
Two-Way Automata in Coq

Christian Doczkal Gert Smolka

Published in Proc. of Interactive Theorem Proving, LNCS vol. 9807, Springer, 2016
DOI: http://dx.doi.org/10.1007/978-3-319-43144-4_10

We formally verify translations from two-way automata to one-way au-
tomata based on results from the literature. Following Vardi, we obtain
a simple reduction from nondeterministic two-way automata to one-way
automata that leads to a doubly-exponential increase in the number of
states. By adapting the work of Shepherdson and Vardi, we obtain a singly-
exponential translation from nondeterministic two-way automata to DFAs.
The translation employs a constructive variant of the Myhill-Nerode theo-
rem. Shepherdson’s original bound for the translation from deterministic
two-way automata to DFAs is obtained as a corollary. The development
is formalized in Coq/Ssreflect without axioms and makes extensive use of
countable and finite types.

1 Introduction

Two-way finite automata are a representation for regular languages introduced
by Rabin and Scott [15]. Unlike one-way automata, two-way automata may move
back and forth on the input word and may be seen as read-only Turing machines
without memory.

Both deterministic two-way automata (2DFAs) and nondeterministic two-way
automata (2NFAs) exactly accept regular languages [17, 15, 20]. However, some
languages have 2DFAs that are exponentially smaller than the minimal DFA; for
instance the languages In := (a+ b)∗a(a + b)n from [14]. It is known that the
cost (in terms of the number of states) of simulating both 2DFAs and 2NFAs
with DFAs is exponential [17, 20]. Whether the cost of simulating NFAs and
2NFAs using 2DFAs is also exponential is still an open problem [16, 14].

As is frequently the case with language-theoretic results, the proofs in the
literature are described in a fairly informal manner. When carried out in detail,
the constructions are delicate and call for formalization. We are the first to
provide constructive and machine-checked proofs of the following results:

1

http://dx.doi.org/10.1007/978-3-319-43144-4_10

1. For every n-state 2NFA M there exists an NFA with at most 22n states accept-
ing the complement of the language of M .

2. For every n-state 2DFA there is an equivalent DFA with at most (n+1)(n+1)

states.

3. For every n-state 2NFA there is an equivalent DFA with at most 2n
2+n states.

Our proofs mostly refine the proofs given by Shepherdson [17] and Vardi [20].
Result (1) is easiest to show. It establishes that the languages accepted by 2NFAs
(and therefore also 2DFAs) are regular. Our proof is based on a construction
in [20]. If one wants to obtain an automaton for the original language, us-
ing (1) leads to a doubly exponential increase in the number of states. A singly-
exponential bound can be obtained using a construction from Shepherdson [17]
originally used to establish (2). Building on ideas from [20], we adapt Shepherd-
son’s construction to 2NFAs. That this is possible appears to be known [14], but
to the best of our knowledge the construction for 2NFAs has never been pub-
lished. Once we have established (3), we obtain (2) by showing that if the input
automaton is deterministic, the constructed DFA has at most (n+1)(n+1) states.
This allows us to get both results with a single construction.

The reduction to DFAs makes use of the Myhill-Nerode theorem. We employ a
constructive variant where Myhill-Nerode relations are represented as functions
we call classifiers that are are supplemented with decidability assumptions to
provide for a constructive proof. When constructing DFAs from 2NFAs, the de-
cidability requirements are easily satisfied. The application of the constructive
Myhill-Nerode theorem to the reduction from 2NFAs to DFAs demonstrates that
the construction is useful.

We formalize our results in Coq [18] using the Ssreflect [9] extension. The
formalization accompanying this paper1 extends and revises previous work [6]
and contains a number of additional results. The development makes extensive
use of finite and countable types [8, 7] as provided by Ssreflect. In particular, we
use finite types to represent states for finite automata.

Various aspects of the theory of regular languages have been formalized in
different proof assistants. In addition to executable certified decision meth-
ods [2, 3, 5, 12, 19] based on automata or regular expressions, there are a
number of purely mathematical developments. Constable et al. [4] formalize
automata theory in Nuprl, including the Myhill-Nerode theorem. Wu et al. [22]
give a proof of the Myhill-Nerode theorem based on regular expressions. Re-
cently, Paulson [13] has formalized the Myhill-Nerode theorem and Brzozowski’s
minimisation algorithm in Isabelle.

The paper is organized as follows. Sections 2 and 3 recall some type theo-
retic constructions underlying our proofs and describe how the usual language

1 www.ps.uni-saarland.de/extras/itp16-2FA

2

www.ps.uni-saarland.de/extras/itp16-2FA

theoretic notions are represented in type theory. In Section 4 we define one-way
automata. In Section 5 we prove the constructive variant of the Myhill-Nerode
theorem. Section 6 defines two-way automata. Section 7 presents the reduction
from 2NFAs to NFAs (for the complement) and Section 8 the reductions from
2NFAs and 2DFAs to DFAs.

2 Type Theory Preliminaries

We formalize our results in the constructive type theory of the proof assistant
Coq [18]. In this setting, decidability properties are of great importance. We call
a proposition decidable, if it is equivalent to a boolean expression. Similarly, we
call a predicate decidable, if it is equivalent to a boolean predicate. In the mathe-
matical presentation, we will not distinguish between decidable propositions and
the associated boolean expressions.

In type theory, operations such as boolean equality tests and choice operators
are not available for all types. Nevertheless, there are certain classes of types for
which these operations are definable. For our purposes, three classes of types
are of particular importance. These are discrete types, countable types, and finite
types [8].

We call a type X discrete if equality on (elements of) X is decidable. The type
of booleans B and the type of natural numbers N are both discrete.

We call a type X countable if there are functions f : X → N and g : N→ X⊥
such that g(f x) = Somex for all x : X, where X⊥ is the option type over X. All
countable types are also discrete. We will make use of the fact that surjective
functions from countable types to discrete types have right inverses.

Lemma 2.1 Let X be countable, Y be discrete, and f : X → Y be surjective. Then
there exists a function f−1 : Y → X such that f(f−1y) = y for all y .

Proof The countable type X is equipped with a choice operator

xchooseX : ∀p : X → B. (∃x : X.p x)→ X

satisfying p(xchooseX p E) for all E : (∃x : X.p x). Given some y : Y , we con-
struct f−1y using the choice operator with p := λx : X.f x = y . �

A finite type is a type X together with a list enumerating all elements of X.
If X is finite, we write |X| for the number of elements of X. For our purposes,
the most important property of finite types is that quantification over finite types
preserves decidability.

Discrete, countable, and finite types are closed under forming product types
X × Y , sum types X + Y , and option types X⊥. Moreover, all three classes of

3

types are closed under building subtypes with respect to decidable predicates.
Let p : X → B. The Σ-type {x : X | px }, whose elements are dependent pairs
of elements x : X and proofs of px = true, can be treated as a subtype of X. In
particular, the first projection yields an injection from {x : X | px } to X since
px = true is proof irrelevant [10].

Finite types also come with a power operator. That is, if X and Y are finite
types then there is a finite type YX whose |Y ||X| elements represent the functions
from X to Y up to extensionality. We write 2X for the finite type of (extensional)
finite sets with decidable membership represented as BX . If a finite type X ap-
pears as a set, it is to be read as the full set over X.

3 Languages in Type Theory

For us, an alphabet is a finite type. For simplicity, we fix some alphabet Σ
throughout the paper and refer to its elements as symbols. The type of lists
over Σ, written Σ∗, is a countable type. We refer to terms of this type as words.

The letters a, b always denote symbols. The letters x, y , and z always denote
words and ε denotes the empty word. We write |x| to denote the length of the
word x and xy or x · y (if this increases readability) for the concatenation of x
and y . We also write x[n,m] for the subword from position n (inclusive) to m
(exclusive), e.g., x = x[0, j] · x[j, |x|].

A language is a predicate on words, i.e., a function of type Σ∗ → Prop (or
Σ∗ → B for decidable languages). This yields an intensional representation. We
write L1 ≡ L2 to denote that L1 and L2 are equivalent (i.e, extensionally equal).
The absence of extensionality causes no difficulties since all our constructions
respect language equivalence. To increase readability, we employ the usual set-
theoretic notations for languages. In particular, we write L for the complement
of the language L.

4 One-Way Automata

Deterministic one-way automata (DFAs) can be seen as the most basic opera-
tional characterization of regular languages. In addition to DFAs, we also define
nondeterministic finite automata (NFAs) since both will serve as targets for our
translations from two-way automata to one-way automata.

Definition 4.1 A deterministic finite automaton (DFA) is a structure (Q, s, F, δ)
where

• Q is a finite type of states.

• s : Q is the starting state.

4

• F : Q → B determines the final states.

• δ : Q → Σ→ Q is the transition function.

In Coq, we represent DFAs using dependent records:

dfa := { state : finType
start : state
final : state→ B
trans : state→ Σ→ state}

Here, state : finType restricts the type states to be a finite type. Finite types
provide for a formalization of finite automata that is very convenient to work
with. In particular, finite types have all the closure properties required for the
usual constructions on finite automata [6].

Let A = (Q, s, F, δ) be a DFA. We extend δ to a function δ̂ : Q → Σ∗ → Q by
recursion on words:

δ̂ q ε := q
δ̂q(a :: x) := δ̂ (δqa)x

We say that a state q of A accepts a word x if δ̂ q x ∈ F . The language of A,
written L(A), is then defined as the collection of words accepted by the starting
state:

L(A) := {x ∈ Σ∗ | δ̂ s x ∈ F }
Note that is a decidable language.

Definition 4.2 We say that a DFA A accepts the language L if L ≡ L(A). We call
L regular if it is accepted by some DFA.

Nondeterministic finite automata differ from DFAs in that the transition func-
tion is replaced with a relation. Moreover, we allow multiple stating states.

Definition 4.3 A nondeterministic finite automation (NFA) is a structure (Q, S,
F, δ) where:

• Q is a finite type of states.

• S : 2Q is the set of starting states.

• F : 2Q is the set of final states.

• δ : Q → Σ→ Q → B is the transition relation.

Let A = (Q, S, F, δ) be an NFA. Similar to DFAs, we define acceptance for every
state of an NFA by structural recursion on the input word.

acceptp ε := p ∈ F
acceptp (a :: x) := ∃q ∈ Q.δpaq ∧ acceptqx

5

The language of an NFA is then the union of the languages accepted by its start-
ing states.

L(A) := {x ∈ Σ∗ | ∃s ∈ S. accept s x }

Note that since S is finite, this is also a decidable language. As with DFAs, accep-
tance of languages is defined up to language equivalence.

NFAs can be converted to DFAs using the well-known powerset construction.

Fact 4.4 For every n-state NFA A, there exists a DFA with at most 2n states
accepting L(A).

5 Classifiers and Myhill-Nerode

We now introduce classifiers as an abstract characterization of DFAs. For us,
classifiers play the role of Myhill-Nerode relations (cf. [11]). Classifiers differ
from Myhill-Nerode relations mainly in that they include decidability assump-
tions required for constructive proofs. Classifiers have a cut-off property which
yields a number of useful decidability properties. Further, classifiers provide a
sufficient criterion for the existence of DFAs that is useful for the translation
from two-way automata to one-way automata.

Definition 5.1 Let Q be a type and let f : Σ∗ → Q. Then f is called right congru-
ent if fx = fy implies f(xa) = f(ya) for all x,y : Σ∗ and all a : Σ.

Definition 5.2 A function f : Σ∗ → Q is called a classifier if it is right congruent
and Q is a finite type. If L is a decidable language, a classifier for L is a classifier
that refines L, i.e., that satisfies ∀xy. f x = f y → (x ∈ L↔ y ∈ L).

Fact 5.3 If A = (Q, s, F, δ) is a DFA, then δ̂s is a classifier for L(A).

If f : Σ∗ → Q is a classifier, the congruence property of f allows us to decide
whether a certain element of Q is in the image of f .

Theorem 5.4 (Cut-Off) Let f : Σ∗ → Q be a classifier and let P : Q → Prop. Then

∃x. P(f x) ⇐⇒ ∃x. |x| ≤ |Q| ∧ P(f x)

Proof The direction from right to left is trivial. For the other direction let x such
that P(f x). We proceed by induction on |x|. If |x| ≤ |Q| the claim is trivial.
Otherwise, there exist i < j < |x| such that f(x[0, i]) = f(x[0, j]). Since f is
right congruent, we have f x = f (x[0, i] · x[j, |x|]) and the claim follows by
induction hypothesis. �

6

Corollary 5.5 Let f : Σ∗ → Q be a classifier. Then ∃x.p(f x) and ∀x.p(f x)
are decidable for all decidable predicates p : Q → B.

Proof Decidability of ∃x.p(f x) follows with Theorem 5.4, since there are only
finitely many words of length at most |Q|. Decidability of ∀x.p(f x) then fol-
lows from decidability of ∃x.¬p(f x). �

Corollary 5.6 Language emptiness for DFAs is decidable.

Proof Let A = (Q, s, F, δ) be a DFA. Then L(A) is empty iff δ̂ s x ∉ F for all
x : Σ∗. Since δ̂s is a classifier, this is a decidable property (Corollary 5.5). �

Remark 5.7 The proof of Corollary 5.6 is essentially the proof of decidability of
emptiness given by Rabin and Scott [15].

As mentioned above, every DFA yields a classifier for its language. We now
show that a classifier for a given decidable language L contains all the informa-
tion required to construct a DFA accepting L.

Lemma 5.8 Let f : Σ∗ → Q be a classifier. Then the image of f can be con-
structed as a subtype of Q.

Proof By Corollary 5.5, we have that ∃x ∈ Σ∗. f x = q is decidable for all q.
Hence, we can construct the subtype {q : Q | ∃x. f x = q }. �

If f : Σ∗ → Q is a classifier, we write f(Σ∗) for the subtype of Q corresponding
to the image of f .

Theorem 5.9 (Myhill-Nerode) Let L be decidable and let f : Σ∗ → Q be a classi-
fier for L. Then one can construct a DFA accepting L that has at most |Q| states.

Proof By casting the results of f from Q to f(Σ∗), we obtain a surjective classi-
fier g : Σ∗ → f(Σ∗) for L (Lemma 5.8). Since g is surjective, it has a right inverse
g−1 (Lemma 2.1). It is straightforward to verify that the DFA (f (Σ∗), s, F, δ)
where

s := g ε
F := {q | g−1q ∈ L }

δqa := g((g−1q) · a)

accepts the language L. �

7

We remark that in order to use Theorem 5.9 for showing that a language is
regular, one first has to show that the language is decidable. It turns out that
this restriction is unavoidable in a constructive setting. Let P be some inde-
pendent proposition. Then P ∨ ¬P is not provable. Now consider the language
L := {w ∈ Σ∗ | P }. Save for the decidability requirement on L, the constant
function from Σ∗ into the unit type is a regular classifier for L. If Theorem 5.9
were to apply, the resulting DFA would allow us to decide ε ∈ L and consequently
obtain a proof of P ∨¬P .

For the translation from two-way automata to one-way automata, the restric-
tion to decidable languages poses no problem since the language of a two-way
automaton is easily shown to be decidable.

6 Two-Way Finite Automata

A two-way finite automaton (2FA) is essentially a read-only Turing machine, i.e., a
machine with a finite state control and a read head that may move back and forth
on the input word. One of the fundamental results about 2FAs is that the ability
to move back and forth does not increase expressiveness [15]. That is, two-way
automata are yet another representation of the class of regular languages. As for
one-way automata, we consider both the deterministic and the nondeterministic
variant.

In the literature, two-way automata appear in a number of variations. Modern
accounts of two-way automata [14] usually consider automata with end-markers.
That is, on input x the automaton is run on the string .x/, where . and /
are marker symbols that do not occur in Σ and allow the automaton to detect
the word boundaries. These marker symbols are not present in early work on
two-way automata [15, 17, 20]. Marker symbols allow the detection of the word
boundaries and allow for the construction of more compact automata for some
languages. In fact, the emptiness problem for nondeterministic two-way au-
tomata with only one endmarker over a singleton alphabet is polynomial while
the corresponding problem for two-way automata with two endmarkers is NP-
complete [21].

Definition 6.1 A nondeterministic two-way automaton (2NFA) is a structure
M = (Q, s, F, δ, δ., δ/) where

• Q is a finite type of states

• s : Q is the starting state

• F : 2Q is the set of final states

• δ : Q → Σ→ 2Q×{L,R} is the transition function for symbols

• δ. : Q → 2Q×{L,R} is the transition function for the left marker

8

• δ/ : Q → 2Q×{L,R} is the transition function for the right marker

LetM = (Q, s, F, δ, δ., δ/) be a 2NFA. On an input word x : Σ∗ the configurations
ofM on x, written Cx , are pairs (p, i) ∈ Q×{0, . . . , |x|+1} where i is the position
of the read head. We take i = 0 to mean that the head is on the left marker and
i = |x| + 1 to mean that the head is on the right marker. Otherwise, the head
is on the i-th symbol of x (counting from 1). In particular, we do not allow the
head to move beyond the end-markers. In following, we write x[i] for the i-th
symbol of x. The step relation→x : Cx → Cx → B updates state and head position
according to the transition function for the current head position:

δ̇ p i :=


δ. p i = 0

δp (x[i]) 0 < i ≤ |x|
δ/ p i = |x| + 1

(p, i) -----------→x (q, j) := (q, L) ∈ δ̇ p i∧ i = j + 1 ∨ (q,R) ∈ δ̇ p i∧ i+ 1 = j

We write→∗x for the reflexive transitive closure of→x . The language ofM is then
defined as follows:

L(M) := {x | ∃q ∈ F. (s,1) -----------→x ∗ (q, |x| + 1) }

That is, M accepts the word x if it can reach the right end-marker while being in
a final state.

In Coq, we represent Cx as the finite type Q × ord(|x| + 2), where ordn :=
{m : N |m < n }. This allows us to represent →x as well as →∗x as decidable
relations on Cx .2 Hence, L(M) is a decidable language. In the mathematical
presentation, we treat ordn like N and handle the bound implicitly. In Coq, we
use a conversion function inord : ∀n.N → ord(n + 1) which behaves like the
‘identity’ on numbers in the correct range and otherwise returns 0. This allows
us to sidestep most of the issues arising from the dependency of the type of
configurations on the input word.

Definition 6.2 A deterministic two-way automaton (2DFA) is a 2NFA (Q, s, F, δ,
δ., δ/) where |δ/ q| ≤ 1, |δ. q| ≤ 1, and |δqa| ≤ 1 for all q : Q and a : Σ.

Fact 6.3 For every n-state DFA there is an n-state 2DFA that accepts the same
language and only moves its head to the right.

Remark 6.4 While Fact 6.3 is obvious from the mathematical point of view, the
formal proof is somewhat cumbersome due to the mismatch between the accep-
tance condition for DFAs, which is defined by recursion on the input word, and

2 That the transitive closure of a decidable relation is decidable is established in the Ssreflect
libraries using depth-first search.

9

the acceptance condition for 2FAs, where the word remains constant throughout
the computation.

The rest of the paper is devoted to the translation of two-way automata
to one-way automata. There are several such translations in the literature.
Vardi [20] gives a simple construction that takes as input some 2NFA M and
yields an NFA accepting L(M). This establishes that deterministic and nondeter-
ministic two-way automata accept exactly the regular languages. The size of the
constructed NFA is exponential in the size of M . Consequently, if one wants to
obtain an automaton for the input language, rather than its complement, the con-
struction incurs a doubly exponential blowup in the number of states. Shepherd-
son [17] gives a translation from 2DFAs to DFAs that incurs only an exponential
blowup. Building on ideas from [20], we adapt the construction to 2NFAs.

We first present the translation to NFAs since it is conceptually simpler. We
then give a direct translation from 2NFAs to DFAs. We also show that when
applied to 2DFAs, the latter construction yields the bounds on the size of the
constructed DFA established in [17].

7 Vardi Construction

Let M = (Q, s, F, δ, δ., δ/) be a 2NFA. We construct an NFA accepting L(M).
Vardi [20] formulates the proof for 2NFAs without markers. We adapt the proof
to 2NFAs with markers. The main idea is to define certificates for the non-
acceptance of a string x by M . The proof then consists of two parts:

1. proving that these negative certificates are sound and complete

2. constructing an NFA whose accepting runs correspond to negative certificates

Definition 7.1 A negative certificate for a word x is a set C ⊆ Cx satisfying:

N1. (s,1) ∈ C
N2. If (p, i) ∈ C and (p, i)→x (q, j), then (q, j) ∈ C.

N3. If q ∈ F then (q, |x| + 1) ∉ C.

The first two conditions ensure that the negative certificates for x overapprox-
imate the configurations M can reach on input x. The third condition ensures
that no accepting configuration is reachable.

Lemma 7.2 Let x ∈ Σ∗. There exists a negative certificate for x iff x ∉ L(M).

Proof Let R := { (q, j) | (s,1) →∗x (q, j) }. If there exists a negative certificate C
for x, then R ⊆ C and, therefore, x ∉ L(M). Conversely, if x ∉ L(M), then R is a
negative certificate for x. �

10

Let x be a word and let C be a negative certificate for x. The certificate C can be
viewed as |x|+2-tuple over 2Q where the i-th component, written Ci, is the set
{q | (q, i) ∈ C }.

We define an NFA whose accepting runs correspond to this tuple view of neg-
ative certificates. For this, condition (N2) needs to be rephrased into a collection
of local conditions, i.e., conditions that no longer mention the head position.

Definition 7.3 Let U,V,W : 2Q and a : Σ. We say that

• (U,V) is .-closed if q ∈ V whenever p ∈ U and (q,R) ∈ δ. p.

• (U,V) is /-closed if q ∈ U whenever p ∈ V and (q, L) ∈ δ/ p.

• (U,V ,W) is a-closed if for all p ∈ V we have

1. q ∈ U whenever (q, L) ∈ δpa
2. q ∈ W whenever (q,R) ∈ δpa

We define an NFA N = (Q′, S′, F ′, δ′) that incrementally checks the closure con-
ditions defined above:

Q′ := 2Q × 2Q

S′ := {(U,V) | s ∈ V and (U,V) is .-closed}
F ′ := {(U,V) | F ∩ V = � and (U,V) is /-closed}

δ′ (U,V)a (V ′,W) := (V = V ′ ∧ (U,V ,W) is a-closed)

Note that transition relation requires the two states to overlap. Hence, the runs
of N on some word x, which consist of |x| transitions, define |x|+2-tuples. We
will show that the accepting runs ofN correspond exactly to negative certificates.

For this we need to make the notion of accepting runs (of N) explicit. For
many results on NFAs this is not necessary since the recursive definition of ac-
ceptance allows for proofs by induction on the input word. However, for two-
way automata, the word remains static throughout the computation. Having a
matching declarative acceptance criterion for NFAs makes it easier to relate the
two automata models.

We define an inductive relation run : Σ∗ → Q → Q∗ → Prop relating words and
non-empty sequences of states:

q ∈ F ′

run ε q []
δ′ paq runx q l

run (ax)p (q :: l)

An accepting run for x is a sequence of states (s :: l) such that s ∈ S′ and
runx s l. Note that accepting runs for x must have length |x|+1. In the following
we write (ri)i≤|x| for runs of length |x| + 1 and ri for the i-th element (counting
from 0).

11

Lemma 7.4 x ∈ L(N) iff there exists an accepting run for x.

Lemma 7.5 x ∈ L(N) iff there exists a negative certificate for x.

Proof By Lemma 7.4, it suffices to show that there exists an accepting run iff
there exists a negative certificate.

“⇒” Let (ri)i≤|x| be an accepting run of N on x. We define a negative certificate
C for x where C0 := (r0).1 and Ci+1 := (ri).2.

“⇐” If C is a negative certificate for x we can define a run (ri)i≤|x| for x on M
where r0 := (C0,C1) and ri+1 := (Ci,Ci+1). �

Remark 7.6 The formalization of the lemma above is a straightforward but te-
dious proof of about 60 lines.

Lemma 7.7 L(N) = L(M).

Proof Follows immediately with Lemma 7.2 and Lemma 7.5. �

Theorem 7.8 For every n-state 2NFA M there exists an NFA accepting L(M) and
having at most 22n states.

If one wants to obtain a DFA for L(M) using this construction, one needs to
determinize N before complementing it. Since N is already exponentially larger
than M , the resulting DFA then has a size that is doubly exponential in |Q|.

8 Shepherdson Construction

We now give a second proof that the language accepted by a 2NFA is regular. The
proof follows the original proof of Shepherdson [17]. In [17], the proof is given
for 2DFAs without end-markers. Building on ideas form Vardi [20], we adapt the
proof to 2NFAs with end-markers.

We fix some 2NFA M = (Q, s, F, δ, δ., δ/) for the rest of this section. In
order to construct a DFA for L(M), it suffices to construct a classifier for L(M)
(Theorem 5.9). For this, we need to come up with a finite type X and a function
T : Σ∗ → X which is right congruent and refines L(M).

The construction exploits that the input is read-only. Therefore, M can only
save a finite amount of information in its finite state control. Consider the situa-
tion where M is running on a composite word xz. In order to accept xz, M must
move its head all the way to the right. In particular, it must move the read-head
beyond the end of x and there is a finite set of states M can possibly be in when
this happens for the first time. Once the read head is to the right of x, M may

12

move its head back onto x. However, the only additional information that can be
gathered about x is set of statesM may be in when returning to z. Since the pos-
sible states upon return may depend on the state M is in when entering x form
the right, this defines a relation on Q ×Q. This is all the information required
about x to determine whether xz ∈ L(M). This information can be recorded in a
finite table. We will define a function

T : Σ∗ → 2Q × 2Q×Q

returning the table for a given word. Note that 2Q×2Q×Q is a finite type. To show
that L(M) is regular, it suffices to show that T is right-congruent and refines
L(M).

To formally define T , we need to be able to stop M once its head reaches a
specified position. We define the k-stop relation on x:

(p, i) k-----------→x (q, i) := (p, i) -----------→x (q, j)∧ i ≠ k

Note that for k ≥ |x| + 2 the stop relation coincides with the step relation. The
function T is then defined as follows:

T x := ({ q | (s,1) |x|+1
--→x ∗(q, |x| + 1) },

{(p, q)| (p, |x|) |x|+1
--→x ∗(q, |x| + 1) })

Note that T returns a pair of a set and a relation. We write (T x).1 for the first
component of T x and (T x).2 for the second component.

Before we can show that T is a classifier for L(M), we need a number of
properties of the stop relation. The first lemma captures the intuition, that for
composite words xz, all the information M can gather about x is given by T x.

Lemma 8.1 Let p,q : Q and let x, z : Σ∗. Then

1. q ∈ (T x).1 ⇐⇒ (s,1) |x|+1
--→xz

∗ (q, |x| + 1)

2. (p, q) ∈ (T x).2 ⇐⇒ (p, |x|) |x|+1
--→xz

∗ (q, |x| + 1)

Since for composite words xz everything that can be gathered about x is pro-
vided by T x, M behaves the same on xz and yz whenever T x = T y . To show
this, we need to exploit that M moves its head only one step at a time. This is
captured by the lemma below.

Lemma 8.2 Let i ≤ k ≤ j and let l be a
k′
---------------------→x -path from (p, i) to (q, j). Then there

exists some state p′ such that l can be split into a
k
-----------→x -path from (p, i) to (p′, k)

and a
k′
---------------------→x -path from (p′, k) to (q, j).

13

Proof By induction on the length of the
k′
---------------------→x -path from (p, i) to (q, j). �

Lemma 8.2 can be turned into an equivalence if k′ ≥ k. We state this equivalence
in terms in terms of transitive closure since for most parts of the development
the concrete path is irrelevant.

Lemma 8.3 Let i ≤ k ≤ j and let k′ ≥ k. Then (p, i) k′
---------------------→x ∗ (q, j) iff there exists

some p′ such that (p, i) k-----------→x ∗ (p′, k)
k′
---------------------→x ∗ (q, j).

We now show that for runs of M that start and end on the right part of a com-
posite word xz, x can be replaced with y whenever T x = T y .

Lemma 8.4 Let p,q : Q and let x,y, z : Σ∗ such that T x = T y . Then for all
k ≥ 1, i ≤ |z| + 1, and 1 ≤ j ≤ |z| + 1, we have

(p, |x| + i) |x|+k---→xz ∗ (q, |x| + j) ⇐⇒ (p, |y| + i) |y|+k---→yz
∗ (q, |y| + j)

Proof By symmetry, it suffices to show the direction from left to right. We pro-
ceed by induction on the length of the path from (p, |x|+i) to (q, |x|+j). There
are two cases to consider:

i = 0. According to Lemma 8.2 the path can be split such that:

(p, |x|) |x|+1
--→xz

∗ (p′, |x| + 1) |x|+k---→xz
∗ (q, |x| + j)

Thus, (p,p′) ∈ (T x).2 by Lemma 8.1. Applying Lemma 8.1 again, we obtain

(p, |y|) |y|+1
--→yz

∗ (p′, |y| + 1). The claim then follows by induction hypothesis

since the path from (p, |x|) to (p′, |x| + 1) must make at least one step.

i > 0. The path from (p, |x| + i) to (q, |x| + j) is either trivial and the claim

follows immediately or there exist p′ and i′ such that (p, |x| + i) |x|+k
---→xz

(p′, |x|+ i′). But then (p, |y|+ i) |y|+k---→yz (p′, |y|+ i′) and the claim follows by

induction hypothesis. �

Now we have everything we need to show that T is a classifier for L(M).

Lemma 8.5 T refines L(M).

Proof Fix x,y : Σ∗ and assume T x = T y . By symmetry, it suffices to show

y ∈ L(M) whenever x ∈ L(M). If x ∈ L(M), then (s,1) |x|+2
--→x ∗ (p, |x| + 1)

for some p ∈ F . We show y ∈ L(M) by showing (s,1)
|y|+2
--→y ∗ (p, |y| + 1). By

Lemma 8.3, there exists a state q such that:

(s,1) |x|+1
--→x ∗ (q, |x| + 1) |x|+2

--→x ∗ (p, |x| + 1)

14

We can simulate the first part on y using Lemma 8.1 and the second part using
Lemma 8.4. �

Lemma 8.6 T is right congruent

Proof Fix words x,y : Σ∗ and some symbol a : Σ and assume T x = T y . We
need to show T xa = T ya. We first show (T xa).2 = (T ya).2. Let (p, q) ∈ Q×Q.
We have to show

(p, |xa|) |xa|+1
---→xa

∗ (q, |xa| + 1) =⇒ (p, |ya|) |ya|+1
---→ya

∗ (q, |ya| + 1)

Since |xa| + 1 = |x| + 2 this follows immediately with Lemma 8.4. It remains to
show (T xa).1 = (T ya).1. By symmetry, it suffices to show:

(s,1) |xa|+1
---→xa

∗ (q, |xa| + 1) =⇒ (s,1) |ya|+1
---→ya

∗ (q, |ya| + 1)

By Lemma 8.3, there exists a state p such that:

(s,1) |x|+1
--→xa ∗ (p, |x| + 1) |xa|+1

---→xa
∗ (q, |xa| + 1)

Thus, we have p ∈ (T x).1 (and therefore also p ∈ (T y).1) and (p, q) ∈ (T xa).2.
Since we have shown above that (T xa).2 = (T ya).2, the claim follows with
Lemma 8.1. �

Note that Lemma 8.4 is used very differently in the proofs of Lemma 8.5 and
Lemma 8.6. In the first case we are interested in acceptance and set k to |x| + 2
so we never actually stop. In the second case we set k to |xa| + 1 to stop on the
right marker.

Using Theorem 5.9 and the two lemmas above, we obtain:

Theorem 8.7 Let M be a 2NFA with n states. Then there exists a DFA with at
most 2n

2+n states accepting L(M).

We now show that for deterministic two-way automata, the bound on the size
of the constructed DFA can be improved from 2n

2+n to (n+ 1)(n+1).

Fact 8.8 Let M = (Q, s, F, δ, δ., δ/) be a 2DFA. Then
k
-----------→x is functional for all k : N

and x : Σ∗.

Corollary 8.9 Let M be a 2DFA with n states. Then there exists a DFA with at
most (n+ 1)(n+1) states accepting L(M).

15

Proof Let M = (Q, s, F, δ, δ., δ/) be deterministic and let T : Σ∗ → 2Q × 2Q×Q be
defined as above. Since T is right-congruent (Lemma 8.6) we can construct the
type T(Σ∗) (Lemma 5.8). By Theorem 5.9, it suffices to show that T(Σ∗) has at
most (|Q| + 1)(|Q|+1) elements.

Let (A,R) : T(Σ∗). Then T x = (A,R) for some x : Σ∗. We show that A has at
most one element. Assume p,q ∈ A. By the definition of T , we have

(s,1) |x|+1
--→x ∗ (p, |x| + 1) and (s,1) |x|+1

--→x ∗ (q, |x| + 1)

Since
|x|+1
--→x is functional and both (p, |x| + 1) and (p, |x| + 1) are terminal, we

have p = q. A similar argument yields that R is a functional relation. Conse-
quently, we can construct an injection

i : T(Σ∗)→ Q⊥ × (Q⊥)Q

Given some (A,R) : T(Σ∗), (i(A,R)).1 is defined to be the unique element of A
or ⊥ if A = �. The definition of (i(A,R)).2 is analogous. The claim then follows
since Q⊥ × (Q⊥)Q has exactly (|Q| + 1)(|Q|+1) elements. �

9 Conclusion

We have shown how results about two-way automata can be formalized in Coq
with reasonable effort. The translation from 2NFAs to DFAs makes use of a con-
structive variant of the Myhill-Nerode theorem that is interesting in its own right.
When spelled out in detail, the constructions involved become fairly delicate. The
formalization accompanying this paper matches the paper proofs fairly closely
and provides additional detail.

Even though both Shepherdson [17] and Vardi [20] consider two-way au-
tomata without end-markers, the changes required to handle two-way automata
with end-markers are minimal. Perhaps surprisingly, the translation to NFAs for
the complement becomes simpler and more ‘symmetric’ when end-markers are
added. The original construction [20] uses 2Q + 2Q × 2Q as the type of states
while the construction in Section 7 gets along with the type 2Q×2Q. States from
the type 2Q are required to check beginning and end of a negative certificate in
the absence of end-markers.

Automata are a typical example of a dependently typed mathematical struc-
ture. Our representation of finite automata relies on dependent record types and
on finite types being first-class objects. Paulson [13] formalizes finite automata
in Isabelle/HOL using heriditarily finite (HF) sets to represent states. Like finite
types, HF sets have all the closure properties required for the usual construc-
tions on finite automata. Due to the absence of dependent types, the definition

16

of DFAs in [13] is split into a type that overapproximates DFAs and a predicate
that checks well-formedness conditions (e.g., that the starting state is a state of
the automaton). Thus, the natural typing of DFAs is lost.

We also use dependent types in the representation of two-way automata.
The possible configurations of a two-way automaton are represented as a word-
indexed collection of finite types. The truncation of natural numbers to bounded
natural numbers mentioned in Section 6 allows us to recover the separation
between stating lemmas (e.g. Lemma 8.4) and establishing that all indices stay
within the correct bounds, thus avoiding many of the problems commonly asso-
ciated with using dependent types.

Acknowledgments

We thank Jan-Oliver Kaiser, who was involved in our previous work on one-way
automata and also in some of the early experiments with two-way automata. We
also thank one of the anonymous referees for his helpful comments.

References

[1] Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.): Theorem Proving in
Higher Order Logics (TPHOLs 2009), LNCS, vol. 5674. Springer (2009)

[2] Berghofer, S., Reiter, M.: Formalizing the logic-automaton connection. In:
Berghofer et al. [1], pp. 147–163

[3] Braibant, T., Pous, D.: Deciding Kleene algebras in Coq. Log. Meth. Comp.
Sci. 8(1:16), 1–42 (2012)

[4] Constable, R.L., Jackson, P.B., Naumov, P., Uribe, J.C.: Constructively formal-
izing automata theory. In: Plotkin, G.D., Stirling, C., Tofte, M. (eds.) Proof,
Language, and Interaction. pp. 213–238. The MIT Press (2000)

[5] Coquand, T., Siles, V.: A decision procedure for regular expression equiva-
lence in type theory. In: Jouannaud, J.P., Shao, Z. (eds.) CPP. LNCS, vol. 7086,
pp. 119–134. Springer (2011)

[6] Doczkal, C., Kaiser, J., Smolka, G.: A constructive theory of regular lan-
guages in Coq. In: Gonthier, G., Norrish, M. (eds.) Certified Programs and
Proofs (CPP 2013). LNCS, vol. 8307, pp. 82–97. Springer (2013)

[7] Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer et al. [1], pp. 327–342

17

[8] Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular for-
malisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) Theorem
Proving in Higher Order Logics (TPHOLs 2007). Lecture Notes in Computer
Science, vol. 4732, pp. 86–101. Springer (2007)

[9] Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for
the Coq system. Rapport de recherche RR-6455, INRIA (2008)

[10] Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. J. Funct.
Program. 8(4), 413–436 (1998)

[11] Kozen, D.: Automata and computability. Undergraduate texts in computer
science, Springer (1997)

[12] Nipkow, T., Traytel, D.: Unified decision procedures for regular expression
equivalence. In: Klein, G., Gamboa, R. (eds.) Interactive Theorem Proving (ITP
2014). LNCS, vol. 8558, pp. 450–466. Springer (2014)

[13] Paulson, L.C.: A formalisation of finite automata using hereditarily finite
sets. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction (CADE-25).
LNCS, vol. 9195, pp. 231–245. Springer (2015)

[14] Pighizzini, G.: Two-way finite automata: Old and recent results. Fundam.
Inform. 126(2-3), 225–246 (2013)

[15] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959)

[16] Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite
automata. In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho,
A.V. (eds.) Proc. 10th Annual ACM Symp. on Theory of Computing. pp. 275–
286. ACM (1978)

[17] Shepherdson, J.: The reduction of two-way automata to one-way automata.
IBM J. Res. Develp. 3 (1959)

[18] The Coq Development Team: http://coq.inria.fr

[19] Traytel, D., Nipkow, T.: Verified decision procedures for MSO on words
based on derivatives of regular expressions. J. Funct. Program. 25, 1–30
(2015)

[20] Vardi, M.Y.: A note on the reduction of two-way automata to one-way au-
tomata. Inf. Process. Lett. 30(5), 261–264 (1989)

[21] Vardi, M.Y.: Endmarkers can make a difference. Inf. Process. Lett. 35(3),
145–148 (1990)

18

http://coq.inria.fr

[22] Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem
based on regular expressions. J. Autom. Reasoning 52(4), 451–480 (2014)

19

	Introduction
	Type Theory Preliminaries
	Languages in Type Theory
	One-Way Automata
	Classifiers and Myhill-Nerode
	Two-Way Finite Automata
	Vardi Construction
	Shepherdson Construction
	Conclusion

