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Classical modal logic with transitive closure appears as a subsystem of

logics used for program verification. The logic can be axiomatized with

a Hilbert system. In this paper we develop a constructive completeness

proof for the axiomatization using Coq with Ssreflect. The proof is based

on a novel analytic Gentzen system, which yields a certifying decision pro-

cedure that for a formula constructs either a derivation or a finite coun-

termodel. Completeness of the axiomatization then follows by translating

Gentzen derivations to Hilbert derivations. The main difficulty throughout

the development is the treatment of transitive closure.
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1 Introduction

We are interested in a constructive and formal metatheory of decidable logics

developed for program verification. In this paper we consider a logic K+, which

appears as a subsystem of PDL [8] and CTL [6]. K+ extends the basic modal

logic K with a modality for the transitive closure of the step relation. Our con-

structive account of K+ is based on a Hilbert system and a class of models. Our

main result is a constructive proof that the Hilbert system is complete for our

class of models. The completeness proof comes in the form of a certifying deci-

sion procedure1 that for a formula constructs either a derivation in the Hilbert

system or a finite countermodel. This establishes the completeness of the Hilbert

1 When we say decision procedure in this paper we do not claim that execution is feasible in

practice.
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system and the small model property of the logic. The main difficulty through-

out the development is the treatment of transitive closure. The presence of the

transitive closure modality for instance shows in the non-compactness of K+.

We obtain our Hilbert system for K+ from a Hilbert system for PDL [15]. Prov-

ing the completeness of the Hilbert system constructively turned out to be a

challenge. The completeness proofs in the literature [15] are based on maxi-

mal consistent sets and are thus nonconstructive. The notable exception is a

paper [1] by Ben-Ari, Pnueli, and Manna, where the completeness of a Hilbert

system for UB (a logic subsuming K+) is shown by extending a tableau-based

decision procedure such that it yields a Hilbert refutation in case it fails to con-

struct a model.

We refine the approach of Ben-Ari et al. [1] by replacing the tableau-based sys-

tem with an analytic Gentzen system. In contrast to the tableau system, which

constructs models, the Gentzen system constructs derivations, which can be

translated to Hilbert derivations. Less directly, the Gentzen system also con-

structs models. The states of the models are obtained from the underivable

sequents containing only subformulas of the input formula. Thus the Gentzen

system gives us a certifying decision procedure that for an input formula s re-

turns either a finite model of ¬s or a derivation certifying that s is true in all

models.

For propositional logic, the correspondence between tableau systems and

Gentzen systems is immediate and well-known [17, 20]. For modal logic, the

situation is less clear. Fitting gives a tableaux system for S4 [9] and a corre-

sponding Gentzen system [10]. This system can be easily adapted to K, and the

resulting system serves as the basis of our Gentzen system for K+. Finding the

missing rule for K+ took some effort. Existing tableau systems for K+ and related

logics use local conditions to expand the tableau but also check global conditions

like reachability on the constructed graph. For a corresponding Gentzen system

these conditions must be reformulated as inference rules deriving valid sequents

from valid sequents. For K+ this leads to a rule we call compound rule. In con-

trast to the other rules, which are based on local properties, the compound rule

in one step analyzes a strongly connected component of the search space for a

model.

Once we have the Gentzen system for K+, we translate Gentzen derivations

into Hilbert derivations. To do so, we give for each Gentzen rule a function

that for Hilbert derivations of the premises yields a Hilbert derivation of the

conclusion. For all rules but the compound rule this is straightforward. The

compound rule is the only rule dealing with the transitive closure modality. We

handle the compound rule with an application of the induction-like Segerberg

axiom of the Hilbert system to an invariant accounting for the strongly connected
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component licensing the application of the compound rule. Ben-Ari et al. [1] use

the Segerberg axiom in a similar way but their invariant did not work for us.

Our development [4] is carried out in Coq [19] with the Ssreflect [14] exten-

sion. We profit much from Ssreflect since our development requires computa-

tional finite types for subformulas, sequents, and sets of sequents.

We think that certifying decision procedures for logics used in program ver-

ification deserve more attention. The usual tableau-based decision procedures

for such logics (e.g., [1, 16]) construct finite models for satisfiable formulas but

do not construct certificates for unsatisfiable formulas. For K+, we remedy this

situation with a Gentzen system that constructs derivations for unsatisfiable for-

mulas and models for satisfiable formulas.

In a previous paper [5] we give a constructive and formal proof of the decid-

ability of an extension of K+. There we rely on a pruning-based decision method

and make no attempt to generate Hilbert proofs.

The paper is organized as follows. We first define the syntax, the models,

and the Hilbert system for K+. We then say a few things about finite types and fi-

nite sets in Ssreflect, which provide essential infrastructure for our development.

Next we discuss how we formalize analytic Gentzen systems in Coq using Ssre-

flect. We then define a class of syntactic models we call demos. Demos represent

the models produced by our Gentzen systems. Next we introduce propositional

retracts, which we need for the formulation of the compound rule. We then

define the Gentzen system for K+ and prove that it yields a demo for every unde-

rivable sequent. Finally, we show how derivations in this system are translated

to derivations in the Hilbert system.

2 Problem Statement

We assume a countable alphabet P of atomic propositions p and consider the

formulas

s, t ::= ⊥ | p | s → t | �s | �+s

To increase readability, we introduce a number of defined logical operations.

¬s := s → ⊥ s ∧ t := ¬(s → ¬t) s ∨ t := ¬s → t �
∗s := s ∧�+s

Formulas are interpreted over transition systems consisting of a set of states

|M|, a transition relation →M⊆ |M| × |M|, and a labeling ΛM : |M| → 2P . The

satisfaction relation M,w ⊨ s between transition systems, their states, and
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formulas is defined as follows:

M,w 6⊨ ⊥

M,w ⊨ p ⇐⇒ p ∈ ΛM(w)

M,w ⊨ s → t ⇐⇒ M,w ⊨ s implies M,w ⊨ t

M,w ⊨ �s ⇐⇒ M,v ⊨ s for all v such that w →M v

M,w ⊨ �+s ⇐⇒ M,v ⊨ s for all v such that w →+
M v

Here, →+
M is the transitive closure of the transition relation. In Coq, we represent

transition systems as a record type:

Record ts : Type := TS {

state :> Type ;

trans : state −> state −> Prop ;

label : state −> aprop −> Prop }.

We define the satisfaction relation as a function into Prop:

satisfies : forall (T : ts ), T −> form −> Prop

Since we consider classical modal logic, we consider as models those transition

systems, for which the satisfaction relation is stable under double negation.

Definition stable (X Y : Type) (R : X −> Y −> Prop) :=

forall x y, ∼ ∼ R x y −> R x y.

Record model := Model { ts_of :> ts ; modelP : stable (satisfies ts_of) }.

A formula is satisfiable if it has a model, i.e., it holds at some state of some

model. A formula s is valid if it holds at every state of every model. The Hilbert

system for which we want to show completeness is shown in Figure 1. We write

⊢ s if s is provable in the Hilbert system. We represent the Hilbert system in Coq

as an inductive predicate:

Inductive prv : form −> Prop :=

| r_mp s t : prv (s −−−> t) −> prv s −> prv t

| ax_k s t : prv (s −−−> t −−−> s)

...

We can immediately show soundness.

Lemma 2.1 (Soundness) If s is provable, then s is valid.

Proof Induction on the derivation of ⊢ s, using stability of the satisfaction rela-

tion to show the case for (DN). �

Our main result is the following.

Theorem 2.2 (Certified Decidability) For every formula s, we can either con-

struct a finite model of ¬s or a proof of s.
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s → t → s (K)

(s → t → u)→ (s → t)→ (s → u) (S)

¬¬s → s (DN)

�(s → t)→ �s → �t (N)

�+(s → t)→ �+s → �+t (N+)

�+s → �s (T1)

�+s → ��+s (T2)

�s → ��+s → �+s (T3)

�s → �+(s → �s)→ �+s (Segerberg)

s → t s

t
MP

s

�s
Nec

s

�
+s

Nec+

Figure 1: Hilbert System for Modal Logic with Transitive Closure

Corollary 2.3 (Completeness) If s is valid, then s is provable.

For the rest of this paper, we will mostly use mathematical notation to convey

the ideas of the completeness proof. We present Coq code to show design choices

and when the formal proof differs from the mathematical presentation. The

reader is invited to browse the coqdoc proof outline and the source files [4].

3 Finite Types and Finite Sets in Ssreflect

Our formal proofs rely heavily on the Ssreflect extension to Coq, so we briefly

describe the most important features we use. For technical details refer to [12,

13]. In Ssreflect, a counted type is a type with a boolean equality test and a choice

operator for boolean predicates. A finite type is a counted type together with a

finite list enumerating its elements. Finite types can be constructed from finite

lists and finiteness is preserved by many type constructors. In particular, finite

types are closed unter cartesian products and taking sets. Finite types come with

boolean quantifiers [forall x, p x] and [exists x, p x] taking boolean predicates

and returning booleans. The Coq syntax for the remaining operations we use is

given in Figure 2.

4 Analytic Gentzen Systems in Coq

For a constructive proof of Theorem 2.2, we need a decision procedure which

for a given formula eiher constructs a countermodel or a Hilbert proof. We will
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|| && Boolean disjunction and conjunction

x \in xs Generic membership operation for lists, sets, etc.

seq_sub xs The finite type whose elements are the members of the list xs

{set X} The finite type of sets over the finite type X.

:|: :&: Union and intersection

[set x:X | A] The set {x ∈ X | A } as an element of the type {set X}.

Figure 2: Ssreflect’s Syntax for Finite Types and Finite Sets

use an analytic Gentzen system for this purpose. Before we develop the Gentzen

system for K+, we first show how we represent analytic Gentzen systems in Coq.

As an example we will use an analytic Gentzen for basic modal logic K which is

adapted from Fitting’s tableau system for S4 [9]. This Gentzen system for K will

also serve as the starting point for the development of our Gentzen System for

K+.

We represent sequents as finite sets of signed formulas [17] we call

clauses. For instance, the sequent p,q ⇒ u,v is represented as the clause

{p+, q+, u−, v−}. The letter C ranges over clauses. A state satisfies a signed

formula sσ if it satisfies ⌊sσ ⌋ where ⌊s+⌋ = s and ⌊s−⌋ = ¬s. A state satisfies a

clause, if it satisfies all signed formulas it contains. Accordingly, the associated

formula of a clause C is
∧
sσ∈C⌊s

σ ⌋.

A sound Gentzen system is now a deduction system that derives unsatisfiable

clauses from unsatisfiable clauses. This is in harmony with the conventional

view that a sound Gentzen system derives valid sequents from valid sequents

since validity of the formula p ∧ q → u ∨ v associated with the sequent p,q ⇒

u,v is equivalent to unsatisfiability of the formula we associate to the clause

{p+, q+, u−, v−}

Figure 3 shows our Gentzen system for basic modal logic K. The notation

C ; sσ is to be read as C∪{sσ}. The notation RC denotes the set { s+ | �s+ ∈ C },

which we call the request of C . The system is analytic in the sense that if a

clause C is derivable, it has a derivation employing only signed subformulas

of the formulas in C . For analytic Gentzen systems derivability of clauses is

decidable provided that rule instantiation is decidable.

We want to use analytic Gentzen systems as certifying decision procedures.

Hence, we fix an “input” formula s0 and parameterize our definitions by this

formula. This allows us to only consider the finitely many signed subformulas

of s0, which in turn allows us to leverage Ssreflect’s finite types and sets.

Writing sub s0 for the list of subformulas of s0, we represent the signed for-

mulas as the finite type F and clauses as sets over F.

Definition F := (bool * seq_sub (sub s0)) %type.
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C ; s+; s−
Ax

C ;⊥+
⊥

C ; s+; t−

C ; s → t−
→−

C ; s− C ; t+

C ; s → t+
→+

RC ; s−

C ;�s−
Jump

Figure 3: Analytic Gentzen System for K

Definition clause := {set F}.

This allows most properties of clauses and sets of clauses to be expressed as

boolean predicates and reasoned about classically. The rules of a Gentzen sys-

tem will be represented as a boolean predicate

rule : {set clause} −> clause −> bool

Thus, the type of the rule predicate ensures that the system is analytic. Using a

boolean predicate to represent rules also captures our intuition that rule instan-

tiation should be decidable.

The set of derivable clauses is the least fixpoint of one-step derivability:

Definition onestep_derivable_from (S : {set clause}) :=

[set C | [exists D : {set clause}, (D \subset S) && rule D C]].

One-step derivability is monotone so the least fixpoint exists and can be com-

puted by applying the onestep_derivable_from function n times to the empty set

where n is the size of the type clause. Hence derivability is decidable for any

boolean rule predicate.

5 Demos

We now define a class of syntactic models we call demos [16]. The states of

demos will be clauses and the definition will be such that every demo satisfies

all the clauses it contains. Further, we will design our Gentzen system for K+

such that it is complete for demos, i.e., the underivable clauses contain a demo

satisfying all underivable clauses.

A clause H is called a Hintikka clause if it satisfies the following conditions:

H1. ⊥+ ∉ H

H2. If p− ∈ H, then p+ ∉ H

H3. If (s → t)+ ∈ H, then s− ∈ H or t+ ∈ H

H4. If (s → t)− ∈ H, then s+ ∈ H and t− ∈ H
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To express the Hintikka property as a boolean predicate we have to take care

of the fact that the Coq representation of our signed formulas consist of three

parts: a formula, a proof that this formula is a subformula of s0, and a boolean

sign. With sc : s \in sub s0 we write the signed formula s− as [F s; sc; false]. We

define projections on the membership proofs in sub s0:

Lemma pIl s t (sc : s −−−> t \in sub s0) : s \in sub s0.

With this in place, we can express the Hintikka property as follows:

Definition Hcond (t : F) (H : {set F}) :=

match t with

| [F s −−−> t; sc; true] =>

([F s; pIl sc; false] \in H) || ([F t; pIr sc; true] \in H)

| ...

end.

Definition hintikka (H : {set F}) : bool := [forall t in H, Hcond t H].

We now come to the definition of demos. The states of demos are Hintikka

clauses. For the transition relation we extend the notion of request to K+.

RC := { s+ | �s+ ∈ C } ∪ { s+ | �+s+ ∈ C } ∪ {�+s+ | �+s+ ∈ C }

For every set S of clauses, we define a transition relation →S ⊆ S × S as follows:

C →S D iff RC ⊆ D and {C,D} ⊆ S. We write →+
S for the transitive closure of

→S. A set D of Hintikka clauses is a demo if every clause C ∈ D satisfies the

following conditions:

D1. If �t− ∈ C , then there is a clause D ∈ D such that C →D D and t− ∈ D.

D2. If �+t− ∈ C , then there is a clause D ∈ D such that C →+
D D and t− ∈ D.

A demo for a clause C is a demo that contains a clause that extends C . Let D be

a demo. The model associated with D takes as states the clauses in D and as

transition relation the relation →D. Moreover, a state C of the associated model

is labeled with atomic proposition p if and only if p ∈ C .

Lemma 5.1 Let D be a demo, M its associated model, and s a formula. If sσ ∈

C ∈ D, then M, C ⊨ ⌊sσ ⌋.

Proof Induction on s.

Note that, in contrast to the demo condition for �t−, the demo condition for

�+t− is non-local in the sense that it may take an arbitrary number of transitions

to reach the clause containing t−. We call a formula of the form �+t− an even-

tuality and say that a clause D satisfying (D2) fulfills the eventuality. Coming up

with a Gentzen system whose underivable Hintikka clauses satisfy (D2) requires

some work.
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{C} ⊲ C 0 ⊲ C
⊥ ∈ C or {s+, s−} ⊆ C

D1 ⊲ C ; s− D2 ⊲ C ; t

D1 ∪D2 ⊲ C ; s → t+

D ⊲ C ; s; t−

D ⊲ C ; s → t−

Figure 4: Retracts

6 Propositional Retracts

We now begin the development of our Gentzen system vor K+. To ease our

notation, we will from now on write just s for a positively signed formula s+.

We will design our system such that the set of underivable clauses will contain

a demo for every underivable clause. Since demos only contain Hintikka clauses,

we need to ensure that for every underivable clause there is an underivalbe Hin-

tikka extension, i.e, an underivable Hintikka clause containing C .

We call a set of clauses D a retract of C , writen D ⊲ C , if C is derivable from

D using propositional reasoning. More precisely, a retract of C is the frontier of

a backwards derivation starting at C using the propositional rules from Figure 3.

See Figure 4 for the precise definition of this notion. A retract D of C is called a

Hintikka retract if every H ∈ D is a Hintikka extension of C .

Lemma 6.1 For every clause one can compute a Hintikka retract.

Proof Let C be a clause. We prove this by induction on the number of signed

formulas not in C . If C is a Hintikka clause, then {C} is a Hintikka retract of

C . If C contains a formula both with positive and negative sign or ⊥+, we pick

the empty retract. Otherwise, there is some implication s → tσ whose Hintikka

condition is not satisfied. We consider the case where σ = −; the other case

is similar. We have C ⊊ C ; s; t− so by induction hypothesis we can compute a

Hintikka retract H for C ; s; t− which is also a Hintikka retract for C .

On the Coq side, this amounts to showing.

Lemma saturation C : { H | hretract H C }

Here, { H | retract H D} is the type of dependent pairs of sets of clauses H and

proofs that these are Hintikka retracts of C. We define a function which computes

a Hintikka retract for every clause, by projecting out the first component of that

pair:

Definition dret C := proj1_sig (saturation C)
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We refer to the Hintikka retract computed by dret as the default retract of C. We

now have the first rule of our Gentzen system for K+, the retract rule:

C1 . . . Cn

C
{C1, . . . , Cn} is the default Hintikka retract for C

Note that the use of the default retract in the definition of the retract rule essen-

tially fixes a single strategy in which the propositional rules can be applied. This

allows us to express the retract rule as a boolean predicate without the tedium of

expressing the retract relation as a boolean predicate. Mathematically, any Hin-

tikka retract would suffice since we do not make use of any special properties of

the default retract.

Lemma 6.2 (Extension) If C is underivable, it has an underivable Hintikka exten-

sion.

Note that all clauses that are derivable using propositional reasoning have an

empty default retract. Hence, the retract rule allows us to handle propositional

reasoning in a single step and completely separately from modal reasoning.

7 The Gentzen System for K+

The Gentzen system consisting of the retract rule and the jump rule from Fig-

ure 3 is already complete for formulas not involving �+.

Lemma 7.1 The underivable Hintikka clauses satisfy condition (D1).

Hence, all we need is a rule that establishes (D2). A first candidate for a rule for

the �+ modality might be the following split-jump rule:

RC ; s− RC ;�+s−

C ;�+s−

The rule is motivated by the two ways in which we can satisfy the eventuality

�+s−: we either satisfy s− at the next state (left branch of the rule) or we delay

fulfilling the eventuality (right branch). However, the resulting Gentzen system

would be incomplete as witnessed by the following example.

Example 7.2 The clause {�+(s → t),�+s,�+t−} corresponding to the axiom

(N+) is an example of an unsatisfiable but underivable clause. Alternating be-

tween applying the split-jump and the retract rule yields a looping derivation

that can be visualized as a graph:
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L1 : �+(s → t),�+s,�+t−

E : �+(s → t),�+s, s → t, s, t− R : �+(s → t),�+s, s → t, s,�+t−

L2 : �+(s → t),�+s, s → t, s, t,�+t−

Here, {L2} is the unique Hintikka retract of R. The clause E can be proved by the

retract rule, but the derivation “loops” around the clause L2. �

To obtain a complete deduction system, we need a stronger rule for eventu-

alities. As we have seen in the previous example, applying the retract and the

jump rule can lead to looping derivations on unsatisfiable clauses. Thus, our rule

for eventualities is a generalization of the split-jump rule that allows for certain

looping derivations.

A compound is a triple (s,L,E) consisting of a formula s and two sets L

and E of clauses such that every clause C ∈ L satisfies the following conditions:

1. �+s− ∈ C

2. RC ; s− ∈ E

3. L∪E contains all clauses of the default retract of RC ;�+s−.

If (s,L,E) is a compound, we call L the loop and the clauses in E exit clauses.

We now formulate the remaining rule and call it compound rule:

C1 · · · Cn

C
(s,L, {C1, . . . , Cn}) is a compound and C ∈ L

Starting from a clause C containing �+s−, instances of the compound rule can

be generated as follows: We set L := {C} and E := 0 and start by applying the

split-jump rule to C . The left premise and those clauses in the default retract of

RC ;�+s− that we want to derive by other means are added to E. The remain-

ing clauses that are not yet in L are added to L, and we continue by applying

the split-jump rule to these clauses. This process must terminate with a com-

pound (s,L,E) since there are only finitely many clauses that can be added to
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L. The fact that one does not need to apply the split-jump rule to clauses that

are already in L allows for looping derivations. The compound rule can easily be

expressed as a boolean predicate.

Example 7.3 We can derive the clause {�+(s → t),�+s,�+t−} from Example 7.2

using the compound rule. Taking L1, L2, and E as in Example 7.2, the triple

(t, {L1, L2}, {E}) is a compound and E can be derived using the retract rule. �

Lemma 7.4 The underivable Hintikka clauses satisfy condition (D2).

Proof Let U be the set of underivable Hintikka clauses and �+s− ∈ C ∈ U. We

define

L := {C′ ∈ U | �+s− ∈ C and C →∗
U C

′ }

Let D be the set of derivable clauses. Since C ∈ L and C is not derivable, we

know that (s,L,D) is not a compound. However, compound conditions (1) and

(3) hold. Hence there is a clause D ∈ L such that RD; s− ∉ D. Thus RD; s− is

not derivable and therefore has a Hintikka extension D′ ∈ U (Lemma 6.2). Thus

C →∗
U D →U D

′ and t− ∈ D′.

We now have a complete Gentzen system for K+.

Theorem 7.5 The set of underivable Hintikka clauses is a demo for every unde-

rivable clause. Thus every underivable clause is satisfiable.

Proof Follows with Lemma 7.1, Lemma 7.4, and Lemma 5.1.

8 Translating Gentzen Derivations to Hilbert Proofs

So far we did not consider soundness of the Gentzen system. However, sound-

ness of the Gentzen system will follow as a by-product of a translation of

Gentzen derivations to Hilbert proofs, which we need anyway to show complete-

ness of the Hilbert system.

We associate with every signed formula and every clause a formula as defined

in Section 4. If a clause appears in the place of a formula, the clause is to be

understood as notation for its associated formula.

We aim for a translation theorem of the following form:

Theorem 8.1 If C is derivable in the Gentzen system, then ⊢ ¬C .

We call a Hilbert proof of ¬C a (Hilbert) refutation of C . A constructive proof

of the translation theorem can be seen as a translation from Gentzen derivations
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to Hilbert refutations. To prove this theorem by induction on the Gentzen deriva-

tion, we need a number of lemmas corresponding to the rules of the Gentzen

system.

For the retract rule we have the following Lemma which we will also use in

the translation of the compound rule.

Lemma 8.2 If D ⊲ C , then ⊢ C →
∨
D.

Proof Induction on the definition of retract.

For the jump rule we have:

Lemma 8.3 If ⊢ ¬(RC ; s−), then ⊢ ¬(C ;�s−).

Proof We reason as follows:

1. ⊢ ¬(RC ; s−) assumption

2. ⊢ RC → s propositional reasoning

3. ⊢ �RC → �s Nec, N

4. ⊢ C → �s ⊢ C → �RC

5. ⊢ ¬(C ;�s−) propositional reasoning

Note that the Gentzen system consisting only of the retract rule and the jump

rule corresponds very closely to the Gentzen system in 3 and is complete for

formulas not involving �+. So giving a constructive completeness proof for K is

not difficult. The difficulty of giving a constructive completeness proof for K+

lies entirely in the treatment of transitive closure.

9 Generating Hilbert Proofs

Before we turn to the translation of the compound rule, we first note that to for-

malize this kind of translation argument, we need to develop some infrastructure

for generating Hilbert proofs in Coq as finding Hilbert proofs in the bare Hilbert

system can be a difficult task. Of course, Hilbert systems are well understood

and there are many techniques to come up with Hilbert proofs. We merely men-

tion two techniques that are easy to set up and help significantly in generating

Hilbert proofs in Coq.

It is well known that the entailment relation (i.e., prv (s −−−> t) in Coq) defines

a preorder on formulas and that the logical operations have certain monotonic-

ity properties with respect to this preorder. For example:

⊢ s′ → s ⊢ t → t′

⊢ (s → t)→ (s′ → t′)

⊢ s → s′ ⊢ t → t′

⊢ (s ∧ t)→ (s′ ∧ t′)

⊢ s → s′

⊢ �s → �s′
. . .
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s ∈ xs
∧

xs → s

∧
s :: xs → t

∧
xs → s → t

∧
nil → s

s

∧
xs → s → t

∧
xs → s

∧
xs → t

Figure 5: Assumption Lemmas

We make these monotonicity properties known to Coq’s extended (setoid) rewrit-

ing tactic [18]. This allows us to freely rewrite with the entailment relation to

strengthen claims or to weaken assumptions, thereby contracting many mechan-

ical reasoning steps into a single rewrite.

Another major hindrance, in particular to finding propositional proofs, is the

lack of assumption management in the Hilbert system. However, we can simulate

natural deduction style reasoning inside the Hilbert system using a few lemmas

on big conjunctions.

In Coq, we realize big conjunctions and disjunctions over lists of formulas

using Ssreflect’s canonical big operators [2]. We also need big conjunctions in-

dexed by finite sets, which we represent by fixing an arbitrary enumeration of

the elements. The most prominent use of this construction is for the associated

formulas of clauses. For a big conjunction of the form
∧
x∈A x we will just write∧

A and likewise for disjunctions.

The lemmas we use to simulate natural deduction style reasoning are dis-

played as rules in Figure 5. Here xs ranges over lists of formulas and :: is the

cons operator. Note that there are no rules corresponding to Nec and Nec+

since these rules would clearly be unsound in the presence of assumptions. This

essentially restricts reasoning with assumptions to the propositional fragment,

which is sufficient for our purposes.

Building on these rules, we define a set of tactics simulating the behavior

of basic Coq tactics like intros and apply on the level of Hilbert proofs. For

additional detail, we refer the reader to the theory files. Using setoid rewriting

and these tactics the various modal logic lemmas that we need for our translation

proof can be proved easily. Those modal logic lemmas to which we will refer

explicitly can be found in Figure 6.

14



⊢ �s ∨�t → �(s ∨ t) (D2)

⊢ �∗s → ��
∗s (S1)

⊢ �+s → ��
∗s (S2)

⊢ C → �RC (R1)

If ⊢ s → t, then ⊢ �+s → �
+t (Reg+)

Figure 6: Basic Modal Logic Lemmas

10 Translation Method for the Compound Rule

We now turn to the last missing piece in our formal completeness proof, the

translation method for the compound rule.

Lemma 10.1 Let (s,L,E) be a compound such that ⊢ ¬D for all D ∈ E. Then

for every C ∈ L, we have ⊢ ¬C .

Proof Let C0 ∈ L. It suffices to show ⊢ C0 → �+s since �+s− ∈ C0 by the

definition of compound. We define

I := �∗s ∨
∨

C∈L

RC

and show the following properties of I:

(i) ⊢ C0 → �I

(ii) ⊢ I → s

(iii) ⊢ I → �I

Once we have shown (i) to (iii), we can finish the proof as follows:

1. ⊢ �+(I → �I) (iii), Nec+

2. ⊢ �I → �
+I Segerberg

3. ⊢ �I → �
+s (ii), Reg+

4. ⊢ C0 → �
+s (i)

For (i - iii) we reason as follows:

(i) We have:

1. ⊢ C0 → �RC0 (R1)

2. ⊢ C0 → �I monotonicity

(ii) It suffices to show ⊢ RC → s for every C ∈ L. For every such C we have:

15



1. ⊢ ¬(RC ; s−) Def. compound, assumption

2. ⊢ RC → s propositional reasoning

(iii) We show that every disjunct of I implies �I. By (S1) it suffices to show

⊢ RC → �I for every C ∈ L. Let C ∈ L and let D ⊆ L ∪ E be the default

retract of RC ;�+s−.

1. ⊢ RC ;�+s− →
∨
D Lemma 8.2

2. ⊢ RC ;�+s− →
∨
(D∩L) ⊢ ¬D for all D ∈ E

3. ⊢ RC ;�+s− →
∨

L∈L

L propositional reasoning

4. ⊢ RC ;�+s− →
∨

L∈L

�RL (R1), monotonicity

5. ⊢ RC ;�+s− → �
∨

L∈L

RL (D2)

6. ⊢ RC → �
+s ∨�

∨

L∈L

RL propositional reasoning

7. ⊢ RC → �(�∗s ∨
∨

L∈L

RL) (S2), (D2)

8. ⊢ RC → �I Def. I

Now we can prove the translation theorem.

Proof (of Theorem 8.1) Let C be derivable. We prove the claim by induction

on the derivation of C . The case for the compound rule follows immediately

with Lemma 10.1. The cases for the jump rule and the retract rule follow with

Lemma 8.3 and Lemma 8.2 respectively.

Proof (of Theorem 2.2) Derivability in our Gentzen system is decidable, so we

consider two cases:

The clause {s−} is derivable. By Lemma 8.1, we have ⊢ ¬¬s and hence ⊢ s.

The clause {s−} is underivable. By Lemma 7.5, the set of underivable clauses over

the subformulas of s yields a model for {s−} and hence for ¬s.

Note that in the proof above, the size of the countermodel can be bounded by

22n where n is the number of subformulas of s. Hence, we have also shown that

K+ has the small model property.

Organizing the proof as we do, we obtain a development of rather moderate

size. It consists of less than 1000 lines specific to our proof, about half of which

are Hilbert infrastructure and a collection of basic modal logic lemmas. On top of

this we need a couple of hundred lines of generic constructions like the fixpoint

computation described in Section 4.
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11 Related Work

Only after submitting the initial version of this paper, we became aware of the

work of Brünnler and Lange [3] presenting analytic sequent calculi for LTL and

CTL. In their calculi one can focus on an eventuality formula and keep a history of

the contexts in which a rule has been applied to this eventuality. If an eventuality

occurs in a context that is already in the history, the sequent is provable.

Adapting Brünnler and Lange’s rules to K+, we obtain a system where one of

the eventuality formulas in a clause can be annotated with a finite set of plain,

i.e., annotation-free clauses. The rules for �+ then look as follows:

RC ; s− RC ;�+RCs
−

C ;�+s−

RC ; s− RC ;�+H;RCs
−

C ;�+Hs
− C ;�+H;RCs

−

An annotated eventuality �+Hs
− is satisfied at a state w if there is a path from w

to a state satisfying s− that has at least one transition and after the first transi-

tion no state on the path satisfies a clause in H. The system consisting of the

rules above and the rules from Figure 3 is sound for this semantics and complete

for plain clauses.

LTL and CTL can express the semantics of annotated eventualities as a for-

mula using the until operator. So given complete Hilbert systems for LTL [11]

or CTL [7] it should be possible to translate derivations in Brünnler and Lange’s

calculi to Hilbert proofs. Unlike LTL and CTL, K+ cannot express the semantics

of an annotated eventuality as a formula. Hence, it is not clear how to translate

the rules above to Hilbert refutations in the Hilbert system.

The motivation for our Gentzen system was the need for a simple induc-

tive characterization of unsatisfiability that can be translated to Hilbert refuta-

tions to constructively show the completeness of the Hilbert system. In fact, our

monolithic compound rule allows us to directly read off the instantiation of the

Segerberg axiom. So while for constructive completeness proofs for Hilbert sys-

tems for LTL and CTL history-based Gentzen systems seem promising, a system

with a compound rule appears essential for weaker logics like K+.
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