con-
straints was the logic concept underlying these synchronisation schemes. This esta
lished a unifying logic view on concurrent control with logic variables and enabled a
reconciliation of constraint logic programming with concurrent logic programming.

5.4.1.4. Concurrent Constraint Programming

Based on Maher’s insight and influenced by process calculi such as CCS [124,125],
Saraswat developed the framework of concurrent constraint programming [180]. Syn-
tactically, CC gave up the restrictive clausal syntax from Prolog and ed@tnore
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flexible compositional syntax instead, which was influenced by CCS. Conceptually,
it contributed the organisation of concurrent computation in terms of multiple sigent
which interact with each other by means of constraints imposeshared logic vari-
ablesand placed in the so-callembnstraint store The basic operations on the con-
straint store are imposing (“telling”) new constraints on the variablesestoht (“ask-

ing”) for the presence of constraints. The attempt to tell a constraint whiobhossis-

tent with the constraint store is to a run-time error. Hence, the tell apenaquires a
satisfiability test, while the ask operation is modelled by entailmertkshg.

Concurrent processes synchronise on the fact that certain constraints onbdevaria
become available in the constraint store. This allows for complex synchriomisat
conditions to be expressed easily and, since constraints are never deletettsit yi
monotonic synchronisation conditions. Thus communication through shared variables
is areliable and high-level concept in CC. Dynamically reconfigurable netwarkse
expressed without reverting to the indeterministic concept of channel commanicat

as process calculi.

Before CC arrived, research in constraint (logic) programming had ldeetproposal

of various delay primitives, which added a weak form of concurrency (“coroutifing”
Delay primitives were pioneered by Colmerauer with Prolog Il and Nai#ihMu- and
Nu-Prolog [51, 148] and are present in all modern Prolog systems today. Their concur-
rent control regime had proven beneficial for the writing of new constraint sol\fée

CC framework gives a simple explanation for them and opens up additional flexibility
for the development of new constraint solvers. Programming languages and notations
based on the CC model include cc(FD), AKL, and Oz [108, 174, 207].

5.4.1.5. Operational Models for Oz

Various aspects of Oz have been investigated on the basis of small calculi.
Smolka [194] defines the-calculus and relates it to thecalculus as well as to the
eager and the lazy-calculus calculus. Smolka also shows how to model concurrent
objects in they-calculus. Niehren and Miuller define tipecalculus which extends

the y-calculus by parametrising it with a constraint system, and proveghmabp-

erly contains the “applicative core” of thirecalculus [154]. Ap-calculus over order-

ing constraints between variables has been considered in [136]. Niehrstigates

the d-calculus and proves that it can adequately embed both the eager and the lazy
A-calculus [151, 152]. He also shows how to embed the compietculus intod.

All these calculi exclude constraint inference features. For entry pointsegetis-

sues see [174,182-184]. Details on the object model of Oz are presented in [91, 194].
Names in Oz have been inspired by the concept of naming irrttadculus [128, 129].

The interaction of constraint systems with names is discussed in [154, 155{irtFaanf
details of its practical issues, notably in the object system, see [91, 184].

Recently, Victor and Parrow have proposed the fusion calculus [160, 161] as disimpli
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cation of therr-calculus that should, at the same time, allow its extension by constraint
programming features such as variable equations. Research in the fusiolusa
driven by the study of program equivalences and not by programming desirables (com-
pare also Section 6.4.1).

5.4.1.6. Concurrent Functional Languages

There are various proposals for concurrency extensions of functional languages. The
ones related to logic variables include the futures in Multilisp [81] and #teuictures

in Id [18]. The functional language Erlang [17] supports message-based communi-
cation (somewhat similar to thecalculus). Futures, I-structures, and logic variables
have in common that they provide a place holder for a data structure that is to be com-
puted concurrently. They differ in how they deal with multiple assignment. Estur
enforce single assignment syntactically, logic variables as in Oz combiniplaths-
signments” to the same variable by unification, and I-structures raise amaretror

on second assignment (so does Plain). In contrast to a future, a logic vaaalbe c
created independently from the process that will bind it. In contrast to logiabhlas

and similar to channels, I-structures require explicit operations to siticeslata.

Also, Id’s M-structures [22] and OPM’s cells are related. M-structamesupdatable
containers that can be full or empty. Reading from an empty M-structure blocks the
reader, and writing to a full M-structure is a run-time error. The readveniteé oper-

ations on M-structures are not atomic. In contrast, cells in OPM hold logiahlas.

An exchange operation replaces the current content of a cell by a new one in an atomic
operation. This guarantees mutual exclusion of multiple concurrent operations on the
same cell which is crucial for computation with state. Once the cellagable, oper-

ations on it are unsynchronised. Thereby, the access to variables in a ceb gtz

from the synchronisation between producer and consumer of constraints on these vari-
ables. The presence of logic variables is essential here: one can put a |egjatever

a cell and compute the new value afterwards.

5.4.2. Program Analysis

Set-based analysis for higher-order programming languages has received smme att
tion recently in the context of functional languages [12, 38, 65, 84,121, 216, 218]. Set-
based analysis for constraint programming has, to the best of my knowledge, not been
investigated so far. We briefly comment on the most closely related progmnalysis
systems, and we add a remark on the constraint systems used there in tortrast

one we use.
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5.4.2.1. Program Analysis Systems

Bourdoncle [26] investigateabstract debuggindgor imperative languages in the
framework of abstract interpretation. Abstract debugging analyses a progtam wi
respect to so-calleghvariantandintermittentassertions; invariant assertions must al-
ways hold at a given program point, and intermittent assertions must hold eventuall
Invariant assertions can be used to derive sufficient conditions for a progifarhab
some point.

Flanagan's MrSpidey [65] is a static debugger for Scheme and part of the program-
ming environment DrScheme [63]. MrSpidey approximates the data flow in Scheme
programs and derives set expressions for every program point in order to prove that no
run-time error will occur at certain program points. MrSpidey’s main goal istatc
detection of errors.

Wright's Soft Scheme [38, 216, 218] is the precursor of MrSpidey at Rice. Soft typing
for Scheme tries to eliminate all run-time type checks which it can proseitceed.

It also reports to the programmer program points that will necessarilyf fliey are
reached at all. Wright shows that all run-time type errors in a checked pnogilabe
caught by one of the remaining type checks.

Aiken and Wimmers [11, 12] develop a soft type system for FL [9] based on a very
expressive set constraint system with union, intersection, and complemengivaey

an interpretation of their constraints in a domain of types, essentiallyahdard ideal
model [119] for functional types. Aiken has developed a demonstrator version of their
analysis for the experimental functional language lllyria [4].

Wadler and Marlow present a type system for the first-order fragment of Ed&ig, [
a functional language with server-based concurrency. Their system uses subtyping
constraints based on a simplified version of Aiken and Wimmers'’s systgn [

Heintze [84] proposes a set-based analysis for the functional language ML. His analy-
sis is a global program analysis and cannot be used to analyse programs module-wise.

Aiken and colleagues develop BANE [6] as a tool box for constraint-based analysis
different programming languages, including ML and Java. BANE is based on a mix-
ture between set and tree constraints that has, for instance, beeb usearhaiyasis

of unhandled exceptions in ML [62].

5.4.2.2. Covariant Ordering Constraints

Ouir failure diagnosis for OPM is based on the same set of constraints that weyechpl

for a concurrent constraint language. More technically speaking, our analysis of OPM
is based on constraints interpreted over sets of feature trees witly anfohotonic
(covariant) order. This is in contrast to most other analyses for languadebigiter-
order procedures, in particular with all work mentioned above (except for Bouslsncl
analysis for Pascal which is first-order).
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Most constraint systems used for the set-based analysis for higher-order prscedure
are interpreted over an ordering that is monotonic or antimonotonic depending on the
top-level constructor (usually>) or the tree selectors (such @smandrg). The co-
variant ordering is used to deal with output arguments of procedures, the cormtnavari
ordering deals with input arguments.

Since the data flow through OPM procedures is not statically apparent (in cdotrast
procedures in functional languages) we must treat input and output arguments alike.
As a consequence, we lose much information along higher-order functional data flow.
On the other hand, the analysis of multiple applications of the same procedure is kept
fully separate.
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This chapter presents a concurrent higher-order programming language called Plain.
The main design objectives for this language have been that it should be a clase rela
of OPM that

e has an expressive strong type system with record-based subtyping and higher-
order polymorphic types (in contrast to ML type schemes), but

e retains most of OPM’s expressiveness as far as concurrent, functional, and
object-oriented programming are concerned.

Higher-order polymorphic types are required for cells that contain polymorphic data
structures and they are convenient for data structures that embed polymorphic proce
dures €. g, to describe modules). They are particularly useful in a distributeshgett

(e. g, see [209]) since they enable one to send polymorphic procedures along a chan-
nel, an idiom which is ill-typed in ML. Higher-order polymorphic types are also re
quired to type check certain higher-order programming abstractions, for instethee
context of typed object-oriented programmirgd, see [166]); there, theombination

of higher-order polymorphic types with subtyping is especially convenient [1].

As it turns out, both design objectives can be met by simplifying OPM’s store model
such that it does not contain equality constraints between variables and hence does
not require equational constraint solvingg(, unification). In Plain, the abstract con-
straint store of OPM is replaced by a more detailed and self-containesl ratmdel,
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and equational constraints are replaceddiygle) assignment

X:=Y.
Execution ofx:=y does not assert equality betweeandy (and unify their current
bindings) but blocks unty is bound to some data structubeand therbinds xto the
sameD, too. The decision to give up unification makes Plain a considerable restrict
of Oz as a constraint programming language, in particular with respect tadree
straints. But Plain still admits computation with partially deterndigiata structures
such as records with embedded logic variables.

(local (y, z) x:= {heady, tail:z} || ...)

This retains important expressiveness of logic variables, including the faljpwhe
possibility to express cyclic data structures, demand-driven computation aad da
flow computation [152,170], safe (monotonic) synchronization in concurrent pro-
gramming [189], and latency tolerant communication in concurrent and distributed
programming [209]; it also includes the implementation of tail recursive proesdur
returning lists which is impossible in functional programming languages, (131]).

Plain’s type system employs record-based subtyping and higher-order universal poly-
morphism [76,177]. It also features access modalities (modes), which havenbee
troduced for channels by Pierce and Sangiorgi [165]; we show that one can adapt their
system to a language with logic variables. Modes for logic variables aratedse

make the type system work. Neither constraints on logic variables nor procedures in
constraint programming impose a static distinction between input and output (even
though itis often made implicitly). However, this distinction is esséfbiaevery type
system that provides a non-trivial order on types, such as the subtyping order and the
instantiation order on polymorphic types: it must be possible to use the procedure out-
put of a (more specific, smaller) subtype as input of a (less specific, greaper)yge,

and instantiation of polymorphic types must occur along the data flow F'36].

Static typing in a system with ordered types requires that the data flowtisadiia
known. In functional languages this is ensured by the restriction to applicgtias

it is not the case for OPM where equational constraxntsy are a central computa-
tional concept; equational constraints do not have a notion of input and output. In order
to solve this technical problem, Plain replaces equational constraints Isgigmaent
statement; while assignment remains an equation semantically, it kettcally fixed
input/output behaviour. Plain adapts also the operational semantics of the OPM prim-
itives such that they use assignment instead of equational constraints; iculpart

such a modification was needed for the semantics of cells. We do not consider type

3"Note in passing that one can provide OPM with an ML-style polymiarpipe system subject to
Wright's restriction of polymorphic generalisation [123, 217hi§ system does not require static data
flow information, but it rules out many higher programming abstragtog, in the object system. For
preliminary results on this topic see [138].
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inference for Plain, which is very likely to be undecidable [214]; for furtheailietee
Section 6.4.1.3.

The changes in OPM that lead to Plain can be understood as adding a static notion of
input and output to a language that, due to its nature, does not make this distinction
explicit. Some of these additions affect the operational semantics (assigrament
some the type system (mode discipline). We show that these changes suffice to adapt
standard strong type systems with an order on types to @QRMfo a language with

logic variables and higher-order procedures.

Plain’s expressiveness is also well-comparable with Pict [169], antexmncurrent
programming language based on thealculus [128,129]. So Plain’s design also
contributes to recent efforts [152-154, 160, 161, 194, 211] to relate the concurrent pro-
gramming models based on constraints with those based on channel communication.
Plain seems to be the first typed concurrent programming language with higher-order
procedures and logic variables, with Id [18] being its closest relativhigrespect:

So Plain is also of interest as an instance of what Harper has calleddhestyfle of
programming (higher-order, typed), extended to deal with logic variables [212].

6.1. Plain

6.1.1. Untyped Plain

Plain inherits the computational setup from the Oz Programming Model, which is
given by concurrent threads that communicate and synchronise through a shared store.
In contrast to OPM, Plain considerably simplifies the store model. Plstiore binds
variables to data structures but does not contain explicit equations between unbound
variables. The data structures may contain embedded logic variables, d&f typic

ically only some are bound. Thus, Plain accommodatasially determineddata
structures. The unbound variables in such a record can serve as the commnnicati
medium between concurrent threads.

6.1.1.1. Statements, Store, and Configurations

The abstract syntax of Plain is given in Figure 6.1d#a structure Os a procedure,
a record, or a cell. Aecord{a:y} hasfieldsy at pairwise distincfeaturesa. We use
the same notational conventions as for feature tefims.

38This notion of records deviates from OPM where records carry labels. iJmiet an essential
difference but brings Plain closer to conventional programming languaijesecords, in particular
with functional languages. It is mostly due to Oz’s heritage in logimgpamming that records have
labels in OPM.
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Data Structures D = (proc (V) S Procedure

| {ax} Record

| (cell x) Cell)
Expressions E = X Variables

| D Data Structures
Statements S = x:=E Assigment

Pattern Matchinp

(

(

(

(

(

(
(Xy) (Application)

| (casex (ay...) 9 (

( (

(

(

(

| exchXy(z) 9 Exchange
| (local (X) 9 Declaration
| SIS Parallel Composition
| skip Null Statement
Configurations C = Vpol] S
Variables vV C vV (V afinite set
Store o V—-DUN
Reference Store p N—D

Figure 6.1.: Syntactic and Semantics Objects of Plain

148



6.1. Plain

consistent renaming of bound variables
SI12=2S (SIS [S=2(S[1S)  skip | S= S= S| skip
{...al:yl...az:yz...} = {...az:yz...al:yl...}

(case X (...a1:y1...82:Y2...... )S) = (caseX(...a2y2...a1¥1...... )S

Figure 6.2.: Structural Congruence of Plain

The statements are all known from OPM with two exceptions:agsggnment x=E

of an expressiok to a variablex, and thecell exchangéexch x y (z) S) on variablex

with argumentsy and z, and with continuatiors. In contrast to the cell exchange
statement of OPM, Plain’s has a variable binder(exch X y (z) S), the variablez is
bound withinS.3° For technical simplicity, we restrict case statements to contain a
single clause onl§®

We write the set of procedures, cells, and record®as, and R, respectively. The
sets of data structure® is defined as their union® = Pu CU R. Recall that?
and A denote the set of variables and namesstéreis a pairpo of finite partial
functions whereo maps variables to data structures or names,pan@ps names to
data structures. We require thato(x)) is defined whero(x) € A[. We writep_
ando_ for the totally undefined store functions. Xt dom(o), then we say that is
boundin the storeo. If o(x) € D, we sayx is bound too(x), if o(x) € A’ say thatxis
bound to a celwith current contentp(o(x)). The free variableb/(o) andfv(p) of a
store are defined as follows.

V(o) =der dom(o)Ufv(rg(0))
V(p) =der V(rg(p))

Themonotonic extensioof a storeo by a new binding ok to d is writteno, x—d and
defined by

o[d/x] if x¢ dom(o)
o otherwise

g, x—d —def

An extension “of the empty store” such as,x—d for d € DU A is abbreviated to
just x—d by droppingo_. Note that this is not the standard notion of extension for

39For further discussion on assignment and exchange, the statementsiithBtaliffer from OPM,
see Section 6.3.1.

40In practice, this restriction is not possible since it restricts thEr@ssiveness of case statements to
that of field selection on records. The type checking of multiple-clause tatsgrents can be added
based on standard machinery, usign type constructors and variant types [34
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Vpa(] (local (X)S) — VU{X}pa[] S IfxgV (DECLARE)
Vpo[] x:=y — Vpo,x—o(y)[] skip if ye domo) (ASSVAR)
Vpa[] x:={ay} — Vpo,x—{ay}|[] skip (ASSREC)
Vpo[] x:=D — Vp[D/n] g, x—n(] skip (ASSDATA)

if D PUC,n ¢ don(p)

Vpol] (xy) — Vpo[] Sy/Z (APPLY)
it p(0(x)) = (proc (2) 9

Vpo([] (casex(ay...)S) — Vpo[] Sz/y] if o(x)={az...} (MATCH)

Vpa|] (exchxy(z)S) — Vp[(celly)/a(x)] o] SZ/Z (EXCHANGE)
if p(a(x)) = (cell )

Vpo[] S — Vo] S
Vpo[] &1 |S — VP[] £]S

(CLOSURE)

Figure 6.3.: Operational Semantics of Plain

partial functions: It is allowed to extend a staveby a binding for a variable that
already binds, but in this case the extension has no effect. This impliesthas®sn
preserves the bindings in the store: Hence, it is called “monotonic”.

A configurationis a tupleVpa[| Sconsisting of a statemeS8ta storepo, and a se¥ of
(dynamically created) variables such th&tS) U fv(o) ufv(p) C V holds. With every
configurationVpo|[] Swe associate a stateme®(C) that represents the bindings of
po in terms of assignments and exter®sccordingly. Thestatement &) associated
with a configuration ds defined as follows.

VP[] S) =det SN AgenX:=0(X) A Agea X = (cell p(a(X)))

6.1.1.2. Operational Semantics

We identify statement§, data structure®, and configuration€ up to consistent
renaming of bound variables and we assume once and for all that bound variables in
all S, D, or C are pairwise distinct and distinct from the free variables. Furthermore,
we identify S, D, andC up to thestructural congruencgiven in Figure 6.2. Parallel
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composition of statements is commutative, associative, and has the redeimant
skip. Records{a:y} and patternga:y...) are identified up to reordering of their fields.
Two configuration€ andC’ are congruent if their associated statements are: formally,
C=C'ifand only if S(C) = S(C).

The operational semantics of Plain is defined in terms of a one-step redwaton

on configurationsReduction— is defined as the smallest binary relation on config-
urations that satisfies the axioms in Figure 6.3 and is closed under the inferemce rul
(CLOSURE).

Declaration. Reduction of variable declaratidifiocal (X) S) is unsynchronised; pro-
vided the declared variabl&slo not occur in the current configuration, they are
added to the set of used variables dhdal (X) S) is replaced bys. This rule
may require renaming of the declared variable before reduction.

Assignment. There are three rules fassignment x= E depending on the expression

E on the right hand side. The assignmgnt y of avariable yto x waits fory

to be bound in the current store, and then extends the store by the binding of
to o(y). Reduction of an assignmext=D whereD is arecord {a:X} directly
extends the store by bindingo {a:x}. Reduction of:= D whereD is acell or
aprocedurdirst creates a fresh name Then the store is extended by bindig
tonandntoy. In OPM, these assignment forms correspond to procedure and
cell definition. The following example illustrates declaration and assigihme

{xtp-0_[] (local (y) y:={ax} [ x:=y)
— {xylp-o_[ly:=={ax} [x=y
— {xytp- y—{ax}[] xi=y
— {xy}p_ y—{ax},x—{ax}[] skip

In this examplex is bound to{a:x} such that ayclic recordis constructed.

Application. Reduction of an applicatiofx y) synchronises on the fact that the store
bindsx to a procedurdproc (2) S); then, it replaces the application with the
procedure bodyy/z] with the actual arguments replacing the formal ones.

Pattern Matching. A matching statemeritase x (a:y...) S) synchronises on the fact
that the store bindsto a record that matches the pattéary...). We say that a
recordmatches patterna:y...) if it has at least the features & that is, if it is
of the form{a:z}. A special case of matching is field selection on records. For
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instance, consider the following reduction.

{x.y}py—{axby}|[] (casey (b:z...) X:=2)
— {xylpy—{axby}[] x:=y
— {xy}py—{ax by}, x—{ax by}[] skip

Cell Exchange. A cell exchangegexch x y (z) S) synchronises on the fact thatis
bound to a cell, say with current contenit If this is the case, the store is up-
dated at the name(x) to point to the new cell content and then the exchange
statement is replaced by the continuat®&in which the former conterd is sub-
stituted for the bound variable For instance, leV = {x,y,y'}, fix a namen
such thap(n) = (cell y) and consider the following example.

Vp x—n[] y:=X|| (exch xy(z) (exch x z(Z) skip))
— Vpx—n,y—n[| (exchxy(z) (exch xz(Z) skip))
— Vpl[(celly)/n] x—n,y—n][] (exch xy (Z) skip)
— Vp|(celly)/n][(cell y)/n] x—n,y—n[] skip
= Vpx—n,y—n[] skip

6.1.2. Typed Plain

In this section we present a type system for Plain. This type system is infpyitee
one that Pierce and Turner give for Pict [169] which in turn rests on a long vadifi
type systems for functional languad®s.

6.1.2.1. Types are Protocols

In the concurrent setting, types are appropriately viewaat@®cols The communi-
cation of concurrent threads with each other through the shared store is mdnjiated
logic variables. For this communication to work smoothly there must be consensus
between the threads on the access protocols for the shared variables. Thesagrot
include two kinds of information:

e Structural: “Which data structures may a variable be bound to?”

e Modal: “Is it legal to read from and/or write to a variable?”

4IFor excellent overviews of type systems for programming languagesheegassical paper by
Cardelli and Wegner [37], and Cardelli’s more recent handbook article [34]
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Typesare a means to describe such access protocols for variables. TypicdPtypes
include these ones:

?int: grants the right to read a variable and guarantees that reading will yield an
integer; denies write access, that is the right to bind a variable.

lint: grants the right to bind the variable to an integer; denies read access.
“int: grants the right to read integers from a variable and to write integers to it

?{a:T}: grants the right to read a variable and guarantees that reading will yield
a record that has at least the featareFurthermore, it is guaranteed that the
selection of the field aa will yield a variable with typeT. Write access is
denied.

{a:T1,b:T2}: grants the right to bind a variable to any record that has at least the
featuresa andb, provided their associated fields have typesndTs.

I(proc ?int): grants the right to bind a variable to a procedure that can safely be
applied to variables of typer.

va.(proc 20 lint): grants the right to read a procedure from a variable, and apply it
to all pairs of arguments of which the first provides read access, and the second
one allows writing an integer.

We write x:T for the assumptiorthat variablex has typeT. Type assumptions for
multiple variables are grouped in so-called type environment3ype checkings
protocol validation: namely, the process of verifying that a given type environimsnt
respectedy a configuratior© and all configurations one obtains by reduction fl@m
we write this ad >C.

Subtypingdefines an orddr < I’ on type environments such tHatrespects when-
everC respects$’; intuitively, this is the case if describes the more permissive proto-
col in allowing more operations on the mentioned variables Halhis order on type
environments is obtained by lifting a corresponding order on tfipesT’ pointwise

to environments. Typical subtypings include:

?int < Znum: the protocol that grants reading of arbitrary numbers from a variable
is less specific than the protocol that gives the additional guarantee that only
integers will be read. Hence, every variable respecting the protacel @ill
also respect the protocoin®. This makes the reasonable assumption that all
integers are numbers.

“T < ?T: the protocol that grants read and write access to a variable for structures
of typeT is obviously respected if the variable is only read from.
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X) & N, oro(x) € AL andp(o(x)) ¢ P

Vpa[l xy) S €E if a(x)
Vpo[] (xy) [ S €E if a(x) = (proc (2) S). [yl # |2
Vpo[] (exhxy ()9 [|S eE  if o(x) ¢ N, oro(x) € Alandp(a(x)) & C
( (X) ¢
( (%) =

Vpol] (casex(ay...) S |S € E if a(x

Q

Vpo[] (casex (ay...) 9 ||S € E if o(x

{5 z}.{a} ¢ {b}
Figure 6.4.: Type Errors of Plain

Type checking is formalised as usual, by means pfaof systenfor judgement®of
the forml >C. A second auxiliary proof system is used to define subtygmner
T>. This proof system will guarantee th@trespectd” wheneverl >C is derivable.
Figure 6.4 defines the sé&t of configurations containing gpe error. If C respects
some environment, thagpe safetys guaranteed (see Section 6.2). This meansGhat
will never reduce to an ill-formed configurati@he ‘.

Notice that multiple assignment to the same variable is not a type error, atypthe
system will not exclude the possibility of multiple assignment; neither does the type
system guarantee that a variable will eventually be bound to a data structhee. T
type system will only guarantee that a variable is never assigned two dattus#is of
different type

6.1.2.2. Types

Figure 6.5 defines the abstract syntax of types. For technical reasons, weouse
syntactic categories dipesranged over byP and T, respectively. If a distinction
is necessary, we cait a proper type. There are thregodes a read-only mode ?, a
write-only mode !, and a read/write mode ".typeis a pair consisting of a mode and
a proper type, or, proper type Hs a type with its top-level mode stripped off.

We assume two infinite sets ofpe variablesT 1’ ranged over byt and of mode
variablesM 9’ ranged over by.. Type and mode variables are jointly referred taby
Types that do not contain type variabtesire callednonomorphic

There is a proper monomorphic type per data structure. Hence thepzoaeiure
types(proc T), record types{aT}, andcell types(cell T). In analogy to records,
we require the features of record types to be pairwise distinct and identibyde
types up to reordering of fields. The only primitive monomorphic type isetingty
record type{}. A procedure typéproc T) describes procedures that take arguments

42\We consider only types that describe very simple protocols; see alsors6cti
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Proper Types P = (proc T) (Procedure Type

| {aT}  (Record Type

| (cell T) (Cell Type

| Tt (Proper Type Variable

\ Va.P (Polymorphic Type
Modes M = ? (Read

| ! (Write)

| ) (Read/Write

| M (Mode Variable
Types T = MP (Moded Proper Type
Type and Mode Variables a = 1[N

Figure 6.5.: Plain Types
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of typesT, a record typga:T } describes records with field@sand associated typds
and a cell typécell T) describes cells that hold variables of type

Every type variablatis a proper type and every mode variaplés a mode. Fur-
thermore, there arpolymorphic typesf the form Va.P wherea is either a type

or a mode variablé® The type variablex in Va.P is boundin P. The free and
boundtype variables in a typ@& are defined as usual and writtém(T), ftv(P) and
btv(T),btv(P). This notion extends pointwise to environments. Polymorphic types
of the formVajs....Va,.P are sometimes abbreviated b@.P. If n= 0 thenVva.P
simply meand. As for statements and data structures we assume all bound and free
type variables to be pairwise distinct. Note, however, that the order cdblas in

the quantification prefix of a polymorphic tygkwesmatter. For instance, the types
V1.V (proc ?my !Th) andVTe. Vi (proc ?my !Th) are distinct.

A polymorphic procedure typert (proc T) describes procedures that haxery type

of the form(proc T)[P/T, obtained by substituting some proper tyjefor the type
variablesrt For instance,

VT (proc ?rt!m)
is the type of the identity procedure which assigns its first argument to its second one

6.1.2.3. Subtyping

Subtyping is the smallest relation on types satisfying the rules given in F&ére

The first eight rules define subtyping on monomorphic types, the two last ones extend
subtyping to polymorphic types.

The rules (FL) and (TRANS) require subtyping to be a preorder, and it is easy to see
that it even is a partial order up to consistent renaming of bound type variables.

Modes. The six topmost rules are taken from Pierce and Sangiorgi’'s mode system
for channels [165]. The rules GADSUB), (WRITESUB), (READ) and (WRITE) de-

fine subtyping on types in terms of subtyping of proper types. Rul&pSuB)

and (WRITESUB) are obvious: a type that allows readiagd writing is more permis-

sive than a type that grants exclusively readangvriting.

Rule (READSUB) states that a read-moded tyde [®ecomes smaller in the subtyping
order as the guarantees on the tipuaf the read expression become more specific. For
instance, ift < ?num If int < num for some proper typesmt andnum. Since there
are more operations (readers) defined on integers than on numipers, the more
permissive type. Read modes anenotonicwith respect to the subtyping order; one
also says that read-moded types are ordeosdriantly

43In choosing universal polymorphism here we deviate from [144]e &kistential polymorphism
in [144] was inspired by Pict, and also motivated by the comparisonaifi Rlith Pict, but universal
polymorphism seems more appropriate for a language with higher-prdcedures.
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PL<P P,=<P;

P<P (REFL) (TRANS)
PL=P3
P<P (READSUB) P<IP (WRITESUB)
P <P PL<P
=7 (READ) - (WRITE)
P2 Py < 1Py
T<T T<T
— — (PrROCSUB) — —— (RECSuB)
(proc T') < (procT) {aT...} =z {aT’}
(INST-P) (INST-M)
VTLPy < P[P,/ 1T YP < PIM/y]
PL<P
= (PoLy)
Va.Py < Va.P

Figure 6.6.: Plain Subtyping

A write mode inverts the order on types; see ruleR(\eSUB). A write-moded type

IP becomes smaller in the subtyping order as it becomes more specific with respect
the typeP of the data structures to be written. For instangegi < lint if int < num.
Since there are fewer integers than numbearsm!is the more permissive type and
lint the more specific type. Write modes argimonotoniagespectivelycontravariant
with respect to the subtyping order.

Two types with read/write mode are subtypes of each other if and only if they are
equal. Since read/write moded types must simultaneously be ordered coyaarahtl
contravariantly (as read moded types and write moded types, respectithely)are
invariantwith respect to subtyping.

Monomorphic Types. A record typeT is a subtype of another record typéif T
has at least the featuresTh and the corresponding fields ®fandT’ are in covariant
subtype relation; see rule ERSUB).

Rule (RROCSuUB) states that a procedure typgroc T) is a subtype of proc T') if

T' < T, thatis, if the argument types are in contravariant subtype relationship. In other
words, procedure types becoramaller along the subtype order as their argument
types becomgreater. In this case, more argument types respect the procedure type
and hence the procedure is more permissive.

There is only trivial subtyping for cells. Note that every cell always suppbesead
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6. Typed Concurrent Programming with Logic Variables

operation to obtain its current content and the write operation to replacerntsrt
with another variable. Hence, in analogy to subtyping of read/write moded tygies, ¢
types must be invariant.

Polymorphic Types. Rule (INST-P) says that the polymorphic typetP; is a sub-
type of every type that is obtained by substitution of sdtéor the proper type vari-
ablertin P;. For instance, the polymorphic identity type is smaller than every more
specific identity type:

VT (proc ?rt!T) < (proc Zint lint)

Rule (INsT-M) is analogous for mode polymorphic types of the fovmP. For
instance, a procedure that is well-behaved on all arguments of gypasd (cell pm)
independent of the mode will also be well-behaved on arguments of typesahd
(cell ?rt) which fix the mode.

VW VTL (proc prt (cell prr)) < VTt (proc 21t (cell 2m))

Rule (PoLy) defines how to compare two polymorphic types with the same quantifier
prefix Ya. A polymorphic typesva.P; is subtype of another onéa.R if Py is a
subtype of,. Note that this subsumes polymorphism of both fokid® andVvL.P.

In Plain, unary functions are implemented as binary procedures that readniigir i
from the first argument and write the result to the second one. The type of such pro-
cedures igproc ?P; !P). The induced subtyping rule on these types coincides with
the usual subtyping rule on function typ&s— T’ which makes the function type
constructor— covariant in its range type and contravariant in its domain f{pe.

T =T =T,
———— (READSUB) ——=
M <7 ( ) IT, <IT,

(proc 7Ty ITp) < (proc 7T I'T))

(WRITESUB)
(PROCSUB)

6.1.2.4. Type Checking

A type assumptiois a variable-type paix:T. A type environmerit is a finite set of
type assumptions for distinct variabbes. . ., x,, written

X1: T, ... X0 Th.

The extensiorof an environmenE by x:T is written as adjunctiol,x:T and is only
well-defined if" contains no type assumption feryet. The notion™, I’ is defined

44pijerce and Sangiorgi [165] have proposed this mode system fortagculus in order to recover
subtyping as previously studied in typed functional languages. present the analogous example (in
terms ofr-calculus) as one validation for their mode system.
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FoyT
xTel (VAR) (REC)
Mo>xT r>{ayh:?2{aT}
r>ET Moy T
- T=T (SuB) (CELL)
r>E:T' > (celly):?(cell T)
ryTe S
{a}nftv(l) =0 (PrROC)
> (proc (Y) S):?va.(proc T)
>x!P IM>E:?P
(ASGN)
N>x:=E
Fex?(procT) T>yT rxT>S
(APPL) (LocAL)
N> (Xy) > (local (X) S)
r>x?{aT} I,yTeS M-S M>S
(MATCH) (CoNc)
[>(casex (ay...) S S| S
Fex?cell T) oy T [,zT>S
(EXCH) ——— (SKIP)
> (exchxy(2) S I > skip

Figure 6.7.: Typing Plain Expressions and Statements
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analogously. The inference system in Figure 6.7 defines two well-type¢lrozgs-
mentsof the forml>E:T andl >S.

An expressiorkE is said tohave type Twith respect to environmerit if '>E:T is
derivable. A statemer$is said torespect an environmeftif I >Sis derivable. A
configuratiorVpo|[] Srespects an environmehif its associated statement do€s:C

if and only if ' >S(C). An expressiorE is said to bewell-typedif it has a type with
respect to some environment. A statem®rd storepa, and a configuratiolpo[] S

are said to bevell-typedif they respect some environment. An expression, statement,
or configuration that is not well-typed is call@dtyped.

Variables receive their type by lookup in the environment; see rukR)V Data
structures must allow inspection, hence all of them have read-moded types; see
rules (RocC), (CELL), and (Rec). By rule (SuB), expressions can freely be promoted
along the subtyping order. Rulesg(.) and (R=C) should be fairly clear: the type
of a record or a cell is straightforwardly derived from the types of the recetdsfi
and the cell content, respectively. With respect to a given environimeatproce-
dure (proc (Y) S) has every typdproc T) such that its bodys respectd” under the
additional type assumptioiysT on the formal arguments. Furthermore, the procedure
type can be shown polymorphic in all type variables that do not occOr(lout that
may occur in the argument typ&$. An assignment:= E is well-typed if there exists

a proper type such thathas type P andE has type P. For an application{x y),

an exchangéexch xy(z) S), or a matchingcase x (a:y...) S) to be well-typed, rules
(APPL), (EXcH), and (MaTCH), x must allow read access. The types of further ar-
guments must match the requirements by the type dhe rules (locAL), (CONC),

and (XIpP) are trivial.

6.1.3. Examples

In this section we illustrate Plain by means of exampfesVe allow for the OPM-

style notationproc x (y) S) as an alternative notation far= (proc (y) S). We assume
new proper base typést andbool, along with the integers, 2, 3,... as primitive data

structures (constants) of typ& and the booleansue andfalseas constants of type
bool, and we freely use some basic operations such as additamnthese types.

Further, we assume a minimal extension to Plain that enables type checkingvec
procedures over streams (infinite lists). We assume an additional propdistype

45All examples have been tested by an experimental implementation of Plairilicmte Oz.
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that describes lists of variables of typeand provide the following typing rules:

> E:Mlist(T)
(NIL) (UNFOLD)
Mo {}:2ist(T) [>E:M{hd:T, t:Mlist(T)}
Mo-xT Mo y:Aist(T) (Cons) M>E:M{hd:T,tl:Mlist(T)} (FoLD)
> {hd:x,tl:y} : ist(T) M>E:Mlist(T)

Notice that it is immediate to type check cyclic lists with these rutasgxample as in
the statement

(local (x) x:={hd:y,tl:x}) .

A generic extension of Plain by recursively defined data types a la SML, araditiie
tion of case statements with multiple clauses is possible with stanelarditjues.

6.1.3.1. Basic Examples

The identity procedure has the following polymorphic type.
(proc (X y) y:=X) : /1L (proc ?rt!m)

This corresponds to the expected polymorphic typeat— 1t of the identity in func-
tional languages. Notice that the identity is not the only procedure with the type
T (proc ?rt!m). The other ones include the trivial procedure

(proc (X y) skip) : T (proc ?rt!m),

as well as many procedures that side-effect variables other than italfarguments.
One such procedure is

(proc (XY) z1:=12p) : ML (proc ?m!m)

providedz; := 2z is well-typed. (Actually, this procedure has every binary procedure
type, be it monomorphic or polymorphic.) More generally speaking, the type of a pro-
cedure specifies which kinds of operations it may perform on its arguments. It does
not guarantee that any operations are performed on the arguments at all. Furghermor
the operations performed on global variables of a procedure are not visible in the pro-
cedure’s type.

Types convey some of the synchronisation behaviour of a procedure. In particular, all
input modes in procedure argument types indicate that an application of this procedure
might block when it accesses the corresponding embedded variable. For example, the
procedure that waits until its first argument is bound to a record before it apiglies i
second one has the type

(proc (xy) (case x () (y))) : (proc ?{} ?(proc ))
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6. Typed Concurrent Programming with Logic Variables

More fundamentally, the procedunait that waits for its argument to be bound at all
has this type:

(proc (X) (local (y) y:=X)) : 2L (proc ?m)

Note that the procedungait is not very useful in Plain so far since no statement can
synchronise on an assignment being executed. It becomes extremely useful though
oncesequential composition 5, of statements is added with the operational seman-
tics to first reduceS; and thers,.*®

Pattern matching on records subsumes field selection. For example, hereds@upe
selecting the fielé from its first argument and assigning it to the second one.

(proc (X y) (case X (&:z...) y:=2)) : ML (proc {a:?m} !m)

6.1.3.2. Semaphores

Semaphores are a standard mechanism for guaranteeing multiple exclusion in a con-
current setting [61]. A semaphore is a data structure witbcuestand arelease
operation. Multiple concurrent activities may request the semaphore. Once atreque
operation has succeeded, an option is granted to perform the corresponding release.
All subsequent requests on the same semaphore are blocked until this operation has
been performed to release the semaphore.

In Plain, semaphores can be implemented by a procetwsemavith type

newsema?(proc ! (proc !(proc)).

On application ohewsemaa new cell is created; the cell is initialised with an empty
record which is used as a token. Next, a unary procecgres defined which imple-
ments the request operation of the semaphore as an operation on the cell. Tée cell i
private to the request operation and thus cannot accidentally or maliciouslgdse si
effected.

(proc newsemdreq) (local (c)
tok:={} || c:=(cell tok) ||
(proc req (rel) (local (new
(exch ¢ new(old)
(case old () (procrel () new:=o0ld))))))

On application of the procedumeq to some argumenel, the current cell content
old is replaced by a fresh unbound variablew The variableold is then matched
against the empty record pattefn This operation will succeed immediately on the

48We do not consider sequential composition here since its addition dbaffect the type system at
all. Our experiences with Oz however indicate that every practical langualyis édmily must support
sequential composition [91,174].
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first application ofreq, while a subsequent request may fiold to be an unbound
variable and block on pattern matching. When the match has reduced and thus the
request was successful, a release proca@liie returned. On application oél, old is
assigned tmewand thus unblocks the pattern matching of the subsequent application
of req. The sequence of request and release operations dynamically yields a chain of
assignments as follows.

tok = old; :=new = olds :=new = oldz:=news

Notice that the procedurrel does not operate on formal arguments at all but is meant
to side effect the store.

6.1.3.3. Lazy Streams

By means of partially determined data structures Plain can convenexthess lazy
streams. Alazy streamis a possibly infinite list whose evaluation is deferred and
demand-driven. When some element of a lazy stream is requested, the stmah |
uated just up to this element and evaluation of the tail of the stream igel@f@gain.
This means that evaluation of the stream always terminates if only a firrités mbe-
manded. Consider a binary procedusd

nat: ?(proc ?int ?Alist(lint))

that computes the lazy stream of natural numbers larger than somengikeés inter-
esting to consider the type afit more closely, in particular the typdis2(!int) of its
second argument. By the rulesqb) and (INFOLD) this type is equivalent to each
of the finite unfoldings of the following form

?{hd:lint, tl:?hd:{!int, tl:?{hd:!int, ... th:2ist(lint)} } }

that restrict the whole spine of the stream to be read-only. This suggesteathvat
write the integer elements of the stream, while the stream itselbeiprovided from
the outside. Note that these two opposite modes correspond to the

e outgoing“functional” data flow of nat that specifies to compute the infinite
sequence of natural numbers, and the

¢ ingoing flow of demandhat requests computation of a finite prefix of this se-
quence.

Here is an implementation of the proceduit

(proc nat (n's) (local (M) (case s(x,r...)x:=n| m:=n+1| (nat mr))))

163



6. Typed Concurrent Programming with Logic Variables

Assuming an unbound varialde “list("int), a typical application of this procedure is

one=1 | (nat one$

Reduction of the application blocks on pattern matching sgisenot bound yet. We
can express demand for the smallest number in the stream by bistiing record
whose fielchd serves as container for this number (assminands' fresh):

s:={hd:ny,tl:s'}

This activates the pattern matching, the assignment ong and the recursive call
(nat two $) (wheretwois bound to 2). By binding the tad, we can demand subse-
guent elements in the stream.

A second example along these lines is the procedure

(proc fib (X1 X2 S) (case s(x,S...) x:=x1+ X2 || (fib % x 8)))
with this type:

fib : ?(proc Zint Zint Aist("int))

This procedure computes an infinite list of natural numbers according to the generation
principle of the Fibonacci numbers: every element of the list (from the third atsyar

is the sum of the two preceding ones. These two preceding numbers are passed as
additional arguments dfb through the recursion. The following typical application

of fib definess as the stream of Fibonacci numbers (beginning with the third one) and
bindsn; andn; to its first two elements.

(fib one one §|| s:={hd:ny,tl:s'} || § :={hd:ny, l:s"}

Again note that the type of the list argument exposes the fact that the list elesments
not only produced but also read during the recursion.

6.1.3.4. Channels

Another example for stream-based programming is the following implementattion
channels with an asynchronous send and a synchronous receive. It is also an example
for Plain procedures whose typegslymorphic in the modef its arguments.

A channelfor variables of typdl is an abstract data type with two operatiqng and
getof the following types:

put : ?(procT)
get : ?(proc AprocT))

Theputoperation takes a variable of type puts it into (“sends it along”) the channel,
and then terminates. Tlget operation takes a variable of typépibc ?7T), that is,
a reference to a proceducent for arguments of typeT?, then it takes (“receives”)
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a variable from the channel and appl@mt as a continuation to it. Combination of
these operations in a record with fiefolstandgetyields the following type of channel
interfaces:

?{ put:?(proc T), get?(proc 2(proc T))}

Now we proceed to implement a polymorphic procedusw/charthat generates new
channels for variables of arbitrary typedarbitrary mode.

newchan VTt (proc { put:?(proc pm), get?(proc ?(proc Um))})

Note that the procedumewcharis polymorphic in typeand mode of the variables to
be put in the channel. Therefonewchans guaranteed not to perform any operations
on the variables put into a channel since it cannot safely assume read or wimiispe
sions on themnewchansimply passes the variables to the receiver continuation for
further processing. Here is the Plain code for the procedevechan

(proc newchan(chan)
(local(sp cput cget put get
cput:= (cell 5) || cget:= (cell 50) ||
(proc put (2)
(local (sp) (exch cput g (s1) s1:={hd:z tl:s}))) ||
(proc get (cont)
(local (%)
(exch cget s (s1) (case 51 (hd:ztlisz...) s2:=s3]| (cont 2)))) |
chan:= {put:put, getget))

We implement a channel as a variabjaeferring to a stream and two celtputand
cgetrealizing the pointers ints. On creation, the stream is empty and both pointers
refer to the first slot. On application of the procedprd on a variablez, the cur-
rent contents; of cputis replaced with a fresh variabe and thens; is bound to
{hd:z tl:s;}. This advances the pointeput On application of the procedugeton a
variablecont, the current conters; of cgetis replaced with a fresh variabdg; thens;

is matched against the pattdimd:z tl:s3). Whens; is bound to a record of this form,
contis applied taz andss, the remainder of the stream, is assignesbto

6.1.3.5. Mode Polymorphism

As a final set of examples we give the types of some standard procedures on lists as
further illustration on higher-order and mode polymorphism. We do not give their
implementation here since they require a multiple clause conditional that veenloav
defined. Instead, we rely on the intuitions the reader brings along from some higher-
order programming language.

The procedurenemberreturns a boolean depending on whether some element in a list
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is bound to a given data structuraemberhas the following type:

member. 2T11?(proc 2t Aist(?r) !bool)

To decide membership, the list must be recursively decompasedréad), and its
elements as well as the given data structure must be compared for equalitye@d).

The procedurdengthreturning the length of a list must recursively decompaose,
read) its list argument. However, it needs not access the list elerhents¢lves. Thus
the type oflengthis mode polymorphic.

length: 2V (proc 2list () lint)

Similarly, the procedurenapthat maps one finite list into another one with respect
another given binary procedure need not itself perform any operation on the list el-
ements. Rather, these are passed to the procedural argument that is responsible
further processing.

map: V. V. V1. VTR. (proc Aist (W Th) ?(proc Ty HoTh) list(oTh))

Procedures that are polymorphic in the type of some (component) of their arguments
are very restricted in the operations they may perform on these argumentin- F
stance, a procedure of type

WU (proc UP ?(cell uP))

may perform only one interesting operation on its first argument, namely plaate it

the cell received as a second argument. This is safe since the type of thaadirtste
second argument share the mode variable. Hence a procedure of the given type is this
one:

(proc assign(x y) (exch x y(z) skip)) : 27WLVTL(proc prt ?(cell pr))
Also observe that procedures with the following types must ignore their arguments.
M. (proc uP P

WU (proc A a:pP} puP)

A typical procedure with a higher-order polymorphic type is one implementing func-
tion composition.

(proc compose fy f fs) (proc f3 (xy) (local (2) (f1 x 2) | (f2 2Y))))
One of its types is this one

compose M1y VTh. (proc Plistproc(Ty) ?(proc ?my !TR) !istproc(Th))

where, for allP, listproc(P) = VLVYTL(proc Zlist(ur) !P). This type allows us to check
the application

(compose length iseven isevenlength
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wherelength: “listproc(int) andiseven ?(proc Zint !bool).

6.2. Type Safety

The type system is sound in the sense that it excludes the type errors listed in Fig-
ure 6.4. To prove this result one first checks that no erroneous configuration can be
well-typed (Proposition 6.1). Next one shows that it is an invariant of reduatioa f
statement to respect an environmeénfTheorem 34). Soundness of the type system
and hence type safety is then easily obtained (Corollary 35).

In this section we write judgements like>Sor T < T’ as an abbreviation for the
statement that these judgementsdegvable

Proposition 6.1
If '>C thenC¢g E.

Proof. See Page 169 below. a

Theorem 34 (Type Preservation)
If T>Cq and G — Cy thenl >Co.

Proof. See Page 171 at the end of this Section. O

Corollary 35 (Type Safety)
If Fr>CandC—*C'thenC ¢ E.

Proof. By induction over the length of the reducti@r— *C’. The base case—°C’
(i. e., C=C') follows from Proposition 6.1, and the induction step with Theoren34.

In the remainder of this section we prove the Type Preservation Theorem 34.

The Type Preservation Proof

We first prove some standard Lemmas on well-typed statements (Lemmas 6.2—6.6)
The corresponding Lemmas for configurations follow immediately, since congruence
and well-typedness on configurations is defined in terms of their associatadeids:

1. VCJ_,CZ . Cl = C2 iff S(Cl) = S(Cz)
2.VIvC: TI>Ciff [>S(C).

In the sequel we shall denote wigheither a proper typP or a modeM.
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Lemma 6.2 (Congruence)

Well-typedness is invariant under structural congruenced: S and § = $ then
MN>S.

Proof. Structural induction ove$;. O

Lemma 6.3 (Weakening)
If x ¢ fv(S), thenl,x:T>S ifand only ifr > S.

Proof. On inspection of the typing rules for statements one notes that in any derivation
of I'>Sonly the type assumptions for the variablesv(S) matter. The proof is by
induction over the derivation df>S. O

Lemma 6.4 (Variable Substitution)
If [, xT,y:TeS then ,xT,y:T>Sy/X

Proof. Induction over the derivation df,x.T,y:T >S. a

Lemma 6.5 (Type Substitution)
If F'>S the [P/ >S andl' [M/yj>S.

Proof. Induction over the derivation df> S O

Lemma 6.6 (Subtyping)
If [, xTi>S, B < Ty, and ftl,x:Ty) C ftv(l,x:Tz) thenl,x:T>>S.

It is due to the subtyping rule @SuUB) that the claim fails without the assumption
thatftv(l",x:T1) C ftv(I",x:T). The additional field types which may be added on sub-
typing may contain additional free type variables which may conflict with tHe si
condition of rule (RROC).

Proof. We prove the claim simultaneously with the corresponding one for expressions:

If I, xTi>E:T, T < Ty, andftv(l",xTy) C ftv(l,x:T2) thenl, x T, E:T.

The proof is by induction over the derivationlofx: T1>Sor M, x: Ty > E:T. We make a
case distinction over the rule that was applied last.

(VAR) In this caseE must be a variable. [E # x, then the claim is trivial due to the
Weakening Lemma 6.3; hence assuihe- x. Thenl',x:T;>E:T implies that
x.T € I',xT; and hencd1 = T. Thus, we can deriveE,x:To>x:T as follows:

XTr el ,xT

MxTorxTs T, < T,

MXxTorxTy
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(SuB) In this case the derivation has the form

rxTi>ET T T
MNxTi>ET ©° —

We conclude with the induction assumption thax: T, > E:T' is derivable and
obtainl",xTo>E:T by rule (SB).

(PrROC) Inthis case, there exist variablgand statementSsuch thaE = (proc (y) )
andx ¢ {y}, and also there exist type and mode varialoieand typesT with
T = Ma.(proc T). From rule (RRoc) we know that

rxT,V.T>S

is derivable which implies by induction assumption (a {y}) that
rXxT,y:T>S

is derivable. From the side condition of&C) we also know that

{a}nftv(l,xTy) =0

and sincdtv(l",x:Ty) C ftv(I',x:T1) by assumption, we obtain
{a} nftv(l,xTy) = 0.
Hencel,x:T>> (proc (V) S):T = &a.(proc T) is derivable.
The remaining cases are similar or simpler. O
Proposition 6.1

If r’>CthenC¢ E.

Proof. If C € £ thenC has one of the forms defined in Figure 6.4. These are easily
seen to be ill-typed. For instance, assume @dtas the fornVpaol] (x y) || S let
o(x) ¢ P, and assumE >C for somel". Then there are types such that

M>x?(procT)

by rule (AppPL). Furthermore, by definition of well-typed configurations (see Page
160) and the assumption thatx) ¢ P, there existd € ® U C such that™ >x:=D.
Hence

rex!} or IT: ex!(cell T).
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Such al” cannot exist, since there exists no common subtypémbT) and either
I{} or!(cell T). HenceC is ill-typed. O

Given three sequences, 0>, andads, we say thatr; is asubsequencef 03 if there
is an order preserving injection frotn, into 0>, and we say thai; is asubsequence
of O with restd; if 0; anddz are subsequences®@$ and partitionas.

Lemma 6.7
If Vo1.P; < VO5.P; is derivable then

1. 43 is a subsequence @i with restas, and

2. there is a sequendeof types and modes such thaiA&/d3] < P is derivable.

Proof. The last steps in the derivation @&r,.P < Va,.P’' are determined by the se-
guencedz and may involve applications of rules\@T-P), (INT-M), and (FoLy) only.
The proof is by induction over the length of the sequemge O

Lemma 6.8 (Application)
If > (xy) | x:=(proc (2) S) is derivable then there exist typé&s variablest and a

sequencd of types and modes such that
1. {a}nftv(l) =0
2. I,zT,>S
3. 1(y) < T{A/d]
Proof. Assumel > (X y) || x:= (proc (2) S). From rules (RocC) and (ASGN) we then

know that there are typ&s and type and mode variablassuch thata} Nftv(l) = 0,
as well as

r,zT,>S,
> (proc (2) ) : MVa.(proc T;), and
M >x!Va.(proc T;) .

This implies claims (1) and (2). Further, we know from ruler§Ay) that there exist
typesTy such thaf (y) < Ty and

F>x:?procTy), andl >y Ty

It follows from the definition of subtyping that there exist typisand variablest’
such thaf (x) = “Va’.(proc Ty) and

“Va'.(proc Ty) = IV@.(proc T;) , and
“va'.(proc Tx) < ?(proc Ty)
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From the left subtyping and contravariance of write modes we obtain
Va. (proc T;) =< Va'.(proc Ty)

Lemma 6.7 yields that’ is a subsequence @f with resta”, and that there exisk;
such that(proc T;)[A1/0a”] < (proc Ty) and thusTy < T;[A;/a”]. From the second
subtyping we similarly obtain that there ex#& such thafT, < Tx[Az/d’]. Sincea”
anda’ are disjoint, these subtypings in combination yield:

Merging the sequences andA; (along the subsequencing @f anda” in @) yields
the requiredly such thafly < T,[Tw /@], and hence proves (3). O

Proof of Theorem 34

The proof is by rule induction [215] over the definition of the operational semantics.
We assume thdt>S(C;) and show thak > S(Cy).

Application: In this case there exist variablgsy,z wherey andz are disjoint se-
guences, and stateme®s such that

SC) = (xy) | x:=(proc(2) || S
S(C) = Sy/Z|x:=(proc(2)S) | S

To showl > §(Cy) it suffices to show thdi > Sy/Z|. By Lemma 6.8 we know that there
exist variablest and a sequenc® of types and modes such that

1. {a}nftv(l) =0
2.7, zT,>S
3. I(y) = T/A/a].
From (1) and (2) we obtain with the Type Substitution Lemma 6.5 that
(F,zT)[A/a] =T, zTJA/d]>S

Let Ty = I'(y) and observe thdtv(I", zT,[A/a]) C ftv([,zTy) trivially holds. Hence
assumption (3) and the Subtyping Lemma 6.6 yield that

r,zTy>S.
From the Weakening Lemma 6.3 (and si§@ndz are disjoint sequences) we obtain

ryT,.zT,>S,
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and by the Variable Substitution Lemma 6.4 that

ryT,zT>Sy/Z.
Finally, we apply the Weakening Lemma 6.3 again to conclude

ry:Ty>9y/7.

Assignment: In this case the configurations are of the following form:

Ci = Vpo[] x:=E
C, = Vp'd|[] skip

where eithelE € D, orE € ¥ andE € domo). If x e domo), then the assignment
is ignored, hence’ = p,0’ = g, andS(C;) = x:=E || S(Cy). If x¢ dom(g), then by
definition of S(C) it holds thatS(C;) = S(Cp). In both cased; >S(C,) trivially implies
M> S(Cz).

Other Cases: The cases for pattern matching (Match) and cell exchange (Exchange)
are similar to the application case but simpler because they do not need a polymor
phism argument. The rule for variable declaration (Declare) and the closlee r
(Closure) are trivial. O

6.3. Extensions

6.3.1. Towards Oz

In contrast to OPM [195], Plain is rather restricted. Some language featiane

been omitted for brevity’s sake and can be added and typed using standard machinery
This includes for instance boolean conditionals and boolean types, multiple-clause
case-statements and variant types, and also recursive types as needatidatata
structures. Other features that are omitted from Plain do not occur in mishetronal
languages because they complicate static typing: these include first-clasagpétir
instance, by abstracting over the feature of a record or a record pattertijnre type

tests (“dynamics”), as well as several aspects of Oz’s object sySten [

For Plain, the most specific difference to OPM is the omission of equations ancbene
constraint systems. A secondary difference is the fact that cell exchange wotihea
continuation. The omissions of equations and the modification of cell exchange were
necessary to make the type system work. In this section we explain whys@/giaé

a brief outlook on constraint systems.
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6.3.1.1. Equational Constraints

Unification is the operation to impose an equational constraint between twstdata
tures in the store. Assignment can be seen as a restricted equationabhfatriis
reduction as the restriction of unification binding a previously unbound variable. For a
first generalisation of assignment towards unification, consider a bidirecaes@n-
ment statement of the forri=: y that behaves either as=y or asy:= x. Since static
typing requires the types of variables to be known statically, the best posgiloheg t

rule for bidirectional equations:=: y that preserves type safety is

M>x"P >y P
M>x:=!y

(BIDIRECT)

Note that this allows foP to contain nested read and/or write modes. For example,
the typeP = {a:?int} yields a useful instance of (BIRECT).*’

Unification of complex data structures like records subsumes the bidirectgsigha
ment, but it also performs a recursive traversal of a given data steuatoite gen-
erating additional equations. The data flow is directed dynamically. Due toehis
cursion, a typing rule for an equational constraint must be even more restheted t
(BIDIRECT):

MexT >y T
[ >x=y

T does not contain ? or ! (UNIF)

In effect, this rule trivialises subtyping on the types of all expressions thgtheaa
mentioned by an equality constraint. Hence, in a language where telling equations i
a central operation, one ends up losing virtually all subtyping. For this reason, Plain
uses (directed) assignmeqit=y instead of the equations=y as OPM?*®

6.3.1.2. Cell Exchange

The cell exchangéexch xy 2 in OPM does not have a continuation. Its operational
semantics makes use of an equatieaz and hencéexch x y 2 suffers from the sub-
typing problem. In Plain style, the semanticg efch x y 2 would appear as

Vpo(] (exchxyz — Vpoly/o(x)]] Z=z if p(a(x)) =Z

An immediate option to get better typing is to replace the equation by an assign-
ment. However neithez:=Z nor Z :=z is preferred over the other. Both of them

471t is not by accident that this corresponds to the trivial subtypineg for cells: cells are invariant
with respect to subtyping, because they support reading and wrisiegamably. Similarly, the unifica-
tion operation subsumes both binding (reading) and matching (gyitin logic variables.

48t is, of course,safely possible to have bidirectional assignmentuatios in addition to directed
assignment.
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are needed (recall the discussion of mode polymorphism for the channel encoding in
Section 6.1.3.4). Plain’s modified cell exchar{gech x y (z) S) defers to the continu-
ationSthe decision at which mode to use the old content of

Another option would have been to have cells always holding records with some (arbi-
trary but fixed) featur@ and to combine cell exchange with field selectioa.aVith
this convention and the semantics of exchange given by

Vpo[] (exchxyz — Vpoly/o()][|z=Z  if p(o(x) =2
we could consider Plain’s exchange stateniexth x y (z) S) as an abbreviation of

(local (Y)Y :={ay} || (exchxy z) || (case z(a:Z...) 9))

We decided against this option to keep cells independent of the other data structures

6.3.1.3. Constraints over Flat Domains

The rule (BDIRECT) suffices to explain the bidirectional data flow present in con-
straint systems over flat domains. This includes finite domain constraintsreve
tegers but also finite sets of integers (see [73, 146, 206, 219] and references)therei
Therefore, it is straightforward to integrate a statically typedivarsf Oz’s finite do-
main and finite set constraint systems into Plain: to variables from tewssraint
systems we assign read/write-moded types dnd ‘intset, and to typical constraint
propagation procedures (see [94]) we assign tygas: ?(proc “int “int “int) or
union: ?(proc “intset “intset intset).

6.3.1.4. Extensible Records

Record constraints allow field-wise record construction using the seheobinstraint.
This possibility can be added to Plain as follows: First, liberalisestbee by mapping
variables not only to complete recordgx) = {a:T } but to records whose fields need
not all be present: write this agx) = {a:T...}. Second, introduce an assignment
statemenk.a:=y that extends the recordby the featurea and the associated fieyd
The extensiomw, x—{ay...} of a storeo by a featurea atx is defined by:

o[{ayy}/X] if x¢Z dom(o)
ox—{ay...} = ¢ o[{byay}/x if o(x)={by},a¢ {b} .
o otherwise

Execution of the statemerfa:=y in a configuration that mapsto a procedure, a cell,
or a complete record without the fiedds a type error.
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Note that store extension remains a monotonic operation: the binding of a variable
to an extensible record can be refined to mention more fields but fields canhseve
retracted.

Vpa[] xa:=y — Vpo,x— {ay...}[] skip

The situation thak is bound to a procedure or a cell on reductionx@:=y is a

type error. The operational semantics of pattern matching need not be changed at all
Observe, however, that the side conditmfx) = {a:z...} of the corresponding rule
silently adapts and now requires thatx) be anextensiblerecord with at least the
fieldsa being known.

Extensible records can be easily type-checked provided that the record typermsent
all fields that are accessed in a program. The ruker&C) accepts an extension »f
by fieldy at featurea whenever the type of has write mode and contains the feature
a, where it allowsy’s type.

rex: {aT...} froy:T

(EXTREC)
MN>xa:=y

6.3.2. Let-Statement

We show how to extend Plain by a let-statement as common from functional program
ming. This is useful to give more accurate modes in the common situation that a va
able is initialised on declaration. It is also needed to adapt an ML-ptlianorphic

type system to Plain. While we have considered ML-polymorphism as too resrict
with respect to some common programming patterns in Oz, it may become imiporta
as part of an ongoing language design that embeds concepts of Oz into a call-by-value
functional programming language [196].

In most Plain programs, the type system requires all local variables tabaghvrite
moded types of the formP. (The only exception in this thesis is the local variable
in the proceduravait defined on Page 162 which is used solely for synchronisation
purposes.) Itis clear that most variables will have both, a writer and arreade

However, there are usually only few places where a variable can be bound fwt ma
places where it is read. A frequent case is for variables to be initibjisst once
on declaration and to be only read everywhere else. In order to stacallyde an
erroneous second assignment as in the statement

(local (x) x:=1] x:=2),

one should consider the following slight syntax extension. Define a new statement

(let (x:=E) 9
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where the variable is bound both irE andS. The operational semantics @ét (x:=
E) S) is defined as follows:

Vpa[] (local (x) x:=E) — V’'p'd’][] skip
Vpa[] (let (x:=E)S) — V'p'd'[] S

This statement is type-checked according to the following customised rule:

M x?P>E:P M xP>S

(LETREC)
o (let (x:=E) )

Note thatl > (let (x:=E) S) impliesl > (local (x) x:=E || S) but not vice versa.

It is possible to adapt ML-style polymorphism for a language with higher-order pro-
cedures and unification. The key observation to be made here is that logic \&riable
behave like reference cells with respect to their interaction witiirporphism.

In more detail, one needs the following insights in order to apply standard maghiner

e A let-statement is needed as defined above.

e Procedures may have a polymorphic type only if they are introduced by a let-
statement and need no evaluation.

In combination, these conditions guarantee that polymorphic procedures can be in-
stantaneously created and bound to a fresh varighde{x:= (proc (y) S)) S). The
atomicity of declaration and binding is crucial for the type soundness result.

These conditions correspond to Wright's proposal for typing polymorphic procedures
in presence of reference cells [217]. Wright solves, in a very simple mathiegorob-

lem that the naive generalisation of the Hindley/Milner system [55, 123] from a pure
functional language to a language with reference cells is not soumndtype safety

fails [202]. Wright's solution has meanwhile been adopted in the revised defioition
SML [130].

6.4. Related Work

6.4.1. Pict

One of the closest relatives of Plain is Pict, a concurrent programming langaage
on thert calculus [169].
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6.4.1.1. The Untyped Language

The t-calculus is designed as a minimal base for concurrent computation which can
express concurrent versions of data structures and procedures with channel commu-
nication as its essential computational primitive. This minimalitynisiguing from

a foundational perspective, but of limited practical use. When designing a high-le
languages, many basic programming abstractions must be encoded. The join calcu-
lus [67], a variant of thet-calculus, is superior in this respect as it directly supports a
procedural form (the “join”).

Following OPM, Plain provides essential programming primitives diyed®ecords,
higher-order procedures, and cells. Due to logic variables, there is no needddr a
icated communication primitive in Plain. Once a logic variable is bound tota da
structure it becomes indistinguishable from it. This is in contrast to chanrethw
remain distinct from the data structure they receive. Channels and locksecex
pressed in Plain as synchronised data structures. Our programming experignce w
Oz shows that concurrent threads typically communicate through custom-built syn-
chronised objects, where the combination of data flow synchronisation with logic var
ables, sequential composition and locks proves essential [91,92]. Plain ca con
niently express Pict programs as our channel encoding from Section 6.1.3.4 illustrates.
However, it needs considerable effort to express in Pict partial datetstes and data
flow synchronisation with logic variables.

6.4.1.2. The Type System

The type system of Plain is directly inspired by the one of Pict that, in turrmnmyfi
based on research on type systems for functional languages, more specificady on t
one around the systef® that combines higher-order polymorphism and subtyping
(see [32,36,76,177] and [169] for further references). More specifically, we have
applied Pierce and Sangiorgi's mode system for channels to a concurrent language
with logic variables. However, the meaning of modes differs betweeraRtPlain.

In Pict, P is the type of a channel carrying values of typiethe mode is not separate
from the channel type constructor. Hence, in contrast to Plain, nested modeselo mak
sense in Pict. For instance, the Pict typk d&scribes input/output channels carrying
input channels for values of typge this reflects the fact that channels are entities
separate from the data they carry and that there are explicit operationsesdhis

data. In contrast, logic variables can be seen as once only communication shthanel
become indistinguishable from the data structure they eventually receivedilioa,

mode polymorphism as in Plain, which allows one to abstract over a mode and then to
instantiate it separately, does not suggest itself in Pict; there, mode pdigmocan

be expressed with bounded polymorphic types [36].

We have used universal higher-order polymorphism [76,177]. This is in contrast to
Pict whose basic form of polymorphism is existential [169]. There, messagdseare t
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basic typed entities (“packages”) about which only partial information isaledeto

the receiver process (abstract types) [31, 135]. For a procedural language iike Pla
universal polymorphism seems more appropriate. To facilitate a direct cmopar
between Plain and Pict, we have also defined a type system for Plainxigtbreial
polymorphism [144] (note, however, that existential polymorphism can be encoded by
higher-order universal polymorphism [178]). Pict’s type system is much largertiean t
one we presented for Plain, containing variant types, recursive types, kind4,68c

We have kept Plain simple to focus on the language design point of view, but we do
not foresee any Plain-specific difficulties in extending its type system diocyy.

6.4.1.3. Type Inference

We have not considered the type inference problem for Plain, which is very tikely
be undecidable: The closely related type inference problem for the the “polymarphic
calculus” System F [76, 177] is undecidable [214], and the addition of subtyping does
not seem to make type inference any simpler. Currently, the design of typenoéer
heuristics for type systems with subtyping and higher-order polymorphism is a chal-
lenging research topic. With Pict, Pierce and Turner have made importanépsagn

this issue but it seems not to be settled, in particular with respecttosige types.
Initially, Pict’s approach to type inference was based on an algorithm thate@i
described for a functional language, but this is no longer the case [33,167,168]. We
expect these experiences to be useful for a decent implementation of Plairerdiffe
spirit, we also anticipate the usefulness of a mechanism to “bypass the typeichec
as in TEL [192] which might change the game considerably.

6.4.2. Modes in Logic Programming

In logic programming, modes often describe the instantiation state of procedure argu-
ments (ground, non-ground, free) directly before or both, before and after procedure
application [29, 56,192, 198].

In the typed Prolog dialects TEL and Mercury [192, 198], the mode of procedure argu-
ments must be declared. For instance, input arguments must be ground on procedure
application, and output arguments will be ground thereafter. Mercury strictby ey

this discipline such that computation with partially determined data strei(that is,
arguments which are neither ground nor free) becomes impossible. In TEL, on the
other hand, variables can be declared as “open” which enables all programnfing tec
niques developed for Prolog. This effectively bypasses the type checker whath tre
open variables as ground. In both systems, modes are very simple due to thiek rest
tion to ground arguments (at least during type checking). The system we present for
Plain is more complex: since Plain caters for partially determinedstaedatures, its
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type and mode system must deal with modes that occur on every level in the gructur
of a data type.

In concurrent logic programming, variable moding has always played a special role.
Preceding Maher’s logical characterisation of synchronisation as entdilh20],
read-only annotations on variables were used to explain synchronisation patterns op-
erationally; these could become rather complex, as for instance in Concurrent Pro-
log [187]. The annotations were checked during unification, and the attempt to bind
an unbound read-only variable lead to a suspension. Modes were also considered as a
means to exclude failure: since failure is due to disagreement betweenddiacers

for the same variable, multiple producers were excluded. Notice that this carfcept
modes is aesource-sensitivene, which contains information both on directional data
flow and multiplicities.

The Relational Language [47] and its successor Parlog [79] made the declaration of
input and output arguments obligatory in procedures; mode declarations were checked
at run-time. The modes only referred to the top-level constructor of a recordp not t
its subterms. Strand [66] put away with unification altogether and disallowétiple
assignment to the same variable; the second assignment to the same Veaidée

a run-time error. Directed variables [113] as in Doc and Janus [98, 181] anetexbt

even further in that they disallow multipleaders Thus directed variables express
point-to-point communicatiorcf. “linear channels”) rather than a multicasting. While

the write-once property can be guaranteed statically, the read-once prepesins to

be checked at run-time. More recently, Ueda proposed to call programs vatitetir
variableswell-moded204, 205] and gave algorithms to check well-modedness in Flat
GHC programs statically.

6.4.3. ML-style Polymorphism for Logic Variables

MLOG [172] is an extension of ML by logic variables due to Poirriez. In MLOG,
the type system is used to separate strictly the “functional types” (sudhtdsffom

the “logic types” (such as “unbound o1t”) used to describe data structures that may
contain embedded logic variables. This strict seperation simplifies thlementa-

tion of logic variables as an extension of existing ML compilers, but it @os the
expressiveness of logic variables as a synchronisation mechanism in concadent a
distributed programming. The typing of logic variables in MLOG is based on an pro-
posal by Leroy and Weis [117] that is nowadays outdated by Wright's proposal [217].

Minamide [131] describes a type system for a restricted form of logic variablas
statically typed functional language. In Minamide’s system, no data strustaye
contain more than one embedded logic variable (which he calls a “hole”). Although
this considerably restricts the expressiveness of logic variables, itesnstine pro-
gramming techniques that are well-known in the logic programming community [200],
such as difference lists and tail-recursive definition of procedurespkendor map
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Mycroft and O’Keefe [147] have adapted the ML-type system [123] to logic program-
ming. Their system underlies the programming languages Godel and Mercury [97,
198]. Some preliminary results on ML-style type checking for an Oz-style language
includingfeature tree constraints can be found in [138].

6.4.4. Types in Concurrent Programming

In sequential programming, the prevailing view of type checking is that it guarantees
safetyof operations on data structures. This view must be refined in concurrent com-
putation since concurrency introduces the possibility of additional erroneous situations
such as deadlock, livelock, starvation, race conditions, and the like. For examsgl
desirable to guarantee thgailability of services in a client-server system. From this
point of view, it is useful to considdypes as protocolthat specify the interaction be-
tween concurrent processes, and to view type checkipgoagcol verification Since
memory and data structures can also be modelled as concurrent procesgesnthis

of view properly generalises the traditional sequential approach.

We have taken the view that modes in type systems for concurrent languages describe
(very simple) protocols. More complex protocols might account for the multiplagity
operations on resources, such as requiring “at least one reply per request”aly‘exa
one release per lock on a semaphore”; or they might describe more complex temporal
behaviours such as the behaviour of process that offers services that vary @éntim

this thesis we do not deal with multiplicity or temporal protocol properties. Biores
recent work on resource sensitive type system for concurrent programming languages
see [25] and references therein, and for behavioural type systems see bdia.
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7. Conclusion and Directions of
Further Research

The question that motivated the research reported in this thesis was:

How can we provide some static type checking to the dynamically typed
language Oz?

We have approached this question from two complementary sides, and we could con-
tribute a number of results to both of them.

First, we have shown that an expressive strong type system is possible hguadge

that combines key features of Oz, namely higher-order procedures, logic varaile
partially determined data structures, cells, and records. The designadriespond-

ing language Plain marks a design option for “strongly typed Oz”, and Plain is one
inspiration for an ongoing language design that embeds concepts of Oz into a call-by-
value functional programming language [196]. In addition, Plain provides a new link
between two prominent concurrent programming models: concurrent constraints and
process calculi. However, Plain is not Oz. Plain is not a constraint languggeore

and, most notably, leaves open the question of strong typing for feature tree cuasstrai

Second, we have suggested failure diagnosis as a new class of set-based program ana
lysis that is dual to strong typing and that does not attempt to prove the absence of
run-time errors but their inevitability. We have shown how to achieve thisfgoa
concurrent constraint language over infinite trees. We have also proposed aesit-ba
analysis for a large fragment of Oz. This analysis seems intuitively reakpaad an
experimental implementation has been encouraging by proving its usefulness in fin-
ding errors. Unfortunately, a correctness result for this analysis has not tidene.

Such a result should, independent on the analysis, characterise in which sense a pro-
gram is indeed ill-formed if the analysis rejects it.

We leave the problem open as a challenge for future research. There seem o be tw
options to tackle it. Either one could try to finddanotationalsemantics for (a frag-
ment of) Oz against which to judge correctness of the analysis; we expect this to be
fairly tricky, given that Oz subsumes both CC and the untypeaxhlculus. Or one
could try to justify the analysis solely by reasoning about @psrationalsemantics.
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7. Conclusion and Directions of Further Research

As part of our set-based failure diagnosis, we have defined a new system of set con-
straints that is appropriate for the set-based analysis of languages that suppatt re
structures. We have settled many algorithmic and complexity issues $arahstraint
system that are relevant for their application in program analysis. We ligued

the design decisions that lead to this constraint system, and we hope that it@an be
independent interest to the constraint community.

The more general question that | consider still open is:

Which is thébestway to provide some static type checking for a concurrent
constraint language with higher-order procedures?

The critical word “best” asks for a compromise between so diverse asgpeetfec-
tiveness in static debugging, restrictions on programming flexibility, efficy of im-
plementation, scalability and ease of use. The right balance between thesdyche
obtained by practical experimentation.

Let us mention a number of approaches that we consider worth investigating more
closely next.

Flanagan'’s static debugger for Scheme [63, 65] provides inspiration for modular pro-
gram analysis with set-constraints, as well as for the presentation of aioitst

Aiken and Fahndrich have proposed a program analysis with constraints that are i
terpreted over a special domain. These constraints lie “half-way betveegiality
constraints over trees and set inclusion constraints [62]. The hope is thayshis s
tem allows one to have one’s cake and eat it, too: exploit the expressiveness of s
constraints where necessary, but enjoy the efficiency of solving tree dotstxere
possible.

We have observed more than once the need for data flow information in order to im-
prove the program analysis. It is hence desirable to investigate data flbygiarfar

Oz in a more principled way, as well as its interaction with set-basedysis. Most
relevant in this context appear Shivers’s [191] and, once again, Flanagan’s egét-bas
data flow analysis for Scheme.

Type systems that combine higher-order polymorphic types and subtyping (as in Plain
or Pict) suffer from the fact that they do not allow automated type inference.[214]
Pierce and Turner propose a heuristics for automated type reconstruction that they
call “local type inference” [168], which they claim to be simple and intuigveugh

such that it can be part of the language definition (as opposed to being implementation
specific) and as such can easily be absorbed by programmers.

Recently, Smolka has sketched a redesign of Oz that embeds constraint praggammi
concepts into a (dynamically typed) version of ML [196]. It may be interesting to

reconsider Plain’s type system in this context: Independent of syntactic difference
we expect the technical insight to survive that subtyping on logic variables requires
a mode discipline. However, the situation might change in a subtle way due to a
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different choice of primitive operations on logic variables (such as the onéshskke

in the slides complementary to [196]). On the other hand, the most natural choice for a
strong type system for an extension of ML is an appropriate extension of the ML type
system. As for Plain, the immediate challenge for a typed Oz remains: hoeab t
tree constraints in a strong type system. Some preliminary results on thistopbe
found in [138].

In this context, we must reconsider the restrictions of the ML type system that hav
led us to base Plain on a more powerful type system. In order to overcome these
restrictions we could try to extend the ML type system. Language designs of interes
in this context include O’Caml [72, 175], a promising attempt to integrate objeitis i

ML, and O’Labl [71], an extension of O’'Caml by polymorphic records and variants.
Alternatively, we could investigate a more flexible interaction ofistahd dynamic

type checking than usual, and allow the programmer to “bypass the type checker” for
doing something “ill-typed”. To my knowledge, this has not been pursued yet in the
context of a functional language.
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In this chapter we introduce some basic concepts from set theory and predicate logic
as well as some notational conventions.

A.l. Sets, Relations, and Mappings

A setis an unordered collection of objects calledetements We writex € sif x is
an element of the set, We write {xy,...,X,} for thefinite setthat contains exactly
the elementx; throughx,, and we writed for the empty sethat has no elements.
If Pis a property, then we denote witlx | P(x)} the set of all elements that have
propertyP. The number of elements m, i. e,, thecardinality of o, is written as||s| .

A set is calledfinite or infinite depending whether its cardinality is finite or infinite.
A seto; is said to be asubsetof a setar, written o1 C 0y, if every element oo

is also an element af,. If 01, ando, are arbitrary sets, we writg; U o, for the
union ofo; and oy, 01 U0 = {X| X € 01 Orx € 03}, 01 N 07 for theintersection of
01 andoy, 01U 02 = {X| X € 01 andx € 02}, 01\0> for thedifference ofo; and oy,
01\02 {X| x € 01 andx ¢ 0,2}, For all setsy, we writeP(s) for thepowerset ob, i. e,
the set of all subsets af given by P(s) = {s | § C s}, and asP*(s) the set of all
nonempty subsets d, i. e., P*(s) = P(s)\0.

An n-tuple(xy, ..., Xy) is afinite sequence ofobjects. Am-ary relationbetween sets

)

o3 throughoy, is set of tuplegxy, ..., %) such that; € 01,%2 € 02,..., andx, € Op.
If Ris a binary relation betweemy, ando, andx; € 01 andxz € 02, then we allowkRy
as an alternative notation fox;, Xo) € R. If Ris a binary relation, then we write* for
thereflexive and transitive closure of Re., the smallest relation containifigjthat is

reflexive and transitive.
A (total) function ffrom oy to oo, written f : 01 — 02, is a binary relation betweesy
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ando, such that for every; € 01 there isexactlyonex; € o2 such thatx;, x2) € f. A
partial function ffrom o1 to oo, written f : a1 — 0>, is a binary relation betweemy
andos such that for every; € o; there isat mostonex, € o, such thatxg, xp) € f.

Given a (total or partial) functioh from o1 to o2, thedomain of fis the subset of; on
which f is defined, and theange of fis the subset ofi, whose elements are obtained
as f(xq) for somex; € a1. Formally,dom(s) = {x; | existsxz € 02 such thatf (x;) =
X2} andrg(s) = {xz | existsx; € o1 such thatx; = f(x1)}. The domain of a total
functionf : 07 — 02 is 07.

Thecompositiorof f : 01 — ¢/ andg: 02 — o, whererg(f) C don1g) is the function
go f : 01 — o), defined by(go f)(x1) = g(f(x1)) forall x; € 01. If f is a function from
01 to 02, and ifx; € 01 andx; € 07, thenf[xy/x1] defines the function that coincides
with f ondom(f)\{x1} and maps toxo: f[xz2/xa1] = {(x1,%2) } U{(X,X") | (X,X") €

f andx; # X' }. We call f[x1/xz] anextension of f

A.2. Predicate Logic

A signatureZ is a ranked alphabet of function and predicate symbols, where every
function symbolf and every predicate symbglis associated an non-negatiae

ity ar(f) resp.ar(p). If ar(f) =0 we call f a constant symbolLet A be some set.

An (A X)-interpretationis a function that maps every predicate sympat X with

ar(p) = nto ann-ary relation over, and every function symbdl € Z with ar(f) =n

to a function the set afi-tuples overA to A. A Z-structureis a pair4 = (A, I) where

Ais a thedomainof 4, andI is an(A, X)-interpretation.

A first-order languageL consists of a set’ of variables, a signaturg, a collection
of logic connectivesuch as\, v, —, —, andquantifiers3 andV, possibly an equality
symbol= and usually parenthesgs and ‘)’. We define as usual thfgst-order terms
and theformulasover L, as well as the set afariables free (resp., bound) in a formula
® which we write afv(®) (resp, bv(P)). A formula® is calledclosedif fv(d) = 0.

A constraint systeris given by a first-order (constraint) languagend a structurel.
The constraint languagé defines a set of formulas callednstraints All constraint
languages in this thesis contain conjunctioas the only logic connective.

If 4 = (A I)is aZ-structure, then arf-valuationis a functiona : 7/ — A from
the variables into the domain &f. We define as usual the concept of a valuation
satisfyinga formula® in 4, writtena =4 ®. Given a structured, we say a formula
® is satisfiablein 4, written 4 |= @, if there exists a valuatioa such thatn =4 ®
and in this case is called asolutionof ® in 4. We write the set of solutions of a
formulaA as So[A). We say thatb is validin 4, or that4 is amodelof @, if a =4 ®
for all valuationsa. We say thatd entails®’ in 4, written® =4 @', if ® — @' is
valid in 4, and that®, is equivalentto ®, (in 4) if ®1 < ®, is valid in 4. The
satisfiability problenfor a constraint systerti, 4) is whether an arbitrary constraint
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¢ € L is satisfiable in4, and Theentailmenproblem for a constraint systefi, 4) is

$1 =4 $2 holds for two constraintd, ¢2 € L. A theoryis a set of first-order formulas.
Given a constraint systeif, 4) we call the associatefirst-order theorythe set of
formulas overZ, extended by arbitrary first-order connectives and quantifiers, that are
valid in 4.

A.3. Notational Conventions

A sequence of syntatic objec¥s, ..., X, is abbreviated aX if the lengthn of the
sequence does not matter, and we denote \Xithhe length of such a sequence. For
two syntactic objectX andY of the same category, we denote witty X] the substi-
tutionof Y for X in syntactic objects. Theimultaneous substitutid /X1] ... [Yn/Xn]

of Y1,..., Y, for pairwise distinctXy, ..., X, is abbreviated byY/X]. Moreover, we
denote withX:Y the finite sequence of pai’§:Y; ... Xy Y.
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“Now | declare that’s too bad!” Humpty
Dumpty cried, breaking into a sudden pas-
sion. “You've been listening at doors — and
behind trees — and sown chimneys — or you
couldn’t have known it!”

“I haven'’t, indeed!” Alice said very gently.
“It's in a book.”

— Lewis Carroll, Through the Looking Glass
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