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Kurze Zusammenfassung

Oz ist eine anwendungsnahe Programmiersprache, deren Grundlage eine Erweiterung
des Modells nebenläufiger Constraintprogrammierung um Prozeduren höherer Stufe
und Zustand ist. Oz ist eine Sprache mit dynamischer Typüberprüfung wie Prolog,
Scheme oder Smalltalk. Wir untersuchen zwei Ansätze, statische Typüberprüfung für
Oz zu ermöglichen: Mengenbasierte Fehlerdiagnose und Starke Typisierung. Wir
definieren ein neues System von Mengenconstraints über Featurebäumen, das für
die Analyse von Recordstrukturen geeignet ist, und wir untersuchen das Erfüllbar-
keits-, das Leerheits- und das Subsumtionsproblem für dieses Constraintsystem. Wir
präsentieren eine mengenbasierte Diagnose für Constraint-Logikprogrammierungund
für nebenläufige Constraintprogrammierung als Teilsprachen von Oz, und wir be-
weisen, daß diese unvermeidliche Laufzeitfehler erkennt. Wir schlagen auch eine
mengenbasierte Analyse für eine grössere Teilsprache von Oz vor. Komplementär
dazu definieren wir eine Oz-artige Sprache genannt Plain, die ein expressivesstarkes
Typsystem erlaubt. Wir stellen ein solches Typsystem vor und beweisen seine Korrekt-
heit.
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Zusammenfassung

Das Modell nebenläufiger Constraintprogrammierung (Concurrent Constraint Model,
CC) stellt eine einfache und doch mächtige Grundlage für problemnahe nebenläufige
Programmiersprachen dar. Die Expressivität des CC-Modells wird erheblich erwei-
tert durch das Oz Programmiermodell (OPM), welches der Programmiersprache Oz
zugrunde liegt. Oz subumiert etablierte Programmierparadigmen wie das der funk-
tionalen, der objekt-orientierten, oder der constraintbasierten Programmierung.Ins-
besondere verfügt Oz über Ausdrucksmittel zur Programmierung von constraintba-
sierten Inferenzverfahren, die über alle aus der Constraint-Logikprogrammierung be-
kannten hinaus gehen.

Oz ist eine Sprache mit dynamischer Typüberprüfung wie Prolog, Scheme oder Small-
talk. Das heißt zum einen, daß Oz eine typsichere Sprache ist, die die typkorrekte Ver-
wendung von primitive Operationen garantiert; es bedeutet andererseits, daß Oz keine
statische Typüberprüfung durchführt. Dynamische Typüberprüfung ist von Vorteil
für die Einfachheit und Flexibilität einer Programmiersprache, aber es erschwert die
Fehlersuche in Programmen. In dieser Arbeit untersuchen wir zwei Ansätze, statische
Typüberprüfung für Oz zu ermöglichen: Mengenbasierte Fehlerdiagnose und Starke
Typisierung.

Mengenbasierte Fehlerdiagnose ist ein Programmanalyseverfahren, dessen Ziel es ist,
Programmierfehler schon zur̈Ubersetzungszeit zu erkennen. Das Verfahren wird
als mengenbasiert bezeichnet, weil es eine Klasse prädikatenlogischer Formeln ver-
wendet, die über Mengen von Bäumen interpretiert werden (sogenannte Mengencon-
straints). Der Entwurf einer mengenbasierten Programmanalyse verläuftin drei Schrit-
ten: Zunächst definiert man eine Klasse von Mengenconstraints, die für die gegebene
Programmiersprache und das Analyseproblem angemessen ist. Dann definiert man
eine Abbildung von Programmen in diese Mengenconstraints und beweist, daß die
Abbildung bestimmte Laufzeiteigenschaften des Programms erhält. Schließlich ent-
wickelt man Algorithmen, um die verwendeten Constraints zu lösen.

Wir definieren ein neues System von Mengenconstraints über Featurebäumen. Dieses
Constraintsystem ist durch die Analyse von Records motiviert, die in Oz eine zentrale
Rolle spielen, und die in Oz durch Gleichheitsconstraints über Featurebäumen in Oz
integriert sind. Wir untersuchen das Erfüllbarkeits-, das Leerheits- und das Subsum-
tionsproblem für Mengenconstraints über Featurebäumen und präsentieren eineReihe
von Algorithmen und Komplexitätsergebnissen. Mengenconstraints über Featureb¨au-
men sind von unabhängigem Interesse, über ihre Verwendung in der Programmanalyse
hinaus und insbesondere im Vergleich mit bekannten Mengenconstraintsystemen.

Wir geben eine mengenbasierte Diagnose an für Constraint-Logikprogrammierung
und nebenläufige Constraintprogramming als Fragmente erster Stufe von Oz. Als
Korrektheitsbeweis für unsere Diagnose zeigen wir, daß sie nur Programme zur¨uck-
weist, die einen unvermeidlichen Laufzeitfehler enthalten. Für eine gr¨ossere Teil-



sprache von Oz, die insbesondere Prozeduren höherer Stufe mit einschließt, gebenwir
eine Analyse an und illustrieren sie anhand von Beispielen. Das interessante Korrekt-
heitsproblem für diese Analyse lassen wir offen. Durch die Prozeduren höherer Stufe
wird das Korrektheitsproblem wesentlich schwieriger und die Beweistechniken für den
Fall erster Stufe sind nicht mehr anwendbar.

Komplementär zu der mengenbasierten Diagnose untersuchen wir den Entwurf eines
streng statischen Typsystems für Teilsprachen von Oz. Wir definieren Plain und wir
zeigen, daß ein expressives starkes Typsystem möglich ist für eine Sprache, die we-
sentliche Elemente von Oz kombiniert: darunter Prozeduren höherer Stufe, Logische
Variablen und partiell determinierte Datenstrukturen, Zellen und Records.Anderer-
seits heben wir einige Einschränkungen von Plain gegenüber Oz hervor. Plains Typ-
system unterstützt Recordtypen, Untertypen, polymorphe Typen höherer Stufe, Modi
und Modus-Polymorphismus. Wir beweisen die Korrektheit unseres Typsystems mit
Hilfe eines Typerhaltungssatzes (subject reduction).
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Short Abstract

Oz is a recent high-level programming language, based on an extension of the concur-
rent constraint model by higher-order procedures and state. Oz is a dynamically typed
language like Prolog, Scheme, or Smalltalk. We investigate two approaches of making
static type analysis available for Oz: Set-based failure diagnosis and strong typing.
We define a new system of set constraints over feature trees that is appropriate for the
analysis of record structures, and we investigate its satisfiability,emptiness, and en-
tailment problem. We present a set-based diagnosis for constraint logic programming
and concurrent constraint programming as first-order fragments of Oz, and we prove
that it correctly detects inevitable run-time errors. We also propose an analysis for a
larger sublanguage of Oz. Complementarily, we define an Oz-style language called
Plain that allows an expressive strong type system. We present such a type system and
prove its soundness.
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Abstract

Concurrent constraint (CC) programming is a simple and powerful high-level model
for concurrent programming. The expressiveness of the CC model has been conside-
rably extended by the Oz Programming Model (OPM) which is realised in the pro-
gramming language Oz. Oz subsumes well-established programming paradigms such
as higher-order functional and object-oriented programming, and it supports problem
solving facilities beyond those known from constraint logic programming.

Oz is a dynamically typed language like Prolog, Scheme, or Smalltalk. This meansthat
Oz is a type safe language that guarantees type-correctness of primitive operations, but
that it lacks static (compile-time) type checking. This is advantageous for simplicity
and flexibility of the language but it complicates the debugging of programs. In this
thesis we investigate two approaches of making static type checking available for Oz:
Set-based failure diagnosis and strong typing.

Set-based failure diagnosis is a method for program analysis with the goal to detect
programming errors at compile-time. The method is called set-based because it em-
ploys set constraints, a class of predicate logic formulas interpreted oversets of trees.
The design of a set-based program analysis involves the following steps. First, one
defines a class of set constraints that is appropriate for the given language and the ana-
lysis problem. Second, one defines a mapping from programs to set constraints and
proves that this mapping preserves certain run-time properties of the programs. Third,
one provides algorithms to solve the constraints.

We define a new system of set constraints over feature trees. This constraintsystem
is motivated by the analysis of records, since Oz incorporates records as a central data
structure through equality constraints over feature trees. We study the satisfiability,
emptiness, and entailment problems for set constraints over feature treesand provide a
number of algorithms and complexity results. Set constraints over feature trees are also
interesting independent from their application in program analysis, and in comparison
with other systems of set constraints.

We present a diagnosis for constraint logic programming and concurrent constraint
programming as first-order fragments of Oz. We prove our diagnosis correct by show-
ing that it rejects only programs that contain an inevitable run-time error. Fora larger
sublanguage of Oz including higher-order procedures we present a diagnosis and illus-
trate it with examples. The interesting problem of proving correctness for this analysis
is left open. In presence of higher-order procedures, the correctness problem becomes
fundamentally harder, and the proof techniques used for the first-order case fail.

Complementary to the set-based failure diagnosis, we consider the design of strong
static type systems for sublanguages of Oz. We define Plain, and we show that an
expressive strong type system is possible for a language that combines key features
of Oz, namely higher-order procedures, logic variables and partially determined data
structures, cells, and records, and we highlight the restrictions of Plain with respect



to Oz. Plain’s type system supports record types, subtyping, higher-order polymor-
phic types, modes, and mode polymorphism. We prove its soundness through a type
preservation theorem.
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1. Introduction

1.1. Motivation

1.1.1. High-level Programming Languages

Computer programming is a complex task. This complexity can be reduced by a pro-
gramming language that provides expressive abstraction mechanisms, which enable a
direct and concise modelling of the application domain. Programming languages are
called high-level if they satisfy this requirement.

The design of high-level programming languages for concurrent and distributed pro-
gramming is an important challenge in computer science today. Many applicationsare
naturally modelled in terms of multiple concurrent processes which proceed largely
independently but also need to synchronise and communicate with each other; as a
typical example, consider distributed multi-agent systems. Software developers face
a quickly increasing demand for concurrent and distributed applications, especially
since the advent of the world wide web.

Concurrent constraint (CC) programming [120, 180] is a simple and powerful high-
level model for concurrent programming. The expressiveness of this model has been
considerably extended by the Oz Programming Model (OPM) which is realised in
the programming language Oz [174, 195]. OPM subsumes well-established program-
ming paradigms as facets of a general model, for example higher-order functional
and object-oriented programming. By extension of OPM, Oz also supports problem-
solving facilities beyond those known from constraint logic programming [182, 183].

1.1.2. Static Program Analysis

Programming is prone to error. Human beings make errors, both due to the formal
activity of writing programs, and due to the intrinsic complexity of the application
domain at hand. Some of these errors can be avoided by appropriate programming ab-
stractions which help make programs shorter and easier to maintain. Remaining errors
can be very hard to find by testing or program inspection. Therefore, it is desirable to
have automated support for the static (compile-time) detection of programming errors.

1



1. Introduction

Oz is a dynamically typed language. This means that Oz is type safe in that all prim-
itive operations check the type of their arguments at run-time, but that Oz lacks static
type checking. Dynamic typing is advantageous for simplicity and flexibility of the
language but it complicates the debugging of programs. The motivation of this thesis
is to make some static type checking available for Oz. For a language like Oz,this
problem has not been considered before.

We consider two methods for static analysis for Oz: Strong typing and set-based fail-
ure diagnosis. Both methods are somewhat dual to each other:Strong typingaims at
proving that all operations in a program are always type correct, and to accept only
programs for which this proof succeeds. Dually,failure diagnosisaims at proving
that some operation in a program is not type correct, and to reject such programs as
erroneous. Strong typing yields a safety guarantee at the price of restricting theexpres-
siveness of the programming language. Failure diagnosis puts few or no restrictions
on the programming language but, as a trade-off, it does not yield a safety guarantee.

1.2. The Programming Language Oz

1.2.1. The Oz Programming Model

Concurrent constraint programming is a model of computation that views concurrent
processes as independent agents that communicate by imposing constraints on shared
variables [120, 180]. Constraints are bits of information that are accumulated in the
constraint store and that restrict the possible values a variable can take: the more con-
straints, the smaller the set. In Oz, constraints are defined as first-order formulas over
a fixed predicate logic structure: we refer to the constraint language and the fixed
structure jointly as aconstraint system.

Concurrent processes synchronise on the fact that certain constraints on a variable
become entailed (logically implied) by the constraint store (“ask”). The constraint
store grows monotonically: constraints can be added (“tell”) but are never retracted.
This setup makes it easy to express complex and safe synchronisation patterns[189]
and makes CC a powerful model of concurrent programming.

The Oz Programming Model (OPM) [195] is an extension of the concurrent constraint
model. The programming language and system Oz [174] is based on OPM with which
it was developed hand in hand. OPM makes two essential additions to CC: It adds
higher-order procedures and thus enables functional programming as known for ex-
ample from Scheme [48]. Second, it adds a cell primitive as a primitive for compu-
tation with state. In combination with higher-order procedures, cells enableflexible
object-oriented programming in a concurrent setting [91, 194].

By extension of OPM, Oz also supports features for problem solving with constraints
so that it subsumes the expressiveness of modern CLP languages like cc(FD) [207].

2



1.2. The Programming Language Oz

wine

red 1998

colour year cons

fst snd

1 2

cons

1 cons

2

1 2

1

2

Figure 1.1.:Examples of Feature Trees

These features include primitives for the generation of choice points and for the en-
capsulation of complete computation states as building blocks for constraint-based
inference engines [182–184], and constraint systems over feature trees, finite domain
constraints and finite sets of integers [146, 197, 210, 219]. In combination with higher-
order procedures and cells, this makes Oz a truly multi-paradigm language , withap-
plications ranging from natural language processing, music composition, time tabling,
and the development of graphical user interfaces, to multi-agent systems and dis-
tributed programming [93, 95, 174, 209]). In this thesis we focus on OPM without
the constraint extensions, and we shall not discuss any distribution issues.

Oz is a dynamically typed language. This is partially due to its heritage from concur-
rent constraint programming which is based on a traditionally untyped computation
model, and also to the initial focus of its developers on the expressiveness of OPM
and its new combination of computational primitives. The research presented in this
thesis is motivated by the desire to provide some compile-time type checking forOz,
or, more generally, for concurrent constraint programming.

1.2.2. Records and Feature Trees

Recordsare compound data structures whose components can be accessed by name.
This flexibility makes records an important data structure that is supported inmany
modern programming languages. Record-like structures also have a long traditionin
computational linguistics [179, 190] for the analysis of the structure in natural lan-
guage.Feature trees[16, 20, 21, 197] model records: see Figure 1.1 for some typical
feature trees. Constraints over feature trees are predicate logic formulas for the descrip-
tion of record structures. This makes them suitable for the incorporation of records into
constraint-based languages [197], for example in Oz.

In Oz, constraints over feature trees play a central role, both for the description of
records in everyday programming and for constraint programming. Therefore, we
take records seriously throughout this thesis. In Oz, records are supported through
the constraint system CFT of equality constraints over feature trees [197, 210].The
constraint language of CFT is defined as follows, where the symbolsa and f are drawn
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1. Introduction

from sets oflabelsandfeatures, respectively.

η ::= x=y j ahxi j xf f1; : : : ; fng j x[f ]y j η1^η2

An equality constraintx=y holds if x andy denote the same feature tree; a labelling
constraintahxi holds if x denotes a feature tree that is labelled witha at its root; an
arity constraintxf f1; : : : ; fng holds if the denotation ofx has exactly the features (i. e.,
fields) f1; : : : ; fn; and a selection constraintx[f ]y states that the subtree ofx at featuref
is y. For example, the leftmost feature tree in Figure 1.1 is uniquely determined by the
following constraint (as the solution forx):

winehxi ^ x[colour]y ^ x[year]z ^xfwine;colourg ^
redhyi ^ 1998hzi ^ yfg ^zfg

1.3. Set-based Failure Diagnosis

1.3.1. Set-based Analysis

Set-based failure diagnosis is an instance ofconstraint-basedprogram analysis. This
notion refers to a variety of techniques for static program analysis that reduces the
reasoning about program properties to the solving of appropriate classes of predicate
logic formulas, calledconstraints. Set-based analysisis an instance of constraint-
based analysis that employs set constraints [85],i. e., predicate logic formulas which
are interpreted over sets of trees. Set-based analysis serves to approximate run-time
properties of programs statically, for example type information: the set of values a
program variable may adopt, or the set of values an expression may evaluate to.

Heintze coined the term “set-based analysis” in his PhD thesis [83]. The history of
set-based program analysis dates back to Reynolds in 1969, and Jones and Muchnik in
1979 [110, 176] who applied it to imperative languages, as well as to Mishra in 1984
who analysed logic programming languages [132, 133]. Later, the application of set-
based analysis to logic programming was pursued by Heintze and Jaffar [82, 86, 87].
More recently, set-based analysis has been applied to functional languages [12, 38,65,
84, 121, 216, 218].

The typical setup of constraint-based program analysis consists of the following steps.
First, one defines a class of constraints that is appropriate for the given language.Sec-
ond, one defines a mapping from programs to constraints, for example by traversing the
abstract syntax tree of the program and associating constraints to every construct. The
conjunction of these constraints is intended as an abstraction of the program properties
under consideration. The correctness of this abstraction must be shown in a third step.
Finally, the constraint is solved in order to compute a compact representationof the
analysis result. Solving a constraint usually means to checksatisfiabilityor to compute
a distinguished solutionof the constraint. We apply set-based analysis to concurrent
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constraint programs [171]. The remainder of this section (Sections 1.3.2 through 1.3.4)
and a large part of this thesis (Chapters 2 through 5) is organised according to the three
steps mentioned above.

One well-known example for constraint-based program analysis is Wand’s formulation
of type inference for the simply typedλ-calculus [213]: It derives equality constraints
over finite constructor trees from a program, solves them by unification, and accepts
a program if the accumulated constraints are all satisfiable: in this case, the constraint
associated with a program describes its most general type. The correctness result states
that execution of “well-typed programs does not go wrong” [123].

Constraint-based program analysis enjoys a great popularity [5, 88, 157]. This is partly
due to its general setup, in which the description of program properties in terms ofcon-
straints and the reasoning about them is nicely decoupled: soundness of the abstraction
and algorithmic properties of the constraint solving process can be explained and stud-
ied separately. More specifically, set constraints are expressive asa formalism, but
have a simple and intuitive semantics. In comparison with the general abstract inter-
pretation framework [53] set constraints are often more intuitive (even though abstract
interpretation is general enough to express certain set-based analyses [54]).

Theoretical investigations of the various classes of constraints used in program analysis
usually focus on the satisfiability problem. More recently, also theentailment problem
(logic implication) has received some attention [13, 65, 89, 140, 141, 143, 173]. Entail-
ment is interesting in program analysis because it provides explanation for constraint
simplification: simplification means to replace a constraint by a smallerone which is
either logically equivalent and retains all solutions, or which is entailed and retains
the distinguished solution(s). Entailment has also been proposed as a mechanism to
explain subtyping onpolymorphic constrained types[27, 121, 203]. This is relevant to
the type checking of module interfaces with polymorphic types.

1.3.2. Set Constraints over Feature Trees

Standard set constraint [85] are interpreted in the domain of sets of finite constructor
trees (Herbrand). For the set-based analysis of constraint languages over feature trees
(i. e., records) we define a new class of set constraints which are interpreted over sets of
feature trees. This system is called FT�(ar;[) (read “FT-include”). Since Oz allows
for infinite (cyclic) records as in Figure 1.1, our constraint system admits sets which
contain infinite feature trees. A second important reason for infinite trees is the fact
that concurrent programs may be designed for infinite execution and hence are not
expected to terminate. For example, the following program scans an infinite stream
which it expects to contain feature trees labelled witha or b.1 Infinite streams can be

1In most of the examples to come we use Prolog-style clausal syntax. Inexamples that rely on
higher-order procedures, we switch to a different, roughly Scheme-likenotation.
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modelled by infinite feature trees.

scan(xs) xs[head]x^xs[tail]xr then process(x); scan(xr)
process(x1) ahx1i then S1

process(x2) bhx2i then S2

The syntax of set constraints over feature trees is defined as follows.

ϕ ::= x�x1[: : :[xn j x[f ]x0 j ahxi j xf f g j ϕ1^ϕ2

This constraint language is defined like the language of CFT constraints, extended by
inclusion constraints of the formx�x1[: : :[xn. Equationsx=y can, of course, still be
expressed byx� y^ y� x. The semantics is appropriately lifted to the set domain:
a labelling constraintahxi holds if x denotes a set of feature trees all of which are
labelled witha at the root; an arity constraintxf f1; : : : ; fng holds if x denotes a set
of feature trees, all of which have exactly the featuresf1 through fn at their root; a
selection constraintx[f ]y states thatx denotes a set of feature trees all of which have a
feature f at their root, and the set of all corresponding subtrees equals the denotation
of y.2 Inclusion constraintsx�x1[: : :[xn are interpreted as usual.

The closest relative of this constraint system is the system of co-definite set constraints
of Charatonik and Podelski [44]. Another close relative of set constraints over feature
trees is the system FT� (read “FT-sub”) of ordering constraints over feature trees [143].
For a detailed comparison with related constraint systems see Sections 3.3.1and 3.3.2.

1.3.3. Solving Set Constraints

We investigate algorithms and complexity issues for various fragments of our set con-
straints over feature trees. We consider the emptiness problem,i. e., whether or not a
variable denotes the empty set in all solutions of a constraintϕ, in symbolsϕ j= x= /0.
We show that this problem is DEXPTIME-hard in general and polynomial when union
constraints are omitted. We also consider the entailment problems of the formϕ j= ϕ0
andϕ j= 9xϕ0 for set constraints over feature trees without union constraints. We give
an incremental entailment test with polynomial complexity if only the constraintsx[f ]y,
ahxi, andx�y are admitted, we show that entailment becomes coNP-hard when arity
constraintsxf f g are added, and that entailment becomes PSPACE-hard when existen-
tial quantification is added (even without arity constraints). The entailment problem
for the full system remains open.

We also define the system of constraints over non-empty sets of feature trees that is
obtained by excluding the empty set from the interpretation domain. We consider this
non-standard domain of non-empty sets of trees for two main reasons. On the one
hand, our application in program analysis suggests to treat the empty set as an illegal

2For discussion on the semantics of the selection constraint see Section 3.3.1.2.
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value (the “empty type”). On the other hand, excluding the empty set helps simplify
technical arguments: we construct our algorithms for the union-free fragments of set
constraints over feature trees by detour through the corresponding systems where the
empty set is excluded. We apply techniques that have been developed for systems of
tree constraints, in particular for FT� [16, 141–143, 145, 197]. We also observe that
the first-order theories ofequality constraintsover feature trees and overnon-empty
setsof feature trees coincide.

1.3.4. Set-based Failure Diagnosis for Concurrent Constraint
Programming

We apply set constraints over feature trees to the analysis of constraint programs over
feature trees. The objective of the analysis is to detect programming errors, in partic-
ular such errors which inevitably lead to a run-time error. This choice willbecome
clear below. We consider three Oz-style languages of increasing complexity: First,
a language corresponding to constraint logic programming (CLP), then a concurrent
constraint (CC) programming language, and finally OPM. All three languages support
records through CFT constraints [197].

In the CC model as well as in OPM, an inconsistent constraint store is considered a
programming error. This is in contrast to traditional (constraint) logic programming
where failure is part of the backtracking mechanism. A CC program has certainlyan
error if every fair execution leads to failure. Furthermore, our programming experience
with Oz indicates that we should also consider a program erroneous that does not fail
only becausesome application blocks forever.

1.3.4.1. Constraint Logic Programming

The basic idea of our failure diagnosis is illustrated by the following CLP program.

p(x) ahxi
q(y) bhyi
r(z) p(z); q(z) (P1)

Whenever the procedure (or predicate)r is called, execution will eventually fail since
no feature tree can be labelled with botha andb. In CLP terminology, the callr(z)
is finitely failed. (Since we focus on concurrent programming without backtracking,
we favour the view that the procedurer contains an inevitable failure.) We detect this
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failure as follows. We derive from the program the set constraint

p�x ^ ahxi ^
q�y ^ bhyi ^
r�z ^ z�p ^ z�q

and observe that it entailsr= /0. From this fact we deduce thatr(z) is finitely failed for
all z and reject the program. A similar but slightly more complex program is this one:

p(x) x[f ]x; ahxi
q(y) y[f ]y; bhyi
r(z) p(z); q(z) (P2)

The set constraint associated with this program is the following one.

p�x ^ x[f ]x0 ^ ahx0i ^
q�y ^ y[f ]y0 ^ bhy0i ^
r�z ^ z�p ^ z�q

Again, this analysis entailsr = /0. This crucially exploits the fact that the semantics of
σ[f ]σ0 requires all trees inσ to have the featuref . If x[f ]y had only projection seman-
tics, this analysis had a non-empty solution forr (see ExampleDfail3 on Page 94).

1.3.4.2. Concurrent Constraint Programming

The essential difference between CLP programs and CC programs is that the latter
may have guarded clausesp(x) η then S. Roughly, such a clause tests whether the
constraintη or its negation holds for the argumentz of an applicationp(z). If η holds,
execution ofp(z) can commit to this clause and proceed withS. If :η holds, then this
clause becomes irrelevant for execution ofp(z). Otherwise, the clause is said to block.

We define the analysis of CC programs through the analysis of an approximating CLP
program. This CLP program is obtained from the CC program by transforming condi-
tional guards into tell statements. For example, the CC programP3 below is approxi-
mated by the programP2 above. Intuitively, this approximation ignores the synchroni-
sation behaviour of guards.

p(x) x[f ]x then ahxi
q(y) y[f ]y then bhyi
r(z) p(z); q(z) (P3)

The interpretation of the analysis result needs more care now due to the possibility
that a guarded clause blocks. For instance, ifr(z) is called on a free variablez, then
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the clauses ofp andq both block forever: the constraint store will not accumulate
any information onz and hence will never entailz[f ]z or its negation. In general, we
cannot statically exclude this possibility, and hence we obtain a weaker correctness
result for CC or CLP: from the fact that the analysis entailsr= /0 we deduce that every
application ofr is finitely failed or blocks forever.

1.3.4.3. Oz: Higher-order Concurrent Constraint Programming

OPM extends CC to a higher-order programming language: procedures are first-class
data structures that can be passed as arguments to a procedure and returned as a result.
For example, consider the following statement:3(proc x (y;z) (proc z(u) u[tag]y)) (P4)

This program bindsx to a binary procedure with formal argumentsy andz. Applica-
tion of this procedure returns a unary procedure in the second argument. This second
procedure asserts that its unique argumentu is a feature tree with featuretag leading
to the first argumenty of the procedurex. We analyseP4 as follows.4

ϕP4 = x�proc(arg1:y; arg2:z) ^ z�proc(arg1:u) ^ u[tag]y
An application of the procedurex to two variablesv andw, followed by an application
of w to x will lead to a failure due to the assertion that theprocedure xhas afeature
tag:

P4 jj x(v;w) jjw(x) �! (proc x (y;z) : : :) jj x[tag]v jj : : :
We analyse this statement as follows.

ϕP4 ^ prochxi ^ x[arg1]x1 ^ x[arg2]x2 ^ v�x1 ^ w�x2 ^prochwi ^ w[arg1]w1 ^ x�w1

This constraint entails thatx= /0 (because there exists no feature tree that has exactly
the featuresarg1 andarg2 but at the same time the featuretag). We conclude that the
statementP4 jj x(v;w) jjw(x) will inevitably fail and reject it.

Our analysis is weak with respect to the analysis of higher-order procedures as the
following example illustrates. The procedure(proc x (y;z) (y z)) (P5)

3We discuss our analysis for CLP and CC based on a Prolog-style clausal syntax of programs. For
OPM we switch to a Scheme-style syntax that is more convenient to deal withhigher-order program-
ming. Embedding CC programs into OPM is straightforward.

4The term notation is used for conciseness here, as an abbreviation for a set constraint over feature
trees. For example,x�proc(arg1:y; arg2:z) abbreviates the constraintx� x0 ^ prochx0i ^ x0[arg1]y^
x0[arg2]z^x0farg1;arg2g for a fresh variablex0. For the formal definition of this notation see Chapter 2.
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that applies its first argumenty to its second argumentz is analysed by the constraint

x�proc(arg1:y; arg2:z)^y[arg1]y0 ^ prochyi ^ yfarg1g ^ z�y0
which reveals thaty must be a unary procedure (expressed by the constraintyfarg1g).
Now assuming a binary procedureinc on integers whose analysis is

ϕinc = inc� proc(arg1:int; arg2:int) ;
and consider the following statement:

P5 jj (x inc v) (P6)

Our analysis of this program in conjunction withϕinc will not entail v� int, and so
not find out thatv must be an integer: the relationship between the formal argumentsy
andz, and hence between the actual onesinc andv, is lost here. The reason is that
we only propagate informationfrom the formal argumentsto the actual arguments
of procedures, and not vice versa. In principle, this order could be inverted for in-
put arguments. However, the mode (i. e., input or output) of procedural arguments is
not syntactically apparentin constraint programs, much in contrast to functional lan-
guages: unification and constraint solving allow for data flow in both directions, and
all procedural arguments can, in principle, be input, output, or both. A staticmode
analysis, however, seems to requires a full-fledged control-flow analysis for Oz [191],
which is out of scope of this thesis.

On the other hand, the accuracy of the analysis can be easily improved by annotating
procedures with type information. Such annotations can be fit nicely in the constraint
framework, when modelled as prescriptive constraints that a program must satisfy
in addition to the constraints derived by descriptive means. For example, the con-
straintϕinc above can originate from the analysis of another statement as well as from
an explicit type annotation oninc.

Our analysis for OPM is a reasonable extension of our analysis for CC. The correctness
problem for this analysis, however, is harder than in the first-order case due tothe
lack of a denotational semantics for OPM. We leave the correctness problem open;
instead, we illustrate our method with examples and provide style conventions that
summarise the intuitions underlying it. The analysis for Oz has been implemented in
an experimental prototype with an incomplete constraint solver. The feasibility of the
analysis in a development system remains to be explored.

1.4. Strong Static Typing for Oz

Complementary to set-based failure diagnosis, we investigate the possibility of design-
ing an OPM-style language that has a static type system similar to functional languages
like ML or Haskell [130, 162].
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1.4.1. Static versus Dynamic Typing

A type is a set of data objects with a common structure that allow the same set of
operations. Typical types are the set of all integers, and the set of all records that
have a field namedaddress. The attempt to apply an operation to a data structure
of inappropriate type (such as the attempt to multiply a record by 2 or to select the
field addressfrom the integer 42) is called atype error. A programming language
is calledtype safeif it is checked whether or not the primitive operations are applied
to arguments of proper types, and if their behaviour is well-defined even if the types
are not the expected ones: Thus type errors are detected at least at run-time. Many
modern programming languages are type safe in this sense. In unsafe languages, such
as assembly languages or C [112], programs may behave randomly after a type error.

A programming language is commonly calledstaticallyor dynamically typeddepend-
ing on whether (most of) thetype checkingis done at compile time or at run time.
A language is calledstrongly typedif all type checking is done at compile-time so
that the run-time system can safely ignore types.5 Typical examples for statically
typed and type safe languages are the functional languages SML and Haskell, the con-
current language Pict, the imperative language Modula-3, and the object-oriented lan-
guage Java [35, 78, 130, 162, 169]. Amongst the dynamically typed languages there are
the logic programming language Prolog, the functional language Scheme, the object-
oriented language Smalltalk, and the concurrent languages Erlang and Oz [17, 48, 77,
195, 200].

Strong typing is usually formalised in two steps. First, one determines the run-time
situations that one wants to exclude astype errors. Second, one defines atype system
consisting of a language oftype expressionsand a set oftyping rules. Type expressions
describe run-timeinvariantsof a program such as “the identifierx always refers to an
integer”. At compile-time, every relevant program phrase (identifiers, terms, expres-
sions, statements,etc.) is assigned a type, either automatically or according to explicit
program annotations. Atype checkertries to verify the corresponding invariants using
the typing rules, and a successful proof guarantees the impossibility of type errors.

A disadvantage of strong typing is the additional level of complexity that a type system
adds to a language. One source of complexity is simply the formal language of type
expressions which must be mastered by programmers to provide type declarations and
to understand error messages. Automated type inference as in SML [55, 123] alleviates
this problem because it relieves the programmer from many type declarations. Of
course, the programmer must still understand the type language.

To date, type systems for expressive object-oriented programming languages are fairly
complicated and require many type declarations (see,e. g., [1] for recent references).
Another problem is the fact that it is impossible to define a type checker that terminates

5Since all strongly typed languages in this sense are statically typed, and many statically typed
languages are strongly typed, static and strong typing are often used synonymously.
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on all programs and accepts exactly those programs that will never exhibit a run-time
type error (the absence of run-time type errors is an undecidable problem). As a trade-
off, a strong type system enforces a decidable discipline that must reject manytype
correct programs and hence restricts the expressiveness of programming language.

The case is dual for dynamically typed languages. Their main strength is the greatflex-
ibility with which they support the encoding of high-level programming abstractions,
based on only a small set of simple primitives. This makes dynamically typedlan-
guages ideal as platforms for rapid prototyping and teaching of programming concepts
(see, for instance, the text books based on Scheme [2, 68]). On the other hand, tracing
down a programming error can be a lengthy undertaking and can make the absence of
compile-time type checking painfully apparent.

1.4.2. Types for Oz

As a dynamically typed language, Oz freely supports features that would complicate
strong typing. We focus on the combination of features that sets Oz apart from its rela-
tives, namely logic variables introduced by explicit declaration, first-class procedures,
constraints, and parallel composition. In contrast to constraint logic programming,
Oz has higher-order procedures and explicitly declared logic variables; in contrast
to functional programming, Oz has logic variables and constraints; and in contrastto
theπ-calculus [129], communication and synchronisation in Oz is through shared logic
variables instead of message exchange over channels (see also Section 5.4.1).

It is straightforward to devise for Oz amonomorphictype system, which assigns ex-
actly one type to every identifier. It is also possible to adapt an ML-stylepolymorphic
type system [55, 123], which assigns type schemes to certain procedures. This requires
some more care but works if one follows Wright [217] for the interaction of polymor-
phism and logic variables (see Section 6.3.2). ML-polymorphism is too weak, how-
ever, to type check a number of programs that we found important in the programming
practice of Oz. For instance, polymorphic procedures (or objects with polymorphic
methods) cannot be placed in a cell, assigned to an object’s state variable,or sent along
a channel. This considerably restricts the flexibility of object-oriented programming
and the communication patterns in a concurrent or distributed language. Secondly,
ML-polymorphism cannot type check many convenient higher-order or object-oriented
programming abstractions (see,e. g., [101, 166]).6

Therefore, we consider a type system with universalhigher-order polymorphictypes
[76, 177]. We also assume asubtypingorder on types: type systems with subtyping
allow operations defined on a typeT to be applied to all objects whose type refinesT

6This is not to say that no object-oriented programming at all is possible with ML-polymorphism.
O’Caml [175] is a language that supports object-oriented programmingwith ML-style polymorphic
types, but it requires all methods to have a monomorphic types. Alsonotice that Haskell’s type
classes [80] can express some form of inheritance.
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(“subtypes” ofT). Subtyping is,e. g., used to type check the assignment of an integer
value to a variable of type number (given that “integer” is a subtype of “number”). The
combination of higher-order polymorphic types with subtyping [32, 36] is especially
convenient in object-oriented programming. For instance, a procedure that receives an
object and sends it the messagem should have a type that admits as argumentevery
object implementing the methodm. Subtyping is a flexible way to achieve this.

As these examples indicate, one must statically know the data flow to make useof
polymorphism and subtyping (“assignsubtypes to supertypes”, “usefunctions at sub-
type”, “specialiseinputarguments before application”). In (pure) functional languages
the data flow is given by the syntactic structure of the program. In constraint (logic)
programming and in Oz this is not the case. Unification and constraint solving have
a bidirectionalnature, and procedural arguments can be input, output, or both. The
need to statically know the data flow in programs lead us to the definition of Plain, a
language with higher-order procedures, cells, records, and pattern matching (see Chap-
ter 6). The key change in which Plain differs from Oz is that the equality constraint on
variables is replaced by a(single) assignmentstatement

x:=y:
Execution ofx := y does notunify the current bindings ofx andy but blocks untily
is bound to some data structure and thenbinds xto the same data structure, too. This
is a considerable restriction of Oz as a constraint programming language, in particular
with respect to feature tree constraints. But Plain still admits computation with partial
information; for example, through records with embedded logic variables.(local (y; z) x:=fhd:y; tl:zg jj : : :)
Like in Oz, Plain’s procedures do not statically distinguish between input and output
arguments. So the type system must enforce a strict staticmode disciplinein presence
of higher-order polymorphism and subtyping. To this end, we adapt Pierce and San-
giorgi’s mode system for channels [165] to a language with logic variables. We do
not consider the type inference problem for Plain, which is very likely to be undecid-
able [214].

1.4.3. Failure Diagnosis versus Strong Typing

The two methods for program analysis, strong typing and set-based failure diagnosis,
are roughly dual to each other.Strong typingaims at proving that all operations in a
program are always type correct, and it accepts only programs for which this proof
succeeds. It is desirable to accept as many type correct programs as possible, but it
is absolutely necessary to not accept a single type incorrect program. Dually,failure
diagnosisaims at proving that some operation in a program is not type correct, and
it rejects such programs as erroneous. It is desirable to detect as many typeerrors as
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Figure 1.2.:Failure Diagnosis versus Strong Typing

possible, but ideally no type correct program is rejected. The extreme cases are given
by a strong type system that accepts no program at all, and a failure diagnosis system
that accepts all programs.

Figure 1.2 illustrates this point of view, and it also gives a pictorial summaryof the
material presented in this thesis. The complete oval represents all programs in a given
programming language. Assuming a fixed notion of type errors, the fat line separates
the sets of programs that have a type error from those that do not. As mentioned
above, the set of type correct programs is undecidable so that some approximation is
fundamentally needed: strong typing approximates the set of type correct programs,
while failure diagnosis approximates the set of type incorrect programs.7

A strong type system accepts the more type correct programs the more expressive it
is: this dimension is indicated by the arrow superscripted “Various Type Systems”.
Higher expressiveness usually comes with more complicated type expressions and
typing rules and with more expensive type checking problem.Monomorphictype
systems (as known,e. g., from Pascal) are fairly inexpressive and often not satisfac-
tory in practice. More expressive type systems are obtained by adding differentforms
of polymorphism, for instanceparametric polymorphismas in ML [55, 123],subtype
polymorphismas studied in object-oriented programming languages [31], or mixed

7This duality does not, in general, withstand formal scrutiny. This ismainly due to the fact that
strong typing and failure diagnosis do not talk about the same class oftype errors. First, the precise dual
of being provably free of type errors ispossiblycontaining an error, whereas our failure diagnosis for
CC checks whether a programinevitablycontains an error.
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forms [32, 36]. A major goal of research in this area is to find expressive type systems
with a decidable, hopefully efficiently decidable, type checking problem whose type
expressions remain intelligible to programmers.

Analogously, failure diagnosis detects the more type errors the more accurately it is
can describe the run time behaviour of programs. In set-based program analysis this
is the case the finer-grained and the more expressive the set description languageis
chosen. The expressiveness of such a language depends on the choice of set opera-
tors provided (e. g., union, intersection, projection, complementation). Again, highly
expressive set description languages can become very complex and expensive to deal
with. For example, the satisfiability problem for standard set constraints including all
mentioned set operators is NEXPTIME-complete [10, 19, 40]. One major goal of re-
search in set-based analysis is to find constraint systems which are expressive but can
be efficiently solved. Preferably, some application-relevant problems like entailment
should be efficiently decidable, too.
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1.5. Contributions

1.5.1. Summary

The underlying motivation of the research reported in this thesis is the question:

How can we provide some static type checking for the dynamically typed
language Oz or, more generally, for a concurrent constraint language with
higher-order procedures?

We tackle this question from the complementary points of view given by strong typing
and failure diagnosis. Our contributions to these two areas correspond roughly to the
two programming paradigms that are most closely related to Oz, namely the paradigms
of functional and logic programming. Notice that Oz actually subsumes both of them.

Strong typing for languages with higher-order procedures has been studied extensively
in the context of functional programming languages and is applied very successfully
there. So a natural rephrasing of the search for a strong type system for Oz is:

How can we adapt strong type systems developed for functional language
to a language based on logic variables?

The language Plain that we design in Chapter 6 answers this question for an expressive
type system with higher-order polymorphism and subtyping.

A main focus of the research in set-based analysis was on logic programming lan-
guages. Since the logic programming tradition has had a major impact on the develop-
ment of Oz and since (constraint) logic programming is an important sublanguage of
Oz, it is reasonable to ask:

How can we adapt set-based analysis techniques from logic programming
languages for a failure diagnosis of Oz?

There are several aspects to this question:(i) Which constraint system is appropriate
for an analysis of Oz?(ii) How does a (set-based) failure diagnosis look for first-order
fragments of Oz, and how can one generalise the diagnosis to a language with higher-
order procedures?(iii ) What kind of correctness result is obtained and how can one
prove it?

As an answer to(i), we propose a new constraint system over sets of possibly infinite
feature trees and analyse it in detail. This investigation constitutes alarge part of
this thesis. Answering(ii), we define an analysis for first-order concurrent constraint
programming, and we extend it to OPM.(iii ) As a correctness result, we show that the
analysis for CLP detects finite failure, and that the analysis for CC detectsfinite failure
unless an application blocks forever.
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1.5. Contributions

1.5.2. Technical Summary

In this section we summarise the technical contributions of the thesis.

1.5.2.1. Set Constraints over Feature Trees

We introduce a set constraint system FT�(ar;[) (read “FT-include”) with three dis-
tinguishing properties that distinguishes it from the set constraints that are usually
considered in the literature.� Constraints are interpreted over sets of feature trees, instead of constructor trees

as usual. This makes our constraint system suitable for the analysis of records
in programming languages, and for the analysis of feature tree constraints in
constraint programming. The analysis of tuples as a special case of records
remains possible.� Constraints are interpreted over sets of infinite trees, instead of finiteones as
usual. This is necessary for the analysis of infinite data structures as they are
common in constraint logic programming. It is also needed to establish a rela-
tion between the denotational and the operational semantics of constraint logic
programs with possibly non-terminating computations.� Every constraint is satisfiable and has a greatest solution: This makes the con-
straint system appropriate for the analysis of concurrent programs that specify
infinite computations. Our constraint system shares this property with the co-
definite set constraints [44], which can be embedded into set constraints over
feature trees such that emptiness in the greatest solution is preserved.

We also consider a non-standard system, called FTne� (ar;[) and read “FT-include-
nonempty”, of constraints overnon-empty sets of feature trees. Our motivation is
threefold:� The investigation of constraints over non-empty sets is a conceptual contribu-

tion which credits the central role that emptiness plays in the solving of set con-
straints and in set-based program analysis.� Constraints over non-empty sets can help to simplify technical arguments. We
consider both constraint solving and entailment first for fragments of FTne� (ar;[)
and derive the related results for FT�(ar;[) from them. Charatonik and Podelski
have proven decidability for set constraints with intersection by detour through
set constraints over non-empty sets [42].� By the exclusion of the empty set, we establish a close relationship between
constraints over trees and constraints over non-empty sets of trees. In particular,
the first-order theories of equality constraints over both domains coincide.
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1. Introduction

1.5.2.2. Solving Set Constraints

We consider fragments of the system FT�(ar;[) with restricted constraint languages,
denoted by FT�(ar), FT�([), and FT�, and we provide algorithms and complexity
results for these as well as for the corresponding fragments of FTne� (ar;[).� We investigate incremental constraint solving which is important for modular

program analysis.� We show that the satisfiability problem for FTne� (ar) (no union constraints) can
be solved in incremental cubic time and provide an appropriate algorithm. By
extension of the satisfiability test for FTne� we obtain an incremental algorithm
to compute the greatest solution of an FT�(ar) constraint and to decide empti-
ness. The algorithm is shown to have polynomial complexity of degree 4. We
observe that the satisfiability problem for FTne� (ar;[) and the emptiness prob-
lem for FT�(ar;[) are DEXPTIME-hard, and we conjecture that a DEXPTIME
algorithm can be derived from the literature.� We give an incremental algorithm that solves the satisfiability problem for pos-
itive and negative FTne� constraints (neither union nor arity constraints) in cubic
time; this implies that also the entailment problem is solvable in cubic time. The
proof relies on the independence property of this constraint system which we
show. We apply the result for FTne� to prove that the entailment problem for FT�
can be solved by an incremental algorithm in timeO(n4).� We show that the entailment problem of set constraints over feature trees be-
comes coNP-hard when arity constraints are added, and that it becomes even
PSPACE-hard when existential quantifiers are added. Both hardness results
carry over to FT�(ar): the entailment problem for FT�(ar) is coNP-hard, and
the entailment problem for FT� with existential quantifiers is PSPACE-hard.

All results hold independent of whether the constraints are interpreted over finite or
infinite trees.

1.5.2.3. Set-based Failure Diagnosis for Oz

We present a method for automated set-based failure diagnosis for concurrent con-
straint programs over feature trees (i. e., records) in terms of set constraints over feature
trees.� To date, set-based analysis for constraint (logic) programs has focussed on the

least-model semantics of terminating programs. Since we are interestedin pos-
sibly non-terminating computations, we consider the greatest model semantics.
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1.5. Contributions

We show that our analysis safely approximates the greatest model of constraint
logic and concurrent constraint programs.� We relate the greatest model semantics of constraint logic programs over infinite
trees to finite failure. We conclude that our analysis safely approximates the
inevitability of failure for constraint logic programs, and that it approximates the
inevitability of failure for concurrent constraint programs unless an application
blocks forever.� We also discuss generalisation of our correctness result to larger fragments of
Oz. For a large part of Oz we present a set-based analysis in terms of set con-
straints over feature trees and we give examples to illustrate its appropriateness.

1.5.2.4. Strong Typing for Logic Variables

We define a sublanguage of Oz called Plain to which standard strong type systems
known from functional programming can be applied.� We give a strong type system with record subtyping, universal higher-order poly-

morphism, and mode polymorphism, and we prove a type preservation and a
type safety result.� Plain pinpoints some aspects in the definition of OPM which complicate strong
typing, and it marks a starting point from which strongly typed OPM-style lan-
guages can be developed.� Plain’s expressiveness is comparable to that of Pict, a recent concurrent language
based on theπ-calculus. Thereby, Plain contributes to relating two prominent
concurrent programming models: concurrent constraints and process calculi.
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1.6. Publication Remarks

Several of the results presented in this thesis have been obtained in collaboration
with my colleagues Joachim Niehren, Witold Charatonik, Andreas Podelski, and Gert
Smolka, or are influenced by this collaboration. Some of them have partly been pub-
lished before. This section lists the relevant papers and reports. I would like to thank
my co-authors for the permission to use part of the material therein.

Some of our results for set constraints over feature trees have been developedfor or-
dering constraints over feature trees. We adapt them to a set constraint system that is
more flexibly applied to program analysis.

1. MÜLLER, MARTIN , JOACHIM NIEHREN, & A NDREAS PODELSKI (1997). Or-
dering constraints over feature trees. InProceedings of the 3rd International
Conference on Principles and Practice of Constraint Programming(CP’97),
edited by G. Smolka, vol. 1330 ofLecture Notes in Computer Science, pp. 297–
311, Schloß Hagenberg, Linz, Austria. Springer-Verlag, Berlin.

This paper defines and investigates the constraint system FT� (read “FT-sub”) of or-
dering constraints over feature trees and presents algorithms for deciding satisfiability
and entailment in cubic time. The corresponding results for FTne� (ar) and FTne� (Theo-
rems 3 and 12 on Pages 34 and 54) have been adapted from this paper.

2. MÜLLER, MARTIN , JOACHIM NIEHREN, & A NDREAS PODELSKI (1997). In-
clusion constraints over non-empty sets of trees. InTheory and Practice of
Software Development(TAPSOFT’97), edited by M. Bidoit & M. Dauchet,
vol. 1214 ofLecture Notes in Computer Science, pp. 345–356, Lille, France.
Springer-Verlag, Berlin.

This paper defines and investigates the constraint system Ines of inclusion constraints
over non-empty sets of constructor trees. It was the first to investigate set constraints
over non-empty sets. It also contains the observation that the first-order theories of
equality constraints over infinite constructor trees and over non-empty sets ofinfinite
constructor trees coincide (corresponding to Theorem 23 on Page 87). The satisfiabil-
ity test for FT� was inspired by the one for Ines. In particular, the detailed complexity
analysis of the satisfiability test for FTne� (ar) is adapted from there (see Section 2.2.3
on Page 39).

3. MÜLLER, MARTIN & JOACHIM NIEHREN (1997). Entailment for set con-
straints is not feasible. Tech. rep., Programming Systems Lab, Universit¨at des
Saarlandes.

20



1.6. Publication Remarks

This report proves that entailment for Ines constraints (as well as for atomic set con-
straints [85]) is coNP-hard. The coNP-hardness result on entailment for FTne� (ar)
(Theorem 16 on Page 62) has its origins here.

4. MÜLLER, MARTIN & JOACHIM NIEHREN (1998). Ordering constraints over
feature trees expressed in second-order monadic logic. InInternational Confer-
ence on Rewriting Techniques and Applications(RTA’98), edited by T. Nipkow,
vol. 1379 ofLecture Notes in Computer Science, pp. 196–210, Tsukuba, Japan.
Springer-Verlag, Berlin.

5. MÜLLER, MARTIN , JOACHIM NIEHREN, & RALF TREINEN (1998). The first-
order theory of ordering constraints over feature trees. InProceedings of the
13th IEEE Symposium on Logic in Computer Science(LICS’98) . IEEE Com-
puter Society Press. To appear.

Both papers investigate, amongst other issues, the entailment problem with existential
quantifiers for the constraint system FT�. Paper (5) show this problem to be coNP-
hard in the case of finite trees and PSPACE-hard in case of infinite trees.The paper (4)
shows that the hardness proof of paper (5) can be transformed such that it applies to
both the case of finite and infinite trees. The PSPACE-hardness results for FTne� and
FT� with existential quantifiers (Theorem 20 on Page 74) have been adapted from
there.

6. PODELSKI, ANDREAS, WITOLD CHARATONIK , & M ARTIN M ÜLLER (1998).
Set-based error diagnosis of concurrent constraint programs. Tech. rep., Pro-
gramming Systems Lab, Universität des Saarlandes.

This paper gives an analysis for concurrent constraint programs over infinite construc-
tor trees and shows that the analysis safely approximates the greatest model ofthe
program. It observes that finite failure can be characterised by the greatest model
semantics and so proves that the analysis correctly approximates a run-timeerror in
concurrent constraint programs. To a large extent, Chapter 4 is based on this paper.

7. MÜLLER, MARTIN (1996). Polymorphic types for concurrent constraints.
Tech. rep., Programming Systems Lab, Universität des Saarlandes.

8. MÜLLER, MARTIN , JOACHIM NIEHREN, & GERT SMOLKA (1998). Typed
concurrent programming with logic variables. Tech. rep., Programming Sys-
tems Lab, Universität des Saarlandes.

The second report defines the language Plain along with a type system with higher-
order polymorphic types, modes and subtypes, and is the basis for Chapter 6. A main
insight underlying Plain is the fact that a type system with higher-order polymorphism
and subtyping only works in presence of static data flow information; this insight was
formulated earlier in the first report.
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1.7. Overview

In Chapter 2 we introduce feature tree constraints to model records in constraint pro-
gramming, and we define set constraints over feature trees. We also investigate the
satisfiability and the emptiness problem for fragments of this system. In Chapter 3
we consider the entailment problem in addition. Chapter 4 defines a set-based failure
diagnosis for constraint logic programming and concurrent constraint programming
in terms of set constraints over feature trees. Chapter 5 generalises the failure di-
agnosis to higher-order procedures, and hence to OPM. Chapter 6 complements the
work on set-based failure diagnosis by designing an Oz-style language with higher-
order procedures and logic variables with a static type system. Chapter 7 assesses
the achievements of this thesis and outlines some directions of future research.Ap-
pendix A introduces some basic mathematical concept and notation.

We imagine three paths through this thesis. The reader interested in set constraints and
their formal properties should read Chapters 2 and 3. The reader interested inset-based
program analysis should read the definitional parts of Chapter 2, and then proceed to
Chapters 4 and 5. The reader interested in typed concurrency with logic variables can
read Chapter 6 independently. To understand the comparison of Plain with OPM, the
reader may want to read the introduction to OPM in Chapter 5. All paths may end in
Chapter 7 on future work.
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2.3. Dropping the Non-emptiness Restriction . . . . . . . . . . 43

Feature trees[16, 20, 21, 197] are a kind of trees which is appropropriate for the de-
scription of record-like structures. The picture below shows two typical feature trees.

wine

red 1998

colour year
cons

fst snd

1 2

A feature tree is a possibly infinite tree with unordered marked edges and with marked
nodes. Edge labels (calledfeatures) are functional in that the edges departing from the
same node must be pairwise distinct. The node marks are calledlabels. The feature
trees above mention the featurescolour, year, 1, and2, and the labelswine, red, 1998,
cons, fst, andsnd. Feature trees are more general than constructor trees: by using as
features consecutive positive natural numbers starting from1, constructor trees can be
modelled as feature trees (see the second tree above). Feature trees may beinfinite.
Some of them, therational feature treescan be represented by finite cyclic directed
graphs The graph on the left hand side below describes a feature tree that models the
infinite list [1;2;1;2; : : :], while the graph on the right hand side represents the type of
integer lists,list(int) = nil +cons(int; list(int)):

cons

1 cons

2

+
nil cons

int

1 2

1

2
1 2

1

2

In the concurrent constraint language Oz, records are modelled as feature treesand
incorporated through the system CFT offeature constraints[197, 210]. Feature con-
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2. Set Constraints over Feature Trees

straints are a predicate logic formalism for the description of objects by the values of
their attributes. Feature description languages and feature logics of variouskinds have
a long tradition in natural language processing [109, 179, 190, 193]. Their use for the
integration of records in constraint languages is more recent [14, 15, 197].
In this chapter we present a new set constraint system that is appropriate for theana-
lysis of records and, more specifically, for the analysis of constraint programs over
feature trees; henceset constraints over feature trees. The constraint system consists
of labelling, selection, arity, union, and inclusion constraints.
Traditionally, set constraints have been considered over the domain of finite construc-
tor trees.
Our main motivation to considerfeature treesis the analysis of feature tree constraints
in Oz. In CFT, the selection constraintx[f ]y plays a central role. It asserts thatx
denotes some feature tree with a featuref leading to the denotation ofy, without
mentioning the label at the root ofx; to assert the label at the root ofx, there is a
labelling constraintahxi. Our system of set constraints over feature trees has a similar
selection constraintx[f ]y stating thatx denotes a set of feature trees with featuref and
thaty denotes the projection ofx at f . In standard set constraint [85], the most closely
related projection constraintx� a�1( f )(y) denotes projection both at the featuref and
the tree constructora. Therefore, the projection constraint is not appropriate for the
analysis of feature selection constraints.
Our interest ininfinite treesis also motivated by the program analysis for Oz: since
Oz provides for infinite data structures, we must be able to handle sets of infinite
feature trees. Secondly, infinite trees are needed to give meaning to non-terminating
computations.
Finally, the separation of constraints on labels and features adds flexibilityto set-based
analysis. For instance, one can integrate analyses along different dimensions by plac-
ing different bits of information under different associated features. The flexibility
of selection constraints was also found convenient by Flanagan and Felleisenfor an
analysis of Scheme [64, 65].
Every set constraint over feature trees is satisfiable and has a greatest solution. The
latter property is crucial for the analysis of non-terminating programs as we shall see
in Chapter 4. Our system shares this property with its closest relative amongst the set
constraint systems, the system of co-definite set constraints [44]. Set constraints over
feature trees can be viewed as a refinement of co-definite set constraints, in analogy
to the fact that CFT refines the constraint system RT [50] of equations over rational
constructor trees [197]. We show that co-definite set constraints can be embedded
into set constraints over feature trees such that the greatest solution ispreserved, and
we conjecture that the embedding actually preserves validity for arbitraryfirst-order
formulas.
This and the following chapter investigate in detail the system of set constraints over
feature trees. We also consider a system of set constraints over the domainof non-
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2.1. Constraint Systems over Feature Trees

empty sets of feature trees, which has the same constraint language but comes with the
global restriction that every variable denotes a non-empty set. The technicalmotivation
for this is that it is sometimes simpler to solve constraints in two steps, where the
first step considers non-empty sets only and the second step adds the reasoning about
emptiness. We obtain some of our results for constraints over non-empty sets of feature
trees first, and then derive the corresponding result for the set constraint system which
admits the empty set. Also Charatonik and Podelski [42] have proven decidability for
set constraints with intersection by detour through set constraints over non-empty sets
of trees.

We give anO(n3) algorithm to decide satisfiability for union-free constraints over
non-empty sets of feature trees. For the corresponding system which admits the empty
set, we derive anO(n4) algorithm to compute the greatest solution and to decide the
emptiness problem, (that is, whether or not a variable denotes the empty set in the
greatest solution of a constraint). We consider union constraints only briefly and show
that the emptiness problem for the complete system of set constraints over feature trees
is DEXPTIME-hard.

Additional motivation to pay special attention to the empty set includes the follow-
ing. First, our application in program analysis suggests to treat the empty set as
an undesirable value: a variable that cannot adopt any value at run-time has the
“empty type” and is bogus. Second, the empty set can be the reason for efficiency
problems and the motivation for ad-hoc optimisations. For example, the implication
a(x;y)�a(x0;y0)! x� x0 ^ y� y0 _ x� /0_ y� /0 that is valid over sets of constructor
trees is sometimes replaced bya(x;y)�a(x0;y0)! x�x0 ^y�y0 for efficiency reasons
(e. g., in [12], an analogous optimisation is used in a solver for a kind of set con-
straints). This simplification is unsound because it does not preserve satisfiability. It is
sound, however, when variables are interpreted over non-empty sets.

Finally, the domain of non-empty sets is related to the domain of trees. We exploit this
by adapting several techniques directly from the constraint system FT� of ordering
constraints over feature trees [141, 143, 145]. We also show that the first-order theories
of equality constraints is the same when interpreted over trees or non-empty sets of
trees.

The discussion of related work is postponed to Section 3.3 in the following chapter.

2.1. Constraint Systems over Feature Trees

2.1.1. Feature Trees

We assume a setV of variablesranged over byx;y;z, and a signature that defines a
setL of labelsranged over bya;b;c, and an infinite setF of features ranged over
by f ;g;h. We base our definition of feature trees on the notion of paths. Apath pis
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2. Set Constraints over Feature Trees

a finite sequence of labels. Theempty pathis denoted byε and the concatenation of
pathsp andp0 aspp0; we haveεp= pε = p. Given pathsp andq, p0 is called aprefix
of p if p = p0p00 for some pathp00. Note that every non-empty tree domain contains
the empty pathε. A setP of paths isprefix-closedif, for all pathsp and p0, pp0 2 P
impliesp2 P. A tree domainis a non-empty and prefix-closed set of paths.

A feature treeτ is a pair(D;S) consisting of a tree domainD and functionS: D! L

from D into the labelsL , called alabelling. Given a feature treeτ, we writeDτ for its
domain andSτ for its labelling; henceτ = (Dτ;Sτ). We identify the functionSτ with
the set of pairs(p;a) such thatSτ(p) = a. The set of features defined at the root of
a feature treeτ is called thearity of τ: ar(τ) = Dτ\F . For every feature treeτ with
p2 Dτ we denote withτ:p thesubtree ofτ at path p. Formally:

τ:p =def (fp0 j pp0 2 Dτg;f(p0;a) j (pp0;a) 2 Sτg) if p2 Dτ (2.1)

We call a feature treeτ finite if Dτ is finite, andinfinite otherwise. A feature treeτ is
calledrational if it has only finitely many subtrees and is finitely branching,i. e., if the
setf f j exists f : p f 2 Dτg is finite for all p. The set of all feature trees is denoted
by F T whereF andL remain implicit.

The setT of constructor treescan be defined along the same lines. We do not elaborate
on this definition but only remark that constructor trees are isomorphic to feature trees
whose features are the natural numbersIN and which conform to an arity functiona :
L! IN; a feature treeτ is said toconformto a : L! IN if fn j pn2 Dτg= f1; : : : ;ng
whenever(p;a) 2 Sτ anda(a) = n. The corresponding embedding of constructor trees
into feature trees is denoted by[[�]].
2.1.2. Equality Constraints over Feature Trees (CFT)

We recall the definition of the feature constraint system CFT [197]. The abstract
syntax of CFT constraints is defined as follows:

η ::= x=y j ahxi j xf f g j x[f ]y j η1^η2

CFT constraintsη are conjunctions of so-calledprimitive constraints. We callx=y
an equality, ahxi a labelling, x[f ]y a selection, andxf fg an arity constraint. The
constraint system CFT is defined by the constraints above and their interpretation in the
following structure. Its domain isF T , the equality symbol= is interpreted as equality
on F T , every labela [resp., every arityf fg] is interpreted as a unary predicatea
[resp., f fg], and every feature is interpreted as a binary predicate[f ] such that the
following holds.

τ[f ]τ0 iff τ: f = τ0
ahτi iff (ε;a) 2 Sτ

τf fg iff ar(τ) = f fg
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2.1. Constraint Systems over Feature Trees

We identify this structure with its domain and writeF T for both. The constraint sys-
tem FT is the subsystem of CFT that one obtains by dropping the arity constraint [16,
21]. The concept of anF T -valuation satisfying a constraintη (or, equivalently, being
a solution ofη), writtenα j=F T η, is defined as usual. For instance, every solution of
the constraint below mapsx to the feature tree on the right hand side.9y9z0BB@ winehxi ^ x[colour]y ^ x[year]z^

xfwine;colourg ^
redhyi ^ 1998hzi ^ yfg ^zfg 1CCA wine

red 1998

colour year

We also usefeature terms tas a generalisation of first-order terms [197]. Their syntax
is defined as follows, where we always assume that the features in a sequencef are
pairwise distinct.

t ::= x j a( f :t)
Occasionally, we write> as an abbreviation ofx�x for an arbitrary variablex. We also
use equational constraints of the formx=t whose meaning is defined by an existential
formula[[x=t]] as follows.[[x=a( f1:t1; : : : ; fn:tn)]] = ahxi^xf f1; : : : ; fng ^ n̂

i=1

9yi x[fi]yi (2.2)[[x=a( f1:t1; : : : ; fn:tn : : :)]] = ahxi^ n̂

i=1

9yi x[fi]yi (2.3)

For a typical example consider[[x=cons(1:y;2:nil)]] = 9y0(conshxi^xf1;2g^x[1]y^x[2]y0^nilhy0i^y0fg)
This constraint determines separately the labela of x, the arityf1;2g, and the associ-
ated subtreesy andz. This separation of labelling, selection, and arity constraints in
CFT enable a more fine-grained description of trees than that possible with equational
constraints over infinite constructor trees [50]. When we usex=a( f :t) in the sequel,
we mean the corresponding CFT formula[[x=a( f :t)]] unless otherwise stated.

2.1.3. Set Constraints over Feature Trees (FT�(ar;[))
We write P (F T ) for the powerset of the domainF T of feature trees. Elements of
P (F T ) are denoted byσ. For every setσ of feature trees such thatp2 Dτ for all τ2 σ
we defineσ:p as theset of subtreesτ:p of treesτ in σ. Formally:

σ:p =def fτ:p j τ 2 σg if 8τ 2 σ : p2 Dτ : (2.4)
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2. Set Constraints over Feature Trees

The class ofconstraints over sets of feature treesis defined by this abstract syntax.

ϕ ::= x�x1[: : :[xn j x[f ]x0 j ahxi j xf f g j ϕ1^ϕ2

These constraints are defined like CFT constraints extended by inclusion constraints of
the formx�x1[: : :[xn. (Equationsx=y can, of course, still be expressed byx� y^y�
x.)x As in CFT, we call the primitive constraintsx[f ]x0, ahxi, andxf fg selection,
labelling, andarity constraints. The primitive constraintx�x1[: : :[xn is called an
inclusion. Given a constraintϕ, we writeV (ϕ), L(ϕ), andF (ϕ) for the variables,
labels, and features occurring inϕ. Thesizeof a constraintϕ is defined as the number
of symbols,i. e., variables, labels, and features occurring inϕ.

The constraint system FT�(ar;[) is defined by the constraint language above and
their interpretation in the first-order structure which lifts the interpretation of labels,
arities, and features fromF T to P (F T ). Its domain isP (F T ), the inclusion and
union symbols� and[ are interpreted by set inclusion and set union, every labela
[every arityf fg] is interpreted as a unary predicatea [resp.f fg], and every feature is
interpreted as a binary predicate[f ] such that

σ[f ]σ0 iff σ: f defined andσ0 = fτ0 j 9τ 2 σ : τ[ f ]τ0g
ahσi iff 8τ 2 σ : ahτi
σf fg iff 8τ 2 σ : τf fg

Again, we identify the structure of FT�(ar;[) with its domainP (F T ).8
The name FT�(ar;[) reflects the collection of set operators in addition to labelling
and selection constraints. By restricting the constraint language, we obtainless ex-
pressive subsystems. For example, FT�(ar) is the restriction of FT�(ar;[) that does
not contain union constraints, and FT� contains neither union nor arity constraints.
So FT�(ar) corresponds to CFT just as FT� corresponds to FT. The definition of a
P (F T )-valuationα being a solution ofϕ, writtenα j=P (F T ) ϕ, is the usual one.

We use theequality constraint x=y as an abbreviation forx�y^ y�x. Sometimes
we admit? as a primitive constraint for falsity, since we cannot express it (Proposi-
tion 2.1). We also use inclusion constraints likex�t which mention a feature termt and
whose meaning is defined by the following existential formulas over set constraints.[[x�a( f :t)]] = xf fg ^ ahxi ^ n̂

i=1

9yi (x[fi]yi ^ [[yi�ti]]) (2.5)[[x�a( f :t : : :)]] = ahxi ^ n̂

i=1

9yi (x[fi]yi ^ [[yi�ti]]) (2.6)

8Most specific for our system is the interpretation of feature selection, in particular in contrast to the
standardprojectionconstraintx� a�1(k)(y) considered in the literature. For motivation and illustration of
the semantics ofσ[f ]σ0 compare Proposition 2.5 below, and Section 3.3.1.2.
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2.1.4. Constraints over Non-empty Sets of Feature Trees
(FTne� (ar;[))

We call FTne� (ar;[) the constraint system that we obtain when we restrict the interpre-
tation domain of FT�(ar;[) constraints toP+(F T ), the domain of non-empty sets
of feature trees. We read FTne� (ar;[) as “FT-include-nonempty”. Again we identify
the structure of FTne� (ar;[) with the system FTne� (ar;[) itself. In analogy to the nota-
tion used above we write FTne� (ar) and FTne� for the subsystems of FTne� (ar;[) without
union constraints, and without union and arity constraints.9

2.1.5. Basic Properties

We mention a number of basic properties of the constraint systems FT�(ar;[) and
FTne� (ar). Constraint solving will be considered in the following chapter.

Proposition 2.1 (Least Solution)
Every FT�(ar;[) constraint is satisfiable. The valuation which maps all variables to
the empty set is a solution of every FT�(ar;[) constraint.

Proof. A simple check of all primitive constraints. 2
Notice that in contrast to FT�(ar;[) constraints a satisfiable FTne� (ar) constraint need
not have aleastsolution: all singleton sets are minimal but incomparable elements
with respect to set inclusion.

Proposition 2.2 (Solutions are Closed under Unions)
The set of solutions of any FT�(ar;[) or FTne� (ar;[) constraint is closed under point-
wise union (possibly infinite).

Proof. Given an FT�(ar;[) or FTne� (ar;[) constraintϕ and a setSof solutions ofϕ,
one easily checks that the pointwise union of the elements ofS satisfies all primitive
constraints inϕ. 2
In contrast, neither FT�(ar;[) nor FTne� (ar;[) constraints are closed under inter-
section. For instance, the constraintx � y[ z has the solutionsα and α0 with
α(x) = α(y) = fag;α(z) = fbg; andα0(y) = fbg;α0(x) = α0(z) = fag, whose inter-
section is not a solution since it assigns/0 to y andz butfag to x.

The next property is crucial for our set-based analysis as described in Chapters4 and 5.

9In [142] we have anticipated the system FTne� and suggested that it should be called Ines(F T ); we
do not follow this suggestion here, to point out the different constraint languages of FTne� and Ines, and
to stress the relationship to FT�(ar;[). Notice, however, that we only consider the union-free fragments
of FTne� (ar;[) in this thesis.
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2. Set Constraints over Feature Trees

Proposition 2.3 (Greatest Solution)
Every FT�(ar;[) or FTne� (ar;[) constraint has a greatest solution.

Proof. Since, by Proposition 2.1, every FT�(ar;[) or FTne� (ar) constraintϕ is sat-
isfiable, the set Sol(ϕ) of solutions ofϕ is non-empty. So the pointwise union of all
solutions in Sol(ϕ) is a well-defined set-valuation and, by Proposition 2.2, a solution
of ϕ. 2
There is a close relationship between emptiness in the greatest solution andsatisfiabil-
ity over non-empty sets of feature trees. For anyϕ, denote withgsol(ϕ) thegreatest
solutionof ϕ overP (F T ).
Proposition 2.4 (Greatest Solution and Empty Sets)
For all FT�(ar;[) constraintsϕ: The greatest solution ofϕ maps some variable to the
empty set (9x2 V : gsol(ϕ)(x) = /0) if and only ifϕ is non-satisfiable overP+(F T ).
Proof. If, for somex, gsol(ϕ)(x) = /0, thenx denotes the empty set in allP (F T )-
solutions ofϕ. Henceϕ is non-satisfiable overP+(ϕ). Vice versa, if gsol(ϕ)(x) 6= /0
for all x, thengsol(ϕ)(x) 6= /0 is also aP+(F T )-solution ofϕ. 2
Another interesting relationship between CFT constraints and FTne� (ar) constraints is
the following one. It states that, with respect to a collection of CFT constraints, the
satisfiability of a sequence of equality constraints can be characterised bythe satisfia-
bility of a sequence of inclusion constraints. (In this statement, we identifyevery CFT
constraint with a set constraint over feature trees by replacingx= y with x� y^y� x.)

Proposition 2.5
Let η1; : : : ;ηn be satisfiable and variable-disjoint CFT constraints not containing the
variable y. If the constraint

Vn
i=1(ηi ^ y� xi) is satisfiable overP+(F T ), then the

constraint
Vn

i=1ηi ^Vn�1
i=1 xi = xi+1 is satisfiable overF T .

Proof. One uses the greatest solution of the set constraint
Vn

i=1(ηi ^ y� xi) (Defini-
tion 3 on Page 36) to construct a solution of

Vn
i=1ηi ^Vn�1

i=1 xi = xi+1. 2
This proposition would not hold if the semantics ofσ[f ]σ0 would not requireσ: f to be
defined. For a counterexample see the analysis of ExampleDfail3 on Page 94.

2.2. Solving Constraints over Non-empty Sets of
Feature Trees

In this section, we devise an incremental algorithm to decide satisfiability of FTne� (ar)
constraintsx� y, x[f ]y, ahxi, andxf f g in cubic time. In Section 2.3 we derive an
emptiness test for FT�(ar).
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Intuitively, a satisfiability test isincrementalif the input constraint can be input piece-
wise without changing the complexity measure [105].10 Let a satisfiability test with
complexityO( f (n)) be given, assume a sequence of constraintsϕ0;ϕ1; : : : ;ϕk with
respective sizesn0; : : : ;nk, and ask for everym 2 f0; : : : ;kg whether the conjunc-
tion

Vm
i=1ϕi is satisfiable. The naive solution to this problem is to run the satis-

fiability test on all these conjunctions. This approach has worst-case complexity
O(Σk

m=0 f (Σm
i=0ni)), or simplerO(k � f (n)) if n = Σk

i=1ni is size of the complete con-
junction andk is the length of the sequence. In contrast, an incremental algorithm can
build upon its work to check of

Vm
i=1ϕi to decide

Vm+1
i=1 ϕi more efficiently, such that

the total complexity of the problem does not exceedO( f (n)).
2.2.1. Satisfiability

The main algorithmic problem to be solved is to guarantee termination in presence of
infinite trees.

Example 1 (Termination Problem)

Pick two distinct labelsa 6= b and consider the constraint

x[f ]x0^ahx0i^y[f ]y0^bhy0i^z�x^z�y (2.7)

This constraint is non-satisfiable over non-empty sets: the denotation ofz must be a
subset of the denotations ofx andy and hence of their intersection. Since no feature
tree can be labelled with botha andb, the denotations ofx andy must be disjoint and
hencez must denote the empty set. To detect the inconsistency in (2.7) we derive the
following constraints step by step:

z[f ]z0 (from z�x andx[f ]x0 wherez0 fresh)

z0�x0^z0�y0 (from z[f ]z0;x[f ]x0 andy[f ]y0 andz�x andz�y)

ahz0i^bhz0i (from z0�x0^ahx0i andz0�y0^bhy0i)
When we apply a similar argument to the constraint

y�x^x[f ]x (2.8)

we run into a loop, as the reader can easily verify. The critical step of reasoning here
is the first one above which introduces the fresh variablez0.

10Incremental algorithms are synonymously calledon-line, in contrast tooff-line algorithms that re-
ceive their input at once.
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2. Set Constraints over Feature Trees(Refl) x�x(Trans) x�y^y�z ! x�z(Incl-Nondis) x�y ! x 6 ky(Symm-Nondis) x 6 ky ! y 6 kx(Quasi-Trans) x�y^x 6 kz ! y 6 kz(Desc-Incl) x[f ]x0^x�y^y[f ]y0 ! x0�y0(Desc-Nondis) x[f ]x0^x 6 ky^y[f ]y0 ! x0 6 ky0(Clash-Sort) ahxi^x 6 ky^bhyi ! ? if a 6= b(Clash-Arity-I) x[f ]x0^x 6 ky^yfgg ! ? if f 62 fgg(Clash-Arity-II) xf fg^x 6 ky^yfgg ! ? if f fg 6= fgg
Figure 2.1.:Satisfiability of FTne� (ar) Constraints

The reason for the inconsistency of (2.7) is the disjointness of two sets that are required
to have a non-empty intersection. In order to reason about this phenomenon in a termi-
nating manner, we introduce an additional primitivenon-disjointnessconstraintx 6 ky.
We also consider? as a primitive constraint in this section.

ϕ ::= ? j x 6 ky j x�x0 j x[f ]x0 j ahxi j xf fg j ϕ1^ϕ2

The semantics ofx 6 ky is defined as follows.

α j=P (F T ) x 6 ky iff α(x)\α(y) 6= /0

Notice that non-disjointness is not transitive. Both? and the non-disjointness con-
straintx 6 ky are expressible in FTne� , since? $ 9x(ahxi^bhxi) if a 6= b

x 6 ky $ 9z(z�x^z�y)
are valid FTne� -equivalences. In FT�(ar), neither of them holds; in particular, notice
that the formula9z(z�x^z�y) holds vacuously in FT�(ar) (pick the empty set as the
denotation ofz) while its left does not hold in general.

Figure 2.1 contains axiom schemes which define an infinite set of axioms. Every axiom
is either a primitive constraint, or the implication between a constraint and a primitive
constraint of the formx�y or x 6 ky. These axioms describe the satisfiability problem
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

of FTne� (ar). In a subsequent step we shall interpret these axioms as rewriting rules to
yield a satisfiability check of FTne� (ar) constraints.

Proposition 2.6 (Soundness)
The structureP+(F T ) is a model of the axioms in Figure 2.1.

Proof. By a routine check. For illustration, we prove the statement for rule
(Quasi-Trans). The implications below follow withx 6 ky$9z(z�x^z�y) and transi-
tivity of set inclusion.

x�y^x 6 kz $ x�y^9v(v�x^v�z) ! 9v(v�y^v�z) $ x 6 kz

We consider the remaining axioms informally. Axioms (Refl) and (Trans) hold since
set inclusion� is a partial order. Axiom (Incl-Nondis) states that inclusion implies
non-disjointness. This does not hold over the domain of arbitrary sets of feature trees
since the empty set is included in every set but also disjoint with every set. Non-
disjointness is symmetric (Symm-Nondis) since set intersection is commutative. Ax-
ioms (Desc-Incl) and (Desc-Nondis) state that set projection at a feature f is a homo-
morphism with respect to set inclusion and non-disjointness. The axiom (Clash-Sort)
states that labelling is a partial function. Axioms (Clash-Arity-I) and (Clash-Arity-II)
state that two sets with incompatible arity restrictions must be disjoint. 2
Figure 2.1 induces a naive fixed point algorithm on sets of primitive constraints that
computes the closure of an input constraintϕ under the given axioms. (Here, we
identify a constraint with the set of its primitive constraints.) In order forthis fixed-
point to be finite we restrict applicability of the reflexivity axiomx�x to those variables
which actually occur in a given constraint; thus, no fresh variables are introduced.
Call this algorithmS. We call astepof this algorithm the addition of a new primitive
constraint to some given constraint according to one of the axioms. A constraint is
called S-closedif the algorithmS cannot proceed. The fixed-point of a constraint
under algorithmS is called itsS-closure. If some axiom (A) does not apply to a set of
primitive constraints, it is calledA-closed, or closed under (A).

For illustration on how the algorithm works we consider two examples.

Example 2 (Satisfiability Test)
Assumea 6= b. Reconsider the constraintx[f ]x0 ^ ahx0i ^ y[f ]y0 ^ bhy0i ^ z�x^ z�y
(wherea 6= b) from above (2.7). From this constraint, algorithmS derivesz 6 k x by(Incl-Nondis), y 6 kx with (Quasi-Trans), and eventually? via (Clash-Sort). Now con-
sider another non-satisfiable constraint:

ahxi^x[f ]x^z�x^z�y^y[f ]y0 ^ bhy0i (2.9)

In several steps as above, algorithmS derives from (2.9) the non-disjointness constraint
x 6 ky. Then it derivesx 6 ky0 via (Desc-Nondis) and? via (Clash-Sort).
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2. Set Constraints over Feature Trees

Proposition 2.7 (Termination)

If ϕ is an FTne� (ar) constraint of size n, then algorithmS terminates after at most
2�n2+1 steps.

Proof. If ϕ has sizen, then it contains at mostn variables. Since algorithmS does not
introduce fresh ones, it may add at mostn2 constraints of each of the formsx 6 ky or
x�y and possibly?. 2
Proposition 2.8 (Completeness)

Every S-closed FTne� (ar) constraint which does not contain? is satisfiable over
P+(F T ).
Proof. The proof is postponed to Section 2.2.2 beginning on Page 35. Its structure
is as follows. First, we define a syntactic notion of path consistency on constraints
(Definition 2) and show that everyS-closed constraint not containing? is indeed path
consistent (Lemma 2.12). Second, we show that every path consistent constraint is
satisfiable (Lemma 2.11). 2
Theorem 3 (Decidability and Complexity for Satisfiability of FTne� (ar))
The satisfiability problem of FTne� (ar) constraints of size n is decidable and has incre-
mental time complexity O(n3) and space complexity O(n2).
Proof. By Proposition 2.6,ϕ is equivalent to itsS-closure. Henceϕ is inconsistent if
theS-closure ofϕ contains?. Otherwiseϕ is satisfiable by Proposition 2.8. SinceS
terminates for all input constraints by Proposition 2.7,S is an effective decision pro-
cedure. The complexity statement is detailed in Section 2.2.3 beginning on Page 39.
There, we use a table of quadratic size to show that we can implement every step
of algorithmS such that it takes timeO(n). This yields an overall time complexity
of O(n3). 2
In the incremental case, this complexity statement relies on the assumption that appli-
cability of (Clash-Arity-II) can be checked in linear time. This is thecase under one of
the following conditions.(i) No arity constraint ever occurs,(ii) the size of the arity
constraints is bounded, or(iii ) the arity constraints list the features according to a fixed
order. Under any of these preconditions, the equality test for two aritiesf fg andfgg in
the side condition of rule (Clash-Arity-II) can be checked in at most linear timeO(n).
If none of these assumptions hold, the equality off fg andfgg requires timen � logn
such that the time complexity of the satisfiability test rises toO(n3 � logn).
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Finite Trees

The satisfiability test for FTne� (ar) can be adapted to the case of finite trees by extend-
ing the algorithm with the following occurs check axiom scheme:(Occurs) x� xi ^Vn

i=1(xi � yi ^yi[fi]xi+1)^xn+1� x ! ? n� 1

We can implement this occurs check such that we stay in incremental timeO(n3)
and spaceO(n2). This can be done by means of reachability constraints of the form
x;+ y which state that there existsn� 1, variablex1; : : : ;xn+1 andy1; : : : ;yn, and
featuresf1; : : : ; fn such that

x� xi ^Vn
i=1(xi � yi ^yi[fi]xi+1)^xn+1� y

holds. There are at mostO(n2) such constraints; so Theorem 3 carries over to the finite
tree case.

2.2.2. Completeness of the Satisfiability Test

In this section we complete the proof of Proposition 2.8. It relies on two syntactic
properties of FTne� (ar) constraints, called path reachability and path consistency that
we define first. For everyS-closed constraintϕ not containing? we then define a
mapping from variables into non-empty sets of feature trees (see Definition 3)and
show in Proposition 2.10 that this is the greatest solution ofϕ.

Throughout this section we use the notion “constraint” to mean “FTne� (ar) constraint”.

Definition 1 (Path Reachability)

For all paths p and constraintsϕ, we define a binary relation
ϕ;p between variables,

where x
ϕ;p y reads as “y is reachable from x over path p inϕ”:

x
ϕ;ε y if x�y2 ϕ

x
ϕ; f y if x[f ]y2 ϕ

x
ϕ;pq y if exists z such that x

ϕ;p z and z
ϕ;q y:

For all paths p and constraintsϕ, we define a binary relation
ϕ;p between variables

and labels a [finite sets of featuresf fg] where x
ϕ;p a [x ϕ;p f fg] reads as ”a[f fg]

can be reached from x over path p inϕ”:

x
ϕ;p a if x

ϕ;p y and ahyi 2 ϕ;
x

ϕ;p f fg if x
ϕ;p y and yf fg 2 ϕ
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2. Set Constraints over Feature Trees

Finally we derive, for all paths p, a unary relation x
ϕ;p which says that a variable “x

has path p inϕ”:

x
ϕ;p if exists y such that x

ϕ;p y

x
ϕ;p f if exist y;g such that x

ϕ;p fgg and f 2 fgg
Example 4 (Path Reachability)

Let ϕ be the constraint

x�y^xf f ;g;hg^ahyi^x[f ]u^x[g]z^z[f ]x^bhzi
and observe that, among others, the following reachability relations hold forx:

x
ϕ;ε y; x

ϕ;g z; x
ϕ;g f x; x

ϕ;g f y;
x

ϕ;h; x
ϕ;g f f f ;g;hg

x
ϕ;ε a; x

ϕ;g b; x
ϕ;g f a

In the proof of Lemmas 2.11 and 2.12 we make implicit use of the following simple
property of path reachability.

Fact 1 If x
ϕ; f p y then there exists z such that x

ϕ; f z^z
ϕ;p y.

Definition 2 (Path Consistency)

We call a constraintϕ path consistentif the following two conditions hold for all
x;y2 V , a;b2 L , g2 F and p2 F �.

1. If x
ϕ;p a, x6 ky2 ϕ, and y

ϕ;p b then a= b.

2. If x
ϕ;p f , x 6 ky2 ϕ, and y

ϕ;p fgg, then f2 fgg.
Definition 3 (Greatest Solution)

Assume a path consistent constraintϕ closed under (Refl) and (Incl-Nondis), and de-
fine for all x2 V

Dϕ
x =def fp j x

ϕ;pg Sϕ
x =def f(p;a) j x

ϕ;p ag
Furthermore, for all x define a set gsol(ϕ)(x) of feature trees as follows:

gsol(ϕ)(x) =def

8<:τ

������ 1: Dϕ
x � Dτ and Sϕ

x � Lτ

2: 8p : if x
ϕ;p fgg then ar(τ:p) = fgg 9=;
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2.2. Solving Constraints over Non-empty Sets of Feature Trees

Lemma 2.9 (gsol(ϕ) is well-defined)

If ϕ is a path consistent constraintϕ which is closed under (Refl) and (Incl-Nondis),
then for all x2 V , p2 F �, a;b2 L , f 2 F andg2 P (F ) it holds that

1. (p;a) 2 Sϕ
x and(p;b) 2 Sϕ

x imply a= b.

2. p f 2 Dϕ
x and x

ϕ;p fgg imply f 2 fgg.
Proof. Path reachability statements only hold for variables which actually occurin ϕ.
Hence, in both casesx�x 2 ϕ andx 6 k x 2 ϕ due to the asserted closure conditions
(Refl) and (Incl-Nondis). The claims now follow immediately from the definition of
path consistency. 2
This lemma shows that, for allx 2 V , Sϕ

x is a partial labelling onDϕ
x . Hence there

exists at least one feature tree extending it so thatgsol(ϕ)(x) is a non-empty set of
feature trees.

Proposition 2.10 (Greatest Solution)

The valuation gsol(ϕ) is the greatest solution of everyS-closed FTne� constraintϕ not
containing?.

Proof. Follows from the combination of the Lemmas 2.11 and 2.12. 2
Lemma 2.11 (Closedness and Path-Consistency Imply Satisfiability)

For every (Refl), (Trans), (Incl-Nondis), (Desc-Incl)-closed and path consistent con-
straintϕ not containing?, gsol(ϕ) is the greatest solution.

Proof. Let ϕ be (Refl), (Trans), (Incl-Nondis), (Desc-Incl)-closed and path consistent.
By (Refl) and (Incl-Nondis)-closedness and path consistency,gsol(ϕ) is a variable
assignment into non-empty sets of feature trees, as Lemma 2.9 shows. We verify that
gsol(ϕ) satisfies all primitive constraints inϕ. Maximality is obvious.

Casex�y2 ϕ: For ally0, if y
ϕ;p y0 thenx

ϕ;p y0 by the definition of path reachability.

Thus,Dgsol(ϕ)(y) � Dgsol(ϕ)(x).11 Similarly, for all a [fgg], if y
ϕ;p a [y ϕ;p fgg]

thenx
ϕ;p a [x ϕ;p fgg] by the definition of path reachability. Thus,Lgsol(ϕ)(y) �

Lgsol(ϕ)(x). In combination, we obtain thatgsol(ϕ)(x)� gsol(ϕ)(y).
Casex[f ]y2 ϕ: We prove the following two equivalences for allp, z, andb:

1. x
ϕ; f p z iff y

ϕ;p z

11For sake of clarity, we drop some of the superscriptedϕ’s in the proof.
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2. x
ϕ; f p a iff y

ϕ;p a

3. x
ϕ; f p fgg iff y

ϕ;p fgg
The first property impliesDgsol(ϕ)(y) = fp j f p2Dgsol(ϕ)(x)g and the second one
is equivalent toLgsol(ϕ)(y) = f(p;b) j ( f p;b) 2 Lgsol(ϕ)(x)g.

1. If y
ϕ;p z thenx

ϕ; f p z sincex[f ]y2 ϕ. Supposex
ϕ; f p z. By definition of

path reachability there existx0 andy0 such that

x
ϕ;ε x0; x0[f ]y0; and y0 ϕ;p z:

Reflexivity and transitivity, that is, (Refl)- and (Trans)-closedness ofϕ, and

x
ϕ;ε x0 imply thatx�x0 2 ϕ. (Desc-Incl)-closedness ensuresy�y0 2 ϕ such

thaty
ϕ;p z holds.

2. If x
ϕ; f p a then there existsz such thatx

ϕ; f p z andahzi. The first equiva-

lence impliesy
ϕ;p z and thusy

ϕ;p a. The converse is simple.

3. Similar to the previous case.

Caseahxi 2 ϕ: Reflexivity, i. e., (Refl)-closedness ofϕ, implies thatx�x 2 ϕ. Thus

x
ϕ;ε a such that(ε;a) 2 Lx.

Casexf f g 2 ϕ: If g2 f fg, thenx
ϕ;ε g by definition of path reachability, and hence

g2 Dτ for all τ 2 gsol(ϕ)(x). Conversely, ifxf f g 2 ϕ thenx
ϕ;ε f fg, such that

x
ϕ;ε g impliesg2 f fg by path consistency.

Casex 6 ky2 ϕ: We have to show that the setLx[Ly is partial function and that, for all

p, x
ϕ;p f fg andy

ϕ;p g imply g2 f fg (and vice versa withx andy swapped).
For both, path consistency suffices.

Thusgsol(ϕ) is a solution ofϕ. 2
Lemma 2.12 (Closedness Implies Path-Consistency)

A constraint is path consistent whenever it does not contain? and is closed un-
der (Incl-Nondis), (Symm-Nondis), (Quasi-Trans), (Desc-Nondis), and the three clash
rules (Clash-Sort), (Clash-Arity-I), and (Clash-Arity-II)

Proof. Let ϕ be a constraint not containing?, and assume thatϕ is closed under
the rules (Incl-Nondis), (Symm-Nondis), (Quasi-Trans), (Desc-Nondis), (Clash-Sort),
(Clash-Arity-I), and (Clash-Arity-II). The proof is by induction over pathsp. Let x, y,
a;b, f , andg be arbitrary.
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Casex
ϕ;p a, x 6 ky2 ϕ, andx

ϕ;p b:

If p= ε then there existn;m� 0, x1; : : : ;xn, y1; : : : ;ym such that

x�x1^: : :^xn�1�xn^ahxni 2 ϕ and

y�y1^: : :^ym�1�ym^bhymi 2 ϕ

Rules (Incl-Nondis), (Symm-Nondis), and (Quasi-Trans)-closedness imply
that xn 6 k ym 2 ϕ; this can be shown by a simple induction overn andm.
Hencea=b sinceϕ is closed under (Clash-Sort) but does not contain?.

If p= f q then there exists there existx0, y0, x00, andy00 such that:

x
ϕ;ε x0; x0[f ]x00 2 ϕ ; x00 ϕ;p a; and

y
ϕ;ε y0; y0[f ]y00 2 ϕ ; y00 ϕ;p b:

Sincex 6 k y 2 ϕ we havex0 6 k y0 2 ϕ by definition of path reachability and
(Incl-Nondis), (Symm-Nondis), and (Quasi-Trans)-closedness (see case
p=ε). (Desc-Nondis)-closedness thus impliesx00 6 k y00 2 ϕ such thata=b
follows by induction hypothesis.

Casex
ϕ;p f fg, x 6 ky2 ϕ, andx

ϕ;p g: The proof is similar to the previous case, of
course using axioms (Clash-Arity-I/II) instead of (Clash-Sort). 2

2.2.3. Incrementality and Complexity of the Satisfiability Test

We complete the proof of Theorem 3 by proving the following Proposition. Through-
out this section we use the notion “constraint” to mean “FTne� (ar) constraint”.

Proposition 2.13 (Complexity for Satisfiability of FTne� )

Algorithm S can be implemented in space O(n2) and incremental time complexity
O(n3) where n is the size of the input constraint, provided one of the following holds:� No arity constraint ever occurs.� The size of arity constraints is bounded.� The arity constraints list the features according to a fixed order.

Otherwise, every step of algorithmS can be implemented such that it has incremental
time complexity O(n3 � logn).
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We organise algorithmS as a rewriting on pairs of the form(P;S) whereP andSare
calledpool andstore. PoolP and storeSare data structures for primitive constraints
as described below. In what follows below, we confuse pools and stores with the
constraints they represent.

To start out, we fix an input constraintϕ0 and consider the non-incremental case. The
incremental case is dealt with then.

2.2.3.1. The Non-incremental Case

Initially, the pool contains all primitive constraints contained inϕ0 and the store is
empty. In order to decide satisfiability ofϕ, we start with the pair(ϕ;>). A reduction
step(P;S); (P0;S0) consists in picking a primitive constraintµ from P, and then
applying all rules ofS to S andµ. Reduction terminates with an empty pool or the
detection of an inconsistency; that is with one of(>;S) or (P;S) where? 2 S. We
denote the reflexive transitive closure of; by;�.
Call a pair (P,S)locally closedif S is closed under one-step consequences with respect
to algorithmS. Reductionis smallest binary relation on pairs(P;S) closed under the
following rule:(P;S) ; (Pnfµg^S0;S^µ)

if S0 contains all one-step consequences ofS^µ underS
whichSdoes not already contain.

Lemma 2.14 (Invariants of Reduction)

Reduction performs equivalence transformations and preserves local closure. That is,

1. If (P;S); (P0;S0) and(P;S) is locally closed, then(P0;S0) is locally closed, too.

2. If (P;S); (P0;S0), then P̂ S and P0^S0 are equivalent.

Proof. Straightforward using correctness ofS. 2
Corollary 5 (Correctness)

1. If (P;>);� (>;S), then S isS-closed and equivalent to P.

2. If (P;>);� (P0;S) where? 2 S, then P is non-satisfiable.

Proof. Immediate from Lemma 2.14. 2
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Data Structures

Now let us consider the data structures for pool and store more closely. Letnv, nf ,
andnl be the cardinalities ofV (ϕ0), F (ϕ0), andL(ϕ0), respectively, and letn be the
size ofϕ0. Thepool can be implemented such that selection and deletion, as well as
addition of arbitrary primitive constraints can be performed in constant timeO(1). We
assume thestoreto consist of the following components.

1. An array of sizenv containing arity constraintsxf fg (at most one per variable);

2. an array of sizenv containing label constraintsahxi (at most one per variable);

3. a table of sizenv �nf containing selection constraintsx[f ]y (at most one per vari-
able and feature);

4. a table of sizen2
v containing ordering constraintsx�y;

5. a table of sizenv
2 containing non-disjointness constraintsx 6 ky.

Access Operations

The store can be realised with tables and arrays of boolean values such as toprovide
for the following operations.

1. Add a primitive constraint in timeO(1),
2. given a variablex, test the presence of a label constraintahxi and retrieve it in

timeO(1);
3. given a variablex, test the presence of an arity constraintxf f g and retrieve it in

timeO(1);
4. given a variablex and a featuref , test the presence of a selection constraintx[f ]y

and retrieve it inO(1);
5. test the presence of an inclusionx�y or a non-disjointness constraintx 6 k y in

timeO(1);
6. given a variablex, retrieve the set of ally such thatx�y or y�x is in the store in

timeO(nv);
7. given a variablex, retrieve the set of ally such thatx 6 k y is in the store in

timeO(nv).
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Furthermore, for arbitrary symbols (features, labels, and variables) wecan arrange for
onO(1)-test of whether it occurs inϕ at all.

Every primitive constraint and store can have at mostO(n) one-step consequences
with respect toS. For instance, consider axiom (Desc-Incl): ifx[f ]x0 is fixed, then
(Desc-Incl) has at mostO(nv) one-step consequences, and ifx�y is fixed, then
(Desc-Incl) has at mostO(nf ) one-step consequences. In both cases there areO(n)
sincenv;nf � n. As the reader may want to check, this implies that for all rules but
(Clash-Arity-II) the one-step consequences of some primitive constraint and astore
can be computed in timeO(n). Now consider rule (Clash-Arity-II). We can check
applicability of this rule in timeO(n) if one of the following holds.� If no arity constraint every occurs,i. e., if we consider satisfiability of FTne� con-

straints only, rule (Clash-Arity-II) never applies.� If the size of arity constraints is bounded, then the testf fg 6= fgg takes constant
time (in the size of the bound).� If the arity constraints list the features according to a fixed order, then the testf fg 6= fgg takes timeO(F (ϕ)) = O(n).

If the size of the arity constraints is unbounded, and the features in the arity constraints
are not statically ordered, we must define an order dynamically and order the features
in f fg andfgg before we compare them. In this case, the testf fg 6= fgg takes time
O(nf � lognf +nf ) = O(n� logn).
There are at mostO(nf �n2

v +2 �nv
2+nl �nv) distinct primitive constraints. But since

algorithmS derives only primitive constraints of the formx�y and x 6 k y, there are
at mostO(nv

2) proper addition operations on the store. The pool is extended only
when some new primitive constraint is added to the store, henceO(nv

2) times. In
each case, there are at mostO(n) new consequences. Hence, the pool may grow up to
O(n3) primitive constraints in the worst-case. However, for most of these (namely all
butO(n2)) one only needs to do theO(1) test to notice that they are already contained
in the store. Hence, the overall complexity is

O(1�n3+n�n2) = O(n3) :
2.2.3.2. The Incremental Case

Now let us check that our analysis remains true for the incremental version of our
algorithm. In an incremental algorithm, the input constraint can be added piece-wise to
the pool. Note that our algorithm is already insensitive to the order in which primitive
constraints are picked from the pool. The additional complication is that the number
of symbolsnv, nf , andnl in ϕ is not known statically. However, by replacing the
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static tables and arrays by dynamically extensible hash tables we can still guarantee
the complexity estimations on the access operations [60]. In the previous section, we
have assumed the input constraintϕ0, and hencenv, nf , andnl fixed. The argument,
however, is valid forarbitrarily large nv, nf , andnl . Hence, running the described
algorithm on the conjunction of a sequence of constraints

ϕ0; ϕ1; ϕ2; : : : ;ϕm

can never cost more thanO(n3) wheren is the overall size of
Vm

i=0ϕi . So, the algorithm
has anincrementaltime complexity ofO(n3).
2.3. Dropping the Non-emptiness Restriction

We extend our results from set constraints over non-empty sets of feature trees to the
full domain of possibly empty sets of feature trees. Essentially all results carry over,
with the notable exception that the satisfiability test now becomes an emptiness test.

The detour through the non-standard domain of non-empty sets is worthwhile. In this
section we shall see that the emptiness test for FT�(ar) is more complicated than the
satisfiability test for FTne� since it requires an explicit propagation of non-emptiness
information.12

2.3.1. Emptiness Test

Since every FT�(ar) constraint is satisfiable, a satisfiability test for FT�(ar) does not
make sense. Instead, we transform the satisfiability test for FTne� (ar) into anemptiness
testfor the FT�(ar). This is done in Figure 2.2 which uses a new ternary constraint of
the formx 6 kzy with the following semantics:

α j=P (F T ) x 6 kzy iff α(x)\α(y) 6= /0_α(z) = /0

So,x 6 kzy is equivalent to the formulax\y= /0! z= /0. Furthermore,x= /0 is used as an
abbreviation ofahxi^bhxi for arbitrarily fixed distincta;b.

Notice in passing that the constraintx 6 k y is not equivalent to the formula9z(z�x^z�y) overP (F T ) since9z(z�x^z�y) is trivially true over possibly empty
sets. More strongly,x 6 k y is not expressible in FT�(ar). To see this, notice that a
set is non-disjoint with itself exactly if it is non-empty. Hencex 6 k x is equivalent
to x 6= /0, whereas FT�(ar) constraint cannot express emptiness (otherwise, FT�(ar)
could also express the inconsistent constraintx 6= /0^ahxi ^bhxi, in contradiction to
Proposition 2.1 ).

12A similar observation holds for the polynomial result on entailment for FT� in Section 3.1 that we
obtain by detour through FTne� .
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2. Set Constraints over Feature Trees

(Refl) x�x(Trans) x�y^y�z ! x�z(Symm-Nondis) x 6 kzy ! y 6 kzx(Incl-Nondis) x�y ! x 6 kx y(Quasi-Trans) x�x0^x 6 kzy ! x0 6 kzy(Desc-Incl) x[f ]x0^x�y^y[f ]y0 ! x0�y0(Desc-Nondis) x[f ]x0^x 6 kzy^y[f ]y0 ! x0 6 kzy0(Empty-Sort) ahxi^x 6 kzy^bhyi ! z= /0 if a 6= b(Empty-Arity-I) x[f ]x0^x 6 kzy^yfgg ! z= /0 if f 62 fgg(Empty-Arity-II) xf fg^x 6 kzy^yfgg ! z= /0 if f fg 6= fgg(Empty-Prop-I) x= /0^x[f ]y ! y= /0(Empty-Prop-II) x= /0^y[f ]x ! y= /0(Empty-Prop-III) x= /0^y�x ! y= /0(Empty-Prop-IV) x= /0^x 6 kzy ! z= /0

Figure 2.2.:Emptiness Test for FT�(ar)
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Now consider Figure 2.2 more closely. Axioms (Refl) through (Empty-Arity-II) are
obtained by straightforward adaptation from Figure 2.1. The most interesting axiom
is (Ines-Nondis) which now derives from an inclusionx�y the constraintx 6 kx y stating
thatx is empty ifx andy have an empty intersection. The clash axioms are modified to
infer emptiness now, and axioms (Empty-Prop-I) through (Empty-Prop-IV) propagate
emptiness along all primitive constraints. CallE the fixed point algorithm induced
by the axioms in Figure 2.2 with the additional control that the axiom (Refl) is only
applied to occurring variables.

Theorem 6 (Emptiness Test for FT�(ar))
AlgorithmE is sound and complete, and it can be implemented such that it decides the
emptiness problem of FT�(ar) constraints in incremental time O(n4) and space O(n3).
In more detail:

(Soundness) The structureP (F T ) is a model of the axioms in Figure 2.2.

(Complexity) Ifϕ has size n, then algorithmE terminates after at most O(n3) steps,
each of which can be implemented to take at most linear time.

(Completeness) Ifϕ is anE-closed constraint withϕ j=P (F T ) x= /0, then x= /0 2 ϕ.

Proof. Soundness follows easily by inspection of the rules. The complexity statement
can be proven just as Theorem 3 in Section 2.2.3. The higher degrees of the polyno-
mials are due to the fact that there is a cubic number of constraints of the formx 6 kzy,
where there were only quadratically many of the formx 6 k y before. Completeness is
shown as Proposition 2.17 below. 2
Theorem 6 holds under the same preconditions as Theorem 3 (see the remark on
Page 34): if the size of arity constraints is unbounded and a static order on the fea-
tures cannot be assumed, then the incremental time complexity isO(n4 � logn) rather
thanO(n4).
In order to complete the proof, we need some additional machinery. For every FT�
constraintϕ let Empty(ϕ) = fx j x= /0 2 ϕg, and obtainϕ6= /0 from ϕ by first dropping
all constraints that mention a variablex2 Empty(ϕ), and then replacing all remaining
constraintsx 6 kzy by x 6 ky.

Proposition 2.15 (Eliminating Empty Variables)

Let ϕ be anE-closed FT�(ar) constraint. Thenϕ6= /0 is satisfiable overP+(F T ).
Proof. One shows thatϕ6= /0 is S-closed (and does not contain?) so thatϕ6= /0 must be
satisfiable overP+(F T ) by Proposition 2.8. 2

45



2. Set Constraints over Feature Trees

Lemma 2.16 (ExtendingP+(F T ) solutions)

Letϕ be anE-closed FT�(ar) constraint andα be aP+(F T )-solution ofϕ6= /0. Extend
α to α0 by mapping all x2 Empty(ϕ) to the empty set and all remaining variables
x2 V (ϕ) to an arbitrary non-empty set. Thenα0 j=P (F T ) ϕ.

Proof. If α is aP+(F T )-solution ofϕ6= /0 thenα0 is aP (F T )-solution ofϕ6= /0. One
checks for all primitive constraints that mention a variable inEmpty(ϕ) that α0 is a
solution for it. Henceα0 j=P (F T ) ϕ. 2
Proposition 2.17 (Completeness of the Emptiness Test)

If ϕ is anE-closed constraint withϕ j=P (F T ) x= /0 then x= /0 2 ϕ.

Proof. Let ϕ beE-closed and assume thatx= /0 62 ϕ. This means thatx 62 Empty(ϕ).
By Proposition 2.15, there exists aP+(F T )-solutionα of ϕ6= /0. By Lemma 2.16, then
there exists aP (F T )-solutionα0 of ϕ that extendsα and satisfiesα0(x) 6= /0. Hence
ϕ 6j=P (F T ) x= /0. 2
Finite Trees

In analogy to the case of non-empty sets (see Page 35) we can adapt the emptiness test
in Figure 2.2 for FT�(ar) to the case of finite trees by an occurs check axiom.(Empty-Occurs) x� xi^Vn

i=1(xi � yi ^yi[fi]xi+1)^xn+1� x ! x= /0 n� 1

and we can implement it such that we stay in incremental timeO(n4) and spaceO(n3).
So Theorem 6 carries over to the finite tree case.

2.3.2. Solving Union Constraints

Theorem 7 (Hardness of Satisfiability for FT�(ar;[))
The satisfiability problem of FT�(ar;[) constraints is DEXPTIME-hard.

Proof. By reduction of the well-known DEXPTIME-complete emptiness problem of
the intersection of two deterministic top-down tree automata [69, 185]. 2
We do not elaborate on the details of this proof, because similar reductions have been
given to prove DEXPTIME-hardness for co-definite set constraints and for setcon-
straints with intersection [42, 44, 58]. Given these completeness results,it is also a
good guess to assume DEXPTIME-completeness.
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Conjecture 8 (Complexity of Satisfiability for FT�(ar;[))
The satisfiability problem of FT�(ar;[) is decidable in DEXPTIME.

The source of this high complexity is the union constraint; so it is natural to consider
weaker approximations of union. The most prominent one is Mishra’s interpretation
of set constraints over over the non-standard domain ofpath-closed sets[132]. In this
interpretation, all set expressions denote the smallest path-closed supersets of their
standard set interpretation.13 For instance, the termf (a;a)[ f (b;b) is interpreted
by the setf f (a;a); f (a;b); f (b;a); f (b;b)g. Unfortunately, the satisfiability problem
of co-definite set constraints interpreted over path-closed sets remains DEXPTIME-
complete [44].

It is tempting to consider an even weaker approximation of union which would,
for example, interpret the termf (a;a)[ g(b;b) by the setf f (a;a); f (a;b); f (b;a);
f (b;b);g(a;a);g(a;b);g(b;a);g(b;b)g. This approximation may be interesting if its
complexity is strictly smaller than DEXPTIME. We conjecture this to bethe case,
since, as it seems, this constraint system cannot encode the emptiness problem of the
intersection of two deterministic top-down tree automata.

13This approximation is also called Cartesian closure or tuple-distributive approximation [132, 220].
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In this chapter, we investigate the entailment problem for union-free fragments of our
system of set constraints over feature trees. We give an algorithm to decide entailment
ϕ j= ϕ0 for FTne� (no union or arity constraints) in timeO(n3) and we derive an entail-
ment test for FT� that takes timeO(n4). For both FTne� (ar) and FT�(ar) (with arity
constraints but no union constraints) we show that entailmentϕ j= ϕ0 is coNP-hard,
and for both FTne� and FT� we show that entailment with existential quantification
ϕ j= 9xϕ0 is PSPACE-hard. All results hold over both the domains of sets of finite
trees and sets of infinite trees.
Entailment is interesting in program analysis because it provides explanation for con-
straint simplification [13, 65, 89, 140, 141, 143, 173]. Simplification means to replace
every constraintϕ by a smaller one which is either entailed byϕ and retains the dis-
tinguished solution(s), or which is logically equivalent toϕ and retains all solutions.
Retainingall solutions is crucial for a modular program analysis where the analysis
of a complete program should be equivalent to the combination of separate analysis
results for program components.
Consider some typical simplification steps. If a constraint entails the equality between
two variables, then one of them can be replaced by the other one and then be elimi-
nated. This strictly reduces the number of occurring variables and has an immediate
impact on all further constraint processing. One also needs to get rid of variables in
a constraint whose denotation is irrelevant for the analysis, provided the constraint is
satisfiable so that there exists an appropriate denotation at all. Since suchvariables
are often existentially quantified, this simplification implies minimising the number of
existential quantifiers.
If the constraint system allows only “flat” terms likef (x;y) that have only variables
as immediate subterms, then terms likef (g(a;b)) are “flattened out” with auxiliary,
existentially quantified, variables; for example, a constraint likex= f (g(a)) is replaced
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by the formula9y9z(x= f (y)^y=g(z)^z=a). In this case, constraint simplification
may involve entailment with existential quantification of the formϕ j= 9xϕ0; for exam-
ple, to show thatf (a;x) is an instance off (y;x) one may have to check thatz= f (a;x)
entails9y(z= f (y;x)).
Entailment has also been proposed as a mechanism to explain subtyping on so-called
polymorphic constrained types [27, 121, 203]. There, entailment with existential quan-
tification is used to model subtyping on polymorphic types with constrained quantifi-
cation; for example the type8xnϕ:t (read: “typet for all x that satisfyϕ”) is a subtype
of 8ynϕ0:t 0 if x=t ^ϕ entails9y(x=t 0^ϕ0) for a fresh variablex.

These applications of entailment have motivated the research for complete entailment
tests for various constraint systems and the related complexity questions. This issue
is a fundamental one, but it also has some practical impact: complete entailment tests
correspond to optimal constraint simplification algorithms that could always transform
a constraint to an equivalent one with minimal size.

The design of complete entailment tests was more difficult than many researchers ex-
pected. Henglein and Rehof showed that the entailment problem of so-called structural
subtyping constraints over finite trees is coNP-complete [89]. We have adapted their
proof technique to show coNP-hardness of the entailment problem for two systems
of set constraints (Ines [142] and atomic set constraints [85]) in [140]; furthermore,
we showed for a system of ordering constraints over feature trees that the entailment
problem with existential quantifiers even becomes PSPACE-complete [141, 145]. We
present both hardness results in the context of our system of set constraints over fea-
ture trees. Very recently, Henglein and Rehof showed that entailment for structural
subtyping constraints over infinite trees to be PSPACE-complete [90].

Luckily, constraint simplification needs not be optimal if it is “good enough” and can
be implemented efficiently. From this point of view, the mentioned intractability re-
sults encourage the investigation ofsound approximationsof entailment for constraint
simplification. For the application in subtyping constrained types these results seem
to be more serious, since there complete entailment plays a crucial role to model well-
typedness.

As an aside notice also that the entailment problem is needed for a constraint system
to be integrated into concurrent constraint programming, because entailment explains
the semantics of CC-conditionals (“ask”).

3.1. Entailment with Polynomial Complexity

We show that the entailment problemϕ j=P+(F T ) ϕ0 for FTne� has cubic complexity.
We also prove that FTne� -constraints have the independence property of negated con-
straints [50, 115, 116]: We conclude that even the satisfiability problem for positive
and negative FTne� constraints remains within the same complexity.
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ϕ ` ahxi iff existsx0 such thatx�x0^ahx0i 2 ϕ

ϕ ` x�y iff x�y2 ϕ or x= y

ϕ ` x 6 ky iff x 6 ky2 ϕ or x= y

ϕ ` x[f ]y iff ϕ ` y� x[f ] andϕ ` x?[f ]� y

whereϕ ` x� y[f ] iff exist x0;y0 such thatx� x0^y0[f ]x0^y0 � y2 ϕ

ϕ ` x?[f ]� y iff exist x0;y0 such thatx� x0^x0[f ]y0^y0 � y2 ϕ

Figure 3.1.:Syntactic Containment for FTne�
In order to decide entailmentϕ j=P+(F T ) ϕ0 between FTne� constraints we must first
decide satisfiability ofϕ, since entailment is trivial ifϕ is non-satisfiable. As we shall
prove, the entailment problem for FTne� is not harder than its satisfiability problem.

3.1.1. Syntactic Containment

Let us writeµ for the primitive FTne� constraints.

µ ::= x�y j x 6 ky j x[f ]x0 j ahxi
An FTne� constraintϕ entails another oneϕ0 if and only if ϕ entails all primitive con-
straints inϕ0. As it turns out, the constraint system FTne� is so weak thatϕ only entails
primitive constraints that are alreadysyntacticallycontained inϕ (Proposition 3.2).
Since primitive entailment is linear (Lemma 3.3), this yields an incremental entail-
ment test that takes quadratic time in the size ofϕ if ϕ is S-closed, and cubic time in
general.

Figure 3.1 defines the notion that a constraintϕ syntactically contains µ, writtenϕ ` µ.

Example 9 (Entailment of Selection Constraints)

As an illustration for the most complicated case
of syntactic containment, namely the one dealing
with selection constraints, define the following
constraint (depicted to the right) and observe that
it entailsx[f ]y.

u � x � v

y � u0 v0 � y

f f

y�u0^u[f ]u0^u�x^x�v^v[f ]v0^v0�y (3.1)

51



3. Entailment for Set Constraints

In order to show that syntactic containment coincides with entailment, we mustshow
in particular that syntactic containment is complete with respect to entailment. Before
we show this, notice the impact of arity constraints:

Example 10 (Syntactic Containment with Arity Constraints)
Syntactic containment is no longer complete if arity constraints are added. In particu-
lar, constraints may entail many non-trivial inclusions then. For instance, consider the
following judgement:

ahxi^xfg^ahyi^yfg j=P+(F T ) x�y^y�x (3.2)

We must show that no primitive constraintµ is entailed by an FTne� constraintϕ that
is not already contained inϕ. To show this it suffices to find a solution ofϕ that con-
tradictsµ. More strongly, we show that there is a single solution that contradicts all
suchµ at the same time. We show this by means of a satisfiable formula that strength-
ensϕ and entails the negation of all relevantµ. Such a formula is called saturated. Its
existence will also give us the independence property for FTne� .

Lemma 3.1 (Existence of a Saturated Formula)
For every satisfiable FTne� constraintϕ, there exists a formula Sat(ϕ), called asatura-
tion of ϕ, with the following properties.

1. Sat(ϕ) is satisfiable.

2. Sat(ϕ) j=P+(F T ) ϕ.

3. 8µ: If V (µ)� V (ϕ), thenϕ 6` µ implies Sat(ϕ) j=P+(F T ) :µ.

Proof. The constructive existence proof of Sat(ϕ) is technically involved and post-
poned to Section 3.1.2 which begins on Page 55. There, Definition 5 defines a formula
Sat(ϕ) in such a way that Sat(ϕ) entailsϕ by construction. Lemmas 3.4 and 3.5 prove
that Sat(ϕ) is satisfiable. The third claim follows from Lemma 3.7. 2
Proposition 3.2 (Entailment = Syntactic Containment)
Entailment and syntactic containment coincide for primitive FTne� constraints x� y, x6 k
y, ahxi, and x[f ]y: if ϕ is anS-closed constraint not containing? and µ is a primitive
constraint, thenϕ j=P+(F T ) µ if and only ifϕ ` µ.

Proof. It is easy to see that syntactic containment issemantically correct(i. e., ϕ ` µ
impliesϕ j=P+(F T ) µ). It remains to show that syntactic containment issemantically
complete(i. e., ϕ j=P+(F T ) µ impliesϕ ` µ). So, assumeϕ j= µ. If V (µ) 6�V (ϕ) thenµ
is of the formx�x or x 6 kx such thatϕ ` µ is trivial. Otherwise, assumeV (µ)�V (ϕ).
Now let Sat(ϕ) be the saturation formula postulated by Lemma 3.1. By Property 2,
ϕ j=P+(F T ) µ implies Sat(ϕ) j= µ. With Property 1, this yields Sat(ϕ) 6j=P+(F T ) :µ,
and Property 3 impliesϕ ` µ. 2
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Lemma 3.3 (Primitive Entailment is Linear)

Given anS-closed constraintϕ of size n, we can compute a representation ofϕ in time
O(n) that allows to test syntactic containmentϕ ` µ for selection constraints in time
O(n), and for all other µ in time O(1).
Proof. In a linear operation we enter all primitive constraints inϕ into the data struc-
tures described in Section 2.2.3. The complexity statement for labelling, arity, and
inclusion constraints immediately follows directly from the properties of the data struc-
tures. To check containment of a selection constraintx[f ]y, we proceed as follows.

1. Check whether there existsz2 V (ϕ) such thatz�x2 ϕ, and then whether there
existsz0 such thatz[f ]z0 2 ϕ andy�z0 2 ϕ, and

2. check whether there existsz2 V (ϕ) such thatx�z2 ϕ, and then whether there
existsz0 such thatz[f ]z0 2 ϕ andz0�y2 ϕ

Clearly,x[f ]y is syntactically contained inϕ if and only if both checks succeed. Since
there are two tests for every variablez2 V (ϕ), this is a linear-time operation. 2
Theorem 11 (Independence for FTne� )

The constraint system FTne� has the following independence property: for every k� 1
and constraintsϕ;ϕ1; : : : ;ϕk, it holds that

if ϕ j=P+(F T ) k_
i=1

ϕi then 9i;1� i � k : ϕ j=P+(F T ) ϕi

Proof. Assumeϕ j=P+(F T ) Wk
i=1ϕi . If ϕ is unsatisfiable we are done. Also, ifϕ^ϕ j

is nonsatisfiable for somej, then

ϕ j=P+(F T ) k_
i=1

ϕi iff ϕ j=P+(F T ) k_
i=1;i 6= j

ϕi

Hence we can assume, without loss of generality, thatϕ andϕ^ϕi are satisfiable for
all i, and thatϕ isS-closed and does not contain?. If there exists ani such thatϕ`µ for
all µ with µ2 ϕi , thenϕ j=P+(F T ) ϕi and we are done by Proposition 3.2. Otherwise,
there existsµi 2 ϕi for everyi such thatϕ 6` µi . Let Sat(ϕ) be the formula postulated
by Lemma 3.1. Without loss of generality, we can assume thatV (ϕi)� V (ϕ) for all
i. HenceV (µi)� V (ϕi) implies Sat(ϕ) j= :µi by Property 3. Therefore:

Sat(ϕ) j=P+(F T ) k̂

i=1

:ϕi :
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Since Sat(ϕ) is satisfiable and entailsϕ (Properties 1 and 2), this contradicts our as-
sumption thatϕ j=P+(F T ) Wk

i=1ϕi . 2
The independence property of negated constraints is a fundamental property of con-
straint systems, which intuitively says that the constraint system cannot express dis-
junction [105]; this can drastically simplify reasoning with disjunctive formulas. We
do not investigate the independence property in its own right (but see the remark at
the end of this section). For more details and further references on independence
see [42, 105].

Theorem 12 (Entailment and Negation for FTne� )

If ϕ;ϕ1; : : : ;ϕk, k� 1 are FTne� constraints with sizes n;n1; : : : ;nk, then satisfiability of
ϕ^:ϕ1^: : :^:ϕk is decidable in time O(n3+n�Σk

i=1ni) and space O(n2+Σk
i=1ni).

Proof. If ϕ is non-satisfiable thenϕ ^ :ϕ1^: : :^:ϕk is trivially non-satisfiable.
By Theorem 3, satisfiability ofϕ can be decided in timeO(n3) and spaceO(n2).
Now assumeϕ to be satisfiable andS-closed. By the Independence Theorem 11,
ϕ^:ϕ1^: : :^:ϕk is non-satisfiable if and only ifϕ j=P+(F T ) ϕi for somei, and this is
equivalent toϕ 6j=P+(F T ) µ for somei and all primitive constraintsµ2 ϕi . By Propo-
sition 3.2,ϕ j=P+(F T ) µ iff ϕ ` µ, hence it suffices to decide syntactic containment for
everyµ contained in someϕi . For eachi, there areO(ni) many suchµ to be tested
for syntactic containment, each of which takes timeO(n) by Lemma 3.3. Hence non-
satisfiability ofϕ^:ϕ1^: : :^:ϕk can be tested in an additional timeO(n�∑k

i=1ni). The
overall time complexity adds up toO(n3+n �∑k

i=1ni), and the total space complexity
is O(n2+n�∑k

i=1ni). 2
Corollary 13 (Satisfiability of Positive and Negative FTne� Constraints)

If ϕ andϕ0 are FTne� constraints with sizes n and n0, then entailmentϕ j=P+(F T ) ϕ0 is
decidable in time O(n3+n�n0) and space O(n2+n0).
Finite Trees

Theorem 12 carries over to the domain of finite trees. In order to checkϕ j=P+(F T ) ϕ0
we just need to bringϕ into closed form with respect to algorithmS plus the oc-
curs check (Occurs) on Page 35. The second step remains unchanged: Simply check
whether all primitive constraints inϕ0 are syntactically contained in the closure ofϕ.

Conjectures on Independence

We conjecture that the independence property holds for FTne� (ar) if we are given an
infinite set of labels, and even remains to hold when existential quantifiers are admitted
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(that is,ϕ j=Wi 9xi ϕi implies
W

i ϕ j= 9xi ϕi). For FT�(ar), independence fails because
ahxi ^ ahyi j= x�y_ y� x holds. For FTne� (ar) with a finite setL = fa1; : : : ;ang of
labels, independence also fails becausexfg^ a1hy1i ^ : : :^ anhyni j=P+(F T ) y1�x_: : :_ yn�x. Given an infinite set of labels, however, independence for FTne� (ar) may
well hold.

We have two reasons for these conjectures on FTne� (ar). First, Charatonik and Podelski
have shown that set constraints with intersection have the independence propertywhen
interpreted over non-empty sets of trees [42] and given an infinite signature; over this
domain, set constraints with intersection subsume the constraint system Ines ofinclu-
sion constraints over constructor trees [142], and Ines is closely related to FTne� (ar).
For the extensibility with existential quantifiers we draw intuition from the related
constraint system FT� [143] (see Section 3.3.2). The constraints of FT� coincide
with FTne� constraints but their interpretation is over the domainF T of feature trees.
We have shown in [143] that FT� has the independence property without existential
quantifiers, and that independence fails in presence of existential quantifiers; but a ba-
sic counter example for independence with existential quantification in FT� does not
work for FTne� .14

3.1.2. Saturation

We complete the proof of Proposition 3.2 by constructing a saturated formula as pos-
tulated by Lemma 3.1. To this end, we employ operatorsΓ1 andΓ2 on constraints.
The operatorΓ2 is defined such thatΓ2(ϕ) disentails allµ except selection constraints
(that is, those of the formx 6 ky, x�y, andahxi), which are not syntactically contained
in ϕ (Lemma 3.6). The operatorΓ1 is necessary to also disentail selection constraints.
Given a constraintϕ, Γ1(ϕ) extends it such thatΓ2(Γ1(ϕ) disentails all relevantµ. In
a sense,Γ1 serves as a “preprocessor” forΓ2.

Definition 4 (Γ1 and Γ2)

Let ϕ be a constraint. For all x2 V (ϕ) and f 2 F (ϕ) let vx f be a fresh variable.
Depending on this choice we defineΓ1(ϕ) as follows, where cl denotes theS-closure
of a constraint:

Γ1(ϕ) =def cl(ϕ ^ Vfx[f ]vx f j x2 V (ϕ); f 2 F (ϕ)g)
Furthermore, let v1 and v2 be distinct fresh variables, a1 and a2 be distinct labels,
and for every pair of variables x;y2 V (ϕ), let fx and fxy be fresh features. We define

14 The corresponding FTne� formulaahyi^y�x!9b(bhzi^z�x)_ahxi (wherea 6= b) is notvalid: if
a 6= c andb 6= c, then the setfa;cg satisfies the left hand side of the implication but none of the disjuncts
on the right hand side.

55



3. Entailment for Set Constraints

Γ2(ϕ) depending on v1;v2;a1;a2; fx; fxy as follows:

Γ2(ϕ) =def ϕ ^ Vfx[fx]vx ^ :9y0 (y[fx]y0) j ϕ 6` y�x; x;y2 V (ϕ)g (1)^ Vfx[fxy]v1 ^ y[fxy]v2 j ϕ 6` x 6 ky; x;y2 V (ϕ)g (2)^ Vfx 6 kv1 ^ x 6 kv2 j 8a2 L : ϕ 6` ahxi; x2 V (ϕ)g (3)^ a1hv1i^a2hv2i (4)
Example 14 (Contradicting Feature Selection Constraints)
For illustration ofΓ1 andΓ2 consider the constraint

ϕcontra =def x[f ]x^y�x (3.3)

which is S-closed up to trivial and non-disjointness constraints and which does not
entail x[f ]y. In order to disentailx[f ]y we first computeΓ1(ϕ) by addingx[f ]vx f and
y[f ]vy f to ϕcontra and then computing theS-closure. Now,Γ1(ϕcontra) is (up to trivial
and non-disjointness constraints)

Γ1(ϕcontra) = x[f ]x^y�x^x[f ]vx f ^y[f ]vy f^
vy f�vx f ^vx f�x^x�vx f ^y�vx f

(3.4)

Observe thatΓ1(ϕcontra) does not containvx f�y; that is,Γ1(ϕcontra) 6` vx f�y. Now
clause(1) of Γ2(Γ1(ϕcontra)) disentailsvx f�y by asserting thaty allows selection at
featurefy while vx f does not. Hence,Γ2(Γ1(ϕcontra)) also disentailsx[f ]y.

Lemma 3.4 (Properties ofΓ1)
Let ϕ be anS-closed constraint not containing?. ThenΓ1(ϕ) is satisfiable and satis-
fies the following two properties for all primitive constraints µ:

1. If ϕ 6` µ andV (µ)� V (ϕ), thenΓ1(ϕ) 6` µ.

2. If ϕ 6` x[f ]y, thenΓ1(ϕ) 6` y�vx f or Γ1(ϕ) 6` vx f�y.

Proof. Let n be the cardinality of the setV = fvx f j x2 V (ϕ) and f 2 F (ϕ)g and fix
an enumerationvar from f1; : : : ;ng into V. Then consider the following sequence of
constraints

ϕ0 = ϕ

ϕn = cl(ϕn�1^x[f ]vx f) if n> 0 andvar(n) = vx f

Apparently,Γ1(ϕ)=ϕn. In order to show thatΓ1(ϕ) is satisfiable, we give an inductive
construction of the form of theϕi , for all i, and show that each of them is satisfiable.
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ϕ0 isS-closed and hence satisfiable by assumption. For the induction step, assume that
ϕi�1 is S-closed for ani, 0< i � n, with var(i) = vx f . We show thatϕi = cl(ϕi�1^
x[f ]vx f) = gϕi�1 wheregϕi�1 = ϕi�1 ^ x[f ]vx f ^vx f�vx f ^vx f 6 kvx f (4:1)^ Vfz�vx f j ϕi�1 ` z� x[f ]g (4:2)^ Vfvx f�z j ϕi�1 ` x?[f ]� zg (4:3)^ Vfvx f 6 kz^z 6 kvx f j ex. y : ϕi�1 ` y?[f ]� z andx 6 ky2 ϕi�1g (4:4)^ Vfvx f 6 kz^z 6 kvx f j ex. y : ϕi�1 ` y� x[f ] andz 6 ky2 ϕi�1g (4:5)
It is clear thatgϕi�1 is contained inϕi , hence it suffices to show thatgϕi�1 is S-
closed. TheS-closedness ofϕi is proved by a case distinction. (Refl) follows from
clause (4.1), and (Symm-Nondis) follows from clauses (4.4) and (4.5). The descend
axioms (Desc-Incl) and (Desc-Nondis) do not apply togϕi�1 since no selection con-
straint onvx f is added, and the clash axioms does not apply togϕi�1 because no la-
beling or arity constraints onvx f are added. We check the remaining cases (Trans),
(Incl-Nondis) and (Quasi-Trans).

(Trans) Assumeu�v^v�w2gϕi�1. We must show thatu�w2gϕi�1. We make a case
distinction depending on which of the variablesx;y;z equalvx f .

If u;v;w 6= vx f , then u�v^ v�w 2 ϕi�1. Hence, due toS-closedness ofϕi ,
u�w2 ϕi�1, and thereforeu�w2gϕi�1.

If u= v= vx f , thenu�w� vx f�vx f 2gϕi�1 follows from clause (4.1).

If u= v= vx f andw 6= vx f , then u�w � vx f�w 2 gϕi�1 follows from the as-
sumption thatv�w� vx f�w 2 gϕi�1. The caseu 6= vx f andy = z= vx f

is symmetric.

If u= vx f andv;w 6= vx f , thenu�v� vx f�v2gϕi�1 implies, by clause (4.3), that
ϕi�1 ` x?[f ] � v. By S-closedness ofϕi�1 (Trans) it follows thatϕi�1 `
x?[f ]� w and hence, by clause (4.3) again,u�w� vx f�w2gϕi�1.

The casew= vx f andu;v 6= vx f is symmetric, using clause (4.2) instead of
clause (4.3).

If u;w 6= vx f andv= vx f , then, by clauses (4.2) and (4.3),ϕi�1 ` u� x[f ] and
ϕi�1 ` x?[f ] � w. By S-closedness ofϕi�1, (Trans) and (Desc-Incl), it
follows thatu�w2 ϕi�1 and henceu�w2gϕi�1.

(Incl-Nondis) Assumeu�v2gϕi�1. We must show thatu 6 kv2gϕi�1.
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If u;v 6= vx f , thenu 6 kv2gϕi�1 follows fromS-closedness ofϕi�1.

If u= v= vx f , thenu 6 kv2gϕi�1 follows from clause (4.1).

If u= vx f andv 6= vx f , then, by clause (4.3)ϕi�1 ` x?[f ] � v. By S-closedness
of ϕi�1, (Refl) and (Incl-Nondis),x 6 kx2 ϕi�1 and hence, by clause (4.4),
u 6 kv� vx f 6 kv2gϕi�1.

The casev = vx f andu 6= vx f is symmetric, using clause (4.5) instead of
clause (4.4) andu 6 ku2 ϕi�1.

(Quasi-Trans) Assumeu 6 kv^v� w2gϕi�1. We must show thatu 6 kw2gϕi�1.

If u;v;w 6= vx f , thenu 6 kw2gϕi�1 follows fromS-closedness ofϕi�1.

If u= v= vx f andw 6= vx f , then, by clause (4.3),ϕi�1 ` x?[f ] � w. By S-
closedness ofϕi�1 we know thatx 6 k x 2 ϕi�1 and hence, by clause (4.4),
u 6 kw� vx f 6 kw2gϕi�1.

If v= w= vx f andu 6= vx f , thenu 6 kw � u 6 k vx f 2 gϕi�1 follows from u 6 k v �
u 6 kvx f 2gϕi�1.

If u= w= vx f andv 6= vx f , then u 6 k w � vx f 6 k vx f 2 gϕi�1 follows from
clause (4.1).

If w= vx f andu;v 6= vx f , then by clause (4.2),ϕi�1 ` v� x[f ], and hence, by
clause (4.5),u 6 kw� u 6 kvx f 2gϕi�1.

If u= vx f andv;w 6= vx f , then u 6 k v � vx f 6 k v could have been added by
clause (4.4) or clause (4.5).

(4.4) Then, by clause (4.4), there existsv0 such thatϕi�1 ` v0?[f ]� v and
x 6 kv0 2 ϕi�1. By S-closedness ofϕi�1 (Trans),ϕi�1 ` v0?[f ]� w, and
hence, by clause (4.4) again,u 6 kw� vx f 6 kw2gϕi�1.

(4.5) Then, by clause (4.5), there existsv0 such thatϕi�1 ` v0 � x[f ]
and v 6 k v0 2 ϕi�1. By S-closedness ofϕi�1, (Quasi-Trans) and
(Symm-Nondis),w 6 k v0 2 ϕi�1, so thatu 6 kw � vx f 6 kw 2 gϕi�1 by
clause (4.5) again.

If v= vx f andu;w 6= vx f , then u 6 k v � u 6 k vx f could have been added by
clause (4.4) or clause (4.5). The argument is similar to the previous one.

Now we check properties (1) and (2) ofΓ1(ϕ). In both cases, we prove the contraposed
claim.

1. Assume thatΓ1(ϕ) ` µ andV (µ)� V (ϕ). We show thatϕ ` µ by case distinc-
tion overµ.
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µ= x�y or µ= x 6 ky: If Γ1(ϕ) ` µ thenµ2 Γ1(ϕ) or x = y. If x= y, then triv-
ially ϕ ` µ. Otherwise, ifx 6= y, note that all basic constraints which are
contained inΓ1(ϕ) but not inϕ contain at least one fresh variable. Hence
from x;y2 V (µ)� V (ϕ) we obtainµ2 ϕ, and thereforeϕ ` µ.

µ= ahxi: If Γ1(ϕ) ` ahxi then there exists a variablex0 such thatx�x0^ahx0i 2
Γ1(ϕ). By inspection of the form ofΓ1(ϕ) = ϕn one obtains thatx0 2V (ϕ)
and henceahx0i 2 ϕ. In combination with the assumption thatV (µ) �
V (ϕ) which givesx2 V (ϕ) we conclude thatϕ ` ahxi.

µ= x[f ]y: If Γ1(ϕ) ` x[f ]y then there exist variablesu;u0 andv;v0 such that

Γ1(ϕ) ` u�x^x�v;
Γ1(ϕ) ` y�u0^v0�y; and

u[f ]u0^v[f ]v0 2 Γ1(ϕ)
By assumption,x;y2V (µ)�V (ϕ). Alsou;v2V (ϕ) holds sinceΓ1(ϕ)=
ϕn contains no selection constraints on fresh variables.

We can without loss of generality assume thatu0;v0 2 V (ϕ). In this case
ϕ ` x[f ]y follows easily.

To see why we can assumeu0;v0 2V (ϕ), supposeu0 62V (ϕ). Thenu0= vu f

by construction ofΓ1(ϕ) = ϕn: Let var(vu f) = i. Then by Clause (4.2)
ϕi�1` y� u[f ]which means that there must exist variablesw;w0 2V (ϕi�1)
such thaty�w0^w[f ]w0^w�x2 ϕi�1. Hence, we can replacew;w0 for u;u0
above and obtain the same situation up to renaming. By induction over
var(vu f) we find replacement foru0;v0 in V (ϕ). The argument forv0 is
dual.

2. Assume thatΓ1(ϕ) ` z�vx f andΓ1(ϕ) ` vx f�z. Then by clauses (4.2) and (4.3)
there must exist variablesy;y0;u;u0 2 V (Γ1(ϕ)) such thatΓ1(ϕ) ` z� x[f ] and
Γ1(ϕ) ` x?[f ] � z. By definition of syntactic containment these assumptions
imply Γ1(ϕ) ` x[f ]zand hence, by case (1) above,ϕ ` x[f ]z. 22

Lemma 3.5 (Γ2 Preserves Satisfiability)

If ϕ is S-closed and does not contain?, thenΓ2(ϕ) is satisfiable.

Proof. Let ϕΓ be the constraint part ofΓ2(ϕ), i. e., with existential quantifiers and
negated constraints dropped. It is not difficult to see thatϕΓ does not contain? and
thatϕΓ isS-closed up to trivial constraints (x�x andx 6 kx) and symmetric compatibility
constraints. Note in particular, that the fresh featuresfx occur only once inΓ2(ϕ) (and
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hence neither (Desc-Incl) nor (Desc-Nondis) applies), and that the fresh features fxy

occur exactly twice inΓ2(ϕ), namely in selections atx andy, for which neitherx 6 k y
nor, by (Incl-Nondis)-closedness ofϕ, x�y or y�x occur inϕ.

Hence, by Proposition 2.10,gsol(ϕΓ) as defined in Definition 3 is a solution ofϕΓ. It
suffices to check thatgsol(ϕΓ) also satisfies the negated selection constraints added in
clause(1) of Γ2(ϕ).
Assume:9y0(y[fx]y0) 2 Γ2(ϕ), hence alsox[fx]vx 2 Γs(ϕ) andϕ 6` y�x. S-closedness
of ϕ andϕ 6` y�x imply that y 6 ϕ;ε x and hencey 6ϕΓ;ε x holds. Sincefx has a unique
occurrence inΓ2(ϕ), this implies thaty 6ϕΓ;ε fx, and hencefx 62 Dgsol(ϕΓ)(y). 2
Lemma 3.6 (Γ2 Contradicts Non-selection Constraints)
Let ϕ be anS-closed constraint which does not contain?, and let µ be a primitive
constraint of the form x6 k y, x�y, or ahxi. ThenΓ2(ϕ) j=P+(F T ) :µ if and only if
ϕ 6` µ.

Proof. If Γ2(ϕ) j=P+(F T ) :µ thenϕ 6` µ by Lemma 3.5 and correctness of syntactic
containment. For the inverse direction we inspect the definition ofΓ2(ϕ).
Clause (1) Ifϕ 6` x�y, thenΓ2(ϕ) disentailsx�y by forcing x to have a featurefx

whichy must not have.

Clause (2) Ifϕ 6` x 6 ky, thenΓ2(ϕ) disentailsx 6 ky by forcingx andy to have a common
featurefxy such that the subtrees ofx andy at fxy are incompatible.

Clauses (3) and (4) Ifϕ 6` ahxi, thenΓ2(ϕ) disentailsa(x) for every labela by forcing
x to contain at least two trees with distinct label. 2

Definition 5 (Saturation)
Letϕ be anS-closed constraint not containing?. Thesaturation Sat(ϕ) of ϕ is defined
by

Sat(ϕ) =def Γ2(Γ1(ϕ)) :
Lemma 3.7 (Saturation Characterises Syntactic Entailment)
Letϕ be anS-closed constraint not containing?, and let µ be such thatV (µ)�V (ϕ).
Thenϕ 6` µ implies Sat(ϕ) j=P+(F T ) :µ.

Proof. Let Sat(ϕ) = Γ2(Γ1(ϕ)). If ϕ 6` µ then Γ1(ϕ) 6` µ holds by case (1) of
Lemma 3.4. Ifµ is not a selection constraint, thenΓ2(Γ1(ϕ)) j=P+(F T ) :µ holds by
Lemma 3.6. Otherwise, letµ= x[a]y. Hence, one ofΓ1(ϕ) 6` vxa�y or Γ1(ϕ) 6` y�vxa

holds by case (2) of Lemma 3.4. By Lemma 3.6, eitherΓ2(Γ1(ϕ)) j=P+(F T ) :vxa�y
or Γ2(Γ1(ϕ)) j=P+(F T ) :y�vxa holds, and hence againΓ2(Γ1(ϕ)) j=P+(F T ) :µ. 2
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ϕ ` /0 ahxi iff x= /0 2 ϕ; or ϕ ` ahxi
ϕ ` /0 x�y iff x= /0 2 ϕ; or ϕ ` x�y

ϕ ` /0 x[f ]y iff x= /0 2 ϕ andy= /0 2 ϕ; or ϕ ` x[f ]y
Figure 3.2.:Syntactic Containment up to Emptiness for FT�(ar)

3.1.3. Dropping the Non-emptiness Restriction

We show that entailment for FT� can also be decided in polynomial time, more pre-
cisely, in timeO(n4). We obtain this result by extending the corresponding result for
FTne� and it seems that a direct proof would be substantially more involved.

The key to the polynomial complexity result is an extension of our notion of syntactic
containment. Figure 3.2 extends the definition of syntactic containment in Figure 3.1
and defines a relationϕ ` /0 µ between FT� constraints and primitive constraintsx[f ]y,
ahxi or x�y. If ϕ ` /0 µ holds we say thatϕ contains µ up to emptiness. Syntactic
containment up to emptiness suffices to characterise entailment for FT�.

Proposition 3.8 (Entailment = Syntactic Containment up to Emptiness)

The notions of entailment and syntactic containment up to emptiness coincide for prim-
itive constraints: Ifϕ is anE-closed FT� constraint and µ is a primitive constraint,
thenϕ j=P (F T ) µ if and only ifϕ ` /0 µ.

Proof. The direction from right to left (soundness) is clear. For the direction from
left to right (completeness) assume that there existsµ 2 ϕ0 such thatϕ 6` /0 µ. From
Proposition 2.15 we know thatϕ6= /0 is satisfiable overP+(F T ). By Proposition 3.2
we know thatϕ 6j=P+(F T ) µ. Hence there exists aP+(F T )-solutionα of ϕ6= /0 such
thatα j=P+(F T ) :µ and hence alsoα j=P (F T ) :µ. By Lemma 2.16, the extensionα0
of α that maps all variables inEmpty(ϕ) to the empty set and all other variables to non-
empty sets is aP (F T )-solution ofϕ. We show by case distinction over the possible
forms ofµ thatα0 j=P (F T ) :µ. This means thatϕ 6j=P (F T ) µ and henceϕ 6j=P (F T ) ϕ0.
µ= ahxi: Sinceϕ 6` /0 ahxi, we know thatx 62 Empty(ϕ). Thereforeα j=P (F T ) :ahxi

impliesα0 j=P (F T ) :ahxi.
µ= x[f ]y: Sinceϕ 6` /0 x[f ]y, we know thatx= /0 62 ϕ or y= /0 62 ϕ. We consider two cases

(the remaining one is symmetric).

If x= /0 62 ϕ andy= /0 62 ϕ: Thenx;y 62Empty(ϕ), and thereforeα j=P (F T ) :x[f ]y
impliesα0 j=P (F T ) :x[f ]y.
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If x= /0 2 ϕ andy= /0 62 ϕ: Thenx2Empty(ϕ) andy 62Empty(ϕ). Henceα0 maps
x to the empty set andy to a non-empty set. Therefore,α0 j=P (F T ) :x[f ]y.

µ= x�y: Sinceϕ 6` /0 x�y, we know thatx= /0 62 ϕ. By a case distinction on whether
or noty= /0 2 ϕ as in the previous case we obtain thatα j=P (F T ) :x�y implies
α0 j=P (F T ) :x�y. 2

Theorem 15 (Entailment for FT� is Polynomial)

Let ϕ andϕ0 be FT� constraints whose sizes are n and n0. Then entailmentϕ j=P (F T )
ϕ0 is decidable in time O(n4+n�n0) and space O(n3+n0).
Proof. By Theorem 6, we can compute theE-closure in ϕ in time O(n4) and
spaceO(n3). By Proposition 3.8 it suffices to test syntactic containment up to empti-
ness for all primitive constraints inϕ0, of which there are at mostn0. In analogy to
Lemma 3.3, we can assume theE-closure ofϕ to be represented such that every such
test takes at most linear time. Hence the overall procedure takes timeO(n4+n�n0) and
spaceO(n3+n0). 2
Finite Trees

Theorem 15 carries over to the case of finite trees: we must only adapt the first step of
checkingϕ j=P (F T ) ϕ0 so that it computes the closure ofϕ with respect toE and the
occurs check axiom (Empty-Occurs) on Page 46. The second step remains unchanged.

3.2. Hardness Results on Entailment

The complexity of entailment between set constraints becomes coNP-hard when arity
constraints are added. This is proven in Section 3.2.1 for FT�(ar) and in Section 3.2.2
for FTne� (ar). Using the same proof technique, the corresponding results can be be ob-
tained for inclusion constraints over sets of constructor trees [140] and for entailment
for FTne� with existential quantifiers (see Section 3.2.3). Section 3.2.4 strengthens this
result by proving PSPACE-hardness for the entailment problem with existentialquan-
tification; this result holds even without arity constraints.

3.2.1. Entailment with Arity Constraints is coNP-hard

We prove the following result.

Theorem 16 (Entailment for FTne� (ar) is coNP-hard)

The entailment problemϕ j=P+(F T ) ϕ0 for FTne� (ar) is coNP-hard.
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Proof. Follows from Proposition 3.9 on Page 64. 2
Corollary 17 (Satisfiability of Positive and Negative FTne� (ar) Constraints)

The satisfiability problem of positive and negative FTne� (ar) constraints is coNP-hard.

For the proof, we reduce the complement of the propositional satisfiability problem
SAT to an entailment problem between FTne� (ar) constraints. Crucially, the reduction
uses arity constraints. This implies Theorem 16 because SAT is NP-complete, actually
the very first problem for which NP-completeness was proven [52]. The reduction
is based on an idea of Henglein and Rehof [89]. They have considered entailment
between ordering constraints over finite constructor trees with the so-called structural
subtyping order.

3.2.1.1. A Complication of Entailment

Before we give the proof of Theorem 16, notice that it is in contrast to the paper [41]
which claims polynomial complexity for entailment (over the domain of non-empty
sets offinite constructortrees). The algorithm given there is incomplete. This incom-
pleteness is not easily fixed. The next example illustrates a complication of entailment.

The following is a valid entailment over FTne� (ar)-constraints; notably one that de-
pends on the implicit non-emptiness restriction for the denotation ofx.

x�a( f :y)^x�a( f :z)^ahyi^yfg j=P+(F T ) y�z (3.5)

A possible argument is as follows: since the denotation ofx is non-empty, the intersec-
tion of the denotations ofy andzmust be non-empty. The constraintahyi^yfg implies
thaty denotes the singleton setfag. By non-disjointness ofy andz, the denotation ofz
must at least containa. Thusy�z is entailed. By a similar argument, the following
entailment proposition can be shown valid for FTne� (ar).

x�a( f :y0; g:y00)^y0�b( f :z0; g:z00)^z0�a^z0fg^
x�a( f :u0; g:u00)^u0�b( f :v0; g:v00) j=P+(F T ) z0�v0 (3.6)

The variablesz0 andv0 are related to each other throughx which does not denote a
singleton set itself. Rather,for some path(hereff ) does selection from the denotation
of x yield a singleton. Notice that two distinct featuresf 6= g are necessary to describe
this situation.

This example also illustrates the problem of the algorithm in [41], transposed tothe
feature tree notation. Roughly, the algorithm in [41] derives singleton information,for
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example by reasoning as follows:

ahxi^xfg ! singleton(x)
ahxi^xf fg^x[f ]y^ singleton(y) ! singleton(x): : :singleton(y)^y 6 kz ! y�z

But as we have seen, the derivation of constraintssingleton(x) does not suffice for a
complete entailment algorithm. Rather, one needs a path-based argument likesingleton(z0)^x;ff z0^x;ff v0 ! z0�v0 :
This is what the algorithm in [41] fails to do. Hence, the entailment in Example(3:5)
is correctly detected, while the entailment in Example(3:6) is not.

3.2.1.2. The Reduction

We assume an infinite set of boolean variables ranged over byu. A clause Cis a
finite disjunction ofliterals u or :u. We write falsefor the empty clause. Asolution
of a finite conjunction of clauses is a boolean variable assignment under which each
of the clauses evaluates totrue. Theclause satisfiability problemSAT is whether a
given conjunction has a solution. Without loss of generality we assume that no clause
contains both a literal and its negation.

Proposition 3.9 (Reducing SAT to Entailment for FTne� (ar))
For all x 2 V there exists a functionΦx from clauses C and integers k to existential
FTne� (ar) formulas such that for all C:

1. The size ofΦx(C;k) is proportional to k.

2. For all SAT problems
Vn

i=1Ci over k variables the following holds if x6= y:
n̂

i=1

Φx(Ci;k)^Φy(false) j=P+(F T ) x�y iff
n̂

i=1

Ci is non-satisfiable.

Theorem 16 is an immediate corollary of this Proposition. To see this, notice that
the size of the entailment problemΦx(Ci;k)^Φy(false) j=P+(F T ) x�y is O(k �n) and
hence polynomial in the size of the given SAT problem.
Before we prove the Proposition, we illustrate the basic idea by an example. Consider
the following clauses over three boolean variablesu1;u2, andu3, and observe that
C1^C2 is satisfiable whileC1^C2^C3 is not.

C1 =def :u1_u3;
C2 =def :u1_:u3; and

C3 =def u1
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9y9y09y19z9z0
0BBBBBBBBBBBBBBBB@

x[1]y ^ ahxi ^ xf0;1g^ ahyi^yfg
y[0]y0^z�y0 ^ ahy0i ^ y0f0;1g
y[1]y1^z�y1 ^ ahy0i ^ y1f0;1g
z[0]z0 ^ ahzi ^ zf0;1g^ ahz0i ^ z0fg

1CCCCCCCCCCCCCCCCA
a� a

a a

afg � afg �
10

0 1

0 1 0 1

Figure 3.3.:An Example for the Reduction of SAT to Entailment for FTne� (ar)
Now fix distinct variablesx andy. Proposition 3.9 claims the existence of formulas
Φx(C1;3) throughΦx(C3;3) andΦ0

y such that

Φx(C1;3)^Φx(C2;3)^Φy(false;3) 6j=P+(F T ) x�y (3.7)

Φx(C1;3)^Φx(C2;3)^Φx(C3;3)^Φy(false;3) j=P+(F T ) x�y (3.8)

The formulaΦx(C1;3) (to be defined) and the form of its greatest solution are depicted
in Figure 3.3: the formula on the left asserts all feature trees in the denotation of x
to have at least the paths and labels of the tree on the right; at the mentioned paths
they may have at most features 0 and 1, and no feature at all at the mentioned paths of
length 3.

The maximal paths correspond to the boolean valuations ofu1 through u3 under
which C1 evaluates tofalse [89], where the features 0 and 1 correspond to the truth
valuesfalseandtrue. Similarly, as the empty clause evaluates tofalseunderall val-
uations, the formulaΦy(false;3) constrainsy to the set of trees that have exactly the
paths inf0;1g3 and are completely labelled witha. As there is only one such tree,
call it τ3, Φy(false;3) entails thaty= fτ3g. (This only holds because the empty set is
excluded fromP+(F T ); overP (F T ) only the inclusiony�fτ3g is entailed. See also
Section 3.2.2.)

Likewise, the formulaΦx(C1;3)^Φx(C2;3)^Φx(C3;3) will constrainx to fτ3g, and
hence (3.8) will be valid. In contrast,Φx(C1;3) (and alsoΦx(C1;3)^Φx(C2;3)) are
less restrictive with respect tox than Φy(false;3) is with respect toy, and hence
Φx(C1;3)^Φy(false;3) 6j=P+(F T ) x�y as well as (3.7) hold.
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3. Entailment for Set Constraints

3.2.1.3. Proof of Proposition 3.9

This proof covers this whole section. Let us first formalise the intuition givenin the
example above. We fix a labela and three distinct features 0;1 and 2, and we confuse
the truth valuestrueandfalsewith the features 1 and 0, respectively. (The feature 2 will
be used only farther below.) We represent every boolean valuationβ onfu1; : : : ;ukg as
the following pathpk

β.

pk
β =def β(uk) : : :β(u1)

We say that a feature treeτ contains a valuationβ, written β 2 τ, if the following
conditions hold.

1. ar(τ:pk
β) = /0

2. 8p; p a prefix ofpk
β : (p;a) 2 Sτ and ar(τ:p)� f0;1g

By generalisation, we say that a treeτ contains a set B of valuations, writtenB� τ, if8β 2 B : β 2 τ. The injective functionT establishes a correspondence between the sets
of boolean valuationsB and the setsT(B) of feature trees containingB.

T(B) =def fτ j if B� τg
For instance,T(f0;1gk) is the singleton set containing just the complete binary feature
tree of depthk over the features 0 and 1 which is completely labelled witha.

Now assume that the functionΦx has the following properties.

α j=P+(F T ) n̂

i=1

Φx(Ci;k) iff α(x)� T(Sol(: n̂

i=1

Ci)) (3.9)

α j=P+(F T ) Φy(false;k) iff α(y) = T(f0;1gk) (3.10)

Lemma 3.10

If, for all x 2V , there exists a functionΦx with properties (3.9) and (3.10) then clause(2) in Proposition 3.9 holds.
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Φx(C;k) = Φ̂x(pk
C)

Φ̂x(ε) = xfg^ahxi
Φ̂x(1p) = xf0;1g^ahxi^9x0(x[1]x0^ Φ̂x0(p))
Φ̂x(0p) = xf0;1g^ahxi^9x0(x[0]x0^ Φ̂x0(p))
Φ̂x(2p) = xf0;1g^ahxi^9x1x2x3(x[1]x1^x[0]x2^x1�x3^x2�x3^ Φ̂x3(p))

Figure 3.4.:Reducing SAT to Entailment for FTne� (ar)
Proof.

n̂

i=1

Φx(Ci;k)^Φy(false;k) j=P+(F T ) x�y

iff 8α : if α j=P+(F T ) n̂

i=1

Φx(Ci;k)^Φy(false;k) thenα(x)� α(y)
iff 8α : if α j=P+(F T ) n̂

i=1

Φx(Ci;k)^Φy(false;k) thenα(x)� T(f0;1gk) by (3.10)

iff T(Sol(: n̂

i=1

Ci))� T(f0;1gk) by (3.9)

iff
n̂

i=1

Ci is non-satisfiable

For the downward implication of equivalence marked (3.9) note that, by Property (3.9),
every valuationα with α(x) = T(Sol(:Vn

i=1Ci)) is a solution of
Vn

i=1Φx(Ci;k). The
upward implication follows directly from (3.9). For the upward implication of the last
equivalence note that Sol(:Vn

i=1Ci) = T(f0;1gk) if
Vn

i=1Ci is non-satisfiable. For the
downward implication first note that8B� f0;1gk : T(B) 6= /0

which implies that /0 6= T(Sol(:Vn
i=1Ci)). HenceT(Sol(:Vn

i=1Ci)) = T(f0;1gk)
sinceT(f0;1gk) is a singleton set, and Sol(:Vn

i=1Ci) = f0;1gk sinceT is injective.
Thus

Vn
i=1Ci is non-satisfiable. 2

It remains to show that there are indeed formulasΦx(C;k) with Property (3.9) whose

67



3. Entailment for Set Constraints

size is proportional tok. For everyi;1� i � k and every clauseC overfu1; : : : ;ukg let

δi(C) = 1 if :ui in C

δi(C) = 0 if ui in C

δi(C) = 2 otherwise.

This is well-defined because no clauseC contains bothui and:ui for a boolean vari-
ableui. Every clauseC corresponds to the pathpk

C given by

pk
C =def δk(C) : : :δ1(C) :

The definition ofΦx(C;k) by recursion overpk
C is given in Figure 3.4. Since every

step of this definition introduces at most three new variables, these formulas have size
proportional tok.

It is easy to verify directly that every solutionα of Φy(false;k) satisfiesα(y) =
T(f0;1gk), so that Property (3.10) holds. Note also, that Property (3.10) is a con-
sequence of Property (3.9) sinceT(f0;1gk) is a singleton such thatα(y)� T(f0;1gk)
impliesα(y) = T(f0;1gk) over non-empty sets.

Observe that
Vn

i=1Φx(Ci;k)^Φy(false;k) is always satisfiable, for example by every
valuation mapping bothx andy to T(f0;1gk). Hence we know that a greatest solution
exists by Proposition 2.10.

Lemma 3.11

For all clauses C over k variables and all x: T(Sol(:C)) = gsol(Φx(C;k))(x).
Proof. We show by induction overk that, for allx, τ, and all clausesC overk variables

Sol(:C)� τ if and only if τ 2 gsol(Φx(C;k))(x) :
Casek= 0: We have

Φx(false;k) = Φ̂x(ε) = xfg^ahxi
By definition of Sol(:C)� τ, the fact that the only valuation over 0 variables is
the empty one, and the definition ofgsol(Φx(false;k)), we reason as follows.

Sol(:false)� τ iff Sol(true)� τ

iff ε 2 Dτ; (ε;a) 2 Sτ; andar(τ) = /0

iff gsol(Φx(false;k))(x)
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Casek> 0: The clauseC can have one of three forms,uk_C0,:uk_C0, orC0 for some
clauseC0 over variablesuk�1; : : : ;u1. We only consider the caseC = uk_C0.
The other cases are similar. For ease of reading, we introduce the following
abbreviations for allf 2 F:

Dτ: f = fp j f p2 Dτg f Dτ = f f p j p2 Dτg
Sτ: f = f(p;a) j ( f p;a) 2 Dτg f Sτ = f( f p;a) j (p;a) 2 Sτg

If C= uk_C0, we have

Φx(C;k) = xf0;1g^ahxi^9x0(x[0]x0^Φx0(C0;k�1)) (3.11)

Fix a freshx0. By definition of Sol(:C) � τ and by induction assumption we
have that

Sol(:C)� τ

iff Sol(:(uk_C0))� τ

iff 9τ0:Sol(:C0)� τ0 and

8<: 1: Dτ0 = Dτ:0; Sτ0 = Sτ:0
2: ar(τ) = f0;1g; (ε;a) 2 Sτ

iff 9τ0:τ0 2 gsol(Φx0(C0;k�1))(x0) and

8<: 1: Dτ0 = Dτ:0; Sτ0 = Sτ:0
2: ar(τ) = f0;1g; (ε;a) 2 Sτ

It remains to show that this is equivalent toτ 2 gsol(Φx(C;k))(x).15()) By definition of the greatest solution,τ0 2 gsol(Φx0(C0;k�1))(x0) holds if
and only if:

3. DΦx0 (C0;k�1)(x0) � Dτ0, SΦx0(C0)(x0;k�1) � Sτ0, and

4. for all p and f : if Φx0(C0;k�1) ` x0;p f fg thenar(τ0:p) = f fg.
Given equation (3.11), we conclude from(1), (3) and the definition of path
reachability that

DΦx(C;k)(x) = 0DΦx0(C0;k�1)(x0) � 0Dτ0 � 0(Dτ:0) � Dτ

SΦx(C;k)(x) = 0SΦx0(C0;k�1)(x0) � 0Sτ0 � 0(Sτ:0) � Sτ

Further, ifΦx(C;k) ` x;p f fg, then there two possibilities:

15Here, we allow path reachability with respect to existential formulasΦ instead of just constraints,
if the mentioned variables are free inΦ. For instance, we write9y9z(x�y^y[f ]z^z�x0) ` x; f x0.
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3. Entailment for Set Constraints

1. If p = ε andf fg = f0;1g, thenar(τ:p) = f0;1g= f fg follows from(2).
2. If Φx0(C0;k�1)` x0;p0 f fg for somep0 with p= 0p0, thenar(τ0:p0)=f fg follows from (4). Furthermore,Dτ:0 = Dτ0 in (1) implies thatar(τ:0p0) = ar(τ0:p0), hence againar(τ:p) = f fg.

In combination,Φx(C;k) ` x;p f fg impliesar(τ:p) = f fg for all p and
f , and thusτ 2 gsol(Φx(C;k))(x).(() For the converse, we assumeτ 2 gsol(Φx(C;k))(x) and setτ0 = τ:0.
Then we check thatτ satisfies(2), that τ0 satisfies(1), and thatτ0 2
gsol(Φx0(C;k�1))(x0). 2

Lemma 3.12
Let
Vn

i=1Ci be a SAT problem over k variables. Then:8α : α j=P+(F T ) n̂

i=1

Φx(Ci;k) if and only if α(x)� T(Sol(: n̂

i=1

Ci))
Proof. We show that the greatest solution of

n̂

i=1

Φx(Ci) equalsT(Sol(: n̂

i=1

Ci)).
gsol( n̂

i=1

Φx(Ci;k)) = n\
i=1

gsol(Φx(Ci;k)) since
n̂

i=1

Φx(Ci;k) sat.

by Proposition 2:1= n\
i=1

fτ j Sol(:Ci)� τg by Lemma 3:11= fτ j n[
i=1

Sol(:Ci)� τg= fτ j Sol(: n̂

i=1

Ci)� τg= T(Sol(: n̂

i=1

Ci)) 2
3.2.2. Dropping the Non-emptiness Restriction

We show that the same reduction idea of SAT to entailment applies, with slightmodi-
fications, also to the case of possibly empty sets of trees.

Theorem 18 (Entailment for FT�(ar) is coNP-hard)

The entailment problemϕ j=P (F T ) ϕ0 for FT�(ar) is coNP-hard.
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Φz
x(C;k) = Φ̂z

x(pk
C)

Φ̂z
x(ε) = x�z

Φ̂z
x(1p) = xf0;1g^ahxi^9x0(x[1]x0^ Φ̂z

x0(p))
Φ̂z

x(0p) = xf0;1g^ahxi^9x0(x[0]x0^ Φ̂z
x0(p))

Φ̂z
x(2p) = xf0;1g^ahxi^9x1x2x3(x[1]x1^x[0]x2^x1�x3^x2�x3^ Φ̂z

x3
(p))

Φ0z
y(false) = Φ̂0z

y(pk
false)

Φ̂0z
y(2p) = N(y)^9y0(y[1]y0^y[0]y0^ Φ̂0z

y0(p))
Φ̂0z

y(ε) = y=z

Figure 3.5.:Reducing SAT to Entailment for FT�(ar)
Corollary 19 (Satisfiability of Positive and Negative FT�(ar) Constraints)
The satisfiability problem of positive and negative constraints FT�(ar) is coNP-hard.

The proof is by adaptation of the proof of Theorem 16 in the previous section. There,
we have exploited that we can express singleton sets with FTne� (ar) constraints. This is
no longer the case for FT�(ar) constraints. For illustration, observe that the following
implication holds over non-empty sets of feature trees:

xfg^ahxi^yfg^ahyi j=P+(F T ) x�y (3.12)

Over possibly empty sets it does not. Only a weaker implication holds:

xfg^ahxi^yfg^ahyi j=P+(F T ) x�y_y�x (3.13)

In analogy, Property (3.10) on page 66 does not hold overP (F T ) because the empty
set is always a solution forΦy(false;k). Only the following weaker equivalence holds.

α j=P (F T ) Φy(false;k) iff α(y)� T(f0;1gk) (3.14)

If the constraint system can express non-emptiness, we can correct this easily by re-
quiringx to denote a non-empty set in theε-clause of Figure 3.4:

Φ̂x(ε) = x 6= /0^xfg^ahxi (3.15)

Unfortunately, in FT�(ar) we cannot express non-emptiness.16 We adapt Proposi-
tion 3.9 as follows in order to prove Theorem 18.

16In contrast, set constraints over constructor trees can if the signature contains constants. Therefore,
the adaptation (3.15) indeed works for standard set constraints as we show in [140]. There, of course
Φ̂x(ε) is defined asx=a.
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3. Entailment for Set Constraints

Proposition 3.13 (Reducing SAT to Entailment for FT�(ar))
For all x;y;z2V there exists a functionΦz

x from clauses C and integers k to existential
FT�(ar) formulas, and an existential FT�(ar) formulaΦ0z

y(false) such that for all C:

1. The sizes ofΦz
x(C;k) andΦ0z

y(false) are proportional to k.

2. For all SAT problems
Vn

i=1Ci over k variables the following holds if x6= y:

n̂

i=1

Φz
x(Ci;k)^Φ0z

y(false) j=P+(F T ) x�y iff
n̂

i=1

Ci is non-satisfiable.

The reduction is given in Figure 3.5. It adapts the reduction of Figure 3.4 in theε-
clause, and gives an special definition for the formula associated with the clausefalse.
Instead of forcing all maximal paths inΦz

x(C;k) to the singleton setfag, it asserts
all maximal paths inΦz

x(C;k) to be included in the fixedz, and all maximal paths in
Φ0z

y(false) to be equal toz. The proof of Proposition 3.13 is completely analogous to
the proof of Proposition 3.9, except that all notions related to valuations (such as:τ
containsβ, B� τ, T(B), etc.) must be made relative to some setσ that denotes the
valuation ofz.

3.2.3. Entailment with Existential Quantifiers is coNP-hard

We apply the idea of the two previous sections to the entailment problemsϕ j=P+(F T )9xϕ0 andϕ j=P (F T ) 9xϕ0 with existential quantification but without arity constraints,
and show them to be coNP-hard, too. The idea still rests on Henglein’s and Rehof’s
idea from [89], but the details are original. The reduction works for both sets of infi-
nite trees and sets of finite trees. In the following section, we improve this result by
showing entailment with existential quantification to be even PSPACE-hard.

With existential quantification, the reduction of SAT to an entailment problem becomes
simpler. In the previous sections we have encoded an inconsistent SAT problem by a
set such that all trees in the set haveexactlyall paths inf0;1gk and are either com-
pletely labelled witha or such that selection at all the paths inf0;1gk yields the same
set. With existential quantification it suffices to encode an inconsistent SAT problem
by a set of trees which containat leasta given set of paths.

Proposition 3.14 (Reducing SAT to Entailment for FTne� with Existentials)

For all x 2 V there exists a functionΨx from clauses C and integers k to existential
FTne� formulas such that for all C:

1. The size ofΨx(C;k) is proportional to k.
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Ψx(C;k) = Vn
i=1Ψ̂x(pk

Ci
)

Ψ̂x(ε) = true

Ψ̂x(t p;x) = 9x0 (x[1]x0^ Ψ̂x0(p))
Ψ̂x( f p;x) = 9x0 (x[0]x0^ Ψ̂x0(p))
Ψ̂x(?p;x) = 9x19x29x3(x[1]x1^x[0]x2^x1�x3^x2�x3^ Ψ̂x3(p;)

Figure 3.6.:Reducing SAT to Entailment for FTne� with Existential Quantifiers9y9y09y19z9z0
0BBBBBBBB@

x[1]y
y[0]y0 ^ z�y0

y[1]y1 ^ z�y1

z[0]z0
1CCCCCCCCA

� �� �� �
1

0 1

0 0

Figure 3.7.:An Example for the Reduction of SAT to Entailment for FTne� with Exis-
tential Quantifiers

2. For all SAT problems
Vn

i=1Ci over k variables the following holds:

n̂

i=1

Ψx(Ci;k) j=P+(F T ) Ψx(false;k) iff
n̂

i=1

Ci is non-satisfiable

Note the distinction of this Proposition to Proposition 3.9: while the latter requires the
conjunction of

Vn
i=1Ψx(Ci;k) andΨy(false;k) to entail the (quantifier-free) constraint

x�y, Proposition 3.14 requires
Vn

i=1Ψx(Ci;k) to entailΨx(false;k) which does contain
existential quantifiers.

The functionΨx is defined in Figure 3.6. Again, the size of the formulasΨx(false;k)
and Ψx(C;k) is O(k � n), i. e., polynomial in the size of the given instance of SAT.
Their construction is similar to the one of Figure 3.4 but, as promised above, strictly
simpler since it does not mention arity constraints or label constraints at all. The clause
C1 = :u1_u3 over variablesu1;u2, andu3 which we considered above will now be
mapped to the formulaΨx(C1;k) in Figure 3.7. In every solution ofΨx(C1;k), all
feature trees in the denotation ofx must have at least the paths in the tree depicted
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on the right; they may have further paths and arbitrary labellings, though. In order to
justify this reduction, we must adapt Property (3.9) which does no longer apply.

We say that a feature treeτ weakly contains a valuationβ, writtenβ 2w τ, if8p; p a prefix ofpk
β : p2 Dτ :

By generalisation, we defineB�w τ if 8β 2 B : β 2w τ, and similarly we define

Tw(B) =def fτ j B�w τg
Note thatTw(f0;1gk) is not a singleton anymore. Then the following properties hold.

α j=P+(F T ) n̂

i=1

Ψx(Ci;k) iff α(x)� Tw(Sol(: n̂

i=1

Ci)) (3.16)

Lemma 3.15

If, for all x 2 V , there exists a functionΨx with properties (3.16) then clause(2) in
Proposition 3.14 holds.

Proof.

n̂

i=1

Ψx(Ci;k) j=P+(F T ) Ψx(false;k)
iff 8α : α j=P+(F T ) n̂

i=1

Ψx(Ci;k) impliesα j=P+(F T ) Ψx(false;k)
iff 8α : α j=P+(F T ) n̂

i=1

Ψx(Ci;k) impliesα(x)� Tw(f0;1gk) by (3:16)
iff Tw(Sol(: n̂

i=1

Ci))� Tw(f0;1gk)
iff

n̂

i=1

Ci is non-satisfiable by(3:16) 2
The remainder of the proof is closely following the lines of the one in Section 3.2.1.
We do not elaborate on it further since the following section contains a stronger result.

3.2.4. Entailment with Existential Quantifiers is PSPACE-hard

We prove the following results.

Theorem 20 (Entailment with Existential Quantifiers is PSPACE-hard)

The entailment problemϕ j=P+(F T ) 9xϕ1 for both FT� and FTne� is PSPACE-hard.
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Proof. Follows from Proposition 3.16 on Page 75. 2
Corollary 21 (Negation and Existential Quantification for FT� and FTne� )

Satisfiability of positive and negative existential FTne� formulas, and emptiness of
positive and negative existential FT� formulas is PSPACE-hard (ϕ^ :9x1ϕ1 ^ : : ::9xnϕn).

We reduce in linear time the inclusion problem between regular languages REG over
finite words to the entailment problemϕ j=P+(F T ) 9xϕ0 over FTne� . Since the problem
REG is well-known to be PSPACE-complete [70, 103], this proves PSPACE-hardness
of entailment with existential quantifiers.17

Interestingly, the reduction works both for the case of sets of infinite trees and offinite
trees: Notably, it is possible to encode the Kleene star without referring toinfinite
trees. This is in contrast to our earlier result for FT� [141] that suggested the need for
infinite trees (or sets of infinite trees) for the encoding of the Kleene star. Wecould
drop this restriction in [145].

We consider regular expressions over a finite subsetF0� F defined as follows:

R ::= ε j f j R� j R1[R2 j R1R2 where f 2 F0

Note thatF0 � F allows arbitrary large alphabets sinceF is assumed to be infinite.
Every regular expressionRdefines a non-empty setL(R) of finite words overF0.

Proposition 3.16 (Reducing REG to Entailment with Existential Quantifiers)

Let x and y be arbitrary variables. For every pair of regular expressions R1 and R2

there are existential FTne� formulasΘ(x;R1;y) and Θ(x;R2;y) whose sizes are linear
in the sizes of R1 and R2, such that

Θ(x;R1;y) j=P+(F T ) Θ(x;R2;y) if and only if L(R2)� L(R1).
3.2.4.1. First Solution: Infinite Feature Trees

An immediate idea of the proof is to encode every regular set of words (over features)
as a setσ of feature trees all of which share the regular structure: namely such that all
trees inσ contain all paths inL(R) and are labelled witha at all paths inL(R). For
instance, one may encode the finite setf1;111g as the setσ of all feature treesτ withf(1;a);(111;a)g � Sτ ;

17Essentially the same proof also applies to entailment for FT�. The details will be discussed at the
end of this section.
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3. Entailment for Set Constraints

and the infinite setfε;1;11; : : :g as the setσ of all feature treesτ withf(ε;a);(1;a);(11;a); : : :g � Sτ :
This information can conveniently be represented by a single feature tree [141]. The
set described thus is given by all feature trees that contain at least the information in
this tree. Here are some typical regular expressions and the associated trees:

f [g
�

a a

f g f g�h ��
a

f

gh( f [g)� a
f

g ( f g�h)� a� fh

g

A consequence of this encoding is, however, that infinite regular languages are neces-
sarily encoded by sets of infinite trees. Hence, for sets of finite trees thisencoding only
works forstar-freeregular expressions that induce finite languages; since the inclusion
problem for languages defined by star-free regular expressions is coNP-complete, we
obtain only coNP-hardness for the entailment problem over sets of finite trees. But we
can do better.

3.2.4.2. Better Solution: Finite and Infinite Feature Trees

Instead of encoding a regular languageL(R) by a set of feature trees all of which have
all paths inL(R) and are labelled witha there, we encode it by a setσ of feature
trees that contains one tree that has all the pathsp2 L(R) and is labelled witha there.
Intuitively, this is dual to the encoding above. The regular language is not encoded by
an upper bound on the sets (which affects the shape of all contained trees) but a lower
bound (which asserts the existence of one).

The proof covers the remainder of this section. In Figure 3.8 we define an existential
FTne� formulaΘ(x;R;y) for every regular expressionRand variablesx;y. The formula
Θ(x;R;y) clearly has size linear in the size ofR. Define theprojection p�1(σ) of a
setσ to some pathp by p�1(σ) = fτ0 j existsτ 2 σ : τ:p= τ0g.
Lemma 3.17
Letα be a variable assignment and R a regular expression. Thenα j=P+(F T ) Θ(x;R;y)
if and only if8p2 L(R) : p�1(α(x))� α(y).
Proof. By structural induction overR. Let α be a variable assignment.
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Θ(x;ε;y) = x�y

Θ(x; f ;y) = 9z(x�z^z[f ]y)
Θ(x;R1[R2;y) = Θ(x;R1;y)^Θ(x;R2;y)
Θ(x;R�;y) = 9z(z�y^Θ(z;R;z)^x�z)
Θ(x;R1R2;y) = 9z(Θ(x;R1;z)^Θ(z;R2;y))

Figure 3.8.:Reducing Inclusion of Regular Languages of Finite Words to Entailment
for FTne� with Existential Quantifiers

ε: α j=P+(F T ) Θ(x;ε;y) iff α j=P+(F T ) x�y

iff ε�1(α(x)) = α(x)� α(y)
f : α j=P+(F T ) Θ(x; f ;y) iff α j=P+(F T ) 9z(x�z^z[f ]y)

iff 9σ : α;z 7! σ j=P+(F T ) x� z^z[f ]y
iff 9σ : f�1(α(x))� α(y)

For the downward implication notice thatα;z 7!σ j=P+(F T ) x�z^z[f ]y implies
that σ: f is always defined, and thatf�1(α(x)) � f�1(σ); hence f�1(α(x)) �
f�1(σ)� α(y). For the upward implication simply setσ = f�1(α(x)).

R�: α j=P+(F T ) Θ(x;R�;y)
iff α j=P+(F T ) 9z(z�y^Θ(z;R;z)^x�z)
iff 9σ : α;z 7! σ j=P+(F T ) z�y^Θ(z;R;z)^x�z

iff 9σ : α;z 7! σ j=P+(F T ) z�y^x�z and8p2 L(R) : p�1(σ)� σ (IA)

iff 9σ : α(x)� σ^σ� α(y) and8p2 L(R�) : p�1(σ)� σ (**)

(The upward implication of the last equivalence holds sinceL(R) � L(R�).
The downward implication holds since8p2 L(R) : p�1(σ)� σ implies8p;q2
L(R) : q�1(p�1(σ))� q�1(σ)� σ, and so on.) The last formula (**) is equiva-
lent to 8p2 L(R�) : p�1(α(x))� α(y) (3.17)

The downward implication is simple. For the inverse direction assume (3.17)
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3. Entailment for Set Constraints

and define
σ =def

\fp�1(α(x)) j p2 L(R�)g
Now, α(x) = ε�1(α(x))� σ holds by definition sinceε 2 L(R�), andσ� α(y)
holds since8p 2 L(R�) : p�1(α(x)) � α(y). Furthermore, for allp 2 L(R�),
and

p�1(σ) = fτ0 j existsτ 2 σ : τ:p= τ0g= fτ0 j 8q2 L(R�) : τ0 2 p�1(q�1(α(x)))g= \fqp�1(α(x)) j q2 L(R�)g � σ

R1[R2: α j=P+(F T ) Θ(x;R1[R2;y)
iff α j=P+(F T ) Θ(x;R1;y)^Θ(x;R2;y)
iff 8p2 L(R1) : p�1(α(x))� α(y) and8q2 L(R2) : q�1(α(x))� α(y)
iff 8p2 L(R1[R2) : p�1(α(x))� α(y)

R1R2: Note that we have assumedL(R1) 6= /0 andL(R2) 6= /0.

α j=P+(F T ) Θ(x;R1R2;y)
iff α j=P+(F T ) 9z(Θ(x;R1;z)^Θ(z;R2;y))
iff 9σ : α;z 7! σ j=P+(F T ) Θ(x;R1;z)^Θ(z;R2;y)
iff 9s; 8p2L(R1)8q2L(R2) : p�1(α(x))� σ andq�1(σ)� α(y) by (IA)

Due to our assumption thatL(R1) and L(R2) are non-empty, the last clearly
formula is clearly equivalent to8p2 L(R1R2) : p�1(α(x))� α(y). 2

3.2.4.3. Proof of Proposition 3.16

Let a andb two distinct labels.()) Assume thatL(R2) 6� L(R1), so that there existsp0 2 L(R2) such thatp0 62
L(R1). Define a valuationα by

α(y) = fag
α(x) = 8<:τ

������ Dτ = prefix-closure(L(R1[R2))8p2 L(R1) : τ:p= a; 8q2 L(R2nR1) : τ:q= b

9=;
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3.2. Hardness Results on Entailment

where prefix-closure(S) is the smallest prefix-closed superset ofS. Clearly,α
defines a valuation into sets of feature trees. From Lemma 3.17 we obtain that
α j=P+(F T ) Θ(x;R1;y), andα 6j=P+(F T ) Θ(x;R2;y), becausep�1

0 (α(x)) = fbg
andfbg 6� fag. HenceΘ(x;R1;y) 6j= Θ(x;R2;y).(() AssumeL(R2)� L(R1). Then apparently for allα(8p2L(R1) : p�1(α(x))�α(y)) implies (8p2L(R2) : p�1(α(x))�α(y)):
By Lemma 3.17, this is equivalent to saying that for allα the following holds: if
α j=P+(F T ) Θ(x;R1;y) thenα j=P+(F T ) Θ(x;R2;y); that isΘ(x;R1;y) j=P+(F T )
Θ(x;R2;y). 2

3.2.4.4. Dropping the Non-emptiness Restriction

We check that Proposition 3.16 also holds for the domain of possibly empty sets of
feature trees. We check Lemma 3.17 again: the interesting direction is the onefrom
left to right. To show this, pickRand anP (F T )-solutionα of Θ(x;R;y). We make a
case distinction on emptiness ofα(x) in order to prove8p2 L(R) : p�1(α(x))� α(y) (3.18)

α(x) = /0: By induction overRone shows that this impliesα(y) = /0 under the assump-
tion thatα j=P (F T ) Θ(x;R;y). Hence (3.18) holds trivially.

α(x) 6= /0: If α(y) = /0 then again (3.18) holds trivially. Otherwise, one checks thatα
is aP+(F T )-solution ofΘ(x;R;y). Then (3.18) follows from Lemma 3.17.
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3. Entailment for Set Constraints

3.3. Discussion and Related Work

3.3.1. Set Constraint Systems

In this section we compare set constraints over feature trees with standard set con-
straints. We briefly survey classes of standard set constraints (for moreexhaustive
overviews see [5, 88, 157]), and we consider two standard set constraints more closely,
namely projectionsx�a�1(k)(y) and term inclusionsa(x;y)�z.

3.3.1.1. Standard Set Constraints

A general set expression eis built from first-order termsx or a(e), union e1[ e2,
intersectione1\ e2, complementec, and projectiona�1(k)(e) [85]. All set constraints
mentioned below are interpreted in the domainP (T ) of sets of constructor trees. The
denotation of the projection terma�1(k)(σ) is defined by

a�1(k)(σ) =def fτ j 9τ1; : : : ;τn : a(τ1; : : : ;τk�1;τ;τk+1; : : : ;τn) 2 σg (3.19)

where 1� k � n = ar(a), and y�a�1(k)(x) holds under aP (T )-valuation α if
α(y)�a�1(k)(α(x)). A general set constraintis a conjunction of inclusions of the form
e� e0. A positive set constraintis built from positive set expressionsthat do not
contain the complement operator. Adefinite set constraint[85] is a conjunction of
inclusionsel � er between positive set expressions, where the set expressionser on
the right hand side of an inclusion are furthermore restricted to contain only variables,
constants and function symbols and the intersection operator (that is, no projection
or union). Heintze and Jaffar have called this class definite because every satisfiable
constraint of this class has a least solution.

Charatonik and Podelski [42] define the class ofset constraints with intersections(in-
clusions between set expressions built from variables, constructors, and intersection
only) and show them to be equivalent to definite set constraints. They also define the
class ofco-definite set constraints[44] whose (flattened) syntax is as follows:

ψ ::= a�x j x�y1[ : : :[yn j x�a(x) j x�a�1(k)(y) j ψ^ψ0
An essential property of co-definite set constraints is that they have a greatest solu-
tion if satisfiable (over finite as well as infinite trees). This propertyis dual to the
least model property of definite set constraints; hence the name “co-definite”. Other-
wise, both systems are not dual to each other. Devienne, Talbot, and Tison [58, 59]
have extended both definite and co-definite set constraints by so-called membership
expressions. Membership expressions are set comprehensions whose body is an ex-
istentially quantified conjunction of inclusionst 2 e between first-order terms and set
expressions.
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At the lower end of the scale of expressiveness,atomic set constraintsare inclusions
between first-order terms and no further set operators [85].Inclusion constraints over
non-empty setsInes [142] are inclusion between first-order terms (their syntax co-
incides with the syntax of atomic set constraints) interpreted over non-emptysets of
trees.

3.3.1.2. Projections

The selection constraintx[f ]y in our set constraint system FT�(ar;[) corresponds to
the projection constraintx�a�1(k)(y) in standard set constraints. There are two differ-
ences, though.

First, recall that the constraintx[f ]y requires all trees in the denotation ofx to have
the featuref . In addition, it constrainsy to the projection ofx at f : so x[f ]y is a
constraint on bothx andy. In contrast, the projection constrainty�a�1(k)(x) does not
restrict the possible values ofx: for every value ofx there is a solution ofy�a�1(k)(x). An
alternative set-up of our constraint system would have used two constraints torepresent
the meaning ofx[f ]y, namelyy= f�1(x) to express projection atf andx[f ]# to require
definedness off . The latter one and the labelling constraintahxi are used to define
non-trivial sets. In standard set constraints, this is expressed byset termssuch asa(y),
where the denotation ofa(σ1; : : : ;σn) is defined as follows.

a(σ1; : : : ;σn) =def fa(τ1; : : : ;τn) j τ1 2 σ1; : : : ;τn 2 σng (3.20)

A third alternative would have been a system based on feature terms likea( f :x),
a( f :x: : :), ( f :x), and( f :x: : :) whose denotation is defined similar to (3.20) with the
additional flexibility that label, feature, and arity information can be freely combined
or piece-wise omitted. Amongst these alternatives, the system FT�(ar;[) is intrigu-
ing by its simplicity and its similarity to the feature constraint system CFT over trees
which it analyses. Furthermore, the semantics of selection constraints inFT�(ar;[)
seems most appropriate for the analysis of selection constraints of CFT; see example
Dfail3 on Page 94.

An interesting property of the selection constraint is the validity of the following im-
plication overP (F T ).

x[f ]y ! (x= /0$ y= /0) (3.21)

Given two distinct featuresf andg, we can even express that emptiness of one variable
is equivalent to emptiness of another one (we exploit this in Chapter 4):9z(z[f ]x^z[g]y) $ (x= /0$y= /0) (3.22)
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3. Entailment for Set Constraints

In contrast, the projection constraintx�a�1(1)(y) does not entailx= /0$y= /0, since it has
a solution that mapsy to the setfbg andx to the empty set. However, in combination
with a set constructorx�a(y) a similar formula (albeit constructor dependent) holds:18

x�a(y1;y)^y1�a�1(1)(x) ! (x= /0$ y1= /0) (3.23)

In FT�(ar), we can express the projection constraintx�a�1(k)(y) as follows:[[x�a�1(k)(y)]] =def 9x0(x0[k]x^ahx0i^x0�y) (3.24)

Theorem 22 below makes precise what “expressing” means. Intuitively, labelling and
selection constraints in encoding (3.24) separate the two services of the projection
operatora�1(k): applied to a setσ, first determines a subsetσ0 of σ of trees that are
labelled witha and have akth subtree, and then collect thekth subtrees of all the trees
in σ0.19

Constructor trees can be embedded into feature trees; denote with[[�]] : T 7! F T the
canonical embedding which we have mentioned on Page 26. On constructor trees, the
constraint system CFT is a refinement of the constraint system RT of infinite construc-
tor trees [50] that is used in Prolog II [51]. To show this, it was proven in [197]that
the embedding[[�]] (extended to first-order connectives) preserves validity of arbitrary
first-order formulas over RT.

Analogously, FT�(ar;[) refine co-definite set constraints in a sense made precise by
the following theorem. Ifα is a P (T )-valuation then let[[α]] the P (F T )-valuation
that maps allx to f[[τ]] j τ 2 α(x)g. Consider the embedding[[�]] of co-definite set
constraintsψ into FT�(ar;[) constraintsϕ as defined by the clauses (2.5) and (2.6)
on Page 28 and clause (3.24) above.

Theorem 22 (Embedding Co-definite Set Constraints wrt. Greatest Solutions)

For all co-definite set constraintsψ without constraints of the form a�x, the greatest
P (T )-solution ofψ and the greatestP (F T )-solution coincide up to the canonical
embedding[[�]] of constructor trees into feature trees:α is the greatest solution ofψ if
and only if[[α]] is the greatest solution of[[ψ]].
Proof. Straightforward. 2
Notice that this theorem would fail to hold if the semantics ofσ[f ]σ0 did not require
all trees inσ0 to have the featuref . As an experiment, assuming the slightly weaker

18The inverse implication, of course, does not hold because the right handside does not mention the
labela.

19Notice in passing, that the inverse inclusiona�1(k)(y) � x cannot be expressed in FT�(ar). Doing
so,e. g., in order to embed definite set constraints [85], would probably require a term-based constraint
syntax as mentioned on the previous page.
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definition: σ[f ]σ0 if and only if σ0 = fτ0 j 9τ 2 σ : τ[f ]τ0g; then the greatest solution of

x� a(y)^y= b^x� a(z)^z= c

would mapx to the empty set (ifb 6= c), while the greatest solution of

x� y0^ahy0i^y0f1g^y0[1]y^bhyi^yfg
x� z0^ahz0i^z0f1g^z0[1]z^chzi^yfg

would mapx to the set of all feature trees that are labelled witha but that do not have
the feature 1.

Co-definite set constraints can express inconsistency, for example by

a�x^x�b$? if a 6= b:
whereas this is impossible in FT�(ar;[). In particular, FT�(ar;[) constraints cannot
express the co-definite set constrainta�x. However, it can be expressed in the first-
order theory of FT�(ar;[) as follows:9y(ahyi^yfg^:bhyi^y�x) wherea 6= b:
We conjecture that, using this trick, we can embed the full first-order theory ofco-
definite set constraints into the first-order theory of FT�(ar;[) such that validity is
preserved.

3.3.1.3. Finite versus Infinite Trees

Consider the following two constraints:

η1 =def x[f ]x
η2 =def x� a�1(1)(x)

Over sets of finite trees, the FT�(ar;[) constraintη1 impliesx= /0, because for every
solutionα the selectionα(x): f must be defined andα(x): f � α(x) holds; hence every
tree inα(x) must have the infinite pathfff : : : and therefore be infinite. In contrast, the
projection constraintη2 has the solutionα(x) = fb;a(b);a(a(b)); : : :g which is a set of
finite trees only.

3.3.1.4. Term Inclusion and Greatest Solutions

The set constrainta(x;y)� /0 (expressible asa(x;y)�z^ z�a^ z�b if a 6= b) has two
maximal but incomparable solutions over sets of constructor trees, namely the ones
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that map one variable to the empty set/0 and the other one to the full domainP (T ).
Maximality holds for both because the following equivalence is valid.

a(x;y)� /0 $ (x= /0_y= /0) (3.25)

In other words, the constrainta(x;y)� /0 has no greatest solution because emptiness ofx
andy is not independent from each other. Similarly, the constraintf (x;y)� f (a;a)[
f (b;b) has two maximal solutions but no greatest one.

Co-definite set constraints (over sets of constructor trees) and inclusion constraints
over sets of feature trees are two options to avoid this dependency. A third option is to
exclude the empty set [142].

Co-definite set constraints.If only constants or monadic terms are allowed on the
left hand side of an inclusion, the critical dependency cannot arise.

Constraints over sets of feature trees.The co-definite set constrainta(x;y)� /0 cor-
responds to the FT�(ar) constraintz� /0^ zf1;2g^ ahzi ^ z[1]x^ z[2]y which
entailsx= /0^ y= /0 (that is, thatboth xandy denote the empty set) due to for-
mula (3.21).

Constraints over non-empty sets of trees.If the empty set is excluded from the in-
terpretation domain, there are greatest solutions even if terms are admitted on
the left of an inclusion. For example, when Mishra’s set constraints (see Sec-
tion 2.3.2) are interpreted over non-empty path-closed sets, the critical depen-
dency cannot arise. To see this, observe thata(x;y)�z$ x�a�1(1)(z)^y�a�1(2)(z)
is a valid equivalence over path-closed sets (for the simple proof, see [43]).

The independence of emptiness between neighbouring projections can also simplify
the satisfiability test for systems of set constraints. Notice that the following implica-
tion between co-definite set constraints is not valid.

a(x1; x2)�a(y1; y2) ! (x1�y1^x2�y2) (3.26)

In contrast, the analogous FT� implication

x[1]x0^x�y^y[1]y0 ! x0�y0 (3.27)

is valid, and is part of the satisfiability check for FT�(ar) presented in Section 2.2.1.
Notice that implication (3.26) does hold over sets of constructor trees under the addi-
tional assumption that bothx1 andx2 denote a non-empty set. So it is a valid implica-
tion in the constraint system Ines [142] that excludes the empty set globally from the
interpretation domain of all variables.
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3.3.1.5. Decidability and Complexity of Set Constraints

Various decidability and complexity results have been obtained for different classes of
set constraints. For many the complexity of the satisfiability problem for the full class
of standard set constraints is very high.

Heintze and Jaffar [85] show the satisfiability problem for definite set constraints to
be decidable, thereby giving the first decidability result for a class of set constraints.
Aiken and Wimmers show the class ofpositive set constraintsto be decidable in NEX-
PTIME [10]. Gilleron, Tison, and Tommasi prove decidability for the satisfiability
problem of positive set constraints using so-called tree set automata [74]. Bachmair,
Ganzinger, and Waldmann [19] have noticed the equivalence of positive set constraints
to a certain first-order theory called themonadic class, and could thus show the sat-
isfiability problem of positive set constraints to be NEXPTIME-complete. Later, the
decidability result has been extended to include negated inclusion constraintse 6� e0
by various researchers [8, 39, 75, 199], and to projection by Charatonik and Pachol-
ski [40]. None of these extensions changes the worst-case complexity of the satisfia-
bility problem. Aiken, Kozen, Vardi and Wimmers, have studied complexity of satisfi-
ability for various subclasses of positive set constraints [7], defined by restrictions on
the arities of the function symbols in the given signature.

Charatonik and Podelski show that the satisfiability problem of both set constraints
with intersection and co-definite set constraints is DEXPTIME-complete[42, 44].The
result on set constraints with intersection has also settled the complexity of the sat-
isfiability problem of definite set constraints. Devienne, Talbot, and Tison [58, 59]
have applied tree automata techniques to solve set constraints with membership ex-
pressions (with respect to both the greatest and the least model semantics)and could
show that membership expressions do not change the DEXPTIME-completeness of
the satisfiability problem for either definite or co-definite set constraints, noraffect the
greatest-solution property of co-definite set constraints.

The two set constraint systems without any set operators apart from term construction,
atomic set constraints and inclusion constraints over non-empty sets Ines [85, 142]
have a cubic satisfiability problem [142]. For atomic set constraints, this result was
implicit in the existing literature [84, 85]. In contrast to the polynomial satisfiability,
the entailment problem for both classes is infeasible: we show it to be coNP-hard
in [140].

3.3.2. Tree Constraint Systems

In this section, we compare systems of set constraints with systems of treeconstraints,
both with respect to equality constraints and ordering constraints. Figure 3.9 sum-
marises the relationship between some of the mentioned constraint systems over trees
and sets of trees. The constraint systems occupy the nodes of the cube. They are
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Figure 3.9.:Related Tree and Set Constraint Systems
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arranged along three dimensions that tell whether a constraint system talks about con-
structor trees or feature trees (top – bottom), about equality or an ordering relation
(front – back), and about trees or sets of trees (left – right). The edges of the cube do
not imply any further formal relationship between the constraint systems at the nodes.

3.3.2.1. Equality Constraints over Sets and Trees

Set constraints over non-empty sets of trees are closely related to constraint system
over trees. This relation is tightest on the fragment of equality constraints. It was
noticed in [142] that the first-order theories of CFT and Ines coincide when their con-
straint languages are restricted to equality constraints. The analogous result holds
for FTne� (ar) and CFT. Intuitively, the following Theorem 23 says that we can solve
equality constraints over FTne� (ar) by unification. (Of course, we do not obtain the
quasi-linear complexity of unification [197] by simply applying our algorithm to an
equality constraint withx=y replaced byx�y^y�x.)

Theorem 23 (First-order Theory of Equality Constraints)
The first-order theories of equality constraints (including arity constraints) over fea-
ture trees and over non-empty sets of feature trees coincide.

Proof. This follows from the fact that all axioms of the complete axiomatisation of
CFT [20, 197] are valid for non-empty sets of feature trees.
Amongst the five axioms of the theory CFT in [197], four are immediately seen to
hold overP+(F T ): Functionality of features,8x8y8z(x[f ]y^ x[f ]z! y=z), clash
between different labels,8x(ahxi ^ bhxi ! ?) if a 6= b, clash of feature selection
at a tree with inappropriate arity,8x8y(x[f ]y^ xfgg) if f 62 fgg, and the axiom8x8y(xf f gg ! 9yx[f ]y). The first three are actually part of our satisfiability test for
FT�(ar) in Section 2.2.1. The fifth one is based on the notion ofdeterminants:A de-
terminant is a conjunction of the formx1=a1( f 1:y1)^ : : :^xn=an( f n:yn) for pairwise
distinct variablesx1; : : : ;xn, and looks as follows (wherẽ8ϕ denotes the universal clo-
sure ofϕ): 8̃9!x1; : : : ;xn(x1=a1( f 1:y1)^ : : :^xn=an( f n:yn)) (3.28)

Its validity in P+(F T ) is again easily seen. 2
Notice that axiom (3.28) does not hold (and so Theorem 23 fails) when the empty set
is admitted. For example, consider the following instance of (3.28),8x8y9!z(z=a( f :x;g:y)) � 8x8y9!z(ahzi^zf f ;gg^z[f ]x^z[g]y) ;
and notice that it does not hold overP (F T ), because

α j=P (F T ) :9z(z=a( f :x;g:y)) if α(x) = /0 andα(y) 6= /0 :
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3.3.2.2. Set Inclusion Constraints versus Tree Ordering Constraints

The constraint system FT� of ordering constraints over feature trees (not sets) is the
second closest relative of FT�(ar;[) [141, 143, 145]. In particular the fragment FT�
is, roughly, FT� transformed into a set constraint system.

The constraints in FT� coincide with those in FTne� (no arity and no union constraints)
where inclusion constraintsx�y are replaced by the inverse tree ordering constraints
y�x. FT� constraints are interpreted over feature treesτ whose labelling functionLτ
may be partial on the tree domainDτ. The ordering constraint is interpreted by

τ� τ0 iff Dτ � Dτ0 andLτ � Lτ0 (3.29)

In the following chapter, we exploit the close relationship between tree constraints
and set constraints over non-empty sets by applying techniques to the solving of set
constraints that have been originally developed for tree constraint systems.� The satisfiability test for FTne� (ar) in Section 2.2.1 is essentially the same as the

one we have given for FT� [143].� Surprisingly, also the cubic entailment test for FT� can be transferred almost
unchanged to FTne� [143]; see Section 3.1.� The same holds for the coNP- and PSPACE-hardness results for entailment with
existential quantification [141]; see Section 3.2.� An extension of FT�, called FT�(sort), that allows the labels of feature trees
to be partially ordered is discussed in [137]. It was shown that the satisfiability
test for FT�(sort) remains polynomial under certain assumptions on the partial
order of labels. It seems straightforward to also extend the satisfiability test for
FTne� (ar) to FTne� (ar;sort) along the lines of FT�(sort).

Notice in passing that higher fragments of the first-order theory of FT� and FTne� do not
coincide (see the Footnote 14 on Page 55.) For FT�, we have shown that entailment
with existential quantification is PSPACE-complete, both for the cases of finite and
infinite trees [141, 145]; the full first-order theory of FT� is undecidable, in both the
finite tree and the infinite tree case [145]. For FTne� (ar) and FT�(ar), the decidability
question and a precise complexity characterisation of entailment with existential quan-
tifiers is open. Undecidability for the first-order theory of FT�(ar;[) is likely [186].

3.3.2.3. Ordering Constraints over Feature and Constructor Trees

There are different options to extend the domainT of constructor trees by an ordering.
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3.3. Discussion and Related Work� One option is to enlargeT to also containtree prefixes[142], that is constructor
trees that may have unlabelled maximal paths. Tree prefixes can be ordered nat-
urally according to equivalence (3.29). OnT , this ordering collapses to equality.� A second, equivalent possibility is to distinguish a special constant symbol� and
define an order by requiring� � f (t) and t � t0 iff f (t)� f (t0)) (3.30)

for all f and tree sequencest;t0 of appropriate length. Paths leading to� corre-
spond to maximally unlabelled paths in tree prefixes.� A third option is to fix an order� on labels and to consider the ordering

τ� τ0 iff Dτ = Dτ0 andLτ � Lτ0 (3.31)

whereLτ � Lτ0 extends� path-wise to trees.

Orders on various classes of constructor trees have been considered in the context
of type systems for programming languages [34, 134]. Mostly, types are modelled
by finite constructor trees over a signature that contains a binary function symbol!
(arrow), where the ordering on trees with the arrow! as their top-level constructor
is monotonic (covariant) in the second position but antimonotonic (contravariant) in
the second one (see also Page 158 for the subtyping rule on functions). In this context,
the orderings (3.29) and (3.31) roughly correspond to what is callednon-structural
andstructural subtyping. Henglein and Rehof show entailment of ordering constraints
with respect tostructural subtyping to be coNP-complete [89] for finite types, and,
more recently, for infinite types [90]. None of the corresponding hardness results
relies on the arrow constructor. The entailment problem fornon-structuralsubtyping
constraints is PSPACE-hard [90] but the exact complexity is open.
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4.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 117

We consider a concurrent constraint programming language over records, that we
model by means of the constraint system CFT [197] over possibly infinite feature trees.
As common in concurrent programming, we consider non-terminating computations
meaningful. Typical examples for applications that are intended to run forever include
operating systems or web servers. We define a set-based analysis for this language in
terms of set constraints over feature trees, and we prove that it detects the inevitability
of a class of run-time errors. We proceed in two steps: First, we consider the sublan-
guage that contains only unguarded clauses and thus corresponds toconstraint logic
programming[104]. This allows us to use results from the theory of (constraint) logic
programming [105, 118] to prove correctness of our analysis for this fragment. Sec-
ond, we adapt our result toconcurrent constraint programsby considering guarded
clauses.

Constraint Logic Programming. The standard semantics for terminating constraint
logic programs is given by theleast modelof theircompletion[46, 118]. This choice is
natural for programs that always terminate because the least model is given by all pro-
cedure applications (i. e., goals) that terminate successfully in finite time. Tradition-
ally, constraint programs have been interpreted overfinite trees(even though modern
Prolog dialects have followed Prolog II [50, 51] in providing constraints over infinite
constructor trees).

In contrast, the standard semantics for possibly non-terminating constraint logic pro-
grams20 is given by thegreatest modelof the completion. Moreover, the natural inter-

20In logic programming the termperpetual processeshas been used synonymously [118].

91



4. Set-based Failure Diagnosis for CLP and CC

pretation of non-terminating logic programs is overinfinite trees[118]. The greatest
model is needed to give semantics to infinite computations that build data structures of
arbitrary size. For example, an infinite data structure is needed to explainan infinite
stream of messages.

So far, set-based analysis for (constraint) logic programs has focussed on terminating
computations and hence striven to approximate the least model semantics [69, 86–
88, 132]. Heintze and Jaffar state explicitly that they do not see any use for greatest
models [87]. Furthermore, set-based analysis has usually considered (constraint) logic
programs over finite trees.21 We base our set-based failure diagnosis on greatest mod-
els and constraints over infinite trees.

With every CLP programD we associate a set constraint over feature treesϕD such
that the greatest solutiongsol(ϕD) of ϕD is an upper approximation of the greatest
model of the program’s completion.

gm(D)� gsol(ϕD)
In order to prove this, we apply a technique that is well-known from abstract interpre-
tation [53]. We associate to every CLP programD over feature trees an abstract pro-
gramD# over sets of feature trees and prove that the semantics of the latter is an upper
approximation the semantics of the former. More precisely, ifgm(D) andgm(D#) are
the greatest models ofD andD#, respectively, then for every predicate symbolp the
maximal element ingm(D#)(p) includesgm(D)(p). Second, we prove that the great-
est model of the abstract programD# and the greatest solution ofϕD coincide (again,
up to the projection to maximal elements).

We can relate this approximation result of thedenotationalsemantics to theopera-
tional semantics by characterising finite failure overinfinite treesthrough the greatest
model.22 This allows us to infer finite failure of the CLP program from emptiness of
some variable ingsol(ϕ).
Our analysis of CLP programs is more flexible than the one that we give in the pa-
per [171]. There, we require the constraints in program clauses to be solved before
they can be analysed; here, we show how to analyse CLP program which freely use
constraints in unsolved form.

Concurrent Constraint Programming. The analysis of CC programs is given by
the analysis of the CLP program that we obtain by transforming all conditional guards

21 An analysis for Prolog II that approximates theleastmodel overinfinite trees seems to be much
more difficult than it occurs at first glance. This is due to the fact that infinite trees are defined by a
greatest fixed point construction, so that a corresponding analysis would have to approximate the least
fixed point of an operator that refers to the greatest fixed point of another one; this “alternation” seems
to make the analysis considerably harder.

22While results of Jaffar and Stuckey on infinite tree logic programming are closely related [107], the
exact result that we show seems not to be explicit in the literature. See Section 4.1.4.2 for details.
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into tell statements; this means that our analysis ignores the synchronisation behaviour
of conditional guards. This is one reason for our interest in inevitable failure: for most
CC programs with non-trivial recursions (over lists) say, the corresponding CLP pro-
gram that approximates it has more failed computation branches. Hence, diagnosing
possible failure in the CLP program would not imply possible failure in the original
CC program (see also Section 4.2.3).
While we can carry over the approximation result of the greatest model, the operational
interpretation ofgsol(ϕ) needs some more care: in CC programs, there may be state-
ments whose reduction blocks forever because a synchronisation condition is never
satisfied. For such CC programs in which every application can eventually reduce,
our characterisation of finite failure through the greatest model still holds. Since we
cannot guarantee statically that application will not block, we must weaken our result
for CC programs: We show that emptiness ingsol(ϕ) implies finite failure in every fair
execution of a CC programD unlessthere is an application that blocks forever.
In concurrent constraint programming, failure is considered a run-time error. This is in
contrast to CLP where failure is part of the backtracking mechanism. A CC program
has certainly an error if every fair execution leads to failure. In our programming ex-
perience with Oz, programs are also erroneous if they do not failonly becausesome
application blocks forever. In other words, emptiness ingsol(ϕ) correctly approxi-
mates a run-time property in CLP and CC programs that is useful for debugging.

4.1. Set-based Failure Diagnosis for CLP over Infinite
Trees

We define our set-based failure diagnosis in Figure 4.4 on Page 101. Before we discuss
it in detail, we consider some examples where we suppress irrelevant technical detail.
The reader unfamiliar with CC and CLP may want to consult the definition of the
language in Section 4.1.2 before reading on.

4.1.1. Examples

4.1.1.1. Basic Examples

We call a procedurep finitely failed if every fair execution of an applicationp(x)
inevitably leads to a failure. The procedurep in Dfail1 is obviously finitely failed in
this sense (ifa 6= b):

p(x) ahxi^bhxi (Dfail1)

With Dfail1 we associate the following FT�(ar;[) constraint (theanalysisof Dfail1):

p�x ^ ahxi ^ bhxi
93



4. Set-based Failure Diagnosis for CLP and CC

from which we infer finite failure ofp by noticing that it entailsp= /0. Slightly less
obvious but similar is the finite failure of procedurer in Dfail2:

p(x) ahxi
q(y) bhyi
r(z) p(z); q(z) (Dfail2)

The constraint associated withDfail2 states that every actual argument of the proce-
durep [q] must allow labelling witha [b], and thatzmust be a valid argument for both
proceduresp andq.

p�x ^ ahxi ^
q�y ^ bhyi ^
r�z ^ z�p ^ z�q

Since this constraint entailsr= /0, we conclude thatr is finitely failed. The procedurer
is also finitely failed in the next example which is still a little more complicated:

p(x) x[f ]x0^ahx0i
q(y) y[f ]y0^bhy0i
r(z) p(z); q(z) (Dfail3)

The analysis ofDfail3 is this one:

p�x ^ x[f ]x0 ^ ahx0i ^
q�y ^ y[f ]y0 ^ bhy0i ^
r�z ^ z�p ^ z�q

We reject the program because its analysis entailsr = /0. Notice that this were not
the case if the semantics ofσ[f ]σ0 did not require all trees inσ to have the featuref .
Assuming the weaker semantics,σ[f ]σ0 if and only if σ0 = fτ0 j 9τ 2 σ : τ[f ]τ0g, the
analysis ofDfail3 would have a solutionα with α(p) = α(x) = fa;b( f :a)g, α(q) =
α(y) = fa;b( f :b)g, andα(r) = α(z) = fag.
As the programDfail1 above indicates, our analysis can deal with clauses contain-
ing non-satisfiable constraints. More generally, we do not require the constraintsin
clause bodies to be solved before they can be analysed: our analysis is invariant under
equivalence transformations of CFT constraints. For instance, the analysis of the two
programs below is the same.

p(x) x[f ]y; x[f ]z (Dsolve1)

p(x) x[f ]y; y=z (Dsolve2)
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4.1.1.2. Guarded Clauses

Now consider a program with guarded clauses.

p(x1) η1 then ahx1i
p(x2) η2 then bhx2i
r(z) chzi; p(z) (Dsusp1)

In Dsusp1, the procedurer is considered erroneous. Its body requiresz to be labelled
with c, but at the same timezshould allow labelling with eithera or b according to the
clauses ofp. The analysis

p�x1[x2 ^ ahx1i ^ bhx2i ^
r�z ^ chzi ^ z�p ^ : : :

detects this because it entailsr= /0. On applicationr(u) it is not clear, however, whether
any of the clauses ofp will ever be executed. If both guardsη1 or η2 are never entailed,
the label inconsistency with respect tou will not be exhibited. So the fact that the
analysis ofDsusp1entails emptiness ofz implies finite failure of the procedurer unless
the application of to procedurep blocks forever.
The next program shows a similar phenomenon. There is no way to execute applica-
tions of p andq on the same argumentz without failure.

p(x1) η1 then ahx1i q(y1) η3 then chy1i
p(x2) η2 then bhx2i q(y2) η4 then dhy2i
r(z) p(z); q(z) (Dsusp2)

The analysis detects this the constraint associated withDsusp2entailsr= /0:

p�x1[x2 ^ ahx1i ^ bhx2i ^
q�y1[y2 ^ chy1i ^ dhy2i ^
r�z ^ z�p ^ z�q ^ : : :

4.1.1.3. Infinite Trees

A program that explicitly talks about infinite data structures is the following one.

p(x) x[f ]y; p(y) (Dinf1)

Reduction of the applicationp(z) will enter an infinite recursion, which will constrainz
to a feature tree with an arbitrarily long but finite path off ’s. The program is determin-
istic and will never fail. This program is accepted since its analysis doesnot entailx
or y to be empty:

p�x ^ x[f ]y ^ y�x

95



4. Set-based Failure Diagnosis for CLP and CC

In comparison, consider the following program and its analysis:

p(x) x[f ]x (Dinf2)

p�x ^ x[f ]x
Execution ofp(x) will instantaneously terminate and constrainx to an infinite tree
containing the pathfff : : : f . The greatest solutions of the analyses ofDinf1 andDinf2

coincide, but the need for (sets of) infinite trees has different reasons: inDinf1 it is due
to an infinite computation approximating an infinite tree with arbitrary accuracy, and
in Dinf2 due to a cyclic constraint.23

For a more realistic example consider the following procedure that reads an infinite
stream of variables (constructed with the featuresheadandtail, and the labelnil) and
then executes eitherS1 or S2, depending on whether the variable is labelled witha or b:

scan(xs) xs[head]x^xs[tail]xr then process(x); scan(xr)
process(x1) ahx1i then S1

process(x2) bhx2i then S2

(Dscan)

The associated constraint is this one:

scan�xs ^ xs[head]x ^xs[tail]xr ^ x�process^ xr�scan^
process�x1[x2 ^ ahx1i ^ bhx2i

In the context ofDscanboth of the following clauses are erroneous.

p(u) u[tail]w^w[head]w0^chw0i; scan(u) (Dscan1)

q(v) v[tail]w^nilhw0i; scan(v) (Dscan2)

An applicationp(y) (wrt. Dscan1) will fail since in procedurep a list is constructed
and passed toscanwhich contains an element that is not labelled witha or b. An
applicationq(y) (wrt. Dscan2) will fail since the argument passed toscanin procedureq
cannot be an infinite list.

The analysis ofDscan1contains the following constraint and, in conjunction with the
analysis ofDscan, entailsp= /0.

p�u ^ u[tail]w ^ v[head]w0 ^ chw0i ^ u�scan^ : : :
Similarly, the analysis ofDscan2contains

q�v ^ v[tail]w00 ^ nilhw00i ^ v�scan^ : : :
and entailsq= /0 in conjunction with the analysis ofDscan.

23As another remark to Footnote 21 on Page 92, notice that an analysis of Prolog II approximating
the least model over infinite trees would probably have to distinguish the programsDinf1 andDinf2.
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Programs D � set of all clausesp(x) S

Statements S ::= η (Tell Statement)j p(x) (Application)j S1; S2 (Parallel Composition)j skip (Null Statement)
Constraints η ::= x=y j ahxi j x[f ]y j xf f g j η1^η2

Configurations C ::= VDη [] S

Variables V � V (V a finite set)
Figure 4.1.:Syntax of CLP(CFT): Constraint Logic Programming over Feature Trees

4.1.1.4. Procedure Clause and Program Points

The procedurep in the programDchoice below is not finitely failed. Accordingly, the
analysis ofDchoicedoes not entailq= /0 so that we accept the program.

p(x) skip
p(x) ahxi; bhxi (Dchoice)

Yet, whenever the second clause ofp will be executed, failure will inevitably occur. In
order to detect this, we can introduce a new procedure for each clause ofp, yielding

p(x) p0(x) p0(x) skip
p(x) p00(x) p00(x) ahxi; bhxi (D0

choice)

In this program,p00 is finitely failed, corresponding to the fact thatthe second clause
of p in Dchoice is finitely failed. Accordingly, the analysis ofD0

choiceentailsp00= /0.

4.1.2. Constraint Logic Programming over Feature Trees

We assume a setV of variablesranged over byx;y;z, and an alphabetP of constants,
ranged over byp;q, which we callprocedure names.
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S1; S2 � S2; S1 (S1; S2); S3 � S2; (S2; S3) skip; S� S

consistent renaming of bound variables(α) V =V 0 η j=j η0 S� S0
VDη [] S � V 0Dη0 [] S0

Figure 4.2.:Structural Congruence of CLP(CFT)

4.1.2.1. Syntax

We define a simple concurrent constraint language over feature trees with unguarded
clauses, which we consider as a concurrent constraint language without guards.24 Its
operational semantics is defined by a transition system that corresponds to the standard
one for a constraint logic programming language. Therefore, we call this language
CLP(CFT). We shall also borrow the logic semantics of CLP for this language, and
make use of standard concepts from the CLP literature [105, 118].

The abstract syntax of CLP(CFT) is given in Figure 4.1. A programD consists of a set
of clauses p(x) S wherex is called theformal argument, andS the clausebody.25

Every clause body consists of a sets ofconstraintsη andprocedure applications p(x);
in p(x), the variablex is called theactual argumentof p. As constraint system we
fix CFT. We consider only unary procedures for ease of notation. This does not restrict
the expressiveness of the language if the constraints can express pairing: for CFT this
is the case if we assume at least two distinct features.

The formal argumentx of a clausep(x) S is bound with scopeS. All other variables
occurring inSare implicitly bound withinSby an existential quantifier. The variables
free in a statement Sor a constraint are denoted byfv(S) andfv(η). A clausep(x) S
does not contain any free variable.

Given a program of the formD = p1(x1) S1; : : : ; pn(xn) Sn, we denote withPD

the setfp1; : : :png of procedure names defined inD. We define thedefinition of p in D,
written Def(p;D) as the set of all clausesp(x) S in D. A configuration VDη [] S
consists of a statementS, aconstraint storeη, a collection of procedure definitionsD,
and a setV of variables such thatfv(S)[ fv(η) � V holds. Configurations describe
computation states. A configurationVDη [] S is well-formedif for every application
p(x) in D or Sthere is a corresponding procedurep2 PD. Throughout this chapter, we
use the term “configuration” to mean “well-formed configuration”.

We identify statementsS, definitionsD, and configurationsC up to consistent renaming
of bound variables and we assume once and for all that bound variables in anyS, D,

24We add guards in Section 4.2 and obtain a language that is essentially the committed choice lan-
guage ALPS considered by Maher in [120].

25The symbolD should allude to “definition”.
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VDη [] η0 �! VD η^η0 [] skip (TELL)
VDη [] p(x) �! V [ fv(S)nfygDη [] S[x=y] (APPLY)

if p(y) S2 D andV \ fv(S)� fyg
VDη [] S1 �! V 0D0η0 [] S2

VDη [] S1; S �! V 0D0η0 [] S2; S
(CLOSURE)

Figure 4.3.:Operational Semantics of CLP(CFT)

orC are pairwise distinct and distinct from the free variables. Furthermore,we identify
S, D, andC up to the smalleststructural congruence� that satisfies the equations
given in Figure 4.2; structural congruence makes parallel composition of statements
commutative and associative with neutral elementskip; two definitions are congruent
if they are identical up to consistent renaming of variables (α-renaming), and two
configurations are congruent if all their components are.

4.1.2.2. Operational Semantics

The operational semantics is given in terms of a one-step reduction relationon config-
urationsC. Reduction�! is defined in Figure 4.3 as the smallest binary relation on
configurations that satisfies the axioms (TELL) and (APPLY), and that is closed under
the inference rule (CLOSURE).

Tell. A tell statementη reduces without synchronisation by conjoiningη to the cur-
rent store. For technical reasons, we allow the constraint store to become non-
satisfiable.

Apply. If the procedurep is defined inD, then reduction of an applicationp(x) picks
one of the clausesp(y) S in D nondeterministically, and replacesp(x) by
S[y=x], that is by the clause bodyS with the actual argumenty replacing the
formal onex. The second side condition requires that the local variables inS
are fresh for the current configuration before they are added to the set of used
variables. Hence the bound variables may need renaming before reduction can
take place.

Closure. In combination with the structural congruence, the closure rule states that the
next reduction step forVDη [] Scan indeterministically deal with any application
or tell statement inS.
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For illustration of rules (TELL) and (APPLY), letD= p(x) x[f ]y^ahyi and consider:fzgD> [] p(z); bhzi �! fy;zgD> [] z[f ]y^ahyi; bhzi�! fy;zgD z[f ]y^ahyi^bhzi [] skip
The final configuration in this example contains a non-satisfiable constraint store. Such
a configuration is calledfailedwhich is considered a run-time error. This is in contrast
to constraint logic programming where failure is an integral part of the searchcontrol
mechanism (backtracking).

If an applicationp(x) has reduced with respect to one of multiple clauses ofp, then this
choice is never undone. One says that our language hascommitted choice semantics.
Notice that a committed choice without guarded clauses is not overly useful in practice.
For example, it is not clear how to define the length predicate on lists such that it would
terminate on every finite list. As mentioned initially, we are interested in CLP(CFT)
programs asrelaxationsof concurrent constraint programs (see Section 4.2).

4.1.2.3. Computations and Finite Failure

A computationis a maximal (and possibly infinite) sequence of configurations(Ci)n
i=0,

n� ∞, such that there existV, D, η, andSwith

C1 = VDη [] S and 8i < n : Ci �!Ci+1 :
A computation(Ci)n

i=0, is calledfinitely failed [105, 118] if there exists a (finite)
n0 < n such that the constraint store in configurationCn0 is inconsistent. A compu-
tation(Ci)n

i=0 is calledfair if every statement thatcanbe reduced in some configura-
tionCi , i < n, is eventually reduced. Thefinite failure set FFD of a given programD is
defined as follows:

FFD =def fp j fxg D> [] p(x) is finitely failed; p2 PD;x arbitraryg
We say that a procedurep2 PD is finitely failedif p2 FFD.26

4.1.3. Set-based Failure Diagnosis

We formulate our analysis in terms of set constraints over feature trees as defined in
Chapter 2. We also use the notationx= /0$y= /0 as an abbreviation for a corresponding
set constraint as defined on Page 81.

The analysis is defined in Figure 4.4 as a mappingA from CLP(CFT) programsD to
existential formulas over set constraints. With every program variablex we associate a

26Our definition ofFFD deviates slightly from the standard literature [105], where the finite failure
set is a set of “constrained atoms”p(x) η rather than a set of predicates:FFD = fp(x) η j fv(η)[fxgD η [] p(x) is finitely failedg. We use a more coarse-grained definition that suffices for our purpose
and simplifies notation.
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A(D) =
p̂2PD

A(Def(p;D))
A(Def(p;D)) = 9x1 : : :9xn(p�x1[ : : :[xn ^ n̂

i=1

Axi (Si))
if Def(p;D) = p(x1) S1; : : : ; p(xn) Sn

andx1; : : : ;xnp pairwise distinct

Ax(S) = 9y(A(S) ^ ^
y2fygx= /0$y= /0) if fyg= fv(S)nfxg

A(q(x)) = x�q

A(η) = η

A(S1; S2) = A(S1)^A(S2)
Figure 4.4.:Set-based Failure Diagnosis for Constraint Logic Programs over Feature

Trees

fresh constraint variable, and we write this constraint variable also asx. This simplifies
notation and eases reading. We also use procedure names as constraint variables. The
analysis interprets parallel composition “; ” as conjunction.

Procedures. The analysis of a procedurep defined bynp clausesp(xi) Si , 1� i �
np, considers all clause bodiesSi separately; for eachSi , a fresh variablexi is
introduced with respect to whichSi is analysed: ifAxi (Si) entailsxi = /0, then
every call to this clause will be finitely failed. The constraintp�x1[ : : :[ xn

states that all possible arguments forp must be possible arguments for one of
the clauses. If all thexi are constrained to the empty set, then so isp. In other
words, if all clauses ofp are finitely failed, then procedurep is finitely failed.27

Clause. The analysis of a statementSwith respect to a variablex makes the existential
quantification of the variables infv(S) explicit, and then states that all these
variables should denote the empty set if and only ifx does:^

y2fygx= /0$y= /0

27The existential quantifiers reflect the variable scope. This is technically convenient and it avoids the
need to supplement constraint simplification by a reachability analysis as for example in [173]. For the
purpose of failure diagnosis alone, we could as well introduce a fresh variable wherever an existential
quantifier occurs.
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Essential for our purpose is the direction from right to left: if any of they2 fv(S)
denotes the empty set and hence indicates a failure in statementS, thenx should
be forced to denote the empty set, too.

Application. The analysis of an applicationq(x) states that the actual argumentx
must be valid for the procedureq. In other words, the possible values forx are
bounded by the set of possible values that the formal argument of the procedureq
can take without failing.

Constraints. The analysis of a constraintη is justη itself. This exploits the fact that
we identify every CFT constraint with a set constraint over feature trees where
x=y is replaced byx�y^y�x.

Our analysis reflects the fact that constraints onall program variables may be the
reason for finite failure of a procedure, not only the formal parameters of procedures.
For illustration consider the following example.

Example 24 (Analysis of Failure on Local Variables)

Consider the procedure definition

p(x) ahyi; bhyi (Dlocfail)

with its associated analysis (slightly simplified):

p�x ^ 9y(y= /0$p= /0^ahyi^bhyi)
If a 6= b, then every reduction of the bodyahxi; bhxi will lead to failure; that is, every
computation ofp(x) is finitely failed and thusp2 FFDlocfail . The analysis detects this
becauseahyi^bhyi entailsy= /0, which, in combination withy= /0$p= /0, entailsp= /0.

Example 25 (Binary Trees)

In the following program the procedurer is finitely failed.

p(x1) x1=a(1:b;2:b) q(y) y=a(1:b;2:c)
p(x2) x2=a(1:c;2:c) r(zr) p(zr); q(zr) (Dcomp)

Finite failure ofr is detected through the analysis which entailsr= /0:

r�zr ^ zr�a(1:b;2:b)[a(1:c;2:c) ^ zr�a(1:b;2:c)
4.1.4. Correctness

Our failure diagnosis is correct in the sense that whenever it entails emptiness of some
procedure then this procedure is finitely failed.
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Theorem 26 (Detection of Finite Failure)

For all CLP(CFT) programs D and all p: If A(D) j=P (F T ) p= /0, then p2 FFD.

(Notice that a implied statement says that whenever the analysis of a CLP(CFT) pro-
gram is non-satisfiable over non-empty sets of feature trees, then the finite failure set
of D is non-empty: IfA(D) j=P+(F T ) ? thenFFD 6= /0. Cf. also Proposition 2.4.)

In the proof of Theorem 26 we exploit that CLP programs have a logic semantics that
is closely related to their operational semantics. The logic semantics is defined in
Section 4.1.4.1. The proof relies on two insights:

1. Emptiness in the greatest modelgm(D) of CLP(CFT) programs indeed implies
finite failure: this is stated in Theorem 30 and proven in Section 4.1.4.3.

2. The greatest solutiongsol(A(D)) of the analysisA(D) is an upper approximation
of the greatest model ofD: this is shown as Theorem 31 in Section 4.1.4.4.

Both theorems rely on the saturation property [159] of constraint systems that is intro-
duced in Section 4.1.4.2. Now the proof of Theorem 26 is as follows.

Proof. If A(D) j=P (F T ) p= /0, thengsol(A(D))(p) = /0. Hence, by Theorem 31, it
holds thatgm(D)(p) = /0, and this impliesp2 FFD by Theorem 30. 2
Finally notice that a corollary of Theorem 26 is the analogous statement for CLP(CFT)
over finite feature trees: Every finitely failed computation of a CLP program over
infinite trees also is a finitely failed computation over finite trees.

4.1.4.1. Logic Semantics and Consequence Operator

Every programD is associated alogic semanticsgiven by a first-order formula
compl(D) over CFT constraints. If the definition of procedurep in a programD is

Def(p;D) = p(x) S1; : : : ; p(x) Sn

andfyig= fv(Si)nfxg for all i, 1� i � n, thencompl(p) is defined as the predicate

compl(p) =def 8xp(x)$ (9y1S1 _ : : : _ 9ynSn)
where parallel composition “,” is interpreted as conjunction. The conjunction of these
formulas for all proceduresp in D is called Clark’s completion [46]:

compl(D) =def
p̂2PD

compl(p)
Let D be a program. AD-interpretationI is a function fromPD to subsets ofF T

and it induces an extensionI (F T ) of the structureF T in which everyp 2 PD is
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interpreted as the predicateI(p). Interpretations are ordered by pointwise set inclu-
sion. We denote asBD the greatestD-interpretation, which maps allp2 PD to F T ;28

A D-interpretationI is a modelof D if compl(D) is valid in the structureI (F T ).
In this case we writeI j= D (instead ofI (F T ) j= compl(D)). Likewise, we briefly
write I ;α j= S if compl(S) is valid in I under a valuationα. The greatest model of a
programD always exists and is denoted bygm(D). We writeD j= Φ if the formulaΦ
is valid in every model ofD.

The consequence operator TD : (PD!P (F T ))! (PD!P (F T )) is defined as fol-
lows, for allD-interpretationsI and allp2 PD:

TD(I )(p) =def

8<:τ 2 F T

������I ; [τ=x] j= 9yS; if
p(x) S2 D; andfyg= fv(S)nfxg 9=;

Here,[τ=x] denotes theF T -valuation that mapsx to τ and all other variables to itself.
Theω-times iterated application ofTD to BD is writtenTD#ω.

TD#ω =def

ω\
n=1

TD
n(BD)

SinceTD is a monotonic operator on the complete lattice(P (F T );�), the Knaster-
Tarski fixed point theorem guarantees the greatest fixed pointgfp(TD) of TD to exist and
to coincide with the greatest postfixed point ofTD (i. e., the greatestI with I � TD(I )).
4.1.4.2. The Saturation Property

A constraint logic program is calledcanonical[106] if the greatest fixed-point of its
consequence operator can be obtained by at mostω iterations fromBD, that is, if
gfp(TD) = TD#ω. In general, only inclusiongfp(TD) � TD#ω holds. Palmgren shows
that every constraint logic program over a constraint system X is canonical if Xhas the
saturation property ([159, Theorem 3.11], see also Theorem 29). A constraint system
has thesaturation property29 if for all infinite number of constraintsη1;η2; : : :

∞̂

i=1

ηi is satisfiable if and only if 8n< ∞ :
n̂

i=1

ηi is satisfiable:
Proposition 4.1

The constraint systems CFT and FT�(ar;[) have the saturation property.

28The notationBD alludes to (Herbrand) Base [118].
29The saturation property has nothing to do with the the notion of saturation used in Section 3.1.
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Proof. The claim for CFT follows from the fact that the set ofF T -valuations is a
compact metric space (with the order on valuations defined pointwise and in analogy
to the case of constructor trees [118]). The claim for FT�(ar;[) is trivial, since every
(finite or infinite) selector set constraint is satisfiable (Proposition 2.1). 2
This proposition specifically holds for infinite trees. The situation is different for
some other popular constraint systems: For instance, equational constraints over finite
or rational constructor trees do not have the saturation property.

Example 27 (Saturation fails for Finite Trees)

Fix infinitely manyx1;x2; : : : distinct variables and an arbitrary featuref ,
and define, for alli, the constraintηi by

ηi =def xi[f ]xi+1

Then every finite conjunction
Vn

i=1ηi is satisfiable over finite feature trees,
while the infinite conjunction

V∞
i=1ηi is not.

�
x1 = ��� f

f

Example 28 (Saturation fails for Rational Trees)

Fix infinitely many distinct variablesy1;y01;y2;y02 : : :, a fea-
ture f , and infinitely many distinct featuresf1; f2; : : : different
from f . Define, for alli, the constraintηi by

ηi =def yi[f ]yi+1^yi [fi]y0i
Then every finite conjunction

Vn
i=1ηi is satisfiable over ratio-

nal feature trees, while the infinite conjunction
V∞

i=1ηi is not.
Note that every solution of

V∞
i=1ηi must assign toy1 an infinite

tree which contains, for each of the featuresfi , a subtree with
featurefi at its root.

The failure of saturation does not depend on the availability of
infinitely many features. For example, given featuresg 6= f ,
labelsa 6= b, and distinct variableszi = z1

i ; : : : ;zi�1
i for all i, we

can also define:

�� �
y1 = � �� �

b

a

z1 = b a

a

b

f

f
g

g

g

f
f1

f
f2

f3

ηi =def zi[f ]zi+1^zi[g]z1
i ^ahz1

i i^ : : :zi[g]zi
i ^bhzi

ii
Theorem 29 (Palmgren: Saturation and Canonicity)
Every program D over a constraint system with the saturation property is canonical.

Proof. See Palmgren [159]. 2
Lemma 4.2
For all CLP(CFT) programs D: gm(D) = TD#ω.

Proof. Proposition 4.1 and Palmgren’s Theorem 29 imply thatgfp(TD) = TD#ω. This
implies the claim in combination with the fact thatgfp(TD) = gm(D). 2
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VDη [] S �!g VD η̃ [] S if

8<: η satisfiable and

η̃ a grounding ofη w.r.t. V
(GROUND)

Figure 4.5.:Ground Reduction of CLP(CFT)

4.1.4.3. Characterising Finite Failure

We show that, for CLP(CFT) programs, emptiness in the greatest solution is equivalent
to finite failure in the following sense.

Theorem 30 (Greatest Models and Finite Failure)
For all CLP(CFT) programs D and all p2 PD: gm(D)(p) = /0 if and only if p2 FFD.

Proof. gm(D)(p) = /0 is equivalent toD j= :9xp(x) and hence to8τ 2 F T : D j=:p(τ). By Proposition 4.3 this is equivalent to8τ 2 F T : p(τ)2GFFD and, by Propo-
sition 4.4, top2 FFD. 2
For the proof of the necessary Propositions 4.3 and 4.4 we need some additional ma-
chinery first. Letη̃ range over possibly infinite conjunctions of CFT constraints with
existential quantifiers, and note that every feature treeτ can be characterised by a for-
mula η̃ (in the sense thatfv(η̃) = fxg and every solution of̃η mapsx into τ). We callη̃
ground w.r.t. Vif all solutions ofη̃ coincide on allx2V. A configurationVDη [] S is
calledgroundif η is ground w.r.t.V. We call a constraint̃η a groundingof η w.r.t.V
if η̃ is ground w.r.t.V, entailsη and has the same free variables asη.

We now generalise the notion of configuration slightly by allowingη̃ as a constraint
store. Aground computation[105, 118] is a maximal sequence(Ci)n

i=0, n� ∞, such
that there existV, D, η, andSwhereη is ground,

C1 = VDη [] S; and 8i < n : Ci �! � �!g Ci+1 :
A configurationC is called[ground] finitely failed if all fair [ground] computations
issuing fromC are. Theground finite failure set GFFD of a programD is defined as
follows

GFFD =def

8<:p(τ) ������ fxgDη [] p(x) is ground finitely failed;
α j= η impliesα(x) = τ; p2 PD; 9=;

Figure 4.5 defines agroundingrelation between configurationsC1 andC2 that holds
if C1 andC2 are the same except for the constraint store, where that ofC2 is a grounding
of that ofC1. Ground reductionis defined as the composition�! ��!g of reduction
with grounding.
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Ground reduction is interesting for us due to its close relation to the logic semantics
of programs. By a classical result from (constraint) logic programming, the following
holds (see,e. g., [105, Theorem 6.1 (7)]).

GFFD = BDnTD#ω (4.1)

In combination with canonicity, we obtain the following proposition.

Proposition 4.3

For all CLP(CFT) programs D, p2 PD, andτ 2 F T : D j= :p(τ) if and only if p(τ)2
GFFD.

Proof. D j= :p(τ) if and only if τ 62 gm(D)(p). This is equivalent toτ 62 TD#ω(p)
by Lemma 4.2 which is clearly equivalent toτ 2 (BDnTD#ω)(p). By Equation (4.1),
however, this holds if and only ifp(τ) 2GFFD. 2
The next proposition states that the finite failure set and the ground finite failure set
for CLP(CFT) programs coincide. While this is not a difficult result we have not been
able to find it in the literature.

Proposition 4.4 (FF and GFF coincide forCLP(CFT))
For all p 2 PD: p 2 FFD if and only if 8τ 2 F T : p(τ) 2GFFD.

Proof. The implication from left to right holds, since every finitely failed computa-
tion of fxgDη [] p(x) induces a finitely failed computation offxgDη̃ [] p(x) if η̃ is a
grounding ofη w.r.t. fxg. For the converse, assumep 62 FFD and let(Ci)∞

i=1 be a fair
computation withC1 = fxgD> [] p(x) that is not finitely failed. (The case of finite
computations is simpler.) Let, for alli, ηi be the constraint store ofCi . Since the
computation is unfailed,ηi is satisfiable for allfinite i� n. Hence,

V∞
i=0ηi is satisfi-

able by Proposition 4.1. IfV = S∞
i=0 fv(ηi), then there exists a grounding of

V∞
i=0ηi

w.r.t. V; hence there exist groundings̃ηi of all ηi w.r.t. fv(ηi). From these we can
easily construct an infinite fair and unfailed ground computation forfxgD η̃1 [] p(x).
Hencep(τ) 62GFFD.30 2

30An alternative proof can be based on Jaffar and Stuckey’s result [107] whichsays that, for pro-
gramsD over infinite trees,TD#ω equalsBDn[FFD] where[FFD] is the set ofground instancesof FFD[FFD] = 8<:p(τ) ������ fxg[ fv(η)Dη [] p(x) is finitely failed, and

there is a solutionα of η with α(x) = τ

9=;
By standard results from constraint (logic) programming, this result implies that[FFD] =GFFD. Thus,

it remains to show that[FFD](p) = F T if and only if p2 FFD. To prove the non-trivial direction from
left to right we need an argument based on saturation similar to the one thatwe used above.
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4.1.4.4. Approximating the Greatest Model

We show that the greatest model of an arbitrary CLP(CFT) program is approximated
by the greatest solution of the associated analysis.

Theorem 31 (Approximating the Greatest Model)
For all CLP(CFT) programs D: gm(D)� gsol(A(D)).
Proof. We apply a technique which is well-known in abstract interpretation [53]. We
associate to every programD over CFT an abstract programD# over FT�(ar;[) and
prove that the consequence operatorTD# approximatesTD. Let the function sup map a
D#-model to aD-model that maps everyp2 PD to the maximal element ingm(D#)(p).
Then the fact thatTD# approximatesTD implies

gm(D)� sup�gm(D#)
(Proposition 4.10). Then we characterise our analysis throughgm(D#) (Corrollary 32)

sup�gm(D#) = gsol(A(D))
and concludegm(D)� gsol(A(D)).31 2
The rest of this section is devoted to the completion of this proof. For simplicity, we
shall assume throughout this section that every procedure is defined by exactly two
clauses

Def(p;D) =def p(x) S1; p(x) S2

wherefy1g= fv(S1)nfxg andfy2g= fv(S2)nfxg
Generalisation to then-ary case is straightforward. We abstract the multiple clause
definitionDef(p;D) by a single clauseDef(p;D)# which is defined as follows:

Def(p;D)# =def p(x) Bp

Bp =def

0BB@ x�x1[x2 ^V
y2fy1gx1= /0$y= /0 ^ S1[x1=x] ^V
y2fy2gx2= /0$y= /0 ^ S2[x2=x] 1CCA

Theabstract program D# associated with a programD is given by the set ofDef(p;D)#

for all p 2 PD. The associated operatorTD# is defined likeTD with BD replaced by
BD# = P (P (F T )).
Lemma 4.5
For all CLP(FT�(ar;[)) programs D: gm(D#) = TD##ω

31This deviates from the proof given in [171] which shows the result directly.
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Proof. From Proposition 4.1 and Palmgren’s Theorem 29 we obtaingfp(D#) = TD##ω.
The claim follows fromgm(D#) = gfp(TD#). 2
The abstraction of anF T -valuationα to aP (F T )-valuationα# is defined byα#(x) =fα(x)g, and the abstraction of aD-interpretationI to aD#-interpretationI # is defined
by I #(p) = P (I (p)).
Lemma 4.6

For all F T -valuationsα, all p 2 PD, and all interpretationsI :

1. If α j=F T η thenα# j=P (F T ) η.

2. If α(x) 2 I (p) thenα#(x) 2 I #(p).
Proof. The first claim is proven by a simple check of all primitive constraints. The
second is obvious by definition ofI #. 2
Propositions 4.7 and 4.8 establish two essential properties of the abstract programD#.
In combination they show that every postfixed point ofTD induces one ofTD#

(Lemma 4.9).

Proposition 4.7 (Singleton Property)

For all D, I , and p2 PD: If I � TD(I ) andτ 2 I (p) thenfτg 2 TD#(I#).
Proof. Let p2 PD andτ 2 I (p). AssumeI � TD(I ). Without loss of generality we
assume that

I [τ=x] j=F T 9y1S1 :
Pick τ such thatI [τ=x][τ=y1] j=F T S1 and defineα = [τ=x][τ=y1]. From Lemma 4.6
one easily obtains

I #;α# j=P (F T ) S1

Furthermore, sinceα# mapsx and all variables infy1g to a non-empty set, we have

I #;α# j=P (F T ) V
y2fy1g x= /0$y= /0^S1

Clearly, this implies

I #; [fτg=x] j=P (F T ) 9x19x2

0BB@ x�x1[x2 ^9y1
V

y2fy1g x= /0$y= /0^S1[x1=x] ^9y2
V

y2fy2g x= /0$y= /0^S2[x2=x] 1CCA
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because we can extend[fτg=x] by mappingx1 to fτg, y1 to α#(y1), and all ofx2 andy2
to the empty set. But this is just

I #; [fτg=x] j=P (F T ) 9x19x29y19y2Bp

which by definition ofDef(p;D)# impliesfτg 2 TD#(I #). 2
Proposition 4.8 (Union Property)

For all D and all D#-interpretationsJ : If J has a greatest element for all p2 PD, then
TD#(J )(p) also has a greatest element for all p2 PD.

Proof. Let p 2 PD andσ1; : : : ;σn 2 TD#(J )(p). Let p(x) S be the unique clause
for p in D# and letfyg = fv(S)nfxg. Defineαi(p) = σi , andαmax(p) = Sn

i=1σi . By
definition ofTD# this implies that8i;1� i � n : J ;αi j= 9yS:
It suffices to show that

J ;αmax j= 9yS

This can be shown by a structural induction overS. For the base case given by con-
straintsη we exploit the fact that solutions of FT�(ar;[) constraints are closed under
unions (Lemma 2.2); for the base case given by applicationsp(y) we use the assump-
tion thatJ has a greatest element and, hence, is closed under union, too. 2
Proposition 4.9 (Abstraction Property)

For all D and D-interpretationsI : If I � TD(I ) then I#� TD#(I#).
Proof. AssumeI � TD(I ), and letp 2 Pp and σ 2 I #(p). We have to show that
σ 2 TD#(I #)(p). By definition ofI # we know that8τ 2 σ: τ 2 I (p). By the Singleton
Property we know that8τ 2 σ : fτg 2 TD#(I #); soσ2 TD#(I #) follows from the Union
Property. 2
Let the function sup map everyσ 2 P (P (F T )) to its greatest element if it exists.
Somewhat sloppily, we also use sup as a function that maps aD#-interpretationJ to a
D-interpretation sup(J ) = I where, for allp2 PD, I (p) = sup(J (p)).32

Proposition 4.10 (Abstraction of Greatest Models)

For all D: gm(D)� sup�gm(D#).
32sup is to counterpart of the abstraction function which, in the abstract interpretation framework, is

called theconcretisationfunction.
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Proof. Sincegm(D) = TD#ω by Lemma 4.5,gm(D) is a postfixed point ofTD; i. e.,
gm(D) � TD(gm(D)). By Proposition 4.9, this impliesgm(D)# � TD#(gm(D)#), so
gm(D)# is a postfixed point ofTD#. But sincegm(D#) = TD##ω is the greatest postfixed
point of TD#, we obtaingm(D)# � gm(D#). By the Union Property,gmD# is closed
under unions, and hencegm(D)� sup�gm(D#). 2
Now we show that, for all CLP(CFT) programsD, every postfixed point ofTD# induces
a solution induces a solution ofA(D) and vice versa. As a consequence, we obtain that
the greatest model ofD# coincides with the greatest solution ofA(D) up to sup.

Lemma 4.11 (Postfixed Points and Solutions Coincide)

For all CLP(CFT) programs D, all D#-interpretationsJ andF T -valuationsα:

1. If J is closed under unions, thenJ � TD#(J ) impliessup�J j=P (F T ) A(D).
2. If α j=P (F T ) A(D) thenα#� TD#(α#).

Proof. Fix D, let p2 PD, and define9 jx Bp = 9x19x29y19y2Bp. Notice that9 jx Bp is
of the form9x19x2(x�x1[x2 ^ B1

p ^ B2
p)

and thatA(Def(p;D)) is of the form9x19x2(p�x1[x2 ^ A1 ^ A2)
where theBi

p andAi are identical, except thatAi contains a constraint of the formy�q
if and only if Bi

p contains an applicationq(y).
1. If J � TD#(J ), then for allσ 2 J (p): J ; [σ=x] j=P (F T ) 9xBp. By the Union Pro-

perty and sinceJ is closed under unions, this impliesJ ; [sup(J (p))=x] j=P (F T )9 jx Bp, so there existσ1;σ2 with

J ; [sup(J (p))=x][σ1=x1][σ2=x2] j=P (F T ) x�x1[x2 ^ B1
p ^ B2

p :
Defineα = [sup(J (p))=x][σ1=x1][σ2=x2]. From sup(J (p))� σ1[σ2 we easily
obtain sup�J ;α j=P (F T ) p�x1[x2. It remains to check that

sup�J ; [σ1=x1][σ2=x2] j=P (F T ) A1^A2 :
Let q(y) be an application inBi

p, i 2 f1;2g, and letα0 extendα such thatJ ;α0 j=
q(y). Thenα0(y) 2 J (q) holds. SinceJ is closed under union, this implies
α0(y)� sup�J (q), and hence sup�J ;α0 j=P (F T ) y� p.
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2. If α j=P (F T ) A(D), then there existσ1;σ2 such that

α[σ1=x1][σ2=x2] j=P (F T ) p�x1[x2 ^ A1 ^ A2

Let σ 2 α#(p). To proveα#� TD#(α#) it suffices to show that

α#; [σ=x][σ1=x1][σ2=x2] j=P (F T ) x�x1[x2 ^ B1
p ^ B2

p

Defineβ = [σ=x][σ1=x1][σ2=x2]. By definition of α#, σ 2 α#(p) implies σ �
α(p). From α(p) � σ1[ σ2 we obtain thatβ j=P (F T ) x�x1 [ x2. Now let
y�q be an inclusion occurring inAi , i 2 f1;2g, and letα0 be an extension of
α[σ1=x1][σ2=x2] such thatα0 j=P (F T ) y�q. Henceα0(y)�α(q) which implies
that α0(y) 2 α#(q); so there exists an analogous extensionβ0 of β such that
α#;β0 j=P (F T ) q(y). 2

Corollary 32 (Characterisation of Set-based Analysis)

gsol(A(D)) = sup�gm(D#)
Proof. By Lemma 4.11, case(2), gsol(A(D))# is a postfixed point ofTD# and hence
gsol(A(D))# � gm(D#) since gm(D#) is the greatest postfixed point ofTD#. By
Lemma 4.11, case(1), gm(D#) is a solution ofA(D) since it is closed under unions.
Hence,gm(D#)� gsol(A(D)). 2
4.1.5. Analysing Constructor Tree Equations

Our analysis naturally generalises to constructor tree equations:

Ap(x=a(y1; : : : ;yn)) = ahxi^xf1; : : : ;ng^ n̂

i=1

x[i]yi (4.2)

This analysis is natural since it is just our analysis of constraints up to the canonical
interpretation of constructor tree equations as CFT constraints (see Page 27). The
corresponding analysis ofx=a(y) in terms of co-definite set constraints would be

Ap(x=a(y1; : : : ;yn)) = x�a(y1; : : : ;yn)^ n̂

i=1

yi�a�1(i) (x) (4.3)

In terms of FT�(ar;[) constraints, there is no reasonable alternative to (4.2). There
seems to be an alternative to the analysis (4.3) in terms of set constraintsover construc-
tor trees, though: one might wonder whether it is possible to strengthen the analysis of
equations by mapping equations to equations.
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Programs D � set of all guarded clausesp(x) η then S

Figure 4.6.:Syntax of Guarded Clauses

VDη [] p(x) �! V [fzg Dη [] S[x=y] (GUARDAPPLY)
if

8<: p(y) η0 then S 2 D; fv(S)nfyg= fzg
V \ fv(S)� fyg; η j=F T 9z(η0[x=y])

Figure 4.7.:Operational Semantics of CC(CFT)

Ap(x=a(y)) ?= x�a(y)^a(y)�x (4.4)

The immediate advantage of deriving stronger equality information is that equations
can be handled much more efficiently than inclusion constraints. This analysis is, how-
ever, incorrect because it invalidates Theorem 26: the programDcstr below contains no
finitely failed procedure, but the analysis according to (4.4) is non-satisfiable.

p(x1) x1=a(b;b); q(y) y=a(u;v); p(y)
p(x2) x2=a(c;c); r(zr) zr=a(b;b); q(zr)
s(zs) zs=a(c;c); q(zs) (Dcstr)

The analysis ofDcstr according to(4:4) is:

p�a(b;b)[a(c;c) ^
q�y ^ y�a(u;v) ^ a(u;v)�y ^y�p^
zr=a(b;b) ^ zr�q ^ zs=a(c;c) ^ zs�q

This constraint is non-satisfiable, because it entails

a(b;b);a(c;c) � a(u;v) � a(b;b)[a(c;c)
which is non-satisfiable:x andy must not denote the empty set sincea(b;b)� f (x;y)
implies b�x and b�y. Since f (x;y)�a(b;b)[ a(c;c) either α(x) = α(y) = fbg or
α(x) = α(y) = fcgmust hold In both cases, eithera(c;c)� f (x;y) or a(b;b)� f (x;y) is
not satisfied.
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4.2. Set-based Failure Diagnosis for CC over Infinite
Trees

We now consider the concurrent constraint language that we obtain by extending the
language CLP(CFT) by guarded clauses. We adapt the analysis and the correctness
proof. A guarded clausehas the form defined in Figure 4.6. Call CC(CFT) the corre-
sponding extension of CLP(CFT). Apparently, unguarded clauses are the special case
of guarded clauses with trivial guards:

p(x) y=y then S

The operational semantics of application with guarded clauses is adapted in Figure 4.7.

Guarded Apply. Reduction of an applicationp(x) may pick a clausep(y) η0 then S
only if the constraint storeη in the current configuration entailsη0.

Define, for every programD the unguarded approximationug(D) by replacing every
guarded clause with an unguarded one wherethen is replaced by parallel composition:(η then S) ; η; S

Then define the analysis of a CC(CFT) programD via the analysis of its unguarded
approximation:A(D) = A(ug(D)).
4.2.1. Blocked Reduction or Finite Failure

In contrast to unguarded clauses, it is possible that an applicationp(x) never re-
duces because the guards of all clauses ofp are never entailed. We say thatp(x)
blocks forever. Call a procedurep blocked foreverif in every computation issuing
from fxgD> [] p(x) at least one application will block forever. For a trivial example
consider the following statement.

p(x) ahx0i then bhx0i
q(y) p(z)

No computation issuing from a call toq can accumulate enough information onz in the
constraint store to entail or disentail9x0ahx0i. Hence the callp(z) will never reduce.
For another example consider:

p(x) x[f ]y; p(y)
q(y) z[f ]zthen skip
r(z) p(z); q(z)
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Reduction of the applicationr(u) will constrainu to a tree with a finite pathfff : : :f of
arbitraryfinite length; yet, the guardu[f ]u in the clause ofq (which asks whetherx
denotes a tree with aninfinitepathfff : : :) will never be entailed.

Hence, for CC(CFT) our correctness result must be weakened with respect to the re-
sult for CLP(CFT). It still shows that and to what degree certain run-time errors are
detected.

Theorem 33 (Detection of Finite Failure or Blocked Reduction)

For all CC(CFT) programs D: If A(D) j=P (F T ) p= /0 then p either finitely fails or
blocks forever.

Proof. By contradiction. AssumeA(D) j=P (F T ) p= /0 and suppose that there is a com-
putation(Ci)n

i=1 of fxgD> [] p(x) which does neither finitely fail nor block forever.
Clearly, this computation induces a computation ofug(D) that neither fails nor blocks
forever, since application of an unguarded clause is possible without any side condi-
tion. Theorem 26 implies thatA(ug(D) does not entail emptiness for any procedure,
and thereforeA(D) = A(ug(D) does not. 2
4.2.2. Blocked Reduction and Run-time Errors

In most cases, an infinitely blocked application can be considered erroneous. Under
this assumption, Theorem 33 states that our analysis indeed detects certain run-time
errors in concurrent constraint programs automatically. Studies in the expressiveness
of concurrent computation may take an alternative point of view, namely that a blocked
application simply is not observable and thus (observationally) equivalent to the empty
programskip. For example, encodings of lazy functional computation with logic vari-
ables [152, 170] block the reduction of statements that arenot neededfor the overall
result. In these encodings, all blocked statements couldin principle be woken with-
out the danger of inducing additional run-time errors. More delicate are encodings of
choice [150, 158]. For example, the program

p(x) ahxi then S1

p(x) bhxi then S2: : : p(z) : : :
is, from this point of view, equivalent to the parallel composition

p(x) ahxi then S1

q(x) bhxi then S2: : : p(z); q(z) : : :
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because the involved guards are mutually exclusive so that eitherp(z) or q(z) is guar-
anteed to block forever. The correctness of such choice encodings crucially relies on
the fact that at most one of the encoded branches (S1 or S2) is executed because they
might perform incompatible operations.

For programs that rely on blocked reduction as a programming technique and hence
do not consider it an error, Theorem 33 can still be used to explain our analysis. How-
ever, it may be necessary to interpret emptiness in the greatest solutionas a warning
rather than an error message. The information that some computation is unfailed only
becauseit does block forever is important debugging information anyway.

4.2.3. Inevitable Failure versus Possible Failure

Apart from theinevitability of errors it would we useful to also obtain information
about thepossibilityof errors (that is, whether there existsat least onefinitely failed
computation of a program). This is true in particular for non-deterministic languages.

Can we improve Theorem 33 accordingly? The answer isno since our analysis ap-
proximates conditional guards as tell statements. In most cases, this approximation
yields programs that trivially have one failed computation. For illustration, notice that
many programs operating on lists will contain a guarded choice of the typical form:

p(x1) x1=nil then S1

p(x2) x2[head]y^x2[tail]zthen S2

The procedurep expectsx to be constrained to a (tree modeling a) list; in this case
it does not block forever and is (supposedly) unfailed. In its unguarded abstraction,
however,

p(x1) x1=nil ; S1

p(x2) x2[head]y^x2[tail]z; S2

the applicationp(x) has one trivially failed computation ifx is constrained at all; even
if x is properly constrained to a list and has labelnil or cons.

4.2.4. Inevitable Failure as a Debugging Criterion

The choice of inevitable failure as a criterion for faultiness of a program deserves some
discussion. Why, in particular, is it not possible to do without the set-based analysis
altogether and simply run the program for a limited amount of time?

In the CLP case, the answer is mostly positive: If a CLP program is inevitably failed,
then every run of the program will eventually exhibit it. Of course, it is difficult to
know beforehand whether the running program or the constraint solver will exhibit this
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error earlier, but in practice there is a certain chance that simply running the program
is the better alternative. On the other hand, if a CLP program fails then one knowsthat
it is possiblyfailed, which is a stronger diagnostics in the CLP case and hence clearly
desirable.

In the CC case, the answer is negative: Simply running a CC program is not sufficient
to detect the error “inevitable failure or blocked reduction”: If one observes a blocked
application during program reduction one does not know(i) whether this application
will indeed blockforever, and(ii) even if one can prove this one does not know whether
an error is preventedby the factthat the application blocks (in other words, whether
an error would occur could the application be unblocked).

A second question may come to mind: Why not simply test a CC program by running
its unguarded approximation instead,i. e., by ignoring synchronisation during testing?
This is not useful, since possible failure of the CLP approximation is not an interesting
debugging criterion as shown in the previous section.

4.3. Related Work

In the logic programming community, the status of types is more controversial thanin
the functional programming community. In particular, the notion of atype erroris less
clear in logic programming than it is in functional languages, since the semantics of
logic programs is based on predicate logic in which every syntactically well-formed
expression has a meaning. In operational terms, there is no inherent distinction be-
tween type error and a logicfailure in logic programming. For an overview of several
approaches to types in logic programming see Pfenning’s collection [164], and the
recent report by Meyer [122].

Yardeni and Shapiro [220] were the first to suggest that a type in logic programming
should be an upper approximation of the program’s least model semantics. Similarly,
our failure diagnosis computes types of CC programs as upper approximations of the
program’sgreatest model semantics. Such types pertaining to the denotational se-
mantics of programs have been calledsemantic typesby Heintze and Jaffar [87], in
contrast to types pertaining to the operational semantics. Yardeni and Shapiro [220]
gave a tuple-distributive abstractionYP of the consequence operatorTP. Heintze and
Jaffar [85] defined an operatorTP based on set-substitutions and showed that is more
accurately thanYP approximated the least model semantics.

Mishra gave an analysis for logic programs in terms of constraints path-closed sets,
and proven that his analysis approximated the least model semantics [132]. It hasbeen
noticed, however, that his analysis was so weak that it rather approximated the great-
est model semantics [87, 171]. The characterisation of the greatest model semantics
(for logic programs over infinite trees) in terms of finite failure, as we have discussed
it above, is original to our paper [171]. Yardeni, Frühwirth, Vardi, and Shapiro [69]

117



4. Set-based Failure Diagnosis for CLP and CC

characterised the membership problem in the least model of a logic program in a sub-
class of so-called unary-predicate programs based on tree automata. Devienne,Tison,
and Talbot present an implementation of their analysis based on tree automata [201].

Charatonik and Podelski [45] show that set-based analysis can be used to approx-
imate temporal properties of logic programs that are intended to describe possibly
non-terminating computations.
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In this chapter, we extend the failure diagnosis from CC to a large sublanguage of Oz
with higher-order procedures, cells, feature tree constraints, and conditionals: that is,
our analysis comprises essentially the whole Oz Programming Model (OPM) accord-
ing to [195], except that we fix CFT as the underlying constraint system in order to
incorporate records. OPM is considerably more expressive than CC due to the pres-
ence of higher-order procedures (and cells). Nonetheless, the extension of our failure
diagnosis is rather smooth. This is a desirable situation because it allows one to under-
stand the analysis for the simpler first-order fragment first.

On the other hand, the problem of correctness of our diagnosis for OPM becomes fun-
damentally harder in contrast to CC due to the presence of higher-order procedures.
The correctness proof for CC in the previous chapter is based on the logic semantics
borrowed from constraint logic programming. An analogous argument is not available
for Oz since there is no denotational semantics for Oz, even with cells put aside.33 No-
tice also, that it is not easily possible to reduce a program with higher-order procedures
to a first-order program. Therefore, a correctness proof for OPM probably has to argue
directly on the operational semantics.

In an experimental implementation of our analysis for Oz, we have found it useful
for debugging and the automated detection of errors. We illustrate the analysis bya
number of examples, and we provide a set of style conventions that summarise the
intuitions underlying the analysis. The material presented in this chapter has anexplo-
rative character for two reasons. First, we leave open the question of how to prove the
diagnosis correct. Second, the integration of our diagnosis into a production quality

33It is an open research problem how such a denotational semantics would look like, in particular
since it would have to subsume the denotational semantics of both CC and lambda calculus.
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compiler and its feasibility and scalability needs to be explored. So the problem of
automated failure diagnosis for Oz is left unsettled, but we hope that this chaptercan
serve as a source of inspiration for future research.

We also take a closer look at conditionals. As we shall see, a careful analysis of
conditionals is crucial for the accuracy of the failure diagnosis. More specifically, the
immediate extension of our analysis from CC to OPM (with higher-order procedures)
yields a less accurate analysis, in particular due to the analysis of conditionals. As a
remedy, we provide a simple syntactic condition on conditionals to avoid this problem.
More generally, we notice that both cost and accuracy of the analysis can be drastically
improved if the data flow through conditionals is statically known. This data flow
information includes the knowledge which variables the conditional guards depend
on, and which variables become constrained (their value is provided) during execution
of a conditional clause.

The constraint setting makes it easy to improve the analysis by annotating variables
with type information. Such an annotation is a predicate that describes the possible
values which a variable isexpectedor intendedto take. Annotations nicely fit in the
constraint framework as they can be interpreted asprescriptiveconstraints on the pro-
gram, in addition to the constraints derived from the program by purelydescriptive
means.

5.1. The Oz Programming Model

In this section, we recall the definition of OPM, where we mostly follow Smolka’s
paper [195]. The reader familiar with Oz and OPM may want to skip the follow-
ing section and proceed directly to Section 5.2. We do not give many examples on
programming in Oz, but refer the reader instead to the other publications on Oz, the
demos that are part of the Oz distribution [91, 174], as well as the examples for Plain
in Section 6.1.3.

5.1.1. The Computational Setup

Concurrent computation in OPM is organised in terms of processes, calledthreads,
over a shared store. Each thread represents an independent unit of concurrent compu-
tation with its own control structure. The shared store is the means through which the
threads communicate and on which they synchronise.

thread � � � thread

store
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The store contains possibly partial information about the values which a variablemay
take on. According to the different kinds of information, the store is partitioned in
three segments, called theconstraint store, theprocedure storeand thecell store.

The constraint store hosts a conjunction of first-order formulas that we callconstraints.
Typical constraints include equations between variables (i. e., x=y), and between vari-
ables and atomic entities such as integers and symbolic constants. In particular we
assume a class of constants callednames. The procedure store maps names to proce-
dures, and the cell store maps names to cells. The only way to update the constraint
store is totell it a new constraint, which means to add it as a new conjunct to the store.
Procedure and cell store are updated whenever new procedures and cells are defined.

If the constraint store does not entail (logically imply) any constraints on a variablex
apart from equality to other variables, thenx is calledunbound. If the constraint store
implies equality of a variable and some data structure (such as a name), thenx is called
bound tothis data structure. Ifx is bound to a name mapped to a procedure or a cell
we also say thatx is bound to a procedure or a cell. The constraint store is required
to remainsatisfiable. The attempt to tell a constraint that is inconsistent with the store
is called afailure and is considered a run-time error. The constraint store is organised
such that one can only add new information to it but never retract any: the amount of
information in the constraint store growsmonotonically.

Synchronisation between threads is through the constraint store only. A thread can
block until some constraint is entailed by the constraint store. Due to the monotonicity
property, this implies that synchronisation conditions are safe: if such a conditionis
true once, it will stay true forever. No race conditions can occur. This alsoyields
the straightforwardfairness conditionthat every reducible thread must eventually be
reduced. Like the constraint store, the procedure store grows monotonically, whereas
the cell store does not. This is intentional, since it is incorporated into OPM exactly
for supporting computation with state change which is essentially non-monotonic. But
a direct synchronisation on the cell store is carefully avoided.

5.1.2. The Base Language

We assume a setV of variablesranged over byx;y;z and a setN of names ranged
over by n. Figure 5.1 defines the syntax of the basic OPM statementsS. Typi-
cal constraints are denoted byη. The statement(proc x (y) S) defines aprocedure
with identifier x, formal argumentsy, and body S. The statement(x y) applies a
procedure with identifierx to the actual argumentsy. The conditional statementif (9x1η1 then S1)+(9x2η2 then S2) consists of twoguarded clauses.34

34Notice that OPM according to [195] does not have such a choice construct, whereas Oz has one. We
consider it here because it makes the embedding of CC(CFT) programs into OPM trivial. The analysis
is not substantially affected by this choice.
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S ::= (local (x) S) (Variable Declaration)j S1 jj S2 (Parallel Composition)j skip (Null Statement)j (proc x (y) S) (Procedure Definition)j (x y) (Procedure Application)j if (9x1η1 then S1)+(9x2η2 then S2) (Conditional)j η (Tell Statement)j (cell x y) (Cell Definition)j (exch x y z) (Cell Exchange)
Figure 5.1.:Syntax of OPM Statements

In a guarded clause(9xη then S) we call9xη theguardandS thebody. We identify9xη with η if x is an empty sequence. The statement(cell x y) defines acell with
identifierx andinitial content y. Theexchange statement(exch x y z) operates on a cell
with identifierx and providesz as the new content ofx andy as reference to the old
content ofx.

According to [195], OPM is parametrised with respect to the underlying constraint
system. We fix constraintsη to be drawn from the feature tree constraint system CFT
defined in the Chapter 2. In this context we treat names simply as labels which, im-
portantly, do not have a concrete notation in OPM.

In a procedure definition(proc x (y) S) and a declaration(local (y) S) the variablesy
areboundwith scopeS.35 In a guarded clause(9yη then S), the variablesy are bound
with scopeη andS. Free and bound variables of a statementSare defined as usual and
denoted byfv(S) andbv(S).
Computation in OPM proceeds by reduction on statements. It employs aninterleaving
semantics, meaning that only one statement reduces at a time; there is no simultane-
ous reduction of more than one statement. The atomic reduction steps are defined as
follows.

35The fact that the notion of “bound variable” can mean both “bound in a statement” and “bound in
the store” will not lead to confusion since the first one is a static concept and the second one a dynamic
concept. We are aware that we could resolve the ambiguity by distinguishing between identifiers (static)
and variables (dynamic) but avoid this for simplicity.
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Variable Declaration. The reduction of a declaration statement(local (x) S) is un-
synchronised; it picks fresh variablesy and replaces the declaration(local (x) S)
by the statementS[y=x] that is obtained fromSby simultaneously substitutingy
for all free occurrences ofx in S.

Null Statement. The null statementskip does not reduce and is not observable.

Tell Statement. Reduction of a tell statementη is unsynchronised; it reduces toskip
afterη was successfully told to the current store.

Procedure Definition. Reduction of a procedure definition(proc x (y) S) is un-
synchronised; it chooses a fresh namen, extends the procedure store by(proc n (y) S) and tellsx=n to the constraint store. Note that it is the constraint
store (not the procedure store) that will exhibit the failure if another definition
with identifierx has been executed before.

Procedure Application. A procedure application(x y) synchronises on the fact that
x is bound in the constraint store. Ifx is bound to a namen and the procedure
store contains(proc n (y) S), then the application is replaced byS[y=x]; that is,
by the procedure bodyS with the actual argumentsy replacing for the formal
onesx. The situations thatx is bound but not to a name, or thatx is bound to a
name that is not mapped to a procedure are run-time errors.

Conditional. A conditionalif (9x1η1 then S1)+(9x2η2 then S2) synchronises on one
of two conditions. If the current constraint store entails one of the guards9xi ηi

(i = 1;2) then the conditional is replaced by(local (xi) Si). If it entails both
guards, then reduction of the conditional isindeterminate. This choice is never
undone (“committed choice”). If the current constraint store entails the negation
of both guards, a run-time error is flagged.

Cell Definition. Reduction of a cell definition(cell x y) is unsynchronised; it chooses
a fresh namen, extends the cell(cell n y), and tellsx=n to the constraint store.

Cell Exchange. Reduction of a cell exchange(exch x y z) synchronises on the fact
that x is bound in the constraint store. Ifx is bound to a namen and the cell
store contains(cell n y0), then this entry is updated to(cell n z), and the exchange
statement is replaced byy=y0. The situations thatx is bound but not to a name,
or thatx is bound to a name that is not mapped to a cell are run-time errors.

Synchronisation on cells is as simple as synchronisation on procedures. Oncex is
bound to a cell, the exchange statement does not synchronise at all. It enables commu-
nication between producer and consumer of the cell content and delegates all synchro-
nisation to these two.
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Patterns t ::= a( f :t) j a( f :t : : :) j ( f :t) j ( f :t : : :)
Statements S ::= : : : j case x of (t1 then S1)+(t2 then S2) (Case)

Figure 5.2.:Syntax Extension for Pattern Matching

Cells add a second form ofindeterminismto OPM; when multiple concurrent threads
perform an exchange on the same cell, then the final cell content depends on reduction
order. Multiple cell exchanges do not interfere with each other, though. Mutual ex-
clusion of concurrent operations on a cell is guaranteed, since an exchange performs a
read and a write operation on a cell in an atomic step.

5.1.3. Names

Names serve different purposes in OPM. First, they provide an interface between con-
straints, which bear a first-order logic semantics, and procedures and cells, which
have none. As a consequence, they support anuntyped equality testtest at all data
types (similar toeq in Scheme) that is particularly convenient in object oriented-
programming where one can test for object identity:if (obj=self then S)+ : : :
Third, names modellocationsat which cells are located. This is essential since there
may be multiple references to the same cell, and every operation on the cell must
be visible to all of them. Finally, OPM provides a primitive operation to create new
names, independent of the definition of procedures and cells, as unique tokens.

Since there is no explicit notation for names, names behave just as constant symbols
with the additional guarantee that they are globally unique and cannot be forged. In
combination with lexical scoping, the generation of new names is a flexible mechanism
to ensure privacy in an untyped setting. (In typed languages some of these servicescan
be offered by abstract data types.)

5.1.4. Case Statements

Figure 5.2 adds some syntactic sugar to modelcase statementswith pattern matching.
A case statement likecase x of (t1 then S1)+(t2 then S2) provides elegant support for
the decomposition of records and is common in functional programming languages. A
pattern t is a partial description of a feature tree. More specifically, the label can be
omitted if unknown, and an ellipsis is used if the available features are not completely
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known. Incase clausessuch as(a( f :x: : :) then S) and(a( f :x) then S), the variablesx
are bound with scopeS. In this context, the variablesx are also calledpattern variables.

Pattern Matching. A variablex matchesa patternt if x is bound to a feature tree that
has all the labels and features mentioned int. For example, a feature terma( f :y)
is matched by every tree that has at least the labela and the featuref at the root.

Case Statement.Reduction of a case statementcase x of (t1 then S1)+(t2 then S2)
synchronises on the fact that the current information onx in the constraint store
matches one of the patternst1 or t2. The situation thatx will never matcht1 or t2
is a run-time error.

Case statements are not primitive in OPM, since pattern matching is easily expressed as
an entailment problem. For example, a variablex matches a patterna( f1:x1 : : : fn:xn : : :)
if the constraint store entails

ahxi^9y1x[f1]y1^ : : :^9ynx[fn]yn

or, equivalently, x=a( f1:x1; : : : ; fn:xn;g:y) for some featuresg and variablesy.
The variablex matchesa( f1:x1; : : : ; fn:xn) if in addition the constraint store en-
tailsxf f1; : : : ; fng; that is, if the constraint store entails

ahxi^xf f1; : : : ; fng^9y1x[f1]y1^ : : :^9ynx[fn]yn :
or, equivalentlyx=a( f1:x1; : : : ; fn:xn). So case statements can easily be expressed with
the conditional of the base language. For example,case x (a( f :y: : :) then S1)+(b(g:z) then S2)
is equivalent to the guarded conditional below, provided thatx 62 V (t1)[V (t2).if (9y(ahxi^x[f ]y) then S1)+(9z(bhxi^xfgg^x[g]z) then S2)
5.2. Set-based Failure Diagnosis

The analysis is defined in Figure 5.3 as a mappingA from OPM statementsS to ex-
istential formulasA(D) over FT�(ar;[) constraints. The analysis uses the following
criterion to mark programs as dubious and reject it.

Rejection Condition. A programD is no good ifA(D) is non-satisfiable over non-
empty sets of trees.

In the remainder of this section we explain the analysis stepwise along with illustrating
examples.36

36In addition, most of the examples from Section 4.1.1 can be easily adapted to the compositional
OPM syntax. However, the analysis of a CC(CFT) program according to Figure 4.4 is more accurate
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A(η) = η

A(S1 jj S2) = A(S1)^A(S2)
A((local (x) S)) = 9xA(S)
A((proc x (y1 : : :yn) S)) = 9y1 : : :9yn(x�proc(arg1:y1; : : : ;argn:yn)^A(S))
A((x y1 : : :yn)) = 9z1 : : :9zn

0BBBBBBB@ prochxi^xfarg1; : : : ;argng ^
x[arg1]z1^ : : :^x[argn]zn^
y1�z1^ : : :^yn�zn

1CCCCCCCA
A(if 9xη then S) = A((local (x) η jj S))
A(if (9x1η1 then S1)+(9x2η2 then S2))= 9y19y2

0BBBBBBB@ y�y1[y2 ^
A(9x1η1 then S1)[y1=y] ^
A(9x2η2 then S2)[y2=y]

1CCCCCCCA
if fyg= fv(if (9x1η1 then S1)+(9x2η2 then S2))

A((cell x y)) = cellhxi^xfg
A((exch x y z)) = cellhxi^xfg

Figure 5.3.:Set-based Failure Diagnosis for OPM
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5.2.1. Constraints, Parallel Composition, and Declaration

There is no surprise as to the analysis of parallel composition and of constraints: the
analysis of constraints exploits again the fact that every CFT constraint is also an
FT�(ar) constraint,

Declaration. In the analysis of variable declaration note that the assertionx= /0$p= /0
is dropped; it was used in Chapter 4 to relate emptiness of a local variable to
emptiness of the analysis of the enclosing procedure.

In presence of global variables, this technique of localising inconsistencies atproce-
dures does not work anymore. For example, letzbe a global variable and consider the
following program (where is an arbitrary variable):(proc x ( ) ahzi) jj (proc y ( ) bhzi) (Dglobal)

Apparently, the proceduresx andy have an inconsistent view as to the value of the
global variablez. However, this does not imply that either(x u) or (y v) are finitely
failed: none of them is. Only in combination of both indeed yields a finite failure:(x u) jj (y v)
Therefore, our rejection condition takesall variables into account. Intuitively, this
means that we consider a great number of program points in addition to the call points
of procedures.

5.2.2. Procedures, Applications, and Conditionals

Since procedures are first-class in OPM, they can be referred to by variables which
may also occur everywhere else in the program. Hence the analysis must be able
to constrain variables to denote procedures of appropriate arity. For this purpose,
we introduce a new labelproc and an infinite number of (pairwise distinct) features
arg1;arg2; : : : that may not occur everywhere else in the program.

Furthermore, we allow procedures with arbitrary arity in this chapter. For first-order
procedures, a simple syntactic test can guarantee that all of them are appliedwith
the correct number of arguments. In presence of higher-order procedures, we must
explicitly reason about procedure arities.

Procedures. The analysis of(proc x (y) S) states thatx is a procedure with arityn,
and that all of its formal arguments must be consistent with the use of the formal
argumentsy1; : : : ;yn in the procedure bodyS. Notice that the body of a procedure
is analysed independent of whether it is applied or not.

than the analysis of the corresponding OPM program according to Figure5.3. For further illustration,
see Section 5.3.
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Application. The analysis of a procedure application(x y) states thatx is a procedure
that has arityn and that allows all possible values ofy as arguments.

Single Clause Conditionals.A conditional that consists of only one clause is as-
sumed to be used for synchronisation. That is, it is assumed that its guard will
eventually be entailed and, therefore, that its body is executed in every fair com-
putation.

Binary Clause Conditionals. For conditionals with two (or more) clauses we assume
at least one of its clauses is eventually executed. Conditionals are analysed
clause-wise. The occurring variables are renamed to avoid any unwanted de-
pendency between the clauses to arise whose execution is mutually exclusive.

Case Statements.The analysis of case statements is defined via their translation to
the basic conditional form (see Page 125).

In Section 5.3 we consider possible refinements of the analysis of conditionals.

5.2.3. Cells

The indeterminism provided by cells and conditionals is different: While conditionals
make the choice between multiple clauses locally explicit, the choice between multi-
ple exchanges on the same cell is implicit. This complicates the analysis of cells in
comparison with the analysis of conditionals. In case of conditionals, the analysisof
its clauses is combined in a union constraint. This is, in general, impossible for cells
which leave the choice implicit. It makes the analysis of cell contents a global issue
instead of a local one as the analysis of conditionals. Locally, we can only derivelittle
information on cells.

Cell Definition. For the analysis of cells we introduce a special labelcell. The analysis
of a cell definition(cell x y) derives thatx must denote a cell, but we derive no
constrains ony.

Cell Exchange. From (exch x y z) we derive thatx must denote a cell, but no con-
straints ony or z.

This analysis is fairly weak as it does not derive any information about the setof val-
ues that a cell may hold during its life time. This may be improved by aglobal data
flow analysisthat can delimit the set of references to a given cell. Alternatively, pro-
grammers could provide an annotation restricting the possible values that the analysis
accepts for a cell.
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5.2.4. Examples

To acquaint the reader with the modified syntax, we start with the exampleDfail2 from
the previous chapter in OPM syntax:(proc x (x0) ahx0i)(proc y (y0) bhy0i)(proc z(z0) (x z0) jj (y z0)) : (Dfail2)

As analysis ofDfail2 we obtain:prochxi ^ x[arg1]x0 ^ ahx0i ^prochyi ^y[arg1]y0 ^ bhy0i ^
z0�x0 ^ z0�y0

We rejectDfail2 since its analysis entailsz0= /0.

5.2.4.1. Procedures vs. Records

Consider a program that usesx both as a procedure and as a record identifier.(proc x (y) S) jj ahxi (Dtypeerr1)

The analysis rejects the programDtypeerr1since the associated constraint entailsx= /0.prochxi ^ ahxi ^ : : :
Similarly, field selection on a procedure is rejected:(proc x (y) S) jj x[f ]z (Dtypeerr2)
The associated constraint is this one:prochxi ^ xfarg1g ^ x[f ]z ^ : : :
5.2.4.2. Arity Mismatch

The procedureDar2 contains an arity mismatch.(proc x (z1z2) S) jj (x y) (Dar2)

The analysis derives the following constraint, which entailsx= /0.

xfarg1;arg2g ^ xfarg1g ^ : : :
Similarly, programs that contain two applications with different arities are rejected:(x y) jj (x z1z2) (Dar3)
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The failure indicated by the fact that the analysis ofDar3 entailsx= /0 is not necessarily
exhibited at run-time; it is possible that no application with illegal aritywill ever be
executed. Rather, ifx is never bound, both applications will block forever and are
considered erroneous for this reason.

A third related example illustrates the requirement that all procedures should agree
about the values of their joint global variables.(proc x (x0) (u x0)) jj (proc y (y) (u y y)) (Dar4)

The procedurex in Dar4 expectsu to be a unary procedure, whiley appliesu with two
arguments. The analysis entailsu= /0 by a similar argument as for the two previous
examples.

5.2.4.3. Higher-order Procedures

In the following program,x is a higher-order procedure that takes a procedure and
applies it to a single argument. The application(x u) is erroneous sinceu is bound to
a binary procedure.(proc x (y) (y z)) jj (x u) jj (proc u (v1v2) S) (Dar5)

The error is detected because the analysis ofDar4 entailsu= /0.

x[arg1]y ^ yfarg1g ^ u�y ^ ufarg1;arg2g ^ : : :
5.2.4.4. Multiple Procedures

Execution of two definitions for the same variable like in(proc x (y) S1) jj (proc x (z) S2)
will lead to a failure due to the attempt to bindx to two different names. Our ana-
lysis detects many such situations.(i) If jyj 6= jzj, the analysis will forcex to denote
a unary and a binary procedure at the same time.(ii) If S1 and S2 use their argu-
ments at different types, emptiness ofx will be entailed. For illustration, consider(proc x (y) ahyi) jj (proc x (y0) bhy0i). Figure 5.8 on Page 137 gives a refinement of the
analysis of procedures (in a different context) which can improve the accuracyof the
analysis in cases like this.

5.2.4.5. Conditionals

The following conditional is considered erroneous because guard and body do not
agree: the guard tests for some condition and the body contradicts it. If this clauseis
ever committed to, it will inevitably lead to failure.if (9yx[f ]y^ahxi then bhyi)+ : : :
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Program (proc length(x n)
if x=nil then n=0
+ 9y9z x=cons(y;z) then (local (m) (length z m) jj (inc m n))

Analysis length�proc(arg1:x;arg2:n) ^
x�x1[x2 ^ n�n1[n2 ^ length�length1[ length2 ^
x1=nil ^ n1=0 ^ x2=cons(y;z) ^
length2[arg1]u1 ^ length2[arg2]u2 ^ z�u1 ^ m�u2 ^
inc[arg1]v1 ^ inc[arg2]v2 ^ m�v1 ^ n�v2

Figure 5.4.:Analysing the Procedure Length.

The following example is similar and rejected for the same reason.if (ahxi then (x y))+ : : : :
A particularity of our analysis is that we reject a conditional clause which isnever
executed because its guard is known to be inconsistent. For example:if (ahxi^bhxi then S)+ : : :
The Procedure Length. Figure 5.4 gives an OPM procedure that implements the
function lengthand its analysis, in which we have dropped the existential quantifiers
for better readability. We also assume thatinc is statically known to be bound to a
binary operation on integers; therefore we decide to treatinc as a constant symbol, in
contrast to the variablelength. This global type assumption can be expressed by the
constraint

inc�proc(arg1:int;arg2:int) :
Simplification of the analysis oflengthyields the solved form

length�proc(arg1:x;arg2:n) ^ x�nil [cons(y;z) ^ n� int :
Its greatest solution forlengthisproc(arg1:nil [cons(1;1);arg2:int) :
where we write1 instead ofP (F T ) for better legibility. The expected type of length
is proc(list(1); int) wherelist(X) is the greatest solution of the equation

L = nil [cons(X;L) :
So the approximation is indeed correct.

Arity Constraints. We have used arity constraints at different places in the analy-
sis. They are indispensable exactly where arity constraints syntactically occur in the
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program: that is, in tell statements where records are constructed and in conditional
guards where records are decomposed.

Everywhere else, we could get rid of them. For example, to catch the arity mismatch
in programDar2, the analysis does not necessarily require arity constraints. Rather, we
could introduce another special featurear and use the integers as labels to derive

A((proc x (y1 : : :yn) S)) = 9y1 : : :yn(x�proc(ar:n;arg1:y1; : : : ;argn:yn)^A(S))
In this case, the analysis ofDar2 would entail that9x09x00(x[ar]x0 ^ 1hx0i ^ x[ar]x00 ^
2hx00i) and hencex= /0. Similarly, an additional labelnoneand an analysis of feature
selection of the form

A(x[f ]y) = x[f ]y^:9x0(x[ar]x0^nonehx0i)
could be used to justify rejection ofDtypeerr2 without the need for arity constraints.
A third option to treat this phenomenon is to derive:prochxi from x[f ]y, and
to assume thatahxi ^ :prochxi is satisfiable for alla 6= proc whereas, of course,prochxi ^:prochxi is not. A more general treatment would assume an order on the
labels,e. g., a lattice (cf. [137]).

5.2.5. Style Conventions

We give an informal summary of the principles that underly our analysis. These prin-
ciples can be seen as style conventions which a programmer should adhere when ap-
plying the analysis in order to avoid spurious error messages.

Everygoodprogram should

1. never reduce to a configuration with an inconsistent constraint store.

2. not contain statements that are unfailed only because they block forever.

3. contain only conditionals such that at least one of its clauses allows unfailed
execution.

4. not contain procedures that are unfailed only because they are never applied.

5. contain no set of procedures which disagree about the values of their joint global
variables.

6. not contain any guarded clause whose guard is inconsistent with its body.

7. contain only conditionals with consistent guards.

The first two principles should be familiar from Chapter 4 where we diagnosed failure
or infinite suspension as run-time errors of CC programs. Underlying the clauses (3)–
(5) is the decision not to accept any statement that is only correct because itis never
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executed: Conditionals with clauses that are all in conflict with the context(3) do
not abide by this principle; neither do procedures with an inconsistent body(4), or
multiple procedures that cannot be executed concurrently because they do not agree
on their joint global variables(5). Principle(4) corresponds to our analysis of finite
failure in the previous chapter: a finitely failed procedure inevitably failsif but only if
it is applied. If Principle(5) is violated in a given program, then the program is unfailed
only if some procedure is never applied. We want to prohibit this situation, justified
by the intuition that a procedure should allow an arbitrary number of applications.
Clauses (6) and (7) need further explanation.

Both Principles (6) and (7) reject a conditional clause(η then S) if the statementηjjS
is inconsistent with its context, independent of whether it is executed at all. This treat-
ment of guards is clearly related to the unguarded approximation of Section 4.2. In
addition, it implicitly introduces a program point for each conditional clause instead
of just one for the complete conditional. In the CC-case, this corresponds to the intro-
duction of auxiliary predicates as discussed in Section 4.1.1.4.

For programs that are hand-written by humans, the principles seem to be easy to obey.
They may not be stable under program transformations such as partial evaluation or,
more generally, they seem less convincing for automatically generated programs. In
this case, however, it seems still worthwhile to report violation of theseprinciples; in
particular, since the programmer is always free to ignore the warnings and execute the
program nonetheless.

5.3. Conditionals Revisited

Reconsider thelength-example in Figure 5.4 and notice thatlength1 is unconstrained.
For this reason, the analysis cannot infer the expected typelist(1) for the first argument.
In thelength-example, the variablezonly occurs as an argument of the recursive appli-
cation oflength, z remains unconstrained, too. This weakness is due to the pessimistic
operation of renamingall variables free in a conditional for the analysis of its clauses.
It is pessimistic since it ignores the possibility of variables which have the same value
during executions of all conditional clauses.

This section shows that it is important to exploit some data flow information inorder
to improve the accuracy of the analysis of conditionals. The next examples should
illustrate this point.

Recursion and Data flow. Most recursive procedure on lists have a form similar to
this one.(proc x (y) if (y=nil then skip)+(9z y[cdr]zthen (x z)))
Clearly, x is bound to a procedure whenever the second clause of the conditional is
executed. This fact is crucial for the analysis of this statement to be as accurate as the
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A(if (9x1η1 then S1)+(9x2η2 then S2)) = 9y19y2

0BBB@ y�y1[y2 ^
A((9x1η1 then S1))[y1=y] ^
A((9x2η2 then S2))[y2=y] 1CCCA

if fyg= nonP (if (9x1η1 then S1)+(9x2η2 then S2))
Figure 5.5.:Analysing Conditionals with respect to Parameters

one for the corresponding first-order statement.

Procedure Calls.A similar weakness applies to all procedure calls that occur in only
one of two branches of a conditional. For example, from the program(proc x (y) if (η1 then (p x y))+(η2 then (q x y)))
the analysis in Figure 5.3 will not deduce thatx andy should denote integers – even if
the analysis of the procedure definitionsp andq yields that both are binary operations
on integers.

The Base Case of a Recursion.The procedureforall applies its second argument as
a unary procedure to every element in the list that it receives as the firstargument.(proc forall (xs; p)if xs=nil then skip+ 9x9xr(xs[head]x^xs[tail]xr then (p x) jj ( f orall xr p))
The intendeduse offorall implies thatp is bound to a unary procedure whenever the
second clause of the conditional is executed. In general this cannot be guaranteed. In
addition, if forall receives the empty listnil as the first argument it cannot fail, inde-
pendent of the second argument. This is the case because the higher-order argumentp
is not used at the base case of a list recursion. Therefore, our analysis will not reject
an application such as(forall nil 42) as finitely failed.

In a first-order setting, this example is well-known to the logic programming commu-
nity (e. g., see [149]), where an analysis such as ours does not find out that the ternary
append-procedure expects lists in the second and third arguments.(proc append(xs;ys;zs)if xs=nil then zs=ys+ 9x9xrxs[head]x^xs[tail]xr then9z9zr(zs[head]x^zs[tail]zr jj (append xr ys zr))
The analysis of conditionals can be improved a lot if (some) data flow informationis
statically known; that is, if it is known
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length�proc(arg1:x;arg2:n) ^
x�x1[x2 ^ n�n1[n2^
x1=nil ^ n1=0 ^ x2=cons(y;z) ^
length[arg1]u1 ^ length[arg2]u2 ^ z�u1 ^ m�u2 ^
inc[arg1]v1 ^ inc[arg2]v2 ^ m�v1 ^ n�v2

Figure 5.6.:Analysing the Procedure Length with respect to Parameters.� on which variables it depends which clause a conditional is committed to
(tested),� and which variables may be constrained on execution of the clauses (con-
strained).

All other variables can be assumed constant for all executions of the conditional.Let
us call these variablesparameters of the conditional. The values of parameters are
(neither conditions nor results) not related to the conditional branching of control, but
they are simply accessed. Hence it is reasonable to adopt the

Parameter Principle. Parameters should not be renamed.

Figure 5.5 improves the analysis of conditionals accordingly, usingnonP (S) to de-
note the subset offv(S) containing all non-parameters ofS. There are two important
advantages in knowing conditional parameters.

1. The analysis derives fewer union constraints and more equalities instead. Hence
the analysis becomes strictly more accurate.

2. The constraint solving becomes simpler. Since the treatment of inclusion con-
straints is substantially more expensive than that of equality constraints, the over-
all cost of constraint solving may drop significantly; this is in particular so, ifwe
make the reasonable assumption that most variables occurring in a conditional
are parameters.

It is clearly undecidable whether a variable in a conditional is a parameter since this
depends on run-time properties of procedures. So we cannot hope for anything better
in general than an approximation of parameter-hood. One obvious such approximation
is this one:

Parameter Approximation. View those variables as parameters that occur only as
procedure identifier in applications or as cell identifier in exchange statements.
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A(x of t then S) = 9x(x=t ^A(S))if fv(t) = fxg
A(case x of (t1 then S1)+(t2 then S2) return y) =9x19x29y19y2

0BBB@ x�x1[x2 ^ y�y1[y2 ^
A(x1 of t1 then S1)[y1=y][x1=x] ^
A(x2 of t2 then S2)[y2=y][x2=x] 1CCCA

Figure 5.7.:Analysing Case Statements

Figure 5.6 shows the adapted analysis of thelengthprocedure. The key improvement
with respect to Figure 5.4 is shaded grey. Simplification of this constraint yields

length�proc(arg1:x;arg2:n) ^ xs�nil [cons(y;z) ^ n�int ^ z�x:
The greatest solution forlengthof this constraint isproc(arg1:list(1);arg2:int)
which, in this case, is exactly the expected type.

Syntactic Sugar. The parameter approximation above considers variables as non-pa-
rameters whenever they occur in constraints or in conditional guards. This is safe but
rather pessimistic, and somewhat annoying given the central role that constraints play
in OPM. Constraints are used both to construct and to decompose data structures.For
example, the selection constraintx[f ]y constrains bothx andy in general. Frequently,
however, it is used as a selection function onx, assuming thatx is bound to a record
with field f . In this case,x[f ]y expresses a new constraint only ony. When used such,
the variablex in x[f ]y is a parameter in a conditional likeif (η then (local (y) x[f ]y jj (y z)))+ : : : ;
but this is not acknowledged by the given approximation. As a second example, as-
sume that the variablesmapand fold are bound to library procedures on lists. Then
they behave as constants and hence are parameters in the following conditional even
though they occur in an equational constraint.if (x=mapthen (x y1 y2 y3))+ : : :
To further improve the analysis, we have three options.

Annotations. Enrich the syntax by special conditional forms (or other program an-
notations) which make intended parameters explicit. In functional programs, thedata
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A((proc x (y1 : : :yn) S)) = 9y(x�proc(n:n;arg1:y1; : : : ;argn:yn)^A(S))n fresh

A((x y1 : : :yn)) = prochxi^xfn;arg1; : : : ;argng^Vn
i=1yi�x[argi]

A(if (9x1η1 then S1)+(9x2η2 then S2)) =9y19y2

0BBBBBBB@ y�y1[y2 ^
A((9x1η1 then S1))[y1=y] ^
A((9x2η2 then S2))[y2=y] ^V

y2y isdef(y) then y=y1^y=y2

1CCCCCCCA
whereisdef(x) = 9y(x[n]y^ isname(x))

andfyg= fv(if (9x1η1 then S1)+(9x2η2 then S2))
Figure 5.8.:Analysing Conditionals with Automated Parameter Detection

flow through conditionals is statically clear. In OPM this is not the case; instead, one
could let the programmer provide (unchecked) data flow information by marking the
intended return parameters explicitly.case x of (t1 then S1)+(t2 then S2) return y

Given such annotations, all variables exceptx andy can be treated as parameters. The
corresponding analysis is given in Figure 5.7. Notice that the annotationreturn y
is essential, because the variables constrained by a conditional are not syntactically
determined either.

Conditional Constraints. Detect parameters during constraint solving by means of
conditional equations. A solution for the special case of procedures is given in Fig-
ure 5.8 using names. The definition of the predicateisdef assumes another predicateisname(x) that holds exactly for names.

Control Flow Analysis. Determine conditional parameters by acontrol flow analysis.
The design of a full-fledged control flow analysis for Oz is an interesting research topic
of its own.
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5.4. Related Work

5.4.1. Programming Languages and Models

The history of models for concurrent computation reaches back into the 60’s and 70’s
to the net theory of Petri [163], and to work on buffered communication between se-
quential processes by Dijkstra [61], Brinch-Hansen [28], and Kahn [111]. The more
recent development of high-level models for concurrent computation and program-
ming can be summarised by two main lines of research: one of them is based on
process calculi and the other one on the concurrent constraint model.

5.4.1.1. Process Calculi

Process calculi and process algebras provide amessage passingmodel of concur-
rent computation (see [126] for references). Most influential amongst them is the
π-calculus by Milner, Parrow, and Walker [128, 129]. Theπ-calculus generalises
and simplifies Milner’s CCS [124, 125], theCalculus of Communicating Systems. It
also draws intuitions from Hewitt and Agha’s actor model [3, 96] that formulates the
early vision of concurrent computation as organised in terms of concurrent processes
(calledactors) that communicate freely by exchanging messages. CCS is influenced
by Hoare’s language CSP [99, 100] ofCommunicating Sequential Processes, on which
the communication models of occam [30] are based.

In theπ-calculus, messages are received along channels, and channels can be passed
as messages. This allows theπ-calculus to express process mobility and to model dy-
namically reconfigurable networks of processes (that is, new processes can be created
dynamically and then be communicated with). It also subsumes theλ-calculus, one
of the most important models of deterministic computation [127]. Channel commu-
nication is synchronous in that both sender and receiver will block until a message
has been exchanged. For the development of programming languages, asynchronous
versions of theπ-calculus [24, 102] (where the sender does not block) have been con-
sidered. For instance, the languages Pict and join calculus [67, 169] are based on an
asynchronous versions of theπ-calculus.

5.4.1.2. (Constraint) Logic Programming

Logic programming is based on the vision of computation as deduction [114], and
took some of its original motivation from an application in natural language process-
ing [49]. Logic programs are interpreted as predicate logic formulas from the Horn
clause fragment and operationalised by SLD resolution and backtracking search.The
language Prolog is almost synonymous with the logic programming paradigm. A key
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contribution of logic programming to the field of programming is the concept ofpar-
tially determined data structures, that is data structures with embedded (logic) vari-
ables which act as place holders for unknown values. As computation proceeds, the
logic variables are further instantiated via unification, so that the data structures get
more and more refined.

Logic programming was developed further in two directions. Jaffar and Lassez[104]
defined theconstraint logic programmingscheme CLP(X) which parametrises logic
programming over a constraint system X while retaining most of its properties.In
CLP(X), unification is generalised tosatisfiabilitychecking and solving of constraints
for the constraint system X. This parameterisation made a variety of new data struc-
tures available in logic programming, by way of new constraint systems over numbers
(integers and reals), booleans, trees (infinite trees, feature trees),sets, and others. This
greatly enhanced the usability and the efficiency of logic programming in problem
solving. For entry points into the related research see [23, 105, 208].

5.4.1.3. Concurrent Logic Programming

Another line of research took off from the insight that logic variables are an expressive
concept to model complex communication and synchronisation patterns in concurrent
programming. For instance, by synchronising on a logic variable to become bound one
can express data driven computation as considered in data-flow languages [57]. This
expressiveness was first recognised in Relational Language [47]. Subsequently, it led
to the development of a plethora of concurrent logic programming languages [189], in
particular with tailwind from ICOT’s decision to use a concurrent logic programming
language for their ambitious Fifth Generation Project.

Concurrent logic programming gave up the identification of computation and deduc-
tion. The speculative exploration of alternatives with backtracking search(“don’t
know” non-determinism) was replaced by synchronisation andcommitted choice
(“don’t care” non-determinism). Committed choice means that the choice of one al-
ternative branch of computation cannot be retracted. A variety of synchronisationpat-
terns were proposed and operationally specified, some of them quite involved [189].
In 1987, Maher [120] made a breakthrough in showing thatentailmentbetween con-
straints was the logic concept underlying these synchronisation schemes. This estab-
lished a unifying logic view on concurrent control with logic variables and enabled a
reconciliation of constraint logic programming with concurrent logic programming.

5.4.1.4. Concurrent Constraint Programming

Based on Maher’s insight and influenced by process calculi such as CCS [124, 125],
Saraswat developed the framework of concurrent constraint programming [180]. Syn-
tactically, CC gave up the restrictive clausal syntax from Prolog and adopted a more
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flexible compositional syntax instead, which was influenced by CCS. Conceptually,
it contributed the organisation of concurrent computation in terms of multiple agents
which interact with each other by means of constraints imposed onshared logic vari-
ablesand placed in the so-calledconstraint store. The basic operations on the con-
straint store are imposing (“telling”) new constraints on the variables and testing (“ask-
ing”) for the presence of constraints. The attempt to tell a constraint which isinconsis-
tent with the constraint store is to a run-time error. Hence, the tell operation requires a
satisfiability test, while the ask operation is modelled by entailment checking.

Concurrent processes synchronise on the fact that certain constraints on a variable
become available in the constraint store. This allows for complex synchronisation
conditions to be expressed easily and, since constraints are never deleted, it yields
monotonic synchronisation conditions. Thus communication through shared variables
is a reliable and high-level concept in CC. Dynamically reconfigurable networks can be
expressed without reverting to the indeterministic concept of channel communication
as process calculi.

Before CC arrived, research in constraint (logic) programming had led to the proposal
of various delay primitives, which added a weak form of concurrency (“coroutining”).
Delay primitives were pioneered by Colmerauer with Prolog II and Naish with Mu- and
Nu-Prolog [51, 148] and are present in all modern Prolog systems today. Their concur-
rent control regime had proven beneficial for the writing of new constraint solvers. The
CC framework gives a simple explanation for them and opens up additional flexibility
for the development of new constraint solvers. Programming languages and notations
based on the CC model include cc(FD), AKL, and Oz [108, 174, 207].

5.4.1.5. Operational Models for Oz

Various aspects of Oz have been investigated on the basis of small calculi.
Smolka [194] defines theγ-calculus and relates it to theπ-calculus as well as to the
eager and the lazyλ-calculus calculus. Smolka also shows how to model concurrent
objects in theγ-calculus. Niehren and Müller define theρ-calculus which extends
the γ-calculus by parametrising it with a constraint system, and prove thatρ prop-
erly contains the “applicative core” of theπ-calculus [154]. Aρ-calculus over order-
ing constraints between variables has been considered in [136]. Niehren investigates
the δ-calculus and proves that it can adequately embed both the eager and the lazy
λ-calculus [151, 152]. He also shows how to embed the completeπ-calculus intoδ.
All these calculi exclude constraint inference features. For entry points to these is-
sues see [174, 182–184]. Details on the object model of Oz are presented in [91, 194].
Names in Oz have been inspired by the concept of naming in theπ-calculus [128, 129].
The interaction of constraint systems with names is discussed in [154, 155]. For further
details of its practical issues, notably in the object system, see [91, 184].

Recently, Victor and Parrow have proposed the fusion calculus [160, 161] as a simplifi-
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cation of theπ-calculus that should, at the same time, allow its extension by constraint
programming features such as variable equations. Research in the fusion calculus is
driven by the study of program equivalences and not by programming desirables (com-
pare also Section 6.4.1).

5.4.1.6. Concurrent Functional Languages

There are various proposals for concurrency extensions of functional languages. The
ones related to logic variables include the futures in Multilisp [81] and the I-structures
in Id [18]. The functional language Erlang [17] supports message-based communi-
cation (somewhat similar to theπ-calculus). Futures, I-structures, and logic variables
have in common that they provide a place holder for a data structure that is to be com-
puted concurrently. They differ in how they deal with multiple assignment. Futures
enforce single assignment syntactically, logic variables as in Oz combine multiple “as-
signments” to the same variable by unification, and I-structures raise a run-time error
on second assignment (so does Plain). In contrast to a future, a logic variable can be
created independently from the process that will bind it. In contrast to logic variables
and similar to channels, I-structures require explicit operations to access the data.

Also, Id’s M-structures [22] and OPM’s cells are related. M-structuresare updatable
containers that can be full or empty. Reading from an empty M-structure blocks the
reader, and writing to a full M-structure is a run-time error. The read andwrite oper-
ations on M-structures are not atomic. In contrast, cells in OPM hold logic variables.
An exchange operation replaces the current content of a cell by a new one in an atomic
operation. This guarantees mutual exclusion of multiple concurrent operations on the
same cell which is crucial for computation with state. Once the cell is available, oper-
ations on it are unsynchronised. Thereby, the access to variables in a cell is decoupled
from the synchronisation between producer and consumer of constraints on these vari-
ables. The presence of logic variables is essential here: one can put a logic variable in
a cell and compute the new value afterwards.

5.4.2. Program Analysis

Set-based analysis for higher-order programming languages has received some atten-
tion recently in the context of functional languages [12, 38, 65, 84, 121, 216, 218]. Set-
based analysis for constraint programming has, to the best of my knowledge, not been
investigated so far. We briefly comment on the most closely related program analysis
systems, and we add a remark on the constraint systems used there in contrastto the
one we use.
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5.4.2.1. Program Analysis Systems

Bourdoncle [26] investigatesabstract debuggingfor imperative languages in the
framework of abstract interpretation. Abstract debugging analyses a program with
respect to so-calledinvariant andintermittentassertions; invariant assertions must al-
ways hold at a given program point, and intermittent assertions must hold eventually.
Invariant assertions can be used to derive sufficient conditions for a program tofail at
some point.

Flanagan’s MrSpidey [65] is a static debugger for Scheme and part of the program-
ming environment DrScheme [63]. MrSpidey approximates the data flow in Scheme
programs and derives set expressions for every program point in order to prove that no
run-time error will occur at certain program points. MrSpidey’s main goal is thestatic
detection of errors.

Wright’s Soft Scheme [38, 216, 218] is the precursor of MrSpidey at Rice. Soft typing
for Scheme tries to eliminate all run-time type checks which it can prove to succeed.
It also reports to the programmer program points that will necessarily fail if they are
reached at all. Wright shows that all run-time type errors in a checked program will be
caught by one of the remaining type checks.

Aiken and Wimmers [11, 12] develop a soft type system for FL [9] based on a very
expressive set constraint system with union, intersection, and complement Theygive
an interpretation of their constraints in a domain of types, essentially the standard ideal
model [119] for functional types. Aiken has developed a demonstrator version of their
analysis for the experimental functional language Illyria [4].

Wadler and Marlow present a type system for the first-order fragment of Erlang [121],
a functional language with server-based concurrency. Their system uses subtyping
constraints based on a simplified version of Aiken and Wimmers’s system [11].

Heintze [84] proposes a set-based analysis for the functional language ML. His analy-
sis is a global program analysis and cannot be used to analyse programs module-wise.

Aiken and colleagues develop BANE [6] as a tool box for constraint-based analysisof
different programming languages, including ML and Java. BANE is based on a mix-
ture between set and tree constraints that has, for instance, beeb used for ananalysis
of unhandled exceptions in ML [62].

5.4.2.2. Covariant Ordering Constraints

Our failure diagnosis for OPM is based on the same set of constraints that we employed
for a concurrent constraint language. More technically speaking, our analysis of OPM
is based on constraints interpreted over sets of feature trees with a fully monotonic
(covariant) order. This is in contrast to most other analyses for languages with higher-
order procedures, in particular with all work mentioned above (except for Bourdoncle’s
analysis for Pascal which is first-order).
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Most constraint systems used for the set-based analysis for higher-order procedures
are interpreted over an ordering that is monotonic or antimonotonic depending on the
top-level constructor (usually!) or the tree selectors (such asdomandrg). The co-
variant ordering is used to deal with output arguments of procedures, the contravariant
ordering deals with input arguments.

Since the data flow through OPM procedures is not statically apparent (in contrastto
procedures in functional languages) we must treat input and output arguments alike.
As a consequence, we lose much information along higher-order functional data flow.
On the other hand, the analysis of multiple applications of the same procedure is kept
fully separate.
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This chapter presents a concurrent higher-order programming language called Plain.
The main design objectives for this language have been that it should be a close relative
of OPM that� has an expressive strong type system with record-based subtyping and higher-

order polymorphic types (in contrast to ML type schemes), but� retains most of OPM’s expressiveness as far as concurrent, functional, and
object-oriented programming are concerned.

Higher-order polymorphic types are required for cells that contain polymorphic data
structures and they are convenient for data structures that embed polymorphic proce-
dures (e. g., to describe modules). They are particularly useful in a distributed setting
(e. g., see [209]) since they enable one to send polymorphic procedures along a chan-
nel, an idiom which is ill-typed in ML. Higher-order polymorphic types are also re-
quired to type check certain higher-order programming abstractions, for instancein the
context of typed object-oriented programming (e. g., see [166]); there, thecombination
of higher-order polymorphic types with subtyping is especially convenient [1].

As it turns out, both design objectives can be met by simplifying OPM’s store model
such that it does not contain equality constraints between variables and hence does
not require equational constraint solving (i. e., unification). In Plain, the abstract con-
straint store of OPM is replaced by a more detailed and self-contained store model,
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and equational constraints are replaced by(single) assignment

x:=y:
Execution ofx := y does not assert equality betweenx andy (and unify their current
bindings) but blocks untily is bound to some data structureD and thenbinds xto the
sameD, too. The decision to give up unification makes Plain a considerable restriction
of Oz as a constraint programming language, in particular with respect to treecon-
straints. But Plain still admits computation with partially determined data structures
such as records with embedded logic variables.(local (y; z) x:=fhead:y; tail:zg jj : : :)
This retains important expressiveness of logic variables, including the following: The
possibility to express cyclic data structures, demand-driven computation and data
flow computation [152, 170], safe (monotonic) synchronization in concurrent pro-
gramming [189], and latency tolerant communication in concurrent and distributed
programming [209]; it also includes the implementation of tail recursive procedures
returning lists which is impossible in functional programming languages (e. g., [131]).

Plain’s type system employs record-based subtyping and higher-order universal poly-
morphism [76, 177]. It also features access modalities (modes), which have been in-
troduced for channels by Pierce and Sangiorgi [165]; we show that one can adapt their
system to a language with logic variables. Modes for logic variables are essential to
make the type system work. Neither constraints on logic variables nor procedures in
constraint programming impose a static distinction between input and output (even
though it is often made implicitly). However, this distinction is essential for every type
system that provides a non-trivial order on types, such as the subtyping order and the
instantiation order on polymorphic types: it must be possible to use the procedure out-
put of a (more specific, smaller) subtype as input of a (less specific, greater) supertype,
and instantiation of polymorphic types must occur along the data flow [136].37

Static typing in a system with ordered types requires that the data flow is statically
known. In functional languages this is ensured by the restriction to applicative syntax;
it is not the case for OPM where equational constraintsx = y are a central computa-
tional concept; equational constraints do not have a notion of input and output. In order
to solve this technical problem, Plain replaces equational constraints by an assignment
statement; while assignment remains an equation semantically, it has a statically fixed
input/output behaviour. Plain adapts also the operational semantics of the OPM prim-
itives such that they use assignment instead of equational constraints; in particular,
such a modification was needed for the semantics of cells. We do not consider type

37Note in passing that one can provide OPM with an ML-style polymorphic type system subject to
Wright’s restriction of polymorphic generalisation [123, 217]. This system does not require static data
flow information, but it rules out many higher programming abstraction, e. g., in the object system. For
preliminary results on this topic see [138].
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inference for Plain, which is very likely to be undecidable [214]; for further details see
Section 6.4.1.3.

The changes in OPM that lead to Plain can be understood as adding a static notion of
input and output to a language that, due to its nature, does not make this distinction
explicit. Some of these additions affect the operational semantics (assignment) and
some the type system (mode discipline). We show that these changes suffice to adapt
standard strong type systems with an order on types to OPM,i. e., to a language with
logic variables and higher-order procedures.

Plain’s expressiveness is also well-comparable with Pict [169], a recent concurrent
programming language based on theπ-calculus [128, 129]. So Plain’s design also
contributes to recent efforts [152–154, 160, 161, 194, 211] to relate the concurrent pro-
gramming models based on constraints with those based on channel communication.
Plain seems to be the first typed concurrent programming language with higher-order
procedures and logic variables, with Id [18] being its closest relative in this respect:
So Plain is also of interest as an instance of what Harper has called the HOT style of
programming (higher-order, typed), extended to deal with logic variables [212].

6.1. Plain

6.1.1. Untyped Plain

Plain inherits the computational setup from the Oz Programming Model, which is
given by concurrent threads that communicate and synchronise through a shared store.
In contrast to OPM, Plain considerably simplifies the store model. Plain’sstore binds
variables to data structures but does not contain explicit equations between unbound
variables. The data structures may contain embedded logic variables, of which typ-
ically only some are bound. Thus, Plain accommodatespartially determineddata
structures. The unbound variables in such a record can serve as the communication
medium between concurrent threads.

6.1.1.1. Statements, Store, and Configurations

The abstract syntax of Plain is given in Figure 6.1. Adata structure Dis a procedure,
a record, or a cell. Arecordfa:yg hasfieldsy at pairwise distinctfeaturesa. We use
the same notational conventions as for feature terms.38

38This notion of records deviates from OPM where records carry labels. Thisis not an essential
difference but brings Plain closer to conventional programming languageswith records, in particular
with functional languages. It is mostly due to Oz’s heritage in logic programming that records have
labels in OPM.
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Data Structures D ::= (proc (y) S) (Procedure)j fa:xg (Record)j (cell x) (Cell)
Expressions E ::= x (Variables)j D (Data Structures)
Statements S ::= x:=E (Assigment)j (x y) (Application)j (case x (a:y: : :) S) (Pattern Matching)j (exch x y(z) S) (Exchange)j (local (x) S) (Declaration)j S1 jj S2 (Parallel Composition)j skip (Null Statement)
Configurations C ::= Vρσ [] S

Variables V � V (V a finite set)
Store σ : V * D [N

Reference Store ρ : N * D

Figure 6.1.:Syntactic and Semantics Objects of Plain
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consistent renaming of bound variables(α)
S1 jj S2� S2 jj S1 (S1 jj S2) jj S3� S2 jj (S2 jj S3) skip jj S� S� Sjj skipf: : :a1:y1 : : :a2:y2 : : :g � f: : :a2:y2 : : :a1:y1 : : :g(case x (: : :a1:y1 : : :a2:y2 : : : : : :) S) � (case x (: : :a2:y2 : : :a1:y1 : : : : : :) S)

Figure 6.2.:Structural Congruence of Plain

The statements are all known from OPM with two exceptions: theassignment x:=E
of an expressionE to a variablex, and thecell exchange(exch x y(z) S) on variablex
with argumentsy and z, and with continuationS. In contrast to the cell exchange
statement of OPM, Plain’s has a variable binder: in(exch x y (z) S), the variablez is
bound withinS.39 For technical simplicity, we restrict case statements to contain a
single clause only.40

We write the set of procedures, cells, and records asP , C , andR , respectively. The
sets of data structuresD is defined as their union:D = P [ C [R . Recall thatV
andN denote the set of variables and names. Astore is a pairρσ of finite partial
functions whereσ maps variables to data structures or names, andρ maps names to
data structures. We require thatρ(σ(x)) is defined whenσ(x) 2 N . We write ρ?
andσ? for the totally undefined store functions. Ifx2 dom(σ), then we say thatx is
boundin the storeσ. If σ(x) 2D, we sayx is bound toσ(x), if σ(x) 2N say thatx is
bound to a cellwith current contentsρ(σ(x)). The free variablesfv(σ) andfv(ρ) of a
store are defined as follows.

fv(σ) =def dom(σ)[ fv(rg(σ))
fv(ρ) =def fv(rg(ρ))

Themonotonic extensionof a storeσ by a new binding ofx to d is writtenσ;x7!d and
defined by

σ;x7!d =def

8<: σ[d=x] if x 62 dom(σ)
σ otherwise

An extension “of the empty store” such asσ?;x7!d for d 2 D [N is abbreviated to
just x7!d by droppingσ?. Note that this is not the standard notion of extension for

39For further discussion on assignment and exchange, the statements in Plain that differ from OPM,
see Section 6.3.1.

40In practice, this restriction is not possible since it restricts the expressiveness of case statements to
that of field selection on records. The type checking of multiple-clause case statements can be added
based on standard machinery, usign type constructors and variant types [34].
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Vρσ [] (local (x) S) �! V[fxg ρσ [] S if x 62V (DECLARE)
Vρσ [] x:=y �! Vρ σ;x7!σ(y) [] skip if y2 dom(σ) (ASSVAR)
Vρσ [] x:=fa:yg �! Vρ σ;x7!fa:yg [] skip (ASSREC)
Vρσ [] x:=D �! Vρ[D=n] σ;x7!n[] skip (ASSDATA )

if D 2 P [C ;n 62 dom(ρ)
Vρσ [] (x y) �! Vρσ [] S[y=z] (APPLY)

if ρ(σ(x)) = (proc (z) S)
Vρσ [] (case x (a:y: : :) S) �! Vρσ [] S[z=y] if σ(x) = fa:z: : :g (MATCH)
Vρσ [] (exch x y(z) S) �! Vρ[(cell y)=σ(x)] σ [] S[z0=z] (EXCHANGE)

if ρ(σ(x)) = (cell z0)
Vρσ [] S1 �! V 0ρ0σ0 [] S2

Vρσ [] S1 jj S �! V 0ρ0σ0 [] S2 jj S (CLOSURE)
Figure 6.3.:Operational Semantics of Plain

partial functions: It is allowed to extend a storeσ by a binding for a variable thatσ
already binds, but in this case the extension has no effect. This implies that extension
preserves the bindings in the store: Hence, it is called “monotonic”.

A configurationis a tupleVρσ [] Sconsisting of a statementS, a storeρσ, and a setV of
(dynamically created) variables such thatfv(S)[ fv(σ)[ fv(ρ)�V holds. With every
configurationVρσ [] S we associate a statementS(C) that represents the bindings of
ρσ in terms of assignments and extendsSaccordingly. Thestatement S(C) associated
with a configuration Cis defined as follows.

S(Vρσ [] S) =def S ^ Vσ(x)2D x:=σ(x) ^ Vσ(x)2N x:=(cell ρ(σ(x)))
6.1.1.2. Operational Semantics

We identify statementsS, data structuresD, and configurationsC up to consistent
renaming of bound variables and we assume once and for all that bound variables in
all S, D, or C are pairwise distinct and distinct from the free variables. Furthermore,
we identifyS, D, andC up to thestructural congruencegiven in Figure 6.2. Parallel
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composition of statements is commutative, associative, and has the neutralelementskip. Recordsfa:yg and patterns(a:y: : :) are identified up to reordering of their fields.
Two configurationsC andC0 are congruent if their associated statements are: formally,
C� C0 if and only if S(C)� S(C0).
The operational semantics of Plain is defined in terms of a one-step reduction relation
on configurations.Reduction�! is defined as the smallest binary relation on config-
urations that satisfies the axioms in Figure 6.3 and is closed under the inference rule
(CLOSURE).

Declaration. Reduction of variable declaration(local (x) S) is unsynchronised; pro-
vided the declared variablesx do not occur in the current configuration, they are
added to the set of used variables and(local (x) S) is replaced byS. This rule
may require renaming of the declared variable before reduction.

Assignment. There are three rules forassignment x:=E depending on the expression
E on the right hand side. The assignmentx := y of a variable yto x waits fory
to be bound in the current store, and then extends the store by the binding ofx
to σ(y). Reduction of an assignmentx :=D whereD is a recordfa:xg directly
extends the store by bindingx to fa:xg. Reduction ofx:=D whereD is acell or
aprocedurefirst creates a fresh namem. Then the store is extended by bindingx
to n andn to y. In OPM, these assignment forms correspond to procedure and
cell definition. The following example illustrates declaration and assignment.fxgρ?σ? [] (local (y) y:=fa:xg jj x:=y)�! fx;ygρ?σ? [] y:=fa:xg jj x:=y�! fx;ygρ? y7!fa:xg [] x:=y�! fx;ygρ? y7!fa:xg;x7!fa:xg [] skip
In this example,x is bound tofa:xg such that acyclic recordis constructed.

Application. Reduction of an application(x y) synchronises on the fact that the store
bindsx to a procedure(proc (z) S); then, it replaces the application with the
procedure bodyS[y=z] with the actual arguments replacing the formal ones.

Pattern Matching. A matching statement(case x (a:y: : :) S) synchronises on the fact
that the store bindsx to a record that matches the pattern(a:y: : :). We say that a
recordmatchesa pattern(a:y: : :) if it has at least the features ina, that is, if it is
of the formfa:zg. A special case of matching is field selection on records. For
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instance, consider the following reduction.fx;ygρ y7!fa:x;b:yg [] (case y (b:z: : :) x:=z)�! fx;ygρ y7!fa:x;b:yg [] x:=y�! fx;ygρ y7!fa:x;b:yg;x7!fa:x;b:yg [] skip
Cell Exchange. A cell exchange(exch x y (z) S) synchronises on the fact thatx is

bound to a cell, say with current contentz0. If this is the case, the store is up-
dated at the nameσ(x) to point to the new cell contenty, and then the exchange
statement is replaced by the continuationSin which the former contentz0 is sub-
stituted for the bound variablez. For instance, letV = fx;y;y0g, fix a namen
such thatρ(n) = (cell y0) and consider the following example.

Vρ x7!n[] y:=x jj (exch x y(z) (exch x z(z0) skip))�! Vρ x7!n;y7!n[] (exch x y(z) (exch x z(z0) skip))�! Vρ[(cell y)=n] x7!n;y7!n[] (exch x y0 (z0) skip)�! Vρ[(cell y)=n][(cell y0)=n] x7!n;y7!n[] skip= Vρ x7!n;y7!n[] skip
6.1.2. Typed Plain

In this section we present a type system for Plain. This type system is inspiredby the
one that Pierce and Turner give for Pict [169] which in turn rests on a long tradition of
type systems for functional languages.41

6.1.2.1. Types are Protocols

In the concurrent setting, types are appropriately viewed asprotocols. The communi-
cation of concurrent threads with each other through the shared store is mediatedby
logic variables. For this communication to work smoothly there must be consensus
between the threads on the access protocols for the shared variables. These protocols
include two kinds of information:� Structural: “Which data structures may a variable be bound to?”� Modal: “Is it legal to read from and/or write to a variable?”

41For excellent overviews of type systems for programming languages see the classical paper by
Cardelli and Wegner [37], and Cardelli’s more recent handbook article [34].
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Typesare a means to describe such access protocols for variables. Typical types42

include these ones:

?int: grants the right to read a variable and guarantees that reading will yield an
integer; denies write access, that is the right to bind a variable.

!int: grants the right to bind the variable to an integer; denies read access.

ˆint: grants the right to read integers from a variable and to write integers to it.

?fa:Tg: grants the right to read a variable and guarantees that reading will yield
a record that has at least the featurea. Furthermore, it is guaranteed that the
selection of the field ata will yield a variable with typeT. Write access is
denied.

!fa:T1;b:T2g: grants the right to bind a variable to any record that has at least the
featuresa andb, provided their associated fields have typesT1 andT2.

!(proc ?int): grants the right to bind a variable to a procedure that can safely be
applied to variables of type ?int.

?8α:(proc ?α !int): grants the right to read a procedure from a variable, and apply it
to all pairs of arguments of which the first provides read access, and the second
one allows writing an integer.

We write x:T for the assumptionthat variablex has typeT. Type assumptions for
multiple variables are grouped in so-called type environmentsΓ. Type checkingis
protocol validation: namely, the process of verifying that a given type environmentΓ is
respectedby a configurationC and all configurations one obtains by reduction fromC;
we write this asΓ.C.

Subtypingdefines an orderΓ� Γ0 on type environments such thatC respectsΓ when-
everC respectsΓ0; intuitively, this is the case ifΓ describes the more permissive proto-
col in allowing more operations on the mentioned variables thanΓ0. This order on type
environments is obtained by lifting a corresponding order on typesT � T 0 pointwise
to environments. Typical subtypings include:

?int� ?num: the protocol that grants reading of arbitrary numbers from a variable
is less specific than the protocol that gives the additional guarantee that only
integers will be read. Hence, every variable respecting the protocol ?num will
also respect the protocol ?int. This makes the reasonable assumption that all
integers are numbers.

ˆT � ?T: the protocol that grants read and write access to a variable for structures
of typeT is obviously respected if the variable is only read from.
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Vρσ [] (x y) jj S 2 E if σ(x) 62N ; or σ(x) 2N andρ(σ(x)) 62 P

Vρσ [] (x y) jj S 2 E if σ(x) = (proc (z) S0); jyj 6= jzj
Vρσ [] (exch x y(z) S) jj S0 2 E if σ(x) 62N ; or σ(x) 2N andρ(σ(x)) 62 C

Vρσ [] (case x (a:y: : :) S) jj S0 2 E if σ(x) 62 R

Vρσ [] (case x (a:y: : :) S) jj S0 2 E if σ(x) = fb:zg;fag 6� fbg
Figure 6.4.:Type Errors of Plain

Type checking is formalised as usual, by means of aproof systemfor judgementsof
the form Γ .C. A second auxiliary proof system is used to define subtypingT1 �
T2. This proof system will guarantee thatC respectsΓ wheneverΓ .C is derivable.
Figure 6.4 defines the setE of configurations containing atype error. If C respects
some environment, thentype safetyis guaranteed (see Section 6.2). This means thatC
will never reduce to an ill-formed configurationC2 E .

Notice that multiple assignment to the same variable is not a type error, and thetype
system will not exclude the possibility of multiple assignment; neither does the type
system guarantee that a variable will eventually be bound to a data structure. The
type system will only guarantee that a variable is never assigned two data structures of
different type.

6.1.2.2. Types

Figure 6.5 defines the abstract syntax of types. For technical reasons, we usetwo
syntactic categories oftypesranged over byP andT, respectively. If a distinction
is necessary, we callP a proper type. There are threemodes, a read-only mode ?, a
write-only mode !, and a read/write mode ˆ. Atypeis a pair consisting of a mode and
a proper type, or, aproper type Pis a type with its top-level mode stripped off.

We assume two infinite sets oftype variablesT V ranged over byπ and of mode
variablesM V ranged over byµ. Type and mode variables are jointly referred to byα.
Types that do not contain type variablesα are calledmonomorphic.

There is a proper monomorphic type per data structure. Hence there areprocedure
types(proc T), record typesfa:Tg, andcell types(cell T). In analogy to records,
we require the features of record types to be pairwise distinct and identify record
types up to reordering of fields. The only primitive monomorphic type is theempty
record typefg. A procedure type(proc T) describes procedures that take arguments

42We consider only types that describe very simple protocols; see also Section 6.4.
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Proper Types P ::= (proc T) (Procedure Type)j fa:Tg (Record Type)j (cell T) (Cell Type)j π (Proper Type Variable)j 8α:P (Polymorphic Type)
Modes M ::= ? (Read)j ! (Write)j ˆ (Read/Write)j µ (Mode Variable)
Types T ::= MP (Moded Proper Type)
Type and Mode Variables α ::= π j µ

Figure 6.5.:Plain Types
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of typesT, a record typefa:Tg describes records with fieldsa and associated typesT,
and a cell type(cell T) describes cells that hold variables of typeT.

Every type variableπ is a proper type and every mode variableµ is a mode. Fur-
thermore, there arepolymorphic typesof the form 8α:P where α is either a type
or a mode variable.43 The type variableα in 8α:P is bound in P. The free and
boundtype variables in a typeT are defined as usual and writtenftv(T); ftv(P) and
btv(T);btv(P). This notion extends pointwise to environments. Polymorphic types
of the form8α1: : : :8αn:P are sometimes abbreviated by8α:P. If n = 0 then8α:P
simply meansP. As for statements and data structures we assume all bound and free
type variables to be pairwise distinct. Note, however, that the order of variables in
the quantification prefix of a polymorphic typedoesmatter. For instance, the types8π1:8π2(proc ?π1 !π2) and8π2:8π1(proc ?π1 !π2) are distinct.

A polymorphic procedure type8π:(proc T) describes procedures that haveevery type
of the form(proc T)[P=π], obtained by substituting some proper typesP for the type
variablesπ. For instance,8π:(proc ?π !π)
is the type of the identity procedure which assigns its first argument to its second one.

6.1.2.3. Subtyping

Subtyping is the smallest relation on types satisfying the rules given in Figure6.6.
The first eight rules define subtyping on monomorphic types, the two last ones extend
subtyping to polymorphic types.

The rules (REFL) and (TRANS) require subtyping to be a preorder, and it is easy to see
that it even is a partial order up to consistent renaming of bound type variables.

Modes. The six topmost rules are taken from Pierce and Sangiorgi’s mode system
for channels [165]. The rules (READSUB), (WRITESUB), (READ) and (WRITE) de-
fine subtyping on types in terms of subtyping of proper types. Rules (READSUB)
and (WRITESUB) are obvious: a type that allows readingandwriting is more permis-
sive than a type that grants exclusively readingor writing.

Rule (READSUB) states that a read-moded type ?P becomes smaller in the subtyping
order as the guarantees on the typeP of the read expression become more specific. For
instance, ?int � ?num if int � num for some proper typesint andnum. Since there
are more operations (readers) defined on integers than on numbers, ?int is the more
permissive type. Read modes aremonotonicwith respect to the subtyping order; one
also says that read-moded types are orderedcovariantly.

43In choosing universal polymorphism here we deviate from [144]. The existential polymorphism
in [144] was inspired by Pict, and also motivated by the comparison of Plain with Pict, but universal
polymorphism seems more appropriate for a language with higher-order procedures.
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P� P (REFL) P1� P2 P2� P3

P1� P3

(TRANS)
ˆP� ?P (READSUB) ˆP� !P (WRITESUB)
P1� P2

?P1� ?P2

(READ) P1� P2

!P2� !P1

(WRITE)
T � T 0(proc T 0)� (proc T) (PROCSUB) T � T 0fa:T : : :g � fa:T 0g (RECSUB)8π:P1� P1[P2=π] (INST-P) 8µ:P� P[M=µ] (INST-M )

P1� P28α:P1� 8α:P2

(POLY)
Figure 6.6.:Plain Subtyping

A write mode inverts the order on types; see rule (WRITESUB). A write-moded type
!P becomes smaller in the subtyping order as it becomes more specific with respectto
the typeP of the data structures to be written. For instance, !num� !int if int� num.
Since there are fewer integers than numbers, !num is the more permissive type and
!int the more specific type. Write modes areantimonotonicrespectivelycontravariant
with respect to the subtyping order.

Two types with read/write mode are subtypes of each other if and only if they are
equal. Since read/write moded types must simultaneously be ordered covariantly and
contravariantly (as read moded types and write moded types, respectively),they are
invariantwith respect to subtyping.

Monomorphic Types. A record typeT is a subtype of another record typeT 0 if T
has at least the features inT 0 and the corresponding fields ofT andT 0 are in covariant
subtype relation; see rule (RECSUB).

Rule (PROCSUB) states that a procedure type(proc T) is a subtype of(proc T 0) if
T 0� T, that is, if the argument types are in contravariant subtype relationship. In other
words, procedure types becomesmaller along the subtype order as their argument
types becomegreater. In this case, more argument types respect the procedure type
and hence the procedure is more permissive.

There is only trivial subtyping for cells. Note that every cell always supports the read

157



6. Typed Concurrent Programming with Logic Variables

operation to obtain its current content and the write operation to replace its content
with another variable. Hence, in analogy to subtyping of read/write moded types, cell
types must be invariant.

Polymorphic Types. Rule (INST-P) says that the polymorphic type8π:P1 is a sub-
type of every type that is obtained by substitution of someP2 for the proper type vari-
ableπ in P1. For instance, the polymorphic identity type is smaller than every more
specific identity type:8π:(proc ?π !π)� (proc ?int !int)
Rule (INST-M) is analogous for mode polymorphic types of the form8µ:P. For
instance, a procedure that is well-behaved on all arguments of typesµπ and(cell µπ)
independent of the modeµ, will also be well-behaved on arguments of types ?π and(cell ?π) which fix the mode.8µ:8π:(proc µπ (cell µπ))� 8π:(proc ?π (cell ?π))
Rule (POLY) defines how to compare two polymorphic types with the same quantifier
prefix 8α. A polymorphic types8α:P1 is subtype of another one8α:P2 if P1 is a
subtype ofP2. Note that this subsumes polymorphism of both forms8π:P and8µ:P.

In Plain, unary functions are implemented as binary procedures that read their input
from the first argument and write the result to the second one. The type of such pro-
cedures is(proc ?P1 !P2). The induced subtyping rule on these types coincides with
the usual subtyping rule on function typesT ! T 0 which makes the function type
constructor! covariant in its range type and contravariant in its domain type.44

T 0
1 � T1

?T 0
1 � ?T1

(READSUB) T2� T 0
2

!T 0
2 � !T2

(WRITESUB)(proc ?T1 !T2)� (proc ?T 0
1 !T 0

2) (PROCSUB)
6.1.2.4. Type Checking

A type assumptionis a variable-type pairx:T. A type environmentΓ is a finite set of
type assumptions for distinct variablesx1; : : : ;xn, written

x1:T1; : : : ;xn:Tn :
Theextensionof an environmentΓ by x:T is written as adjunctionΓ;x:T and is only
well-defined ifΓ contains no type assumption forx yet. The notionΓ;Γ0 is defined

44Pierce and Sangiorgi [165] have proposed this mode system for theπ-calculus in order to recover
subtyping as previously studied in typed functional languages. Theypresent the analogous example (in
terms ofπ-calculus) as one validation for their mode system.
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Γ.x:T
x:T 2 Γ (VAR) Γ.y:T

Γ.fa:yg:?fa:Tg (REC)
Γ.E:T

Γ.E:T 0 T � T 0 (SUB) Γ.y:T

Γ. (cell y):?(cell T) (CELL)
Γ;y:T . S

Γ. (proc (y) S):?8α:(proc T) fαg\ ftv(Γ) = /0 (PROC)
Γ.x:!P Γ.E:?P

Γ.x:=E
(ASGN)

Γ.x:?(proc T) Γ.y:T

Γ. (x y) (APPL) Γ;x:T .S

Γ. (local (x) S) (LOCAL)
Γ.x:?fa:Tg Γ;y:T .S

Γ. (case x (a:y: : :) S) (MATCH) Γ.S1 Γ.S2

Γ.S1 jj S2

(CONC)
Γ.x:?(cell T) Γ.y:T Γ;z:T .S

Γ. (exch x y(z) S) (EXCH)
Γ. skip (SKIP)

Figure 6.7.:Typing Plain Expressions and Statements
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analogously. The inference system in Figure 6.7 defines two well-typednessjudge-
mentsof the formΓ.E:T andΓ.S.

An expressionE is said tohave type Twith respect to environmentΓ if Γ .E:T is
derivable. A statementS is said torespect an environmentΓ if Γ .S is derivable. A
configurationVρσ [] Srespects an environmentΓ if its associated statement does:Γ.C
if and only if Γ .S(C). An expressionE is said to bewell-typedif it has a type with
respect to some environment. A statementS, a storeρσ, and a configurationVρσ [] S
are said to bewell-typedif they respect some environment. An expression, statement,
or configuration that is not well-typed is calledill-typed.

Variables receive their type by lookup in the environment; see rule (VAR). Data
structures must allow inspection, hence all of them have read-moded types; see
rules (PROC), (CELL ), and (REC). By rule (SUB), expressions can freely be promoted
along the subtyping order. Rules (CELL ) and (REC) should be fairly clear: the type
of a record or a cell is straightforwardly derived from the types of the record fields
and the cell content, respectively. With respect to a given environmentΓ, a proce-
dure (proc (y) S) has every type(proc T) such that its bodyS respectsΓ under the
additional type assumptionsy:T on the formal arguments. Furthermore, the procedure
type can be shown polymorphic in all type variables that do not occur inΓ (but that
may occur in the argument typesT). An assignmentx:=E is well-typed if there exists
a proper type such thatx has type !P andE has type ?P. For an application(x y),
an exchange(exch x y(z) S), or a matching(case x (a:y: : :) S) to be well-typed, rules
(APPL), (EXCH), and (MATCH), x must allow read access. The types of further ar-
guments must match the requirements by the type ofx. The rules (LOCAL), (CONC),
and (SKIP) are trivial.

6.1.3. Examples

In this section we illustrate Plain by means of examples.45 We allow for the OPM-
style notation(proc x (y) S) as an alternative notation forx:=(proc (y) S). We assume
new proper base typesint andbool, along with the integers 1;2;3; : : : as primitive data
structures (constants) of typeint and the booleanstrue andfalseas constants of typebool, and we freely use some basic operations such as addition+ on these types.

Further, we assume a minimal extension to Plain that enables type checking recursive
procedures over streams (infinite lists). We assume an additional proper typelist(T)

45All examples have been tested by an experimental implementation of Plain compiling to Oz.
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that describes lists of variables of typeT and provide the following typing rules:

Γ.fg:?list(T) (NIL ) Γ.E:Mlist(T)
Γ.E:Mfhd:T; tl:Mlist(T)g (UNFOLD)

Γ.x:T Γ.y:?list(T)
Γ.fhd:x; tl:yg : ?list(T) (CONS) Γ.E:Mfhd:T; tl:Mlist(T)g

Γ.E:Mlist(T) (FOLD)
Notice that it is immediate to type check cyclic lists with these rules,for example as in
the statement(local (x) x:=fhd:y; tl:xg) :
A generic extension of Plain by recursively defined data types à la SML, and theaddi-
tion of case statements with multiple clauses is possible with standard techniques.

6.1.3.1. Basic Examples

The identity procedure has the following polymorphic type.(proc (x y) y:=x) : ?8π:(proc ?π !π)
This corresponds to the expected polymorphic type8π:π! π of the identity in func-
tional languages. Notice that the identity is not the only procedure with the type
?8π:(proc ?π !π). The other ones include the trivial procedure(proc (x y) skip) : ?8π:(proc ?π !π) ;
as well as many procedures that side-effect variables other than its formal arguments.
One such procedure is(proc (x y) z1 :=z2) : ?8π:(proc ?π !π)
providedz1 :=z2 is well-typed. (Actually, this procedure has every binary procedure
type, be it monomorphic or polymorphic.) More generally speaking, the type of a pro-
cedure specifies which kinds of operations it may perform on its arguments. It does
not guarantee that any operations are performed on the arguments at all. Furthermore,
the operations performed on global variables of a procedure are not visible in the pro-
cedure’s type.

Types convey some of the synchronisation behaviour of a procedure. In particular, all
input modes in procedure argument types indicate that an application of this procedure
might block when it accesses the corresponding embedded variable. For example, the
procedure that waits until its first argument is bound to a record before it applies its
second one has the type(proc (x y) (case x () (y))) : (proc ?fg ?(proc ))
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More fundamentally, the procedurewait that waits for its argument to be bound at all
has this type:(proc (x) (local (y) y:=x)) : ?8π:(proc ?π)
Note that the procedurewait is not very useful in Plain so far since no statement can
synchronise on an assignment being executed. It becomes extremely useful though
oncesequential composition S1;S2 of statements is added with the operational seman-
tics to first reduceS1 and thenS2.46

Pattern matching on records subsumes field selection. For example, here is a procedure
selecting the fielda from its first argument and assigning it to the second one.(proc (x y) (case x (a:z: : :) y:=z)) : ?8π:(proc ?fa:?πg !π)
6.1.3.2. Semaphores

Semaphores are a standard mechanism for guaranteeing multiple exclusion in a con-
current setting [61]. A semaphore is a data structure with arequestand arelease
operation. Multiple concurrent activities may request the semaphore. Once a request
operation has succeeded, an option is granted to perform the corresponding release.
All subsequent requests on the same semaphore are blocked until this operation has
been performed to release the semaphore.

In Plain, semaphores can be implemented by a procedurenewsemawith type

newsema: ?(proc !(proc !(proc)) :
On application ofnewsema, a new cell is created; the cell is initialised with an empty
record which is used as a token. Next, a unary procedurereq is defined which imple-
ments the request operation of the semaphore as an operation on the cell. The cell is
private to the request operation and thus cannot accidentally or maliciously be side-
effected.(proc newsema(req) (local (c)

tok:=fg jj c:=(cell tok) jj(proc req (rel) (local (new)(exch c new(old)(case old () (proc rel () new:=old))))))
On application of the procedurereq to some argumentrel, the current cell content
old is replaced by a fresh unbound variablenew. The variableold is then matched
against the empty record pattern(). This operation will succeed immediately on the

46We do not consider sequential composition here since its addition does not affect the type system at
all. Our experiences with Oz however indicate that every practical language ofthis family must support
sequential composition [91, 174].
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first application ofreq, while a subsequent request may findold to be an unbound
variable and block on pattern matching. When the match has reduced and thus the
request was successful, a release procedurerel is returned. On application ofrel, old is
assigned tonewand thus unblocks the pattern matching of the subsequent application
of req. The sequence of request and release operations dynamically yields a chain of
assignments as follows.

tok = old1 :=new1 = old2 :=new2 = old3 :=new3 : : :
Notice that the procedurerel does not operate on formal arguments at all but is meant
to side effect the store.

6.1.3.3. Lazy Streams

By means of partially determined data structures Plain can convenientlyexpress lazy
streams. Alazy streamis a possibly infinite list whose evaluation is deferred and
demand-driven. When some element of a lazy stream is requested, the stream is eval-
uated just up to this element and evaluation of the tail of the stream is deferred again.
This means that evaluation of the stream always terminates if only a finite part is de-
manded. Consider a binary procedurenat

nat : ?(proc ?int ?list(!int))
that computes the lazy stream of natural numbers larger than some givenn. It is inter-
esting to consider the type ofnat more closely, in particular the type ?list(!int) of its
second argument. By the rules (FOLD) and (UNFOLD) this type is equivalent to each
of the finite unfoldings of the following form

?fhd:!int; tl:?hd:f!int; tl:?fhd:!int; : : : tl:?list(!int)ggg
that restrict the whole spine of the stream to be read-only. This suggests thatnat will
write the integer elements of the stream, while the stream itself willbe provided from
the outside. Note that these two opposite modes correspond to the� outgoing“functional” data flow of nat that specifies to compute the infinite

sequence of natural numbers, and the� ingoing flow of demandthat requests computation of a finite prefix of this se-
quence.

Here is an implementation of the procedurenat.(proc nat (n s) (local (m) (case s(x; r : : :) x:=n jjm:=n+1 jj (nat m r))))
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Assuming an unbound variables : ˆlist(ˆint), a typical application of this procedure is

one:=1 jj (nat one s)
Reduction of the application blocks on pattern matching sinces is not bound yet. We
can express demand for the smallest number in the stream by bindings to a record
whose fieldhd serves as container for this number (assumen1 ands0 fresh):

s:=fhd:n1; tl:s0g
This activates the pattern matching, the assignmentn1 :=one, and the recursive call(nat two s0) (wheretwo is bound to 2). By binding the tails0, we can demand subse-
quent elements in the stream.

A second example along these lines is the procedure(proc f ib (x1 x2 s) (case s(x;s0 : : :) x:=x1+x2 jj (fib x2 x s0)))
with this type:

fib : ?(proc ?int ?int ?list(ˆint))
This procedure computes an infinite list of natural numbers according to the generation
principle of the Fibonacci numbers: every element of the list (from the third onwards)
is the sum of the two preceding ones. These two preceding numbers are passed as
additional arguments offib through the recursion. The following typical application
of fib definess as the stream of Fibonacci numbers (beginning with the third one) and
bindsn1 andn2 to its first two elements.( f ib one one s) jj s:=fhd:n1; tl:s0g jj s0 :=fhd:n2; tl:s00g
Again note that the type of the list argument exposes the fact that the list elementsare
not only produced but also read during the recursion.

6.1.3.4. Channels

Another example for stream-based programming is the following implementationof
channels with an asynchronous send and a synchronous receive. It is also an example
for Plain procedures whose type ispolymorphic in the modeof its arguments.

A channelfor variables of typeT is an abstract data type with two operationsput and
getof the following types:

put : ?(proc T)
get : ?(proc ?(proc T))

Theputoperation takes a variable of typeT, puts it into (“sends it along”) the channel,
and then terminates. Theget operation takes a variable of type ?(proc ?T), that is,
a reference to a procedurecont for arguments of type ?T; then it takes (“receives”)
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a variable from the channel and appliescont as a continuation to it. Combination of
these operations in a record with fieldsputandgetyields the following type of channel
interfaces:

?fput:?(proc T); get:?(proc ?(proc T))g
Now we proceed to implement a polymorphic procedurenewchanthat generates new
channels for variables of arbitrary typeandarbitrary mode.

newchan: ?8µ:8π:(proc !fput:?(proc µπ); get:?(proc ?(proc µπ))g)
Note that the procedurenewchanis polymorphic in typeandmode of the variables to
be put in the channel. Thereforenewchanis guaranteed not to perform any operations
on the variables put into a channel since it cannot safely assume read or write permis-
sions on them.newchansimply passes the variables to the receiver continuation for
further processing. Here is the Plain code for the procedurenewchan.(proc newchan(chan)(local(s0 cput cget put get)

cput:=(cell s0) jj cget:=(cell s0) jj(proc put (z)(local (s2) (exch cput s2 (s1) s1 :=fhd:z; tl:s2g))) jj(proc get (cont)(local (s2)(exch cget s2 (s1) (case s1 (hd:z; tl:s3 : : :) s2 :=s3 jj (cont z))))) jj
chan:=fput:put; get:get))

We implement a channel as a variables0 referring to a stream and two cellscputand
cgetrealizing the pointers intos. On creation, the stream is empty and both pointers
refer to the first slot. On application of the procedureput on a variablez, the cur-
rent contents1 of cput is replaced with a fresh variables2 and thens1 is bound tofhd:z; tl:s2g. This advances the pointercput. On application of the proceduregeton a
variablecont, the current contents1 of cgetis replaced with a fresh variables2; thens1

is matched against the pattern(hd:z; tl:s3). Whens1 is bound to a record of this form,
cont is applied toz ands3, the remainder of the stream, is assigned tos2.

6.1.3.5. Mode Polymorphism

As a final set of examples we give the types of some standard procedures on lists as
further illustration on higher-order and mode polymorphism. We do not give their
implementation here since they require a multiple clause conditional that we have not
defined. Instead, we rely on the intuitions the reader brings along from some higher-
order programming language.

The procedurememberreturns a boolean depending on whether some element in a list
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is bound to a given data structure.memberhas the following type:

member: ?8π:?(proc ?π ?list(?π) !bool)
To decide membership, the list must be recursively decomposed (i. e., read), and its
elements as well as the given data structure must be compared for equality (i. e., read).

The procedurelengthreturning the length of a list must recursively decompose (i. e.,
read) its list argument. However, it needs not access the list elements themselves. Thus
the type oflengthis mode polymorphic.

length: ?8µ:8π:(proc ?list(µπ) !int)
Similarly, the proceduremap that maps one finite list into another one with respect
another given binary procedure need not itself perform any operation on the list el-
ements. Rather, these are passed to the procedural argument that is responsiblefor
further processing.

map: ?8µ1:8µ2:8π1:8π2:(proc ?list(µ1π1) ?(proc µ1π1 µ2π2) ?list(µ2π2))
Procedures that are polymorphic in the type of some (component) of their arguments
are very restricted in the operations they may perform on these arguments. For in-
stance, a procedure of type

?8µ:(proc µP?(cell µP))
may perform only one interesting operation on its first argument, namely place itinto
the cell received as a second argument. This is safe since the type of the firstand the
second argument share the mode variable. Hence a procedure of the given type is this
one:(proc assign(x y) (exch x y(z) skip)) : ?8µ:8π:(proc µπ ?(cell µπ))
Also observe that procedures with the following types must ignore their arguments.

?8µ:(proc µP µP)
?8µ:(proc ?fa:µPg µP)

A typical procedure with a higher-order polymorphic type is one implementing func-
tion composition.(proc compose( f1 f2 f3) (proc f3 (x y) (local (z) ( f1 x z) jj ( f2 z y))))
One of its types is this one

compose: ?8π1:8π2:(proc ?listproc(π1) ?(proc ?π1 !π2) !listproc(π2))
where, for allP, listproc(P) = 8µ:8π:(proc ?list(µπ) !P). This type allows us to check
the application(compose length iseven isevenlength)
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wherelength: ˆlistproc(int) andiseven: ?(proc ?int !bool).
6.2. Type Safety

The type system is sound in the sense that it excludes the type errors listed in Fig-
ure 6.4. To prove this result one first checks that no erroneous configuration can be
well-typed (Proposition 6.1). Next one shows that it is an invariant of reduction for a
statement to respect an environmentΓ (Theorem 34). Soundness of the type system
and hence type safety is then easily obtained (Corollary 35).

In this section we write judgements likeΓ .S or T � T 0 as an abbreviation for the
statement that these judgements arederivable.

Proposition 6.1

If Γ.C then C62 E .

Proof. See Page 169 below. 2
Theorem 34 (Type Preservation)

If Γ.C1 and C1�!C2 thenΓ.C2.

Proof. See Page 171 at the end of this Section. 2
Corollary 35 (Type Safety)

If Γ.C and C�!� C0 then C0 62 E .

Proof. By induction over the length of the reductionC�!�C0. The base caseC�!0C0
(i. e., C=C0) follows from Proposition 6.1, and the induction step with Theorem 34.2
In the remainder of this section we prove the Type Preservation Theorem 34.

The Type Preservation Proof

We first prove some standard Lemmas on well-typed statements (Lemmas 6.2–6.6).
The corresponding Lemmas for configurations follow immediately, since congruence
and well-typedness on configurations is defined in terms of their associated statements:

1. 8C1;C2 : C1�C2 iff S(C1)� S(C2).
2. 8Γ8C : Γ.C iff Γ.S(C).

In the sequel we shall denote withA either a proper typeP or a modeM.
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Lemma 6.2 (Congruence)
Well-typedness is invariant under structural congruence: IfΓ .S1 and S1 � S2 then
Γ.S2.

Proof. Structural induction overS1. 2
Lemma 6.3 (Weakening)
If x 62 fv(S), thenΓ;x:T .S if and only ifΓ.S.

Proof. On inspection of the typing rules for statements one notes that in any derivation
of Γ .S only the type assumptions for the variables infv(S) matter. The proof is by
induction over the derivation ofΓ.S. 2
Lemma 6.4 (Variable Substitution)
If Γ;x:T;y:T .S thenΓ;x:T;y:T .S[y=x]
Proof. Induction over the derivation ofΓ;x:T;y:T .S. 2
Lemma 6.5 (Type Substitution)
If Γ.S thenΓ[P=π].S andΓ[M=µ].S.

Proof. Induction over the derivation ofΓ.S. 2
Lemma 6.6 (Subtyping)
If Γ;x:T1.S, T2� T1, and ftv(Γ;x:T1)� ftv(Γ;x:T2) thenΓ;x:T2.S.

It is due to the subtyping rule (RECSUB) that the claim fails without the assumption
that ftv(Γ;x:T1)� ftv(Γ;x:T2). The additional field types which may be added on sub-
typing may contain additional free type variables which may conflict with the side
condition of rule (PROC).

Proof. We prove the claim simultaneously with the corresponding one for expressions:

If Γ;x:T1.E:T, T2� T1, andftv(Γ;x:T1)� ftv(Γ;x:T2) thenΓ;x:T2.E:T.

The proof is by induction over the derivation ofΓ;x:T1.Sor Γ;x:T1.E:T. We make a
case distinction over the rule that was applied last.(VAR) In this caseE must be a variable. IfE 6= x, then the claim is trivial due to the

Weakening Lemma 6.3; hence assumeE = x. ThenΓ;x:T1 .E:T implies that
x:T 2 Γ;x:T1 and henceT1 = T. Thus, we can deriveΓ;x:T2.x:T as follows:

Γ;x:T2.x:T2
x:T2 2 Γ;x:T2

Γ;x:T2.x:T1
T2� T1
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6.2. Type Safety(SUB) In this case the derivation has the form

...
Γ;x:T1.E:T 0
Γ;x:T1.E:T T � T 0

We conclude with the induction assumption thatΓ;x:T2 .E:T 0 is derivable and
obtainΓ;x:T2.E:T by rule (SUB).(PROC) In this case, there exist variablesy and statementsSsuch thatE = (proc (y) S)
andx 62 fyg, and also there exist type and mode variablesα and typesT with
T = ?8α:(proc T). From rule (PROC) we know that

Γ;x:T1;y:T .S

is derivable which implies by induction assumption (andx 62 fyg) that

Γ;x:T2;y:T .S

is derivable. From the side condition of (PROC) we also know thatfαg\ ftv(Γ;x:T1) = /0 ;
and sinceftv(Γ;x:T2)� ftv(Γ;x:T1) by assumption, we obtainfαg\ ftv(Γ;x:T2) = /0 :
HenceΓ;x:T2. (proc (y) S):T = ?8α:(proc T) is derivable.

The remaining cases are similar or simpler. 2
Proposition 6.1

If Γ.C thenC 62 E .

Proof. If C 2 E thenC has one of the forms defined in Figure 6.4. These are easily
seen to be ill-typed. For instance, assume thatC has the formVρσ [] (x y) jj S, let
σ(x) 62 P , and assumeΓ.C for someΓ. Then there are typesT such that

Γ.x:?(proc T)
by rule (APPL). Furthermore, by definition of well-typed configurations (see Page
160) and the assumption thatσ(x) 62 P , there existsD 2 R [C such thatΓ . x :=D.
Hence

Γ.x:!fg or 9T : Γ.x:!(cell T) :
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Such aΓ cannot exist, since there exists no common subtype of ?(proc T) and either
!fg or !(cell T). HenceC is ill-typed. 2
Given three sequencesα1, α2, andα3, we say thatα1 is asubsequenceof α2 if there
is an order preserving injection fromα1 into α2, and we say thatα1 is asubsequence
of α2 with restα3 if α1 andα3 are subsequences ofα2 and partitionα2.

Lemma 6.7
If 8α1:P1� 8α2:P2 is derivable then

1. α2 is a subsequence ofα1 with restα3, and

2. there is a sequenceA of types and modes such that P1[A=α3]� P2 is derivable.

Proof. The last steps in the derivation of8α1:P� 8α2:P0 are determined by the se-
quenceα2 and may involve applications of rules (INST-P), (INT-M), and (POLY) only.
The proof is by induction over the length of the sequenceα1. 2
Lemma 6.8 (Application)
If Γ. (x y) jj x :=(proc (z) S) is derivable then there exist typesTz, variablesα and a
sequenceA of types and modes such that

1. fαg\ ftv(Γ) = /0

2. Γ;z:Tz.S

3. Γ(y)� Tz[A=α]
Proof. AssumeΓ. (x y) jj x :=(proc (z) S). From rules (PROC) and (ASGN) we then
know that there are typesTz and type and mode variablesα such thatfαg\ ftv(Γ) = /0,
as well as

Γ;z:Tz.S;
Γ. (proc (z) S) : ?8α:(proc Tz) ; and

Γ.x:!8α:(proc Tz) :
This implies claims (1) and (2). Further, we know from rule (APPLY) that there exist
typesTy such thatΓ(y)� Ty and

Γ.x : ?(proc Ty) ; andΓ.y:Ty

It follows from the definition of subtyping that there exist typesTx and variablesα0
such thatΓ(x) = ˆ8α0:(proc Tx) and

ˆ8α0:(proc Tx)� !8α:(proc Tz) ; and

ˆ8α0:(proc Tx)� ?(proc Ty)
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From the left subtyping and contravariance of write modes we obtain8α:(proc Tz)� 8α0:(proc Tx)
Lemma 6.7 yields thatα0 is a subsequence ofα with restα00, and that there existA1

such that(proc Tz)[A1=α00] � (proc Tx) and thusTx � Tz[A1=α00]. From the second
subtyping we similarly obtain that there existA2 such thatTy � Tx[A2=α0]. Sinceα00
andα0 are disjoint, these subtypings in combination yield:

Γ(y) � Ty � Tx[A2=α0] � Tz[A1=α00][A2=α0]
Merging the sequencesA1 andA2 (along the subsequencing ofα0 andα00 in α) yields
the requiredTM such thatTy� Tz[TM=α], and hence proves (3). 2
Proof of Theorem 34

The proof is by rule induction [215] over the definition of the operational semantics.
We assume thatΓ.S(C1) and show thatΓ.S(C2).
Application: In this case there exist variablesx;y;z wherey andz are disjoint se-
quences, and statementsS;S0 such that

S(C1) = (x y) jj x:=(proc (z) S) jj S0
S(C2) = S[y=z] jj x:=(proc (z) S) jj S0

To showΓ.S(C2) it suffices to show thatΓ.S[y=z]. By Lemma 6.8 we know that there
exist variablesα and a sequenceA of types and modes such that

1. fαg\ ftv(Γ) = /0

2. Γ;z:Tz.S

3. Γ(y)� Tz[A=α].
From (1) and (2) we obtain with the Type Substitution Lemma 6.5 that(Γ;z:Tz)[A=α] = Γ;z:Tz[A=α].S

Let Ty = Γ(y) and observe thatftv(Γ;z:Tz[A=α]) � ftv(Γ;z:Ty) trivially holds. Hence
assumption (3) and the Subtyping Lemma 6.6 yield that

Γ;z:Ty.S:
From the Weakening Lemma 6.3 (and sincey andzare disjoint sequences) we obtain

Γ;y:Ty;z:Tz.S;
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and by the Variable Substitution Lemma 6.4 that

Γ;y:Ty;z:Tz.S[y=z] :
Finally, we apply the Weakening Lemma 6.3 again to conclude

Γ;y:Ty.S[y=z] :
Assignment: In this case the configurations are of the following form:

C1 = Vρσ [] x:=E

C2 = Vρ0σ0 [] skip
where eitherE 2 D, or E 2 V andE 2 dom(σ). If x2 dom(σ), then the assignment
is ignored, henceρ0 = ρ;σ0 = σ, andS(C1) = x :=E jj S(C2). If x 62 dom(σ), then by
definition ofS(C) it holds thatS(C1) = S(C2). In both cases,Γ.S(C1) trivially implies
Γ.S(C2).
Other Cases: The cases for pattern matching (Match) and cell exchange (Exchange)
are similar to the application case but simpler because they do not need a polymor-
phism argument. The rule for variable declaration (Declare) and the closure rule
(Closure) are trivial. 2
6.3. Extensions

6.3.1. Towards Oz

In contrast to OPM [195], Plain is rather restricted. Some language features have
been omitted for brevity’s sake and can be added and typed using standard machinery.
This includes for instance boolean conditionals and boolean types, multiple-clause
case-statements and variant types, and also recursive types as needed forcyclic data
structures. Other features that are omitted from Plain do not occur in modernfunctional
languages because they complicate static typing: these include first-class patterns (for
instance, by abstracting over the feature of a record or a record pattern), run-time type
tests (“dynamics”), as well as several aspects of Oz’s object system [91].

For Plain, the most specific difference to OPM is the omission of equations and general
constraint systems. A secondary difference is the fact that cell exchange comes with a
continuation. The omissions of equations and the modification of cell exchange were
necessary to make the type system work. In this section we explain why. We also give
a brief outlook on constraint systems.
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6.3.1.1. Equational Constraints

Unification is the operation to impose an equational constraint between two datastruc-
tures in the store. Assignment can be seen as a restricted equational form,and its
reduction as the restriction of unification binding a previously unbound variable. For a
first generalisation of assignment towards unification, consider a bidirectionalassign-
ment statement of the formx :=: y that behaves either asx:=y or asy:=x. Since static
typing requires the types of variables to be known statically, the best possible typing
rule for bidirectional equationsx :=: y that preserves type safety is

Γ.x:ˆP Γ.y:ˆP

Γ.x :=: y
(BIDIRECT)

Note that this allows forP to contain nested read and/or write modes. For example,
the typeP= fa:?intg yields a useful instance of (BIDIRECT).47

Unification of complex data structures like records subsumes the bidirectional assign-
ment, but it also performs a recursive traversal of a given data structure while gen-
erating additional equations. The data flow is directed dynamically. Due to thisre-
cursion, a typing rule for an equational constraint must be even more restricted than
(BIDIRECT):

Γ.x:T Γ.y:T

Γ.x=y
T does not contain ? or ! (UNIF)

In effect, this rule trivialises subtyping on the types of all expressions that may be
mentioned by an equality constraint. Hence, in a language where telling equations is
a central operation, one ends up losing virtually all subtyping. For this reason, Plain
uses (directed) assignmentx:=y instead of the equationsx=y as OPM.48

6.3.1.2. Cell Exchange

The cell exchange(exch x y z) in OPM does not have a continuation. Its operational
semantics makes use of an equationz0=z and hence(exch x y z) suffers from the sub-
typing problem. In Plain style, the semantics of(exch x y z) would appear as

Vρσ [] (exch x y z) �! Vρσ[y=σ(x)] [] z0=z if ρ(σ(x)) = z0
An immediate option to get better typing is to replace the equation by an assign-
ment. However neitherz:= z0 nor z0 := z is preferred over the other. Both of them

47It is not by accident that this corresponds to the trivial subtyping rule for cells: cells are invariant
with respect to subtyping, because they support reading and writing inseparably. Similarly, the unifica-
tion operation subsumes both binding (reading) and matching (writing) on logic variables.

48It is, of course,safely possible to have bidirectional assignment or equations in addition to directed
assignment.
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are needed (recall the discussion of mode polymorphism for the channel encoding in
Section 6.1.3.4). Plain’s modified cell exchange(exch x y(z) S) defers to the continu-
ationS the decision at which mode to use the old content ofx.

Another option would have been to have cells always holding records with some (arbi-
trary but fixed) featurea and to combine cell exchange with field selection ata. With
this convention and the semantics of exchange given by

Vρσ [] (exch x y z) �! Vρσ[y=σ(x)] [] z:=z0 if ρ(σ(x)) = z0
we could consider Plain’s exchange statement(exch x y(z) S) as an abbreviation of(local (y0) y0 :=fa:yg jj (exch x y0 z) jj (case z(a:z0 : : :) S))
We decided against this option to keep cells independent of the other data structures.

6.3.1.3. Constraints over Flat Domains

The rule (BIDIRECT) suffices to explain the bidirectional data flow present in con-
straint systems over flat domains. This includes finite domain constraints over in-
tegers but also finite sets of integers (see [73, 146, 206, 219] and references therein).
Therefore, it is straightforward to integrate a statically typed version of Oz’s finite do-
main and finite set constraint systems into Plain: to variables from theseconstraint
systems we assign read/write-moded types ˆint and întset, and to typical constraint
propagation procedures (see [94]) we assign typesplus : ?(proc ˆint ˆint ˆint) or
union: ?(proc ˆintset ˆintset ˆintset).
6.3.1.4. Extensible Records

Record constraints allow field-wise record construction using the selection constraint.
This possibility can be added to Plain as follows: First, liberalise thestore by mapping
variables not only to complete records,σ(x) = fa:Tg but to records whose fields need
not all be present: write this asσ(x) = fa:T : : :g. Second, introduce an assignment
statementx:a :=y that extends the recordx by the featurea and the associated fieldy.
The extensionσ;x7!fa:y: : :g of a storeσ by a featurea atx is defined by:

σ;x7!fa:y: : :g = 8>><>>: σ[fa:yg=x] if x 62 dom(σ)
σ[fb:y a:yg=x] if σ(x) = fb:yg;a 62 fbg
σ otherwise

:
Execution of the statementx:a:=y in a configuration that mapsx to a procedure, a cell,
or a complete record without the fielda is a type error.
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Note that store extension remains a monotonic operation: the binding of a variable
to an extensible record can be refined to mention more fields but fields can never be
retracted.

Vρσ [] x:a :=y �! Vρσ;x 7! fa:y: : :g [] skip
The situation thatx is bound to a procedure or a cell on reduction ofx:a := y is a
type error. The operational semantics of pattern matching need not be changed at all.
Observe, however, that the side conditionσ(x) = fa:z: : :g of the corresponding rule
silently adapts and now requires thatσ(x) be anextensiblerecord with at least the
fieldsa being known.

Extensible records can be easily type-checked provided that the record type mentions
all fields that are accessed in a program. The rule (EXTREC) accepts an extension ofx
by field y at featurea whenever the type ofx has write mode and contains the feature
a, where it allowsy’s type.

Γ.x : !fa:T : : :g Γ.y : T

Γ.x:a :=y
(EXTREC)

6.3.2. Let-Statement

We show how to extend Plain by a let-statement as common from functional program-
ming. This is useful to give more accurate modes in the common situation that a vari-
able is initialised on declaration. It is also needed to adapt an ML-stylepolymorphic
type system to Plain. While we have considered ML-polymorphism as too restrictive
with respect to some common programming patterns in Oz, it may become important
as part of an ongoing language design that embeds concepts of Oz into a call-by-value
functional programming language [196].

In most Plain programs, the type system requires all local variables to haveread/write
moded types of the formP̂. (The only exception in this thesis is the local variable
in the procedurewait defined on Page 162 which is used solely for synchronisation
purposes.) It is clear that most variables will have both, a writer and a reader.

However, there are usually only few places where a variable can be bound but many
places where it is read. A frequent case is for variables to be initialised just once
on declaration and to be only read everywhere else. In order to staticallyexclude an
erroneous second assignment as in the statement(local (x) x:=1 jj x:=2) ;
one should consider the following slight syntax extension. Define a new statement(let (x:=E) S)
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where the variablex is bound both inE andS. The operational semantics of(let (x:=
E) S) is defined as follows:

Vρσ [] (local (x) x:=E) �! V 0ρ0σ0 [] skip
Vρσ [] (let (x:=E) S) �! V 0ρ0σ0 [] S

This statement is type-checked according to the following customised rule:

Γ;x:?P.E:P Γ;x:?P.S

Γ. (let (x:=E) S) (LETREC)
Note thatΓ. (let (x:=E) S) impliesΓ. (local (x) x:=E jj S) but not vice versa.

It is possible to adapt ML-style polymorphism for a language with higher-order pro-
cedures and unification. The key observation to be made here is that logic variables
behave like reference cells with respect to their interaction with polymorphism.

In more detail, one needs the following insights in order to apply standard machinery:� A let-statement is needed as defined above.� Procedures may have a polymorphic type only if they are introduced by a let-
statement and need no evaluation.

In combination, these conditions guarantee that polymorphic procedures can be in-
stantaneously created and bound to a fresh variable:(let (x :=(proc (y) S)) S0). The
atomicity of declaration and binding is crucial for the type soundness result.

These conditions correspond to Wright’s proposal for typing polymorphic procedures
in presence of reference cells [217]. Wright solves, in a very simple manner, the prob-
lem that the naı̈ve generalisation of the Hindley/Milner system [55, 123] from a pure
functional language to a language with reference cells is not sound,i. e., type safety
fails [202]. Wright’s solution has meanwhile been adopted in the revised definitionof
SML [130].

6.4. Related Work

6.4.1. Pict

One of the closest relatives of Plain is Pict, a concurrent programming languagebased
on theπ calculus [169].

176



6.4. Related Work

6.4.1.1. The Untyped Language

The π-calculus is designed as a minimal base for concurrent computation which can
express concurrent versions of data structures and procedures with channel commu-
nication as its essential computational primitive. This minimality is intriguing from
a foundational perspective, but of limited practical use. When designing a high-level
languages, many basic programming abstractions must be encoded. The join calcu-
lus [67], a variant of theπ-calculus, is superior in this respect as it directly supports a
procedural form (the “join”).
Following OPM, Plain provides essential programming primitives directly: Records,
higher-order procedures, and cells. Due to logic variables, there is no need for aded-
icated communication primitive in Plain. Once a logic variable is bound to a data
structure it becomes indistinguishable from it. This is in contrast to channels which
remain distinct from the data structure they receive. Channels and locks canbe ex-
pressed in Plain as synchronised data structures. Our programming experience with
Oz shows that concurrent threads typically communicate through custom-built syn-
chronised objects, where the combination of data flow synchronisation with logic vari-
ables, sequential composition and locks proves essential [91, 92]. Plain can conve-
niently express Pict programs as our channel encoding from Section 6.1.3.4 illustrates.
However, it needs considerable effort to express in Pict partial data structures and data
flow synchronisation with logic variables.

6.4.1.2. The Type System

The type system of Plain is directly inspired by the one of Pict that, in turn, is firmly
based on research on type systems for functional languages, more specifically on the
one around the systemFω� that combines higher-order polymorphism and subtyping
(see [32, 36, 76, 177] and [169] for further references). More specifically, we have
applied Pierce and Sangiorgi’s mode system for channels to a concurrent language
with logic variables. However, the meaning of modes differs between Pictand Plain.
In Pict, ?P is the type of a channel carrying values of typeP: the mode is not separate
from the channel type constructor. Hence, in contrast to Plain, nested modes do make
sense in Pict. For instance, the Pict type ˆ?P describes input/output channels carrying
input channels for values of typeP: this reflects the fact that channels are entities
separate from the data they carry and that there are explicit operations to access this
data. In contrast, logic variables can be seen as once only communication channels that
become indistinguishable from the data structure they eventually receive. In addition,
mode polymorphism as in Plain, which allows one to abstract over a mode and then to
instantiate it separately, does not suggest itself in Pict; there, mode polymorhism can
be expressed with bounded polymorphic types [36].
We have used universal higher-order polymorphism [76, 177]. This is in contrast to
Pict whose basic form of polymorphism is existential [169]. There, messages are the
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basic typed entities (“packages”) about which only partial information is revealed to
the receiver process (abstract types) [31, 135]. For a procedural language like Plain,
universal polymorphism seems more appropriate. To facilitate a direct comparison
between Plain and Pict, we have also defined a type system for Plain with existential
polymorphism [144] (note, however, that existential polymorphism can be encoded by
higher-order universal polymorphism [178]). Pict’s type system is much larger than the
one we presented for Plain, containing variant types, recursive types, kinds, etc. [169]
We have kept Plain simple to focus on the language design point of view, but we do
not foresee any Plain-specific difficulties in extending its type system accordingly.

6.4.1.3. Type Inference

We have not considered the type inference problem for Plain, which is very likelyto
be undecidable: The closely related type inference problem for the the “polymorphicλ
calculus” System F [76, 177] is undecidable [214], and the addition of subtyping does
not seem to make type inference any simpler. Currently, the design of type inference
heuristics for type systems with subtyping and higher-order polymorphism is a chal-
lenging research topic. With Pict, Pierce and Turner have made important progress on
this issue but it seems not to be settled, in particular with respect to recursive types.
Initially, Pict’s approach to type inference was based on an algorithm that Cardelli
described for a functional language, but this is no longer the case [33, 167, 168]. We
expect these experiences to be useful for a decent implementation of Plain; different in
spirit, we also anticipate the usefulness of a mechanism to “bypass the type checker”
as in TEL [192] which might change the game considerably.

6.4.2. Modes in Logic Programming

In logic programming, modes often describe the instantiation state of procedure argu-
ments (ground, non-ground, free) directly before or both, before and after procedure
application [29, 56, 192, 198].

In the typed Prolog dialects TEL and Mercury [192, 198], the mode of procedure argu-
ments must be declared. For instance, input arguments must be ground on procedure
application, and output arguments will be ground thereafter. Mercury strictly enforces
this discipline such that computation with partially determined data structures (that is,
arguments which are neither ground nor free) becomes impossible. In TEL, on the
other hand, variables can be declared as “open” which enables all programming tech-
niques developed for Prolog. This effectively bypasses the type checker which treats
open variables as ground. In both systems, modes are very simple due to their restric-
tion to ground arguments (at least during type checking). The system we present for
Plain is more complex: since Plain caters for partially determined datastructures, its
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type and mode system must deal with modes that occur on every level in the structure
of a data type.

In concurrent logic programming, variable moding has always played a special role.
Preceding Maher’s logical characterisation of synchronisation as entailment [120],
read-only annotations on variables were used to explain synchronisation patterns op-
erationally; these could become rather complex, as for instance in Concurrent Pro-
log [187]. The annotations were checked during unification, and the attempt to bind
an unbound read-only variable lead to a suspension. Modes were also considered as a
means to exclude failure: since failure is due to disagreement between two producers
for the same variable, multiple producers were excluded. Notice that this conceptof
modes is aresource-sensitiveone, which contains information both on directional data
flow and multiplicities.

The Relational Language [47] and its successor Parlog [79] made the declaration of
input and output arguments obligatory in procedures; mode declarations were checked
at run-time. The modes only referred to the top-level constructor of a record, not to
its subterms. Strand [66] put away with unification altogether and disallowedmultiple
assignment to the same variable; the second assignment to the same variablelead to
a run-time error. Directed variables [113] as in Doc and Janus [98, 181] are restricted
even further in that they disallow multiplereaders. Thus directed variables express
point-to-point communication (cf. “linear channels”) rather than a multicasting. While
the write-once property can be guaranteed statically, the read-once property remains to
be checked at run-time. More recently, Ueda proposed to call programs with directed
variableswell-moded[204, 205] and gave algorithms to check well-modedness in Flat
GHC programs statically.

6.4.3. ML-style Polymorphism for Logic Variables

MLOG [172] is an extension of ML by logic variables due to Poirriez. In MLOG,
the type system is used to separate strictly the “functional types” (such as “int”) from
the “logic types” (such as “unbound orint”) used to describe data structures that may
contain embedded logic variables. This strict seperation simplifies the implementa-
tion of logic variables as an extension of existing ML compilers, but it overlooks the
expressiveness of logic variables as a synchronisation mechanism in concurrent and
distributed programming. The typing of logic variables in MLOG is based on an pro-
posal by Leroy and Weis [117] that is nowadays outdated by Wright’s proposal [217].

Minamide [131] describes a type system for a restricted form of logic variablesin a
statically typed functional language. In Minamide’s system, no data structuremay
contain more than one embedded logic variable (which he calls a “hole”). Although
this considerably restricts the expressiveness of logic variables, it enables some pro-
gramming techniques that are well-known in the logic programming community [200],
such as difference lists and tail-recursive definition of procedures likeappendor map.
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Mycroft and O’Keefe [147] have adapted the ML-type system [123] to logic program-
ming. Their system underlies the programming languages Gödel and Mercury [97,
198]. Some preliminary results on ML-style type checking for an Oz-style language
includingfeature tree constraints can be found in [138].

6.4.4. Types in Concurrent Programming

In sequential programming, the prevailing view of type checking is that it guarantees
safetyof operations on data structures. This view must be refined in concurrent com-
putation since concurrency introduces the possibility of additional erroneous situations
such as deadlock, livelock, starvation, race conditions, and the like. For example, it is
desirable to guarantee theavailability of services in a client-server system. From this
point of view, it is useful to considertypes as protocolsthat specify the interaction be-
tween concurrent processes, and to view type checking asprotocol verification. Since
memory and data structures can also be modelled as concurrent processes, thispoint
of view properly generalises the traditional sequential approach.

We have taken the view that modes in type systems for concurrent languages describe
(very simple) protocols. More complex protocols might account for the multiplicityof
operations on resources, such as requiring “at least one reply per request” or “exactly
one release per lock on a semaphore”; or they might describe more complex temporal
behaviours such as the behaviour of process that offers services that vary over time. In
this thesis we do not deal with multiplicity or temporal protocol properties. For some
recent work on resource sensitive type system for concurrent programming languages
see [25] and references therein, and for behavioural type systems see Nierstrasz [156].
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Further Research

The question that motivated the research reported in this thesis was:

How can we provide some static type checking to the dynamically typed
language Oz?

We have approached this question from two complementary sides, and we could con-
tribute a number of results to both of them.

First, we have shown that an expressive strong type system is possible for a language
that combines key features of Oz, namely higher-order procedures, logic variables and
partially determined data structures, cells, and records. The design of thecorrespond-
ing language Plain marks a design option for “strongly typed Oz”, and Plain is one
inspiration for an ongoing language design that embeds concepts of Oz into a call-by-
value functional programming language [196]. In addition, Plain provides a new link
between two prominent concurrent programming models: concurrent constraints and
process calculi. However, Plain is not Oz. Plain is not a constraint languageanymore
and, most notably, leaves open the question of strong typing for feature tree constraints.

Second, we have suggested failure diagnosis as a new class of set-based program ana-
lysis that is dual to strong typing and that does not attempt to prove the absence of
run-time errors but their inevitability. We have shown how to achieve this goal for a
concurrent constraint language over infinite trees. We have also proposed a set-based
analysis for a large fragment of Oz. This analysis seems intuitively reasonable and an
experimental implementation has been encouraging by proving its usefulness in fin-
ding errors. Unfortunately, a correctness result for this analysis has not been achieved.
Such a result should, independent on the analysis, characterise in which sense a pro-
gram is indeed ill-formed if the analysis rejects it.

We leave the problem open as a challenge for future research. There seem to be two
options to tackle it. Either one could try to find adenotationalsemantics for (a frag-
ment of) Oz against which to judge correctness of the analysis; we expect this to be
fairly tricky, given that Oz subsumes both CC and the untypedλ-calculus. Or one
could try to justify the analysis solely by reasoning about Oz’soperationalsemantics.
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As part of our set-based failure diagnosis, we have defined a new system of set con-
straints that is appropriate for the set-based analysis of languages that support record
structures. We have settled many algorithmic and complexity issues for this constraint
system that are relevant for their application in program analysis. We have argued
the design decisions that lead to this constraint system, and we hope that it can beof
independent interest to the constraint community.

The more general question that I consider still open is:

Which is thebestway to provide some static type checking for a concurrent
constraint language with higher-order procedures?

The critical word “best” asks for a compromise between so diverse aspectsas effec-
tiveness in static debugging, restrictions on programming flexibility, efficiency of im-
plementation, scalability and ease of use. The right balance between these can only be
obtained by practical experimentation.

Let us mention a number of approaches that we consider worth investigating more
closely next.

Flanagan’s static debugger for Scheme [63, 65] provides inspiration for modular pro-
gram analysis with set-constraints, as well as for the presentation of constraints.

Aiken and Fähndrich have proposed a program analysis with constraints that are in-
terpreted over a special domain. These constraints lie “half-way between” equality
constraints over trees and set inclusion constraints [62]. The hope is that this sys-
tem allows one to have one’s cake and eat it, too: exploit the expressiveness of set
constraints where necessary, but enjoy the efficiency of solving tree constraints where
possible.

We have observed more than once the need for data flow information in order to im-
prove the program analysis. It is hence desirable to investigate data flow analysis for
Oz in a more principled way, as well as its interaction with set-basedanalysis. Most
relevant in this context appear Shivers’s [191] and, once again, Flanagan’s set-based
data flow analysis for Scheme.

Type systems that combine higher-order polymorphic types and subtyping (as in Plain
or Pict) suffer from the fact that they do not allow automated type inference [214].
Pierce and Turner propose a heuristics for automated type reconstruction that they
call “local type inference” [168], which they claim to be simple and intuitiveenough
such that it can be part of the language definition (as opposed to being implementation
specific) and as such can easily be absorbed by programmers.

Recently, Smolka has sketched a redesign of Oz that embeds constraint programming
concepts into a (dynamically typed) version of ML [196]. It may be interesting to
reconsider Plain’s type system in this context: Independent of syntactic difference,
we expect the technical insight to survive that subtyping on logic variables requires
a mode discipline. However, the situation might change in a subtle way due to a
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different choice of primitive operations on logic variables (such as the ones sketched
in the slides complementary to [196]). On the other hand, the most natural choice for a
strong type system for an extension of ML is an appropriate extension of the ML type
system. As for Plain, the immediate challenge for a typed Oz remains: how to treat
tree constraints in a strong type system. Some preliminary results on this topic can be
found in [138].

In this context, we must reconsider the restrictions of the ML type system that have
led us to base Plain on a more powerful type system. In order to overcome these
restrictions we could try to extend the ML type system. Language designs of interest
in this context include O’Caml [72, 175], a promising attempt to integrate objects into
ML, and O’Labl [71], an extension of O’Caml by polymorphic records and variants.
Alternatively, we could investigate a more flexible interaction of static and dynamic
type checking than usual, and allow the programmer to “bypass the type checker” for
doing something “ill-typed”. To my knowledge, this has not been pursued yet in the
context of a functional language.
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In this chapter we introduce some basic concepts from set theory and predicate logic,
as well as some notational conventions.

A.1. Sets, Relations, and Mappings

A set is an unordered collection of objects called itselements. We writex 2 s if x is
an element of the setσ, We writefx1; : : : ;xng for the finite setthat contains exactly
the elementsx1 throughxn, and we write/0 for the empty setthat has no elements.
If P is a property, then we denote withfx j P(x)g the set of all elements that have
propertyP. The number of elements inσ, i. e., thecardinality ofσ, is written asjjsjj.
A set is calledfinite or infinite depending whether its cardinality is finite or infinite.
A set σ1 is said to be asubsetof a setσ2, written σ1 � σ2, if every element ofσ1

is also an element ofσ2. If σ1, andσ2 are arbitrary sets, we writeσ1[σ2 for the
union ofσ1 andσ2, σ1[σ2 = fx j x 2 σ1 or x 2 σ2g, σ1\σ2 for the intersection of
σ1 andσ2, σ1[σ2 = fx j x2 σ1 andx2 σ2g, σ1nσ2 for thedifference ofσ1 andσ2,
σ1nσ2 fx j x2 σ1 andx 62 σ2g, For all setsσ, we writeP (s) for thepowerset ofσ, i. e.,
the set of all subsets ofσ given byP (s) = fs0 j s0 � sg, and asP+(s) the set of all
nonempty subsets ofσ, i. e., P+(s) = P (s)n /0.

An n-tuple(x1; : : : ;xn) is a finite sequence ofn objects. Ann-ary relationbetween sets
σ1 throughσn is set of tuples(x1; : : : ;xn) such thatx1 2 σ1;x2 2 σ2; : : :, andxn 2 σn.
If R is a binary relation betweenσ1 andσ2 andx1 2 σ1 andx2 2 σ2, then we allowxRy
as an alternative notation for(x1;x2) 2R. If R is a binary relation, then we writeR� for
thereflexive and transitive closure of R, i. e., the smallest relation containingR that is
reflexive and transitive.

A (total) function f from σ1 to σ2, written f : σ1! σ2, is a binary relation betweenσ1
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andσ2 such that for everyx1 2 σ1 there isexactlyonex2 2 σ2 such that(x1;x2) 2 f . A
partial function f from σ1 to σ2, written f : σ1 * σ2, is a binary relation betweenσ1

andσ2 such that for everyx1 2 σ1 there isat mostonex2 2 σ2 such that(x1;x2) 2 f .

Given a (total or partial) functionf from σ1 to σ2, thedomain of fis the subset ofσ1 on
which f is defined, and therange of f is the subset ofσ2 whose elements are obtained
as f (x1) for somex1 2 σ1. Formally,dom(s) = fx1 j existsx2 2 σ2 such thatf (x1) =
x2g and rg(s) = fx2 j existsx1 2 σ1 such thatx2 = f (x1)g. The domain of a total
function f : σ1! σ2 is σ1.

Thecompositionof f : σ1* σ01 andg : σ2 * σ02 whererg( f )� dom(g) is the function
g� f : σ1!σ02 defined by(g� f )(x1) = g( f (x1)) for all x12 σ1. If f is a function from
σ1 to σ2, and ifx1 2 σ1 andx2 2 σ2, then f [x2=x1] defines the function that coincides
with f ondom( f )nfx1g and mapsx1 to x2: f [x2=x1] = f(x1;x2)g[f(x0;x00) j (x0;x00) 2
f andx1 6= x0g. We call f [x1=x2] anextension of f.

A.2. Predicate Logic

A signatureΣ is a ranked alphabet of function and predicate symbols, where every
function symbol f and every predicate symbolp is associated an non-negativear-
ity ar( f ) resp.ar(p). If ar( f ) = 0 we call f a constant symbol. Let A be some set.
An (A;Σ)-interpretationis a function that maps every predicate symbolp 2 Σ withar(p) = n to ann-ary relation overA, and every function symbolf 2 Σ with ar( f ) = n
to a function the set ofn-tuples overA to A. A Σ-structureis a pairA = (A;I ) where
A is a thedomainof A, andI is an(A;Σ)-interpretation.

A first-order languageL consists of a setV of variables, a signatureΣ, a collection
of logic connectivessuch aŝ ;_;:;!, andquantifiers9 and8, possibly an equality
symbol= and usually parentheses ‘(’ and ‘)’. We define as usual thefirst-order terms
and theformulasoverL , as well as the set ofvariables free (resp., bound) in a formula
Φ which we write asfv(Φ) (resp., bv(Φ)). A formulaΦ is calledclosedif fv(Φ) = /0.
A constraint systemis given by a first-order (constraint) languageL and a structureA.
The constraint languageL defines a set of formulas calledconstraints. All constraint
languages in this thesis contain conjunction^ as the only logic connective.

If A = (A;I ) is a Σ-structure, then anA-valuation is a functionα : V ! A from
the variables into the domain ofA. We define as usual the concept of a valuationα
satisfyinga formulaΦ in A, writtenα j=A Φ. Given a structureA, we say a formula
Φ is satisfiablein A, written A j= Φ, if there exists a valuationα such thatα j=A Φ
and in this caseα is called asolutionof Φ in A. We write the set of solutions of a
formulaA as Sol(A). We say thatΦ is valid in A, or thatA is amodelof Φ, if α j=A Φ
for all valuationsα. We say thatΦ entailsΦ0 in A, written Φ j=A Φ0, if Φ! Φ0 is
valid in A, and thatΦ1 is equivalentto Φ2 (in A) if Φ1$ Φ2 is valid in A. The
satisfiability problemfor a constraint system(L ;A) is whether an arbitrary constraint
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ϕ 2 L is satisfiable inA, and Theentailmentproblem for a constraint system(L ;A) is
ϕ1 j=A ϕ2 holds for two constraintsϕ1;ϕ22L . A theoryis a set of first-order formulas.
Given a constraint system(L ;A) we call the associatedfirst-order theorythe set of
formulas overL , extended by arbitrary first-order connectives and quantifiers, that are
valid in A.

A.3. Notational Conventions

A sequence of syntatic objectsX1; : : : ;Xn is abbreviated asX if the lengthn of the
sequence does not matter, and we denote withjXj the length of such a sequence. For
two syntactic objectsX andY of the same category, we denote with[Y=X] thesubsti-
tutionof Y for X in syntactic objects. Thesimultaneous substitution[Y1=X1] : : : [Yn=Xn]
of Y1; : : : ;Yn for pairwise distinctX1; : : : ;Xn is abbreviated by[Y=X]. Moreover, we
denote withX:Y the finite sequence of pairsX1:Y1 : : :Xn:Yn.
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“Now I declare that’s too bad!” Humpty
Dumpty cried, breaking into a sudden pas-
sion. “You’ve been listening at doors – and
behind trees – and sown chimneys – or you
couldn’t have known it!”
“I haven’t, indeed!” Alice said very gently.
“It’s in a book.”

– Lewis Carroll,Through the Looking Glass
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