
Completeness and Decidability Results
for CTL in Constructive Type Theory

Christian Doczkal Gert Smolka

March 3, 2016

Saarland University

Published in J. Autom. Reason., ITP 2014 Special Issue, DOI:10.1007/s10817-016-9361-9

We prove completeness and decidability results for the temporal logic CTL
in Coq/Ssreflect. Our main result is a constructive proof that for every
formula one can obtain either a finite model satisfying the formula or a
proof in a Hilbert system certifying the unsatisfiability of the formula. The
small model property of CTL and completeness of the Hilbert system fol-
low as corollaries. Our proofs mostly refine the mathematical proofs given
by Emerson and Halpern. One important deviation is our use of an induc-
tive semantics for CTL to avoid reasoning about infinite paths. On finite
models the inductive semantics agrees constructively with the standard
path semantics. The proof amounts to the verification of a simple model
checking algorithm. For general models, the agreement between the in-
ductive semantics and the path semantics requires excluded middle and
dependent choice.

1 Introduction

Computation tree logic (CTL) [11] is a temporal logic widely used in program
verification [9]. The model checking problem for CTL is decidable in polynomial
time [5, 13]. The logic has the small model property and satisfiability of formulas
is EXPTIME-complete [12, 8]. There are several complete Hilbert axiomatizations
for CTL in the literature. In addition to the original axiomatizations by Emerson
and Halpern [12, 8] there is an axiomatization by Lange and Stirling [23] derived
from a game-theoretic interpretation of CTL. The game-theoretic approach also
led to the development of a cut-free sequent calculus for CTL [4].

1

We are interested in a formal and constructive metatheory of CTL. We define
formulas, models, a satisfaction relation relating models and formulas, and a
Hilbert proof system. Our main result is a constructive proof that for every for-
mula one can obtain either a finite model satisfying the formula or a derivation in
the Hilbert system certifying the unsatisfiability of the formula. As corollaries of
this result we obtain the completeness of the Hilbert system and the decidability
of satisfiability and provability (using soundness of the Hilbert system). Obtain-
ing formal and constructive proofs for these metatheoretic results requires a
careful reengineering of the original proofs.

In addition to the usual path semantics, we define an equivalent inductive
semantics for CTL. The inductive semantics is inspired by the fixpoint charac-
terization [10, 9] of path formulas used for model checking [13, 9]. For most of
our development, we work with the inductive semantics. This avoids reasoning
about infinite paths and leads to more natural proofs.

The rules of our Hilbert system directly correspond to the inductive seman-
tics. We constructively prove the Hilbert system sound for the usual path se-
mantics on finite models. The main issue is showing soundness of the double
negation axiom. We obtain a constructive soundness proof by showing that on
finite models the inductive semantics is decidable and agrees with the path se-
mantics. This amounts to the verification of a simple model checking algorithm.

If we assume excluded middle and a weak form of choice, the soundness
argument extends to the class of all models. Combined with the constructive
completeness result, this establishes the small model property of CTL.

The original completeness proofs for Hilbert axiomatizations of CTL are of
considerable complexity [12, 8]. One reason for this complexity is the non-
compactness of the logic, caused by the ability to express transitive closure. This
means that the Lindenbaum construction [16], which uses maximally consistent
sets, does not extend to CTL. Moreover, the Fischer-Ladner quotient construction
for PDL [15] does not extend to CTL because it does not preserve satisfaction of
always-until formulas. This complicates the construction of finite models for
CTL. The original completeness proofs for CTL [12, 8] are based on a decision
procedure employing Pratt-style pruning [24, 20]. With some reengineering, the
original proofs can be transformed into constructive proofs.

The overall structure of our completeness proof follows Emerson’s handbook
article [8]. We adapt the proofs to better match the inductive semantics of CTL.
There are two subtasks of considerable complexity. One complex subtask is the
construction of finite models from syntactic pseudo-models we call demos. The
other complex subtask is the construction of Hilbert refutations for formulas not
satisfied by any demo.

Our demos play the role of the pseudo-Hintikka structures employed by Emer-
son [8]. Demos sit at the heart of our decidability result and are designed to give

2

a good compromise between minimizing the effort for the model construction
and minimizing the effort of constructing Hilbert refutations. We employ lit-
eral clauses and the notion of support [21] instead of Hintikka sets. We handle
eventualities (i.e., until formulas) using inductively defined fulfillment predicates
instead of the embedded fragments used by Emerson.

For the construction of finite models from demos, we unfold demos into frag-
ments such that each fragment fulfills one eventuality. Following Emerson [8],
we assemble the different fragments into a model.

For the construction of Hilbert refutations, we replace Emerson’s [8] classi-
cal argument with a constructive one. The original proof is non-constructive in
the sense that it assumes logical decidability of Hilbert provability to show com-
pleteness. While Hilbert provability is computationally decidable, and hence also
logically decidable, the easiest way to show this is through completeness.

Our construction of Hilbert refutations is inspired by the work of Ben-Ari et
al. [2], where a constructive proof is sketched for UB, a fragment of CTL. The
construction of Hilbert derivations is of considerable complexity, in particular
as it comes to the instantiation of the induction rules of the Hilbert system. Our
induction invariants are adapted from Emerson [8].

Given the practical importance of CTL and the complexity of the proofs of
the metatheoretic results for CTL, we think that the metatheory of CTL is an
interesting and rewarding candidate for formalization. The original proofs [12, 8]
are presented in a fairly informal manner. The gap between the informal proofs
and our formalization is considerable, in particular as it comes to the generation
of Hilbert refutations.

Our development [6] is carried out in Coq [27] with the Ssreflect [18] exten-
sion. It includes a library for finite sets over Ssreflect’s countable types, which
is used to formalize demos, pruning, and the model construction. In total, the
development consists of about 3500 lines.

In previous work [7], we prove completeness of the Hilbert system for CTL
using a variant of Brünnler and Lange’s [4] sequent calculus as the underlying
decision method. In the present work we follow Emerson [8] and base our com-
pleteness results on Pratt-style pruning [24, 20]. This simplifies the model con-
struction and leads to a more natural construction of the required Hilbert refu-
tations.

The paper is organized as follows: In Section 2 we recall the syntax and se-
mantics of CTL and present the Hilbert system. Section 3 describes the inductive
semantics we use in our proofs. Section 4 contains a brief description of the
finite set library underlying the formal development. In Section 5 we prove the
Hilbert system sound for finite models. In Section 6 we define clauses and the
notion of support, which are essential for the definition of demos in Section 7.
Sections 8 and 9 describe the construction of models from demos. Section 10

3

introduces the pruning procedure we use to constructs demos. In Sections 11
and 12 we extend the pruning procedure to also construct Hilbert derivations. In
Section 13 we study general models and establish the small model property of
CTL.

2 CTL

We briefly recall the syntax and semantics of CTL [11, 8, 1]. We fix a countable
alphabetA of atomic propositions p and define formulas as follows:

s, t := p | ⊥ | s → t | � s | A(s U t) | A(s R t)

We choose to work with a minimal set of operations for technical convenience.
We make use of the following abbreviations for formulas:

¬s := s → ⊥ ♦ s := ¬�¬s
s ∨ t := ¬s → t E(s U t) := ¬A(¬s R¬t)
s ∧ t := ¬(s → ¬t) E(s R t) := ¬A(¬s U¬t)
s ↔ t := (s → t)∧ (t → s)

A model is a tupleM= (|M|,⇒M, LM) where

• |M| is a set of states

• ⇒M ⊆ |M| × |M| is a serial transition relation (i.e., every state has at least
one successor)

• LM :A→ 2|M| is a labeling function.

Intuitively, the formula A(s U t) holds at some statew if for every infinite path
starting atw the formula s holds at every state of the path until the path reaches
a state where t holds. The formula A(s R t) holds at some state w if for every
infinite path starting at w either t holds at every state along the path or s holds
at at some state on the path and t holds at every state up to (and including) that
state.

For the following definitions, we fix some model M. A path is a function
π : N→ |M| such hat π n⇒M π(n+1) for all n. The letter π ranges over paths.
The satisfaction relation w î s for states w of M and formulas s is defined as

4

K s → t → s
S ((u→ s → t)→ (u→ s)→ u→ t)

DN ¬¬s → s
N �(s → t)→ � s → � t

Ser ¬�⊥
U1 t → A(s U t)
U2 s → �A(s U t)→ A(s U t)
R1 A(s R t)→ t
R2 A(s R t)→ ¬s → �A(s R t)

s s → t
t

MP
s
� s

Nec

t → u s → �u→ u
A(s U t)→ u

UI
u→ t u→ ¬s → �u

u→ A(s R t)
RI

Figure 1: Hilbert System

follows:

w î p := w ∈ LM p
w î ⊥ := ⊥

w î s → t := w î s → w î t
w î � s := ∀v. (w ⇒M v)→ v î s

w î A(s U t) := ∀π. π 0 = w → ∃n. π n î t ∧∀m < n. π m î s
w î A(s R t) := ∀π. π 0 = w → ∀n. π n î t ∨ ∃m < n. π m î s

We writeMî s if w î s for all states w ofM.
A formula is valid if it is satisfied by every state of every model. A formula is

(finitely) satisfiable if it is satisfied by some state of some (finite) model.
Validity of formulas can be axiomatized with a Hilbert system [8, 23]. We will

work with the Hilbert system shown in Figure 1. We write ` s if s is provable
from the axioms. We say s is refutable if ¬s is provable and call the proof of ¬s
a Hilbert refutation.

We will show soundness and completeness of the Hilbert system for finite
models constructively. The completeness proof comes in the form of a certi-
fying decision method. For every input formula s we either construct a finite
model certifying the satisfiability of s or a Hilbert refutation of s certifying the
unsatisfiability of s. Using excluded middle and dependent choice, we will also
show that the Hilbert system is sound for all models.

5

3 Inductive Semantics

For our proofs, we employ an inductive semantics similar to the fixpoint seman-
tics used with model checking [13, 9]. We interpret path formulas inductively
(for A(s U t)) or coinductively (for A(s R t)) according to the following fixpoint
characterizations [10, 9]:

A(s U t) ≡ µX. t ∨ (s ∧�X) (3.1)

A(s R t) ≡ νX. t ∧ (s ∨�X) (3.2)

LetM be a model. We define an inductive predicate AU of type

(|M| → Prop)→ (|M| → Prop)→ |M| → Prop

and a coinductive predicate AR of the same type with the following rules:

Qw
AUP Qw

P w ∀v.(w ⇒M v)→ AUP Qv
AUP Qw

P w Qw

ARP Qw
============

Qw ∀v.(w ⇒M v)→ ARP Qv

ARP Qw
====================================

Based on the predicates AU and AR, we define a second satisfaction relationw îi
s between states w ofM and formulas s by recursion on formulas:

w îi p := w ∈ LM p
w îi ⊥ := ⊥

w îi s → t := w îi s → w îi t
w îi � s := ∀v ∈ |M|. (w ⇒M v)→ v îi s

w îi A(s U t) := AU (λv.v îi s) (λv.v îi t)w
w îi A(s R t) := AR (λv.v îi s) (λv.v îi t)w

The rules and axioms of the Hilbert system in Figure 1 are motivated by the
inductive characterizations of path formulas. The axioms U1 and U2 correspond
to the introduction rules of the predicate AU and the rule UI corresponds to the
respective induction principle. Dually, the axioms R1 and R2 correspond to in-
version of the rules for AR and the rule RI corresponds to coinduction. Given the
close correspondence between the inductive semantics and the Hilbert system, it
is straightforward to show that the Hilbert system is sound for all models where
îi is logically decidable.

Lemma 3.1 Let M be a model such that w îi s ∨ (w 6îi s) is provable for all
formulas s and all states w ofM. ThenMîi s if ` s.

6

Proof by induction on ` s. The case for DN follows since w îi ¬¬s is, by def-
inition, equivalent to ¬¬(w îi s) and negation behaves classically on decidable
properties. The cases for the inductive rules UI and RI are immediate with the
inductive interpretation of path formulas. The remaining cases are obvious. �

Note that in the presence of excluded middle, the decidability premise of
Lemma 3.1 is trivially satisfied. In Section 5 we will show constructively that
îi is decidable for finite models.

4 Decidability and Finite Sets

For constructive proofs, decidability properties play an important role since de-
cidable propositions behave classically. In particular, decidability provides for
crucial case distinctions in proofs.

Following Ssreflect [18], we say that a property P : Prop is decidable, if there
exists a boolean expression p such that p = true ↔ P . We call p the boolean
reflection of P . Similarly, we call a predicate P : X → Prop decidable if P x
is decidable for all x : X. Since we work in the constructive type theory of
Coq without axioms, the existence of a boolean reflection implies computational
decidability. We refer to boolean predicates X → B as decidable predicates since
they can be seen as their own boolean reflection. If a boolean p appears in the
place of a proposition it is to be read as p = true and similarly for boolean
predicates.

In the context of decidability, countable and finite types [17] play an impor-
tant role. A countable type is a type with a decidable equality that can be enu-
merated (e.g., numbers or formulas). For countable types, a choice function for
decidable properties can be constructed. This means for a countable type X
there is a function

xchooseX : ∀p : X → B. (∃x. p x)→ X

such that for every proof E : (∃x. p x) we have p (xchooseX p E). A finite type
is a countable type whose elements can be given with a list. Many properties
that are not decidable in general are decidable over finite types. In particular,
quantification over finite types preserves decidability.

In addition to finite types, we make extensive use of finite sets over finite
and countable base types. For our purposes, finite sets are data structures. In
particular, we only consider finite sets with decidable membership.

The Ssreflect libraries [17] provide finite sets but only over finite base types.
For some parts of our development this is to restrictive, since we will work ex-
tensively with sets of formulas as well as sets of sets of formulas. For this we
require a library providing finite sets over countable types providing the usual

7

operations including separation {x ∈ A | px }, replacement {f x | x ∈ A }, and
powerset. Since we could not find a library satisfying all our needs, we developed
our own.

Our set type is realized as a constructive quotient over lists obtained with a
normalization function. The normalization function is defined using a construc-
tive choice operator and picks some canonical duplicate-free list to represent
a given set. The extensional representation obtained this way ensures that set
membership on all levels (sets, sets of sets, etc.) is just membership in the list
representing the set. In the following, we write setX for the type of finite sets
over a countable or finite type X.

We will use fixpoint iteration to show that certain inductive definitions over
finite types and sets are decidable. Let X be a countable type, U : setX, and
F : setX → setX a function that is monotone (i.e. ∀AB. A ⊆ B → F A ⊆ F B)
and bounded by U (i.e., ∀A. A ⊆ U → F A ⊆ U). We can compute the least
fixpoint of F , written lfpF , as F |U| �, i.e., by iterating F on the empty set once for
every element of U . Further, we can compute its greatest fixpoint, written gfpF ,
as CU(lfp (CU ◦ F ◦ CU)), where CU is the complement in U . In addition to the
fixpoint equations F(lfpF) = lfpF and F(gfpF) = gfpF , we show the following
“induction” principles:

∀P.P �→ (∀A.P A→ P (F A))→ P(lfp F) (4.1)

∀P.P U → (∀A.P A→ P (F A))→ P(gfp F) (4.2)

Note that if X is a finite type, then every function of type setX → setX is
bounded by the full set over X.

5 Soundness for Finite Models

We now show that the Hilbert system in Figure 1 is sound for finite models and
the path semantics. Given Lemma 3.1, it suffices to show that on finite models
the inductive semantics is decidable and in agreement with the path semantics.
This amounts to the verification of a simple model checking algorithm.

We formalize models as records comprised of a type of states, a transition
relation, a labeling predicate, and a proof that the transition relation is serial:

model := { state : Type;
trans : state→ state→ Prop;
label :A→ state→ Prop;
serial : ∀w∃v. transw v}

A finite model is a model where the type of states is a finite type. In addition,
we require that the transition relation and the labeling are decidable for finite
models.

8

We fix some finite modelM for the rest of this section.

Lemma 5.1 w îi s is decidable for every state w ofM and every formula s.

Proof by Induction on s. Since M is a finite model, LM pw and w ⇒M v are
decidable for all w, v , and p. Implication and the finite quantification in the
definition of w îi � s preserve decidability. Hence, it suffices to show that
for decidable predicates P,Q : |M| → B the predicates AUP Q and ARP Q are
decidable. We construct boolean reflections for AUP Q and ARP Q using fixpoint
iteration. For this we express the introduction rules for AUP Q and ARP Q as
monotone functions on set |M|:

FAU(A) := {w ∈ |M| | Qw } ∪ {w ∈ |M| | P w ∧∀v.(w ⇒M v)→ v ∈ A }
FAR(A) := {w ∈ |M| | P w ∧Qw } ∪ {w ∈ |M| | Qw ∧∀v.(w ⇒M v)→ v ∈ A }

Now it suffices to show

AUP Qw ↔ w ∈ lfpFAU (∗)

ARP Qw ↔ w ∈ gfpFAR (∗∗)

For (∗), the direction from left to right follows by induction on AU and the con-
verse direction follows with (4.1). For (∗∗), the direction from left to right follows
with (4.2) and the converse direction follows by coinduction. �

It remains to show that the inductive semantics agrees with the path seman-
tics. The interesting part is showing the correctness of AU and AR.

Lemma 5.2 If P and Q are decidable predicates |M| → B and w is a state of M,
then

AUP Qw ↔ ∀π.π 0 = w → ∃n.Q(π n)∧∀m < n.P (π m)

Proof The direction from left to right follows by induction on AUP Qw. Since
AU is decidable, we can show the direction from right to left by showing its con-
trapositive. Assume we have ¬AUP Qw. We construct a path that contradicts
the right hand side. Consider the following decidable subrelation of ⇒M:

u ⇀ v := u⇒M v ∧ (¬AUP Qu→ pu→ ¬AUP Qv)

Since ⇒M is serial, the relation ⇀ is serial as well. Using constructive choice
we construct a function f : |M| → |M| that selects for every state of M a ⇀-
successor. We define π n := fnw and show

∀n.¬AUP Q(π n)∨ ∃m < n.¬P (π m)

by induction on n. This yields ¬Q(π n) ∨ ∃m < n.¬P (π m) for all n, contra-
dicting the right hand side as required. �

9

Lemma 5.3 If P and Q are decidable predicates |M| → B and w is a state of M,
then

ARP Qw ↔ ∀π.π 0 = w → ∀n.Q(π n)∨ ∃m < n.P (π m)

Proof For the direction from left to right, we assume ARP Qw and fix some path
π such that π 0 = w. We prove

∀n. ARP Q(π n)∨ ∃m < n.P (π m)

by induction on n. The base case follows by assumption, the induction step by
inversion on ARP Q(π n). The claim then follows since ARP Q(π n) implies
Q(π n).

For the converse direction, we abbreviate the right hand side as AR′w. We
first show that the path characterization satisfies the inversion properties of AR.

∀v. AR′v → Qv (∗)

∀uv. AR′u→ ¬P u→ (u⇒M v)→ AR′v (∗∗)

For (∗), we use constructive choice to obtain some path through the model. Prop-
erty (∗∗) is easy to verify. The claim then follows by coinduction using (∗) and
(∗∗). �

Lemma 5.4 (Finite Agreement) Let w be a state ofM. Then w î s iff w îi s.

Proof by induction on s using Lemma 5.2 and Lemma 5.3. �

Soundness for finite models is now a direct consequence of the previous lemmas.

Theorem 5.5 (Finite Soundness) Mî s if ` s andM is a finite model.

Proof Let M be finite model and ` s. By Lemma 5.4 it suffices to show w îi s
for all states w ofM. Since w îi s is decidable by Lemma 5.1, the claim follows
with Lemma 3.1. �

6 Clauses and Support

The central notion in the design of our certifying decision method is the notion
of a demo. Demos are a class of syntactic pseudo-models, a variation of the
pseudo-Hintikka structures used by Emerson [8]. We will show that every demo
can be turned into a model and that every formula that is not supported by a
demo is refutable.

10

For our demos we use literal clauses and the notion of support [21, 22] instead
of the more traditional notion of Hintikka sets [24, 12, 8, 20]. Clausal demos
appear in [21] as evident branches. We use signed formulas [25] to express top-
level negations. Signs are a formal device that leads to a simple definition of
subformula closure (Section 10) based on our minimal syntax.

A signed formula is either s+ or s− where s is a formula. Signs bind weaker
than formula constructors, so � s+ is to be read as (� s)+. We write σ for arbi-
trary signs and σ for the sign opposite to σ . A state satisfies a signed formula sσ

if it satisfies bsσ c where bs+c = s and bs−c = ¬s. Hence, negative signs can be
thought of as top-level negations. We have the following equivalences:

b� s−c ↔ ♦¬s
bA(s U t)−c ↔ E(¬s R¬t)
bA(s R t)−c ↔ E(¬s U¬t)

A clause is a finite set of signed formulas. A state satisfies a clause if it satisfies
all its members. A signed formula is a literal if it is of the form pσ , ⊥σ , or � sσ .
A literal clause is a clause containing only literals. A literal clause is locally
consistent if it contains neither ⊥+ nor both p+ and p− for any p. We refer to
locally consistent literal clauses as base clauses.

We define the support relation C . sσ between base clauses C and signed
formulas sσ by recursion on formulas:

C . sσ := sσ ∈ C if sσ is a literal

C . (s → t)+ := C . s− ∨ C . t+

C . (s → t)− := C . s+ ∧ C . t−

C . A(s U t)+ := C . t+ ∨ (C . s+ ∧ �A(s U t)+ ∈ C)
C . A(s U t)− := C . t− ∧ (C . s− ∨ �A(s U t)− ∈ C)
C . A(s R t)+ := C . t+ ∧ (C . s+ ∨ �A(s R t)+ ∈ C)
C . A(s R t)− := C . t− ∨ (C . s− ∧ �A(s R t)− ∈ C)

We also define C . D := ∀sσ ∈ D. C . sσ . The support relation can be under-
stood as a restricted form of entailment justified by propositional reasoning and
the equivalences (3.1) and (3.2).

We employ base clauses and support rather than Hintikka sets because we
find the structurally recursive definition of support easier to work with than sets
with closure conditions.

11

7 Demos

Let C and D be a clauses. We call the set R� C := { s+ | � s+ ∈ C } the box
request of C . If D .R� C , we say that there is a possible transition from C to D
or that D is a possible successor of C .

A demo will be a set of base clauses S that can be turned into a finite model
where the states are clauses from S, possibly appearing multiple times, and the
transition relation is a selection of possible transitions. The model will be con-
structed such that every state satisfies all formulas it supports. For this, we need
to ensure that every clause in S has enough possible successors in S to satisfy
all literals of the form � s−. We also need to ensure that all path formulas are
satisfied.

We refer to the signed formulas A(s U t)+ and A(s R t)− as eventualities. To
fulfill the eventuality A(s R t)−, we need to ensure that there is a path of possi-
ble transitions in S supporting s− at every state until finally supporting t−. To
fulfill A(s U t)+, we need to ensure that there exists a directed acyclic graph with
labels from S supporting s+ at internal nodes and t+ at the leaves. Dealing with
eventualities is the main technical difficulty in designing demos.

Let C be a clause. We define the requests of C as follows:

RC := {R� C} ∪ {R� C, s− | � s− ∈ C }

One necessary condition for a clause C to be satisfied by some state w is that all
its requests are satisfied by immediate successors of w. The singleton {R� C}
captures the fact that models are serial and ensures that every clause has at
least one request. Note that the requests need not be base clauses. We say that
a clause C is supported by S, written S . C , if for some clause D ∈ S we have
D . C . For S to be a demo we require that every request of a clause C ∈ S is
supported by S.

It remains to define the fulfillment conditions for eventualities. Since base
clauses contain only literals, it is technically convenient to phrase the fulfillment
condition in terms of eventuality literals, i.e., �A(s R t)− and �A(s R t)+.

We inductively define fulfillment relations S, C . e between sets of clauses S,
clauses C and eventuality literals. A clause C ∈ S fulfills �A(s R t)− if there
exists a possible successor E of C such that either E . t− or E . s− and E fulfills
�A(s R t)−. The precise rule defining S, C . �A(s R t)− inductively is:

E ∈ S E .R� C E . t− ∨ (E . s− ∧ S, E . �A(s R t)−)
S, C . �A(s R t)−

To fulfill the eventuality literal �A(s U t)+, every successor needs to fulfill
A(s U t)+. For the model construction, we therefore want to introduce as few
successors as possible. However, we need to introduce at least one successor for

12

every request. Thus, we need to ensure that one of the possible successors for
every request fulfills the eventuality.

A clause C ∈ S fulfills �A(s U t)+ if for every request D of C there exists
a clause E ∈ S such that E . D and either E . t+ or E . s+ and E fulfills
�A(s U t)+. The precise rule defining S, C . �A(s U t)+ inductively is:

∀D ∈ RC ∃E ∈ S. E . D ∧ (E . t+ ∨ (E . s+ ∧ S, E . �A(s U t)+))
S, C . �A(s U t)+

The notion of inductive fulfillment arises naturally from the inductive seman-
tics of CTL. Inductive fulfillment is a sufficient criterion for the existence of the
paths and trees mentioned above and eliminates the need for embedded frag-
ments as used in [8].

Definition 7.1 (Demo) A set of base clauses S is called a demo if it satisfies the
following conditions:

D1. If C ∈ S and D ∈ RC , then S . D.

D2. If e is an eventuality literal and e ∈ C ∈ S, then S, C . e.

8 Model Construction

We now show how to turn demos into models. The proof consists of two parts.
Fist we unwind the demo into a collection of clause-labeled graphs called frag-
ments such that each fragment fulfills one eventuality in one clause. Follow-
ing [8], we then assemble the fragments into a finite model.

A fragment is a finite, rooted, and acyclic directed graph labeled with clauses.
If G is a fragment, we write x ∈ G to say that x is a node of G and x ⇒G y if
there is a G-edge from x to y . A node x ∈ G is internal if it has some successor
and a leaf otherwise. If x ∈ G, we write Λx for the clause labeling x. We also
write xroot for the root of a graph if the graph can be inferred from the context.
A fragment is nontrival if its root is not a leaf.

We fix some set of base clauses S for the rest of this section.
Let C ∈ S be a clause. A fragment G is an fragment for C if:

F1. Λx ∈ S for all x ∈ G.

F2. The root of G is labeled with C .

F3. If x ⇒G y , then Λy .R�(Λx).
F4. If x ∈ G is internal and D ∈ R(Λx), then there exists some y ∈ G such that
x ⇒G y and Λy . D.

Let u be a formula. A fragment G for C is a fragment for C and u if u ∉ C or

E1. If u = �A(s U t)+ and C . s+, then Λx . s+ for every internal x ∈ G and
Λy . t+ for all leaves y ∈ G.

13

E2. If u = �A(s R t)− and C . s−, then Λx . s− for every internal x ∈ G and
Λy . t− for some y ∈ G.

Note that if C . A(s U t)+, then A(s U t)+ is fulfilled in every fragment for C and
�A(s U t)+. Either C . t+ and A(s U t)+ is fulfilled directly at the root or C . s+

and �A(s U t)+ ∈ C and A(s U t)+ is fulfilled according to (E1). For A(s R t)− the
situation is similar.

Definition 8.1 (Fragment Demo) Let V :=
⋃
C∈S C . A fragment demo (for S) is an

indexed collection of nontrivial fragments (G(u,C))u∈V,C∈S where each G(u,C)
is a fragment for C and u.

Lemma 8.2 If S is a demo, then there exists a fragment demo for S such that
every fragment has most 2 · |S| nodes.

Proof We obtain a fragment for C ∈ S and u ∈ V as follows. We distinguish
three cases.

1. u = �A(s U t)+ ∈ C and C . s+: We define:

Al := {D ∈ S | S,D . �A(s U t)+ }
Ar := {D ∈ S | D . t+ }

The fulfillment relation for �A(s U t)+ is an inductive predicate over a finite
set. Thus, Al can be computed as the least fixpoint of some monotone func-
tion F bounded by S. For every clause C ∈ Al, we define the level of C to be
the smallest n such that C ∈ Fn+1�. We define a terminating relation ⇀ on
the disjoint (tagged) union Al]Ar such that

inl(D) ⇀ inl(E) ↔ E .R�D ∧ E . s+ ∧ levelE < levelD

inl(D) ⇀ inr(E) ↔ E .R�D

There are no transitions within Ar or from Ar to Al. Since S is a demo, we
have S, C . �A(s U t)+ and thus C ∈ Al. The subgraph reachable from inl(C)
yields a fragment for C and u of the required size. It is immediate that the
fragment satisfies (F1–3). Conditions (F4) and (E1) follow with the definition
of fulfillment.

2. u = �A(s R t)− ∈ C and C . s−: We define:

Al := {D ∈ S | S,D . �A(s R t)− }

As above, we define levels for the clauses in Al and define a terminating rela-
tion ⇀ on the disjoint union Al] S such that

inl(D) ⇀ inl(E) ↔ E .R�D ∧ E . s− ∧ levelE < levelD

inl(D) ⇀ inr(E) ↔ E .R�D

14

Again, the subgraph reachable from inl(C) yields a fragment for C and u of
the required size. Conditions (F1–4) are easy to verify. Condition (E2) follows
by induction on the level of C using the definition of fulfillment.

3. In all other cases it suffices to construct a fragment for C . The fragment
consists of a root node labeled with C and leaves labeled with all possible
successors of C in S. �

The levels employed in the proof of Lemma 8.2 are similar to the ranks employed
by Ben-Ari et al. [2]. However, their model construction follows a different ap-
proach.

We now show how to assemble a fragment demo into a model. The construc-
tion is adapted from Emerson’s handbook article [8]. We verify the construction
using the inductive semantics of CTL instead of the path semantics.

Assume that we are given some fragment demo (G(u,C))u∈V,C∈S for S. We
construct a finite model M satisfying all labels occurring in the demo. If V is
empty, there is nothing to show, so we assume that V is nonempty.

The states of M are the nodes of all the fragments in the demo, i.e., every
state ofM is a dependent triple (u,C,x) with u ∈ V , C ∈ S, and x ∈ G(u,C). A
state (u,C,x) is labeled with atomic proposition p iff p+ ∈ Λx .

To define the transitions of M, we fix an ordering u0, . . . , un of the signed
formulas in V . We write ui+1 for the successor of ui in this ordering. The
successor of un is taken to be u0. The transitions of M are of two types. First,
we lift all the internal edges of the various fragments to transitions inM. Second,
if x is a leaf in G(ui, Cj), we add transitions from (ui, Cj , x) to all successors of
the root of G(ui+1,Λx). This leads to the following definition:

(ui, C, x)⇒M (v,D,y) := (v = ui ∧D = C ∧ x ⇒G(v,D) y) ∨
(leafx ∧ v = ui+1 ∧D = Λx ∧ xroot ⇒G(v,D) y)

The fragments in the demo can be thought of as arranged in a matrix as shown
in Figure 2 where the Ci are the clauses in S. Since fragment demos consist of
nontrivial fragments only, the resulting transition system is serial and we have a
model.

We then show that every state ofM satisfies all signed formulas it supports.

Lemma 8.3 If (u,C,x) ∈ |M| and Λx . sσ , then (u,C,x) îi bsσ c.

Proof by induction on s. We sketch the case for A(s U t)+. The case for A(s R t)−

is similar and all other cases are straightforward.
Let w = (ui, Cj , x) ∈ |M| and assume Λx . A(s U t)+. By induction hypothe-

sis it suffices to show AUM s t w where

AUM s t w := AU (⇒M) (λ(_, _, y).Λy . s+) (λ(_, _, y).Λy . t+)w

15

G(u0, C0) G(u0, C1) · · · G(u0, Cn)

G(u1, C0) G(u1, C1) · · · G(u1, Cn)
...

...
...

G(un, C0) G(un, C1) · · · G(un, Cn)

Figure 2: Matrix of Fragments (adapted from [8])

To show AUM s t w it suffices to show AUM s t (ui+1, C, xroot) for all C support-
ing A(s U t)+, since by (F3) the property of supporting A(s U t)+ gets propagated
down to the leaves of G(ui, Cj) on all paths that do not support t+ along the
way.

If C . t+, then AUM s t (ui+1, C, xroot) trivially holds. Otherwise, we have
C . s+ and �A(s U t)+ ∈ C . In particular, we have �A(s U t)+ ∈ V . We prove
AUM s t (ui+1, C, xroot) by induction on the distance from ui+1 to �A(s U t)+ ac-
cording to the order on V . If ui+1 = �A(s U t)+, we have AUM s t (ui+1, C, xroot)
by (E1). Otherwise, the claim follows by induction, deferring to the next row of
the matrix as we did above. �

Theorem 8.4 (Model Existence) If S is a demo and V is nonempty, then there
exists a model with at most 2 · |S|2 · |V | states satisfying every clause supported
by S.

Proof Follows immediately with Lemma 8.2 and Lemma 8.3. �

9 Formalizing the Model Construction

Our representation of fragments is based on finite types. We represent finite la-
beled graphs as relations over some finite type together with a labeling function.
We then represent fragments using clause labeled graphs with a distinguished
root element.

16

The levels employed in the proof of Lemma 8.2 are computed using a spe-
cialization of constructive choice for natural numbers which chooses minimal
witnesses for inhabited and decidable predicates.

Let {x,y} ⊆ lfpF for some monotone and bounded function F . To formalize
the proof of Lemma 8.2, we only need two facts to characterize levels:

x ∈ F levelx+1�

y ∈ F levelx�→ levely < levelx

We remark that although the fulfillment relations are conceptually inductive def-
initions, the formal proofs only employ the fixpoint characterization of fulfill-
ment.

Once we have constructed a fragment demo, we turn the finite set V × S into
a finite type I. Except for the transitions connecting the leaves of one row to
the next row, the model is then obtained as the disjoint union of a collection of
graphs indexed by I. Let G : I → graph be such a collection. We lift the internal
edges of G by defining a predicate

liftEdge : (Σi:I.G i)→ (Σi:I.G i)→ B

on the dependent pairs of an index and a node of the respective graph satisfying

liftEdge (i, x) (i,y) ↔ x ⇒G i y
i ≠ j → ¬liftEdge (i, x) (j,y)

The definition of liftEdge uses dependent types in a form that is well supported
by Ssreflect.

The proof of Lemma 8.3 contains a nested induction on the distance from
ui+1 to �A(s U t)+ according to the order on V . This distance is formalized
using two functions1 dist : V → V → N and next : V → V satisfying

dist s t = 0 → s = t
dist s t = n+ 1 → dist (nextx)y = n

Note that the distance defined this way is asymmetric. The definitions of dist
and next employ an enumeration of V and arithmetic modulo |V |. The notation
ui+1 is formalized as nextui.

We remark that in [8] every leaf of a fragment is replaced by the root with the
same label on the next level. Thus, only the internal nodes of every fragment
become states of the model. This would amount to using a Σ-type on the vertex
type of every dag. In our model construction, we connect the leaves of one

1 we also write V for the finite type of elements of V

17

row to the successors of the equally labeled root of the next row. This way, we
avoid the Σ-type construction at the cost of obtaining a slightly weaker bound on
the size of the constructed model. The construction makes use of the fact that
CTL formulas cannot distinguish different states that are labeled with the same
atomic propositions and have the same successors.

10 Pruning and Subformula Closure

On a given input formula our certifying decision method starts by constructing
a subformula closed clause U containing the input formula. We then use Pratt-
style pruning [24, 20] to construct the largest demo over U . We will show that
the demo constructed in this way supports all satisfiable formulas in U and that
all unsupported formulas from U are refutable.

We call a clause U subformula closed, if it satisfies the following conditions:

S1. If (s → t)σ ∈ U , then {sσ , tσ} ⊆ U .

S2. If � sσ ∈ U , then sσ ∈ U .

S3. If A(s U t)σ ∈ U , then {sσ , tσ ,�A(s U t)σ} ⊆ U .

S4. If A(s R t)σ ∈ U , then {sσ , tσ ,�A(s R t)σ} ⊆ U .

For every signed formula sσ , one can compute a smallest subformula closed
clause containing sσ . We refer to this clause as the subformula closure of sσ .

We write |s| for the size of the formula s.

Lemma 10.1 The subformula closure of sσ has size at most 2 · |s|.

We fix some subformula closed clause U for the rest of this section.
Let C ⊆ U be a base clause. Note that all requests of C are themselves con-

tained in U . Also, if sσ ∈ U , then every signed formula involved in deciding
C . sσ is in U . Let us remark that our minimal syntax combined with signs
provides for a very simple notion of subformula closure.

It turns out that there exists a unique demo D that contains exactly the sat-
isfiable base clauses over U . We compute D using Pratt-style pruning. We start
with the set

S0 := {C ⊆ U | C base clause }

We then successively remove clauses that violate one of the demo conditions
until we are left with a demo. This is possible since (D1) and (D2) are decidable.
As noted in the proof of Lemma 8.2, the fulfillment relations can be decided using
fixpoint iteration and all other predicates that occur are obviously decidable.

By Theorem 8.4, we already know that a formula sσ ∈ U is satisfiable if D .
{sσ}. It remains to show that bsσ c is refutable if D 6. {sσ}. The construction
of D using pruning gives rise to a number of abstract refutation conditions.

18

Definition 10.2 (Refutation Predicate) A refutation predicate is a predicate ref
satisfying the following conditions for every clause C :

R1. If S is corefutable (i.e., ∀D ∈ S0 \ S.refD), C ⊆ U , and S 6. C , then refC .

R2. If refD for some D ∈ RC , then refC .

R3. If S is corefutable, e ∈ C ∈ S for some eventuality literal e, and S, C 6. e, then
refC .

A refutation predicate ref is sound if refC implies that C is not satisfied by
any finite model. Note that if ref is sound then D . C and refC are mutually
exclusive.

Lemma 10.3 Let ref be a refutation predicate and let C ⊆ U . IfD 6. C , then refC .

Proof The set S0 is clearly corefutable. If S is corefutable, any clause violating
(D1) is refutable by (R1) and (R2). Further, any clause violating (D2) is refutable
by (R3). Thus, D is corefutable and the claim follows with (R1). �

Lemma 10.4 Let ref be a sound refutation predicate and let C ⊆ U . Then refC is
decidable.

Proof Follows with Theorem 8.4, Lemma 10.3, and the fact hat D . C is decid-
able. �

Unsatisfiability in finite models yields a sound refutation predicate. However, we
do not prove this directly. Instead we will show the stronger claim that Hilbert
refutability yields a sound refutation predicate.

11 Informative Completeness

We now finish the constructive completeness proof by showing that the Hilbert
axiomatization realizes a refutation predicate. We deviate from the original
proofs [12, 8] because they are non-constructive in that they assume that Hilbert
provability is logically decidable (i.e., ∀s. ` s ∨ 6` s). Our construction of Hilbert
refutations is inspired by the work of Ben-Ari et al. [2], where a similar construc-
tive proof is sketched for UB, a fragment of CTL.

In addition to the abbreviations defined in Section 2, we define “big” conjunc-
tions and disjunctions indexed by lists. We use big conjunctions to reason about
clauses inside the Hilbert system. If C is a clause, we refer to

∧
sσ∈Cbsσ c as its

associated formula.2 When a clause occurs in the place of a formula, it is to be
read as its associated formula.

2 We convert finite sets to lists as required.

19

UE ` A(s U t)↔ t ∨ (s ∧�A(s U t))
RE ` A(s R t)↔ t ∧ (s ∨�A(s R t))
R� ` C → �(R� C)
R If D ∈ RC , then ` C → ♦D

Reg If ` s → t, then ` � s → � t and ` ♦ s → ♦ t

Figure 3: CTL Lemmas

We will show that λC. ` ¬C is a sound refutation predicate. Soundness
follows with Theorem 5.5. To show the refutation conditions we need a number
of lemmas about the Hilbert system. The most important ones are shown in
Figure 3. We defer the discussion of the technical issues involved in proving
these lemmas to the next section. We continue to work with the subformula
closed clause U from the previous section.

We start by showing refutation condition (R1). For this we show that every
clause C ⊆ U implies the disjunction of all clauses in S that support C . We
define the base of C in S to be the set

BS C := {D ∈ S | D . C }

If A is a set of clauses, we abbreviate
∨
C∈A C as

∨
A. We also abbreviate C∪{sσ}

as C, sσ.

Lemma 11.1 Let S ⊆ S0 be corefutable and C ⊆ U . Then ` C →
∨
BS C .

Proof by induction sum of the sizes of the non-literal formulas in C . Assume
there exists some non-literal formula u ∈ C . We consider the case where u =
s → t+. We have

` C → (C \ {u}), s− ∨ (C \ {u}), t+

by propositional reasoning. By induction hypothesis this yields

` C →
∨
BS((C \ {u}), s−)∨

∨
BS((C \ {u}), t+)

The claim then follows since BS ((C \ {u}), s−) ∪ BS((C \ {u}), t+) ⊆ BS C . All
other cases are similar. The cases for A(s U t)σ and A(s R t)σ follow with UE and
RE respectively.

If C contains only literals, there are three cases: C is not locally consistent,
C ∈ S, or C ∈ S0\S. In each case the claim follows with propositional reasoning.�

The refutation condition (R1) is an immediate consequence of the previous
lemma.

20

Lemma 11.2 Let S ⊆ S0 be corefutable and C ⊆ U . Then ` ¬C if S 6. C .

To show the refutation conditions for eventuality literals we need to use the
induction rules of the Hilbert system. We do not use the rules UI and RI directly.
Instead, we use derived rules tailored for the refutation of eventuality literals.

Lemma 11.3 1. If ` u→ �(t ∧ (¬s → u)), then ` u→ �A(s R t).
2. If ` u→ ♦(¬t ∧ (s → u)), then ` u→ ¬�A(s U t).

Proof We prove (2), the proof for (1) is similar but simpler. Assume ` u →
♦(¬t ∧ (s → u)). Let u′ := ¬(¬t ∧ (s → u)). We reason as follows:

` u→ ¬�A(s U t)
⇐ ` ¬�u′ → ¬�A(s U t) assumption, def-♦
⇐ ` A(s U t)→ u′ prop., Reg
⇐ ` t → u′ and ` s → �u′ → u′ AI

The left claim follows by propositional reasoning. The right claim is equivalent
to ` s → (¬t ∧ s → u)→ ♦(¬t ∧ s → u) and hence to ` s → (¬t ∧ s → u)→ u. �

Note that Lemma 11.3(2) turns the induction rule for A(s U t) into a coinductive
refutation rule. We will use the coinduction rules established above to refute
clauses with unsupported eventuality literals.

The crucial point in the construction of refutations for eventualities is to ob-
tain a suitable coinduction invariant (i.e., the formula u in Lemma 11.3). Con-
sider some corefutable set S ⊆ S0. For both eventuality literals, the invariant is
the disjunction of the clauses in S that do not fulfill the eventuality literal. Intu-
itively, this means some required path (in the case of �A(s U t)+) or all possible
paths (in the case of �A(s R t)−) stay within this collection of clauses. Thus, it is
impossible to satisfy the eventuality literal. The invariants are adapted from [8].

Lemma 11.4 Let S ⊆ S0 be corefutable and C ∈ S. Then ` ¬C if �A(s R t)− ∈ C
and S, C 6. �A(s R t)−

Proof We define

I := {D ∈ S | S,D 6. �A(s R t)− } u :=
∨
I

For every D ∈ I, we have

S 6.R�D, t− (∗)

BS (R�D, s−) ⊆ I (∗∗)

since violating either condition would allow us to prove S,D . �A(s R t)−.
Since �A(s R t)− ∈ C ∈ I, it suffices to show:

21

` u→ �A(s R t)
⇐ ` u→ �(t ∧ (¬s → u)) Lemma 11.3
⇐ ` D → �(t ∧ (¬s → u)) D ∈ I
⇐ ` �(R�D)→ �(t ∧ (¬s → u)) R�

⇐ ` R�D → t and ` R�D ∧¬s → u Reg

The left claim is equivalent to ` ¬R�D, t− and follows with (∗) and Lemma 11.2.
Likewise, the right claim is equivalent to ` R�D, s− → u and follows with (∗∗)
and Lemma 11.1. �

Lemma 11.5 Let S ⊆ S0 be corefutable and C ∈ S. Then ` ¬C if �A(s U t)+ ∈ C
and S, C 6. �A(s U t)+.

Proof We define

I := {D ∈ S | S,D 6. �A(s U t)+ } u :=
∨
I

For every D ∈ I there exists some E ∈ RD such that

S 6. E, t+ ∧BS (E, s+) ⊆ I (∗)

since otherwise we would have S,D . �A(s U t)+. Since �A(s U t)+ ∈ C ∈ I, it
suffices to show:

` u→ ¬�A(s U t)
⇐ ` u→ ♦(¬t ∧ (s → u)) Lemma 11.3
⇐ ` D → ♦(t ∧ (s → u)) D ∈ I
⇐ ` ♦E → ♦(¬t ∧ (s → u)) E as given by (∗), R
⇐ ` E, t+ → ⊥ and ` E, s+ → u Reg, prop.

Both claims follow immediately with (∗) and Lemma 11.1. �

Lemma 11.6 The predicate λC. ` ¬C is a sound refutation predicate.

Proof Soundness follows with Theorem 5.5. Condition (R2) follows with R. The
remaining refutation conditions follow with Lemmas 11.2, 11.4, and 11.5. �

We now have everything in place for our main result.

Theorem 11.7 (Informative Completeness) For every formula s we can con-
struct either a Hilbert proof of ¬s or a model satisfying s having at most
|s| · 24·|s|+2 states.

Proof Fix some formula s and let U be the subformula closure of s+. Let D be
the demo over U constructed using pruning. If D 6. {s+} we obtain a refutation
of s with Lemma 10.3 and Lemma 11.6. Otherwise, we obtain a model of the
required size with Theorem 8.4 and Lemma 10.1. �

22

Together with Theorem 5.5, we obtain the following corollaries:

Corollary 11.8 (Finite Agreement) ` s iffMî s for every finite modelM.

Corollary 11.9 (Decidability) Hilbert provability and finite satisfiability are de-
cidable.

12 Constructing Hilbert Derivations in Coq

In order to formalize the results from the previous section, we need to construct
many derivations in the Hilbert system. Given that the Hilbert system is low-level
and not goal-directed, this is a difficult task. The problem of constructing Hilbert
derivations is in many respects similar to the construction of proof terms. We
use Coq’s tactic language to provide goal management, rewriting, and assump-
tion management for the construction of Hilbert derivations.

We use setoid rewriting [26] to rewrite with provable equivalences (e.g., De
Morgan laws, UE, RE) inside formulas. While rewriting with equivalences is con-
venient, it is often too restrictive for our purposes because several important
lemmas (e.g., R� and R) are implications. Therefore, we also use setoid rewriting
to rewrite with provable implications using compatibility rules such as

` s′ → s ` t → t′

` (s → t)→ (s′ → t′)
C→

` s → s′ ` t → t′

` s ∧ t → s′ ∧ t′
C∧

` s → s′ ` t → t′

` A(s U t)→ A(s′ U t′)
CAU

Setoid rewriting helps significantly in obtaining shorter and more linear proof
scripts. For example, assume we know ` t → t′. This allows us to reduce the
claim ` s ∧ t → u to ` s ∧ t′ → u with a single setoid rewrite. Performing the
same reduction manually requires a non-linear derivation:

` s → s ` t → t′

` s ∧ t → s ∧ t′
C∧ ` s ∧ t′ → u

` s ∧ t → u
Trans

In addition to rewriting, we use big conjunctions [3] to provide for an ND-style
assumption management. Let A be a list of formulas. We abbreviate

∧
s∈A s as∧

A and define an entailment relation as follows:

A ` s := `
∧
A→ s

23

s ∈ A
A ` s

Asm
A, s ` t
A ` s → t

Intro
A ` t A, t ` s

A ` s
Cut

s,A ` t
A, s ` t

Rot

A ` s1 . . . A ` sn
A, s1 → . . .→ sn → t ` t

App
` s1 → . . .→ sn → t A ` s1 . . . A ` sn

A ` t
AppH

Figure 4: Assumption Management

For the entailment relation, we use the derived rules shown in Figure 4. The
rules in the upper row are realized with lemmas, whereas the rules in the lower
row are realized with Ltac tactics. Besides the fact that the rules App and AppH

are difficult to state as lemmas, applying the rules would be cumbersome. With
Ltac we can use Coq’s unification to find instances where n is minimal. The rule
AppH is used to apply previously established facts, and we use unification to
instantiate universally quantified variables in the leftmost premise. Using these
derived rules we define a collection of tactics that correspond to the Coq tactics
intro, apply, and assert.

In the formalization of the results from Section 11 the infrastructure for
assumption management is mainly used to establish basic (e.g., propositional)
facts. For the more high-level proofs (e.g., Lemmas 11.4 and 11.5) setoid rewrit-
ing is the main source of automation.

We remark that the assumption management rules shown in Figure 4 are not
specific to the Hilbert system for CTL. The construction works for all Hilbert sys-
tems extending classical propositional logic. Let F be some type of formulas. We
call a predicate ` : F → Prop a propositional system if it satisfies the following
conditions:

P1. There exist formulas ⊥ : F and → : F → F → F .

P2. If ` s → t and ` s, then ` t.
P3. ` s → t → s
P4. ` ((u→ s → t)→ (u→ s)→ u→ t)
P5. ` ((s → ⊥)→ ⊥)→ s

The rules in Figure 4 are available for every propositional system.

13 General Models

We now extend the soundness result for the Hilbert system from the class of
finite models to the class of all models. This requires classical assumptions. We

24

use the axioms of excluded middle (XM) and dependent choice (DC) [19]:

XM := ∀P : Prop. P ∨¬P
DC := ∀X(R : X → X → Prop).

(∀x∃y. R xy)→ ∀x∃f : N→ X. f 0 = x ∧∀n. R (f n)(f (n+ 1))

The soundness proof for arbitrary models is completely analogous to the case
for finite models, using axioms where the constructive reasoning from Section 5
fails.

The decidability premise of Lemma 3.1 trivially holds for all models in the
presence of XM. Lemma 5.2 and Lemma 5.3 extend to infinite models if we use XM
instead of decidability to justify case distinctions and DC instead of constructive
choice to obtain infinite paths.

Theorem 13.1 (Soundness) Assume XM and DC. If ` s, then M î s for all mod-
elsM.

Soundness for general models allows us to obtain the small model property of
CTL from the informative completeness result.

Theorem 13.2 (Small Models) Assume XM and DC. If s is satisfiable, then s is
satisfied in a model having at most |s| · 24·|s|+2 states.

Proof Assume s is satisfiable. By Theorem 13.1 it is impossible that s is
refutable. The claim follows with Theorem 11.7. �

We remark that the “bottom-up” fragment construction used in the proof of
Lemma 8.2 is mainly motivated by the need to obtain “small” fragments. In our
previous work [7], we obtained tree-shaped fragments using a construction that
roughly corresponds to a “top-down” induction on the fulfillment relation. This
eliminates all sharing and therefore yields exponentially larger fragments.

The semantics with respect to all models is essentially a shallow embedding
of CTL into the type theory of Coq (cf. Section 5). Hence, we can show that XM
and DC are not only sufficient but also necessary to prove soundness for general
models.

Theorem 13.3 If ` s implies M î s for all models M, then XM and DC are
provable.

Proof To show XM it suffices so show ¬¬P → P for all propositions P . We
construct a model M with a single state w0, such that LM pw0 ↔ P . The claim
is then immediate with the soundness of DN.

For DC, fix some serial relation R : X → X → Prop over some type X. This
defines a model (the labeling is irrelevant). We have ` E(⊥R>). In the presence
of XM, soundness yields an infinite path as required. �

25

14 Remark on Release

The semantics of the release modality can be defined in a number of classically
equivalent but intuitionistically different ways (cf. [1], p. 256). The definition
in Section 2 was chosen because one can show constructively, as we have done,
that it coincides with the coinductive characterization on finite models. We now
show that for other formulations, such as the commonly found

w î A(s R t)↔ ∀π.π 0 = w → (∀n.π n î t)∨ (∃n.π n î s ∧∀m ≤ n.π m î t)
(14.1)

this is not the case. We construct a finite model such that if the equivalence
above were to hold in this model, we could prove a constructively non-provable
proposition called “limited principle of omniscience” [14].

LPO := ∀f : N→ B. (∀n.f n = ⊥)∨ (∃n.f n = >)

Intuitively, LPO cannot be provable constructively since a constructive proof of
LPO would correspond to a procedure that decides whether a given function f
returns > for some argument. This would allow us to solve the halting problem
(take f to be the function that checks whether a given Turing machine halts
within n steps).

We construct a finite modelM3 as follows:

a
q

b
p,q

c

Theorem 14.1 Assume (14.1) holds inM3. Then LPO is provable.

Proof It is easy to verify that a îi A(p Rq). Hence, we have a î A(p Rq) by
Lemma 5.4. We fix some function f : N → B. We define a path π that starts at
a and evaluates f n before the n-th transition. The path leaves for b if f n = >
and otherwise stays at a. The claim then follows with (14.1). �

Since the inductive semantics coincides with the path semantics on finite models,
Theorem 14.1 shows that the inductive semantics and a path semantics using
(14.1) as definition for always release do not coincide constructively on finite
models.

15 Conclusion

In this paper we have investigated the metatheory of CTL from a constructive and
formal-ization-oriented point of view. As it turns out, most of the metatheoretic

26

results about CTL can be obtained completely constructively. The notable excep-
tion is the soundness of the Hilbert system for the class of all models, which we
have shown equivalent to XM and DC. Soundness for finite models is interesting
from the constructive point of view. As shown in Section 14, the soundness re-
sult for finite models depends crucially on the particular definition of the release
modality given in Section 2.

Algorithms play an important role for our constructive development even
though we are not interested in executability. The soundness proof for finite
models amounts to the verification of a model checking algorithm, and complete-
ness of the Hilbert system is obtained using a decision method for satisfiability.
These are just two of many instances where the decidability properties required
for constructive proofs are obtained using algorithms that are interesting in their
own right.

The original proofs [12, 8] of the results covered in this paper are presented
in an informal manner, and the gap between the original proofs and the formal-
ization is considerable. This is particularly true for the generation of Hilbert
refutations. In the original completeness proofs only a few important lemmas
about Hilbert provability are mentioned. In fact, this is also the case for the
proof presented in Section 11. To formalize the construction of Hilbert refu-
tations we require the reasoning infrastructure described in Section 12 and a
library with about 100 lemmas about Hilbert provability. Although all these lem-
mas have fairly simple proofs, coming up with the reasoning infrastructure and
the right selection of lemmas took considerable effort.

The construction of models from fragments in Section 8 is a minor variation
of the construction in [8]. We choose to formalize the declarative “matrix” con-
struction from the handbook article [8] rather than the original recursive con-
struction [12] because it seems better suited for formalization. The inductive
semantics avoids the need to argue about infinite paths and allows for a fairly
concise correctness proof for the model construction.

Demos serve as the interface connecting the construction of fragments with
the construction of refutations. In Section 1, we remarked that our demos are de-
signed to give a good compromise between minimizing the effort for the model
construction and minimizing the effort of constructing Hilbert refutations. With
all results in place, we can expand on this remark. As it turns out, the defini-
tion of fulfillment for eventualities has a large impact on the complexity of the
proofs. For the model construction one needs to construct fragments for ful-
filled eventualities, and for the construction of Hilbert refutations one needs to
establish closure properties for the collection of clauses that do not fulfill a given
eventuality.

In Emerson’s handbook article [8] the fulfillment condition for eventualities
requires the existence of fragments embedded in the demo (there called pseudo-

27

Hintikka structure). Thus, the existence of small fragments for the model con-
struction is immediate. However, the closure conditions for clauses with unful-
filled eventualities are more difficult to obtain. For �A(s U t)+ ∈ C one needs to
show that if there were embedded fragments fulfilling A(s U t)+ for every request
of C , then there would also exist an embedded fragment for C and �A(s U t)+.
While it is easy to see that the fragments for the successors can be combined
into a fragment for C and �A(s U t)+, showing that the resulting fragment can
be embedded in the demo requires nodes with identical labels to be merged.

For our definition of demos, the closure properties required to refute unful-
filled eventualities are easy to obtain. On the other hand, we have to spend some
effort to obtain fragments for fulfilled eventualities. We believe that the declar-
ative fragment construction described in the proof of Lemma 8.2 is easier to
formalize than the iterative process of merging nodes with identical labels used
by Emerson [8].

Another difference between our fulfillment predicates and the fragment test
by Emerson is that we define fulfillment for eventuality literals. This is tech-
nically convenient because it ensures that all arising fragments are nontrivial.
It also allows us to avoid the problem of eventualities that are not fulfilled
but could be fulfilled locally in a consistent extension of the clause under con-
sideration. Emerson solves this problem by defining demos only for maximal
clauses. This requires a subformula universe that is closed under adding top-
level negations. This also means that demos must be defined relative to a given
subformula-closed clause which is not the case for our definition of demo.

We remark that the model construction in our Coq formalization is slightly
more general than what is described in Section 8. Condition (F1) can be weakened
to allow arbitrary base clauses as labels for internal nodes. This generalization
is not used in the proofs presented here, but it is needed to prove the com-
pleteness of the Gentzen system employed in previous work [7]. The weakened
fragment condition allows for a corresponding weakening of the fulfillment re-
lations. It appears likely that one can obtain a simplified completeness proof for
the Gentzen system by showing that it satisfies the refutation conditions arising
from the weakened fulfillment relations.

The proofs in the Coq development involve a fair amount of detail much of
which is omitted in the paper. Our formalization is carefully structured to com-
plement the mathematical development. The formalization consists of about
2700 lines plus about 800 lines for a finite set library. For our formal develop-
ment, we profit much from Ssreflect’s handling of countable and finite types [17].
Countable types form the basis for our set library and finite types are used when
we assemble the fragments of a demo into a finite model.

28

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[2] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The temporal logic of
branching time. Acta Inf., 20(3):207–226, 1983.

[3] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical
big operators. In Otmane Aït Mohamed, César Muñoz, and Sofiène Tahar,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2008), volume
5170 of LNCS, pages 86–101. Springer, 2008.

[4] Kai Brünnler and Martin Lange. Cut-free sequent systems for temporal logic.
J. Log. Algebr. Program., 76(2):216–225, 2008.

[5] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifi-
cation of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[6] Christian Doczkal and Gert Smolka. Coq formalization accompanying this
paper (Online Resource 1).

[7] Christian Doczkal and Gert Smolka. Completeness and decidability results
for CTL in Coq. In G. Klein and R. Gamboa, editors, Interactive Theorem
Prving (ITP 2014), volume 8558 of LNAI, pages 226–241. Springer, 2014.

[8] E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science: Formal Models and Sematics,
volume B, pages 995–1072. Elsevier, 1990.

[9] E. Allen Emerson. The beginning of model checking: A personal perspective.
In Orna Grumberg and Helmut Veith, editors, 25 Years of Model Checking,
volume 5000 of LNCS, pages 27–45. Springer, 2008.

[10] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness prop-
erties of parallel programs using fixpoints. In J. W. de Bakker and Jan van
Leeuwen, editors, Automata, Languages and Programming, volume 85 of
LNCS, pages 169–181. Springer, 1980.

[11] E. Allen Emerson and Edmund M. Clarke. Using branching time temporal
logic to synthesize synchronization skeletons. Sci. Comput. Programming,
2(3):241–266, 1982.

29

[12] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and expres-
siveness in the temporal logic of branching time. J. Comput. System Sci.,
30(1):1–24, 1985.

[13] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in fragments
of the propositional mu-calculus (extended abstract). In Proceedings, Symp.
on Logic in Computer Science, 16-18 June 1986, Cambridge, Massachusetts,
USA, pages 267–278. IEEE Computer Society, 1986.

[14] Martín Escardó. Infinite sets that satisfy the principle of omniscience in any
variety of constructive mathematics. J. Symb. Log., 78(3):764–784, 2013.

[15] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of
regular programs. J. Comput. System Sci., 18(2):194–211, 1979.

[16] Melvin Fitting. Modal proof theory. In Patrick Blackburn, Johan van Ben-
them, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of
Studies in Logic and Practical Reasoning, pages 85–138. Elsevier, 2007.

[17] Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, and Lau-
rent Théry. A modular formalisation of finite group theory. In Klaus
Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics
(TPHOLs 2007), volume 4732 of LNCS, pages 86–101. Springer, 2007.

[18] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A small scale reflection
extension for the Coq system. Research Report RR-6455, INRIA Saclay, 2008.

[19] Hugo Herbelin. A constructive proof of dependent choice, compatible with
classical logic. In 27th Annual ACM/IEEE Symp. on Logic in Computer Science
(LICS), pages 365–374. IEEE Computer Society, 2012.

[20] Mark Kaminski, Thomas Schneider, and Gert Smolka. Correctness and
worst-case optimality of Pratt-style decision procedures for modal and hy-
brid logics. In Kai Brünnler and George Metcalfe, editors, Automated Reason-
ing with Analytic Tableaux and Related Methods (TABLEAUX 2011), volume
6793 of LNAI, pages 196–210. Springer, 2011.

[21] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with
eventualities. In Jürgen Giesl and Reiner Hähnle, editors, Automated Rea-
soning (IJCAR 2010), volume 6173 of LNCS, pages 240–254. Springer, 2010.

[22] Mark Kaminski and Gert Smolka. A goal-directed decision procedure for
hybrid PDL. J. Autom. Reason., 52(4):407–450, 2014.

30

[23] Martin Lange and Colin Stirling. Focus games for satisfiability and com-
pleteness of temporal logic. In 16th Annual ACM/IEEE Symp. on Logic in
Computer Science (LICS), pages 357–365. IEEE Computer Society, 2001.

[24] Vaughan R. Pratt. Models of program logics. In 20th Annual Symp. on Foun-
dations of Computer Science (FOCS’79), pages 115–122. IEEE Computer Soci-
ety, 1979.

[25] Raymond M. Smullyan. First-Order Logic. Springer, 1968.

[26] Matthieu Sozeau. A new look at generalized rewriting in type theory. J.
Form. Reason., 2(1), 2009.

[27] The Coq Development Team. http://coq.inria.fr.

31

http://coq.inria.fr

	Introduction
	CTL
	Inductive Semantics
	Decidability and Finite Sets
	Soundness for Finite Models
	Clauses and Support
	Demos
	Model Construction
	Formalizing the Model Construction
	Pruning and Subformula Closure
	Informative Completeness
	Constructing Hilbert Derivations in Coq
	General Models
	Remark on Release
	Conclusion

