
Constructive Formalization of

Hybrid Logic with Eventualities

Christian Doczkal and Gert Smolka

Saarland University

Published in Proc. of CPP 2011, Kenting, Taiwan, LNCS 7086, Springer, 2011

This paper reports on the formalization of classical hybrid logic with even-

tualities in the constructive type theory of the proof assistant Coq. We rep-

resent formulas and models and define satisfiability, validity, and equiva-

lence of formulas. The representation yields the classical equivalences and

does not require axioms. Our main results are an algorithmic proof of a

small model theorem and the computational decidability of satisfiability,

validity, and equivalence of formulas. We present our work in three steps:

propositional logic, modal logic, and finally hybrid logic.

1 Introduction

We are interested in the formalization of decidable logics in constructive type

theory. Of particular interest are logics for reasoning about programs, as exem-

plified by PDL [6] and CTL [4]. Given that these logics enjoy the small model

property, one would hope that they can be formalized in constructive type the-

ory without using classical assumptions. In this paper, we report about the con-

structive formalization of H∗ [12], a hybrid logic [1] with eventualities (iteration

in PDL, “exists finally” in CTL). We employ the proof assistant Coq [15] with the

Ssreflect extension [9].

Our formalization represents formulas and models and defines a two-valued

function evaluating formulas in models. Our main result is an algorithmic proof

of a small model theorem, from which we obtain the computational decidability

of satisfiability, validity, and equivalence of formulas. We do not require axioms

and rely on the native notion of computability that comes with constructive type

theory.

Hybrid logics [1] extend modal logics with nominals. The models of a modal

logic can be seen as transition systems. The formulas of a modal logic describe

1

predicates on the states of a model. Nominals are primitive predicates that hold

for exactly one state. Since we formalize a classical modal logic in constructive

type theory, we require that the formulas denote boolean state predicates. To

make this possible, we employ models that come with localized modal opera-

tions mapping boolean state predicates to boolean state predicates. While lo-

calized modal operations are essential to our constructive development, they are

superfluous in a conventional mathematical development (since their existence is

obvious). In the constructive setting, the localized modal operations constitute

localized decidability assumptions, which eliminate the need for global decid-

ability assumptions.

A conventional proof of a small model theorem starts from a formula and

a model satisfying it. From the formula one obtains a finite syntactic closure

(roughly the subformulas) and projects the states of the model to Hintikka sets

contained in the closure. One then shows that the finitely many Hintikka sets

obtained this way constitute a model of the formula.

The conventional proof does not work in our constructive setting since the

Hintikka projection cannot be obtained from the model. However, there is an

algorithmic technique known as pruning that originated with Pratt [14] that ob-

tains from the system of all Hintikka sets contained in the finite syntactic clo-

sure a subsystem that constitutes a small model of all satisfiable formulas in

the closure. As we show in this paper, the correctness of pruning can be shown

constructively and provides for a constructive proof of the small model theorem.

Interestingly, the pruning technique results in a worst-case optimal decision pro-

cedure (exponential complexity) while a naive search based on the small model

theorem results in a double exponential decision procedure.

The formalization presented in this paper is based on the mathematical de-

velopment presented in [11]. Small model theorems and pruning-based decision

procedures originated in the work of Fischer and Ladner [6], Pratt [14], and Emer-

son and Halpern [5].

There appears to be no formalized decidability result for classical modal logic

in the literature. Formalizing decidability results in classical logics like HOL re-

quires an explicit formalization of computability. While there are formalizations

of computability theory in HOL [13, 17], we are not aware of any decidability

results based on these. However, there is work on the verification of decision

procedures in constructive logic, often with an emphasis on code extraction. An

early example is a decision procedure for classical propositional logic verified by

Caldwell [3] in the Nuprl system. Another example is Buchberger’s algorithm for

polynomial rings verified by Théry [16] in Coq. Also, there is recent work on the

constructive metatheory of classical logics. Ilik et. al. [10] give a constructive

completeness proof for a classical first order sequent calculus with respect to

2

a certain class of Kripke models. In contrast to [10], we work with a notion of

model that closely resembles the usual mathematical definition. We can do this

since our proofs only require the construction of finite models.

Given that we work with finite structures and finite sets, we could profit much

from Coq’s Ssreflect extension. In particular, we make use of Ssreflect’s support

for boolean propositions, finite types, and finite sets [8, 7].

The paper presents our work in three cumulative steps: Propositional logic,

modal logic with eventualities, and finally modal logic with eventualities and

nominals. For each logic, we present the mathematical theory underlying the

formalization and comment on its realization in Coq. In each case, we work with

a finite formula closure and prove a small model theorem based on Hintikka sets.

The Coq formalizations of the three logics appear in separate files that can be

found at http://www.ps.uni-saarland.de/extras/cpp11/.

2 Propositional Logic

We start with the theory of classical propositional logic we have formalized. We

call this theory P. Theory P is arranged such that it fits a constructive formal-

ization that scales to modal logic. We first outline the mathematical theory and

then sketch its formalization.

2.1 Mathematical Development

We assume a countable alphabet of names called variables and declare the let-

ters p and q as ranging over variables. Formulas are defined by the grammar

s, t ::= p | ¬p | s ∧ t | s ∨ t

A modelM is a set of variables. The satisfaction relationM⊨ s between models

and formulas is defined by induction on formulas.

M⊨ p ⇐⇒ p ∈M M⊨ s ∧ t ⇐⇒ M⊨ s and M⊨ t

M⊨ ¬p ⇐⇒ p ∉M M⊨ s ∨ t ⇐⇒ M⊨ s or M⊨ t

Satisfiability, validity, and equivalence of formulas are defined as follows.

• s is satisfiable if M⊨ s for some model M.

• s is valid if M⊨ s for all models M.

• s and t are equivalent (s ≡ t) if M⊨ s iff M⊨ t for all models M.

3

http://www.ps.uni-saarland.de/extras/cpp11/

To express general negation we define a negation operator ∼ by induction on

formulas:

∼p = ¬p ∼(s ∧ t) = ∼s ∨∼t

∼(¬p) = p ∼(s ∨ t) = ∼s ∧∼t

Proposition 2.1 Let s and t be formulas.

1. ∼∼s = s

2. M⊨ ∼s iff M 6⊨ s

3. s is valid iff ∼s is unsatisfiable.

4. s ≡ t iff (s ∧ t)∨ (∼s ∧∼t) is valid.

The syntactic closure Cs of a formula s is the set of all subformulas of s. We

define Cs inductively.

Cp = {p} C(¬p) = {¬p}

C(s ∧ t) = {s ∧ t} ∪ Cs ∪Ct C(s ∨ t) = {s ∨ t} ∪ Cs ∪Ct

We fix some formula s0. A Hintikka set is a set H ⊆ Cs0 satisfying:

H1. If ¬p ∈ H, then p ∉ H.

H2. If s ∧ t ∈ H, then s ∈ H and t ∈ H.

H3. If s ∨ t ∈ H, then s ∈ H or t ∈ H.

Proposition 2.2 Let H be a Hintikka set. Then {p | p ∈ H } is a model that

satisfies every formula s ∈ H.

Theorem 2.3 A formula s ∈ Cs0 is satisfiable if and only if there exists a Hintikka

set H such that s ∈ H.

Proof Let M ⊨ s. Then { t ∈ Cs0 | M ⊨ t } is a Hintikka set containing s. The

other direction follows from Proposition 2.2.

We now have a decision procedure for satisfiability. Given a formula s, the pro-

cedure checks whether the finite set Cs has a subset that contains s and is a

Hintikka set.

Corollary 2.4 Satisfiability, validity, and equivalence of formulas are decidable.

Proof Follows from Theorem 2.3 and Proposition 2.1.

4

2.2 Decidability, Finite Types and Finite Sets

We formalize our results in the proof assistant Coq, a system implementing the

Calculus of Inductive Constructions [15]. All functions definable in Coq (without

axioms) are total and computable. Hence, to show that a predicate P : X −> Prop

is decidable we define a decision function of type

forall x:X , { P x } + { ∼ P x }

returning for every x:X either a proof of P x or a proof of ∼ P x.

Our formal proofs rely heavily on the Ssreflect extension to Coq, so we briefly

describe the most important features we use. For technical details refer to [7, 8].

Ssreflect defines an implicit coercion from bool to Prop, allowing booleans to

appear in place of Propositions. The type of boolean predicates over a type T

(i.e., T −> bool) is abbreviated pred T.

In Ssreflect, a finite type is a type together with an explicit enumeration of its

elements. Finite types can be constructed from finite sequences using seq_sub

and finiteness is preserved by many type constructors. For a sequence xs:seq T

the finite type X := seq_sub xs comes with a generic injection val from X into T.

Finite types come with boolean quantifiers forallb and existsb taking boolean

predicates and returning booleans.

If X is a finite type, the type {set X} is the type of sets over X, which is it-

self a finite type. Ssreflect provides the usual set theoretic operations on {set X}

including membership, written x \in X, and set comprehensions [set x:X | p].

Ssreflect also provides a choice operator for boolean predicates over finite

types. We use choice and boolean quantifiers to specify decision procedures in a

declarative way.

2.3 Formalization of Propositional Logic

We now outline the formalization of P in Coq with Ssreflect. We start with the

definition of types for variables, formulas, and models.

Definition var := nat.

Inductive form := Var : var −> form | ...

Definition model := var −> bool.

For convenience, we choose nat to be the type of variables. To obtain a rep-

resentation that is faithful to classical logic, we represent models as boolean

predicates. The satisfaction relation is then obtained with a recursive evaluation

function:

Fixpoint eval (M : model) (s : form) : bool := ...

The definitions of satisfiability, validity, and equivalence are straightforward.

5

Definition sat s : Prop := exists M, eval M s.

Definition valid s : Prop := forall M, eval M s.

Definition equiv s t : Prop := forall M, eval M s = eval M t.

The proof of Proposition 2.1 can be carried out constructively since formulas

evaluate to booleans. For (3) the de Morgan law for the existential quantifier is

needed, which is intuitionistically provable. An analogous proof of the statement

s satisfiable iff ∼s is not valid

is not possible at this point since it would require the de Morgan law for the

universal quantifier, which is not provable intuitionistically. As is, we can prove

that decidability of satisfiability implies decidability of validity and equivalence.

Lemma dec_sat2valid : decidable sat −> decidable valid.

Lemma dec_valid2equiv : decidable valid −> forall s, decidable (equiv s).

We define the syntactic closure operator C as a recursive function from formulas

to lists of formulas.

Fixpoint synclos (s : form) : seq form := ...

Given a formula s0, we obtain Cs0 as a finite type F.

Variable s0 : form.

Definition F : finType := seq_sub (synclos s0).

We identify Hintikka sets by a boolean predicate: 1

Definition Hcond (t : F) (H : {set F}) :=

match val t with

| NegVar v => ∼∼ (Var v \in’ H)

| And s t => s \in’ H && t \in’ H

| Or s t => s \in’ H || t \in’ H

| _ => true

end.

Definition hintikka (H : {set F}) : bool :=

forallb t, (t \in H) ==> Hcond t H.

Our alternative membership \in’ extends membership in {set F} from F to form,

separating the definition of Hintikka sets and the membership proofs for

synclos s0 associated with F. Defining Hintikka sets only for sets over F allows

us to make use of Ssreflect’s extensive library on finite sets.

We then prove Proposition 2.2 for Hintikka sets in {set F} and Theorem 2.3 for

formulas in F.

Theorem decidability (t:F) :

sat (val t) <−> existsb H, hintikka H && (t \in H).

From this, we obtain Corollary 2.4. See the theory file P.v for full details.

1 The operators , &&, and ||, denote boolean negation, conjunction, and disjunction

6

3 Modal Logic

We now present the mathematical theory of modal logic with eventualities we

have formalized. We call this theory K∗. As before, we first outline the mathe-

matical theory and then turn to formalization aspects.

3.1 Mathematical Development

We assume that the reader has seen modal logic before. We see the models of

modal logic as transition systems where the states are labeled with variables.

Formulas are evaluated at a state of a transition system. A primitive formula p

holds at a state w if w is labeled with p, a formula �s holds at w if s holds at

all successors of w, and a formula ♦s holds at w if s holds at some successor of

w. A formula �∗s (♦∗s) holds at a state w if all (some) states reachable from w

satisfy s. We call formulas of the form ♦∗s eventualities.

We assume a countable alphabet V of names called variables and declare the

letters p and q as ranging over variables. Formulas are defined by the grammar

s, t ::= p | ¬p | s ∧ t | s ∨ t | �s | ♦s | �∗s | ♦∗s

A model M is a triple consisting of the following components:

• A carrier set |M| whose elements are called states.

• A relation →M ⊆ |M| × |M| called transition relation.

• A function ΛM : V → 2|M| called labeling function.

We deviate from the standard definition by admitting models with an empty

set of states. This does not make a difference as it comes to satisfiability and

validity of formulas. We write →∗
M for the reflexive transitive closure of →M. The

satisfaction relation M,w ⊨ s between models, states, and formulas is defined

by induction on formulas.

M,w ⊨ p ⇐⇒ w ∈ ΛMp M,w ⊨ s ∧ t ⇐⇒ M,w ⊨ s and M,w ⊨ t

M,w ⊨ ¬p ⇐⇒ w ∉ ΛMp M,w ⊨ s ∨ t ⇐⇒ M,w ⊨ s or M,w ⊨ t

M,w ⊨ �s ⇐⇒ M, v ⊨ s for all v such that w →M v

M,w ⊨ ♦s ⇐⇒ M, v ⊨ s for some v such that w →M v

M,w ⊨ �∗s ⇐⇒ M, v ⊨ s for all v such that w →∗
M v

M,w ⊨ ♦∗s ⇐⇒ M, v ⊨ s for some v such that w →∗
M v

Satisfiability, validity, and equivalence of formulas are defined as follows.

• s is satisfiable if M,w ⊨ s for some model M and some state w ∈ |M|.

• s is valid if M,w ⊨ s for all models M and all states w ∈ |M|.

7

• s and t are equivalent (s ≡ t) if M,w ⊨ s iff M,w ⊨ t for all models M and

all states w ∈ |M|.

For a set of formulas A, we write M⊨ A if there exists some w ∈ |M| such that

M,w ⊨ t for all t ∈ A. We call a set of formulas A satisfiable if there is some

modelM such thatM⊨ A. We extend the negation operator to modal formulas:

∼(�s) = ♦(∼s) ∼(♦s) = �(∼s)

∼(♦∗s) = �∗(∼s) ∼(�∗s) = ♦∗(∼s)

Proposition 3.1 Let s and t be formulas.

1. ∼(∼s) = s

2. M,w ⊨ ∼s iff not M,w ⊨ s

3. s is valid iff ∼s is unsatisfiable.

4. s ≡ t iff (s ∧ t)∨ (∼s ∧∼t) is valid.

5. �∗s ≡ s ∧��∗s and ♦∗s ≡ s ∨♦♦∗s.

We also extend the syntactic closure:

C(�s) = {�s} ∪ Cs C(♦s) = {♦s} ∪ Cs

C(�∗s) = {�∗s,��∗s} ∪ Cs C(♦∗s) = {♦∗s,♦♦∗s} ∪ Cs

We again fix a formula s0. A Hintikka set is a set H ⊆ Cs0 satisfying (H1) to (H3)

as defined for P and the following conditions (cf. Proposition 3.1(5)):

H4. If �∗s ∈ H, then s ∈ H and ��∗s ∈ H.

H5. If ♦∗s ∈ H, then s ∈ H or ♦♦∗s ∈ H.

A Hintikka system is a set of Hintikka sets. The transition relation →S of a

Hintikka system S is defined as follows: H →S H
′ iff H ∈ S, H′ ∈ S, and t ∈ H′

whenever �t ∈ H. We define the model MS described by a Hintikka system S

as follows: |MS| = S, →MS =→S, and ΛMSp = {H ∈ S | p ∈ H }. A demo is a

Hintikka system D such that the following conditions are satisfied:

(D♦) If ♦s ∈ H ∈ D, then H →D H
′ and s ∈ H′ for some H′ ∈ D.

(D♦∗) If ♦∗s ∈ H ∈ D, then H →∗
D H

′ and s ∈ H′ for some H′ ∈ D.

Proposition 3.2 Let D be a demo and s ∈ H ∈ D. Then MD,H ⊨ s.

3.2 Demo Theorem

By Proposition 3.2, demos can be seen as syntactic models. We now show that

every satisfiable formula t ∈ Cs0 is satisfied by a demo. Note that, given s0, there

8

are only finitely many demos. The Hintikka universe H is the (finite) set of all

Hintikka sets. For models M and states v ∈ |M|, we define Hv := {t ∈ Cs0 |

M, v ⊨ t}.

Proposition 3.3 Let M be a model and v ∈ |M|. Then Hv is a Hintikka set.

Demos are closed under union. Hence, there exists a largest demo contained

inH . Starting fromH , we construct this demo by successively pruning sets that

violate the demo conditions. The pruning technique originated with Pratt [14].

Proposition 3.4 Let S be a Hintikka system containing all satisfiable Hintikka

sets. Then:

1. If ♦t ∈ H ∈ S and ∀H′. H →S H
′ ⇒ t ∉ H′, then H is unsatisfiable.

2. If ♦∗t ∈ H ∈ S and ∀H′. H →∗
S H

′ ⇒ t ∉ H′, then H is unsatisfiable.

Proof 1. AssumeM,w ⊨ H. Hence, there exists a state v such thatw→M v and

M, v ⊨ t. Thus, we have t ∈ Hv . This leads to a contradiction since H→S Hv .

(Hv is satisfiable and therefore in S).

2. AssumeM,w ⊨ H. Since H is a Hintikka set, we have ♦♦∗t ∈ H. Hence, there

exists a state v such thatM, v ⊨ ♦∗t andH →S Hv . To obtain a contradiction,

it suffices to show that there exists a u such that Hv →
∗
S Hu and t ∈ Hu. This

follows easily by induction on v →∗
M u and the fact that v →M u implies

Hv →S Hu. �

We define a relation on Hintikka systems representing a single pruning action:

S
p
→ S′ iff S′ = S \ {H} for some H violating (D♦) or (D♦∗). We extend this to

the pruning relation on Hintikka systems: S
p
⇝ S′ iff S

p
→∗S′ and S′ is terminal

for
p
→.

Proposition 3.5 Let S and S′ be Hintikka systems such that S
p
⇝ S′. Then:

1. S′ satisfies (D♦) and (D♦∗).

2. If S contains all satisfiable Hintikka sets, so does S′.

Let ∆ be the set such that H
p
⇝ ∆. By Propositions 3.2 and 3.5, ∆ is the demo

containing exactly the satisfiable Hintikka sets and is thus uniquely determined.

Theorem 3.6 (Demo Theorem) A formula t ∈ Cs0 is satisfiable if and only if

there exists a Hintikka set H ∈ ∆ such that t ∈ H.

Proof The direction form right to left follows from Proposition 3.2. For the other

direction, assume M, v ⊨ t. Then t ∈ Hv ∈ ∆.

9

We now have a decision procedure for satisfiability. Given an input formula s,

the procedure constructs the set of all Hintikka sets contained in Cs. It then

removes Hintikka sets violating (D♦) or (D♦∗) until no such sets remain and

returns satisfiable iff the resulting demo contains some H such that s ∈ H.

Corollary 3.7 Satisfiability, validity, and equivalence of formulas are decidable.

3.3 Formalization of Modal Logic

The most important design decision in formalizing modal logic is the represen-

tation of models. We require that formulas evaluate to boolean state predicates,

i.e., functions of type state −> bool. To meet this requirement, we need boolean

versions of the logical operations. For instance, for the ♦-modality we need an

operation

EXb : pred state −> pred state

satisfying

forall p w : EXb p w <−> exists v, trans w v /\ p v

Since the boolean versions of the logical operations do not automatically exist

in a constructive setting, we require that they are provided by the model. As it

turns out, it suffices that a model comes with a boolean labeling function and

the boolean operations for the existential modalities (i.e., ♦ and ♦∗). This leads

to the definition of models appearing in Fig. 1. The boolean operations for � and

�∗ can be defined from their duals EXb and EFb. For �∗ we have:

CoInductive AG X (R : X −> X −> Prop) (P : X −> Prop) (w : X) : Prop :=

| AGs : P w −> (forall v, R w v −> AG R P v) −> AG R P w.

Definition AGb p w := ∼∼ EFb (fun v => ∼∼ p v) w.

Lemma AXbP p w : AGb p q <−> AG trans p w.

Note that the (co)inductive definitions of AG and EF are provably equivalent to

more conventional definitions employing the reflexive transitive closure of the

transition relation.

We can now define a boolean evaluation function:

Fixpoint eval M s :=

match s with Var v => label v |...| Dia s => EXb (eval M s) |... end.

We have now arrived at a faithful representation of classical modal logic provid-

ing the usual equivalences between formulas.

On the syntactic side we proceed similarly as we did for P. Given a formula s0,

we again represent the syntactic closure Cs0 as a finite type F. The definition of

Hintikka sets is adapted to cover conditions (H4) and (H5). Hintikka systems are

10

Definition EX X (R : X −> X −> Prop) (P : X −> Prop) (w : X) : Prop :=

exists v, R w v /\ P v.

Inductive EF X (R : X −> X −> Prop) (P : X −> Prop) (w : X) : Prop :=

| EF0 : P w −> EF R P w

| EFs v : R w v −> EF R P v −> EF R P w.

Record model := Model {

state :> Type;

trans : state −> state −> Prop;

label : var −> pred state;

EXb : pred state −> pred state;

EXbP p w : EXb p w <−> EX trans p w ;

EFb : pred state −> pred state;

EFbP p w : EFb p w <−> EF trans p w }.

Figure 1: Definition of modal models

represented as elements of {set {set F}}. The transition relation →S and the demo

conditions (D♦) and (D♦∗) are easily expressed as boolean predicates.

Proposition 3.2 and Proposition 3.4 can be shown as one would expect from

the mathematical proofs. Proposition 3.2 requires the construction of a finite

model from a demo. Since the carrier of the constructed model is finite, label,

EXb, and EFb are easily defined using Ssreflect’s fintype and fingraph libraries.

To constructively prove the demo theorem, we require some implementation

of the pruning relation
p
⇝. For this, we define a function

pick_dia : {set {set F}} −> option {set F}

selecting, if possible, in a Hintikka system S some H ∈ S violating (D♦). Likewise,

we define a function pick_dstar for (D♦∗). Both functions are defined using the

choice operator provided by Ssreflect. From this, it is easy to define a pruning

function:

Definition step S := if pick_dia S is Some H then S :\ H else

if pick_dstar S is Some H then S :\ H else S.

Function prune (S : {set {set F}}) {measure (fun S => #|S|) S}

: {set {set F}} := if step S == S then S else prune (step S).

It is easy to show that the result of pruning satisfies (D♦) and (D♦∗). To obtain

Proposition 3.5, we have to show that the precondition of Proposition 3.4 is an

invariant of the pruning algorithm.

Definition HU := [set H | hintikka H].

Definition invariant (S: {set {set F }}) :=

S \subset HU /\ forall H, H \in HU −> satF H −> H \in S.

Lemma invariant_prune S : invariant S −> invariant (prune S).

11

Finally, we obtain:

Theorem demo_theorem (t : F) :

sat (val t) <−> existsb H, (H \in Delta) && (t \in H).

4 Hybrid Logic

Hybrid logic [2] extends modal logic with special variables called nominals that

must label exactly one state. We extend K∗ with nominals and call the resulting

logic H∗.

4.1 Mathematical Development

We assume a countable set N of nominals and let x and y range over N . The

grammar of formulas is extended accordingly:

s, t ::= p | ¬p | s ∧ t | s ∨ t | �s | ♦s | �∗s | ♦∗s | x | ¬x

We extend the definition of models with a nominal labeling ΦM : N → 2|M| and

require |ΦMx| = 1 for all x.

We extend the syntactic closure to cover nominals:

Cx = {x} C(¬x) = {¬x,x}

As before, we fix a formula s0 and define Hintikka sets as subsets of Cs0. The

Hintikka condition for nominals is identical to the condition for variables.

Constructing models MS from arbitrary Hintikka systems S, does not work

for H∗. To extend Proposition 3.2 to H∗, we adapt the notion of demo. A demo

is a nonempty Hintikka system satisfying (D♦) and (D♦∗) as well as

(Dx) For every nominal x ∈ Cs0, there exists exactly oneH ∈ D such that x ∈ H.

We define the model MD described by a demo D as follows: |MD|, →MD , and

ΛM are defined as for MS ; for ΦMD we choose some H0 ∈ D and define

ΦMDx =

{H0} x ∉ Cs0

{H ∈ D | x ∈ H} otherwise

Due to condition (Dx), every nominal is mapped to a singleton and we obtain:

Proposition 4.1 If D is a demo and t ∈ H ∈ D, then MD,H ⊨ t.

12

4.2 Demo Theorem for Hybrid Logic

We now show that every satisfiable formula t ∈ Cs0 is satisfied by a demo. We

call a Hintikka system

• nominally coherent if it satisfies (Dx)

• maximal, if it is nominally coherent and contains all Hintikka sets not con-

taining nominals.

Due to condition (Dx), demos for H∗ are not closed under union. Hence, there

is no largest demo and the pruning technique from Section 3.2 is not directly

applicable. However, demos contained in a maximal Hintikka system are closed

under union. This allows the search for a demo to be separated into two parts:

guessing a suitable maximal Hintikka system and pruning it.

This two stage approach first appeared in [11], where it is used to obtain a

complexity optimal decision procedure for hybrid PDL. In contrast to [11], where

correctness is argued after establishing the small model property, we use the

procedure as the basis for our algorithmic proof of the demo theorem.

Pruning a maximal Hintikka system may remove satisfiable Hintikka sets. To

account for this, we refine the pruning invariant. Instead of requiring all satis-

fiable sets to be present, we state the invariant with respect to a model M and

only require the sets Hw with w ∈ |M| to be present. We adapt Proposition 3.4

as follows:

Proposition 4.2 Let M be a model and S be a Hintikka system such that for all

w ∈ |M|, we have Hw ∈ S. Then:

1. If ♦t ∈ H ∈ S and ∀H′. H →S H
′ ⇒ t ∉ H′, then M 6⊨ H.

2. If ♦∗t ∈ H ∈ S and ∀H′. H →∗
S H

′ ⇒ t ∉ H′, then M 6⊨ H.

We also need to adapt Proposition 3.5.

Proposition 4.3 LetM be a model and S be a maximal Hintikka system such that

for all w ∈ |M|, Hw ∈ S. If S
p
⇝ S′, then S′ is nominally coherent and for all

w ∈ |M|, Hw ∈ S
′.

Proposition 4.4 For every model M, there exists a maximal Hintikka system S

such that for all w ∈ |M|, Hw ∈ S.

We fix a function ∆ returning for a Hintikka system S some S′ such that S
p
⇝ S′.

Theorem 4.5 A formula t ∈ Cs0 is satisfiable iff there exists a maximal Hintikka

system S such that ∆(S) is nominally coherent and contains some H such that

t ∈ H.

13

Proof “⇒” Let M,w ⊨ t and S be some maximal Hintikka system such that

Hw ∈ S for all w ∈ |M| (Proposition 4.4). Then t ∈ Hw ∈ ∆(S) and ∆(S)

nominally coherent by Proposition 4.3.

“⇐” Satisfiability of t follows from Proposition 4.1, since ∆(S) is a demo by

Proposition 3.5(1).

We now have a decision procedure for satisfiability. Given an input formula s,

the procedure guesses for every nominal x ∈ Cs a Hintikka set H such that

x ∈ H ⊆ Cs. It then adds all Hintikka sets contained in Cs that do not contain

nominals and prunes the resulting Hintikka system. It returns satisfiable iff the

pruned Hintikka system contains for every x ∈ Cs some H such that x ∈ H and

some H′ such that s ∈ H′.

4.3 Formalization of Hybrid logic

To formalize H∗, we first need to adapt the formal representation of models

accordingly.

Record model := Model {

...

nlabel : nvar −> pred state;

nlabelP : forall x : nvar, exists! w, w \in nlabel x }.

This representation gives us all the required properties of nominals without hav-

ing to assume that equality on state is decidable.

We define N to be the finite type of nominals occurring in F. We separate (Dx)

into a nominal consistency condition Dxc requiring at most one occurrence of

every nominal in N and a nominal existence condition Dxe requiring at least one

occurrence. Condition Dxc is trivially preserved by pruning, while Dxe follows

from the refined pruning invariant:

Definition invariant M (S : {set {set F }}) :=

S \subset HU /\ forall v:M, H_at v \in S.

Lemma invariant_prune S : invariant S −> invariant (prune S).

Lemma invariant_xe S : invariant S −> Dxe S.

To prove Proposition 4.4 for a model M, it is sufficient to prove the existence

of a function assigning to every nominal in x ∈ Cs0 the Hintikka set Hw , where

w ∈ |M| is the unique w such that M,w ⊨ x

Lemma guess :

exists f : N −> {set F}, forall x,

exists2 w : M, eval M (val x) w & f x = H_at w.

This easily follows from the following choice principle

14

Lemma finite_choice (X : finType) Y (R : X −> Y −> Prop) :

(forall x : X, exists y , R x y) −> exists f, forall x, R x (f x).

which is provable by induction on the enumeration of X. Finally we obtain:

Theorem demo_theorem (t : F) :

sat (val t) <−> existsb S, maximal S &&

let D := prune S in Dxe D && existsb H, (H \in D) && (t \in H).

Note that it is sufficient to check Dxe after pruning.

5 Conclusions

We have formalized propositional logic, modal logic with eventualities, and

modal logic with eventualities and nominals in constructive type theory. Our

main results are algorithmic proofs of small model theorems and the computa-

tional decidability of satisfability, validity, and equivalence of formulas.

We represent models such that we can define a boolean evaluation function

for formulas. This allows us to formalize classical modal logic. We do not assume

axioms and employ the notion of computational decidability that comes with

constructive type theory. This is possible since we localize the required classical

assumptions to the models.

5.0.1 Representation of Models.

The most important design decision in our formalization is the representation

of models. The reason for this is that in the constructive logic of Coq, the naive

representation of models

Record naive_model : Type := Model {

state : Type ;

trans : state −> state −> Prop ;

label : var −> state −> Prop }.

does not allow the definition of an evaluation function satisfying the classical

equivalences of modal logic. This problem would disappear if we were to assume

informative excluded middle

Axiom IXM : forall P:Prop, { P } + { ∼ P }

But then our definition of decidability would no longer imply computational de-

cidability. Hence, we have localized specific instances of IXM to the models. 2

Regarding the exact form of these instances, there is room for variation, pro-

vided that the following conditions are met:

2 EXb, EXbP, . . . are easily definable from IXM.

15

1. The class of models must admit an evaluation function for formulas satisfying

the classical dualities.

2. The asserted functions need to be definable for finite carrier types.

We mention a second class of models for K∗.

Record model := Model {

state : Type;

trans : state −> state −> bool;

label : state −> var −> bool;

exs : pred state −> bool;

exsP p : exs p <−> exists w, p w ;

trans_star : state −> state −> bool;

trans_starP w v : trans_star w v <−> clos_refl_trans trans w v }.

For the purpose of this discussion, we call these models strong models and

refer to the models defined in Section 3.3 as weak models.3 The assumptions

exs and exsP give us a decidable existential quantifier for states and boolean

state predicates. This way one can define a boolean evaluation function directly

following the mathematical presentation. The decidable existential quantifier

also provides for a direct definition of a demo from a model:

Definition D (M:model) := [set H | exs (fun (w : M) => H == H_at w)]

This allows the formalization of the usual, non-algorithmic proof of the small

model theorem.

Proposition 5.1 A formula t ∈ Cs0 is satisfiable iff there exists a demo contain-

ing some H, such that t ∈ H.

Proof Let M,w ⊨ t. The set {Hw | w ∈ |M|} is a demo as required. The other

direction follows as before.

The algorithmic proof we have given for weak models provides a more infor-

mative small model theorem and shows that the additional strength of boolean

existential quantification (i.e. exs and exsP) is not required to prove the small

model theorem.

The file Kstar_strong.v contains a formal proof of a small model theorem for K∗

using the strong representation of models. The non-algorithmic formalization is

not significantly shorter than the algorithmic formalization presented in Sec-

tion 3.3.

3 For every strong model, one can define a corresponding weak model. The converse does not

seem to be true (consider a model M where |M| = N and n→M m iff n =m+ 1).

16

5.0.2 Extension to Temporal Logics.

The particular representation of models we use in this paper is motivated by

the wish to find a design that extends, in a uniform way, to temporal logics

like CTL [4]. Temporal logics employ models with a total transition relation and

define the semantics of their modal operators using infinite paths. For the modal

operators AF and EG one typically has the definitions

M,w ⊨ AF s ⇐⇒ M, σn ⊨ s for some n, for all σ ∈Mω such that σ0 = w

M,w ⊨ EG s ⇐⇒ M, σn ⊨ s for all n, for some σ ∈Mω such that σ0 = w

where M is a model, Mω is the set of all infinite paths in M, and σn is the n-

th state of an infinite path σ . The infinite path semantics does not seem to be

feasible in constructive logic. However, inductive and coinductive definitions for

AF and EG as we have used them in this paper for EF and AG seem to work fine:

Inductive AF (p : X −> Prop) (w : X) : Prop :=

| AF0 : p w −> AF p w

| AFs : (forall v, e w v −> AF p v) −> AF p w.

CoInductive EG (p : X −> Prop) (w : X) : Prop :=

| EGs v : p w −> e w v −> EG p v −> EG p w.

To support AF and EG, models would come with a boolean operator AFb and

a proof AFbP that AFb agrees with AF for boolean predicates on the states of

the model. With AFb and AFbP one can define EGb and a proof that EGb agrees

with EG. With AFb and EGb one can then define an evaluation function satisfying

the classical dualities. Moreover, given a finite type of states, one can define AFb

and AFbP.

5.0.3 Acknowledgements.

We thank Chad Brown for many inspiring discussions concerning the research

presented in this paper. We also thank the people from the Coq and Ssreflect

mailing lists (in particular Georges Gonthier) for their helpful answers.

References

[1] Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn et al. [2], pp. 821–868

[2] Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic,

Studies in Logic and Practical Reasoning, vol. 3. Elsevier (2007)

17

[3] Caldwell, J.L.: Classical propositional decidability via nuprl proof extraction.

In: Grundy, J., Newey, M.C. (eds.) TPHOLs. LNCS, vol. 1479, pp. 105–122.

Springer (1998)

[4] Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthe-

size synchronization skeletons. Sci. Comput. Programming 2(3), 241–266

(1982)

[5] Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the

temporal logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

[6] Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.

J. Comput. System Sci. pp. 194–211 (1979)

[7] Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical

structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs.

LNCS, vol. 5674, pp. 327–342. Springer (2009)

[8] Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular for-

malisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs.

LNCS, vol. 4732, pp. 86–101. Springer (2007)

[9] Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Ex-

tension for the Coq system. Research Report RR-6455, INRIA (2008),

http://hal.inria.fr/inria-00258384/en/

[10] Ilik, D., Lee, G., Herbelin, H.: Kripke models for classical logic. Ann. Pure

Appl. Logic 161(11), 1367–1378 (2010)

[11] Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case opti-

mality of Pratt-style decision procedures for modal and hybrid logics. In:

Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp.

196–210. Springer (2011)

[12] Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with even-

tualities. In: Giesl, J., Hähnle, R. (eds.) IJCAR. LNCS, vol. 6173, pp. 240–254.

Springer (2010)

[13] Norrish, M.: Mechanised computability theory. In: van Eekelen, M.C.J.D.,

Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP. Lecture Notes in Computer

Science, vol. 6898, pp. 297–311. Springer (2011)

[14] Pratt, V.R.: Models of program logics. In: Proc. 20th Annual Symp. on Foun-

dations of Computer Science (FOCS’79). pp. 115–122. IEEE Computer Society

Press (1979)

18

http://hal.inria.fr/inria-00258384/en/

[15] The Coq Development Team: The Coq Proof Assistant Reference Manual,

8.3 edn. (2010), http://coq.inria.fr/

[16] Théry, L.: A machine-checked implementation of Buchberger’s algorithm. J.

Autom. Reasoning 26(2), 107–137 (2001)

[17] Zammit, V.: A mechanisation of computability theory in hol. In: von Wright,

J., Grundy, J., Harrison, J. (eds.) TPHOLs. Lecture Notes in Computer Science,

vol. 1125, pp. 431–446. Springer (1996)

19

http://coq.inria.fr/

	Introduction
	Propositional Logic
	Mathematical Development
	Decidability, Finite Types and Finite Sets
	Formalization of Propositional Logic

	Modal Logic
	Mathematical Development
	Demo Theorem
	Formalization of Modal Logic

	Hybrid Logic
	Mathematical Development
	Demo Theorem for Hybrid Logic
	Formalization of Hybrid logic

	Conclusions
	Representation of Models.
	Extension to Temporal Logics.
	Acknowledgements.

