
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Master’s Thesis

Formalizing >>-lifting in
Isabelle/HOL-Nominal

submitted by

Christian Doczkal

on June 16, 2009

Supervisor

Prof. Dr. Gert Smolka

Advisor

Dr. Jan Schwinghammer

Reviewers

Prof. Dr. Gert Smolka

Dr. Jan Schwinghammer

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbststän-
dig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
verwendet habe.

Statement under Oath

I confirm under oath that I have written this thesis on my own and that I
have not used any other media or materials than the ones referred to in this
thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit veröffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)

iii

Acknowledgements

I am profoundly in debt to my advisor, Jan Schwinghammer for his contin-
uous support during the last months. Through countless hours of discussion
Jan greatly deepened my understanding of the material. I also thank Jan
for his invaluable feedback while I was writing this thesis.

I thank my supervisor, Gert Smolka, for giving me the opportunity to
work on this interesting topic. The knowledge I obtained in his lectures on
logics and semantics proved to be very valuable for this work.

I also thank the people on the Isabelle mailing list for time and again
explaining Isabelle’s sometimes unexpected behavior.

Last but not least, I want to thank all my family and friends, who have
supported me during my entire studies, especially at times where progress
was slow and tedious.

iv

Abstract

Handling variable binding is one of the main difficulties in formal proofs. In
this context, Moggi’s computational metalanguage serves as an interesting
case study. It features monadic types and a commuting conversion rule that
rearranges the binding structure. Lindley and Stark have given an elegant
proof of strong normalization for this calculus. The key construction in
their proof is a notion of relational >>-lifting, using stacks of elimination
contexts, to obtain a Girard-Tait style logical relation.

We give a formalization of their proof in Isabelle/HOL-Nominal with a
particular emphasis on the treatment of bound variables. Using the Isar
structured proof language and the Isabelle document preparation system,
we obtain a formal proof document that is suitable for human consumption.

v

CONTENTS

1 Introduction 1
1.1 Outline . 4

2 Strong Normalization via >>-lifting 5
2.1 The λml-calculus . 5
2.2 Strong Normalization . 6
2.3 >>-lifting for Computation Types 8

3 Nominal Logic 11
3.1 Atoms, Permutations, and Support 12
3.2 Products and Functions . 15
3.3 Finite Support vs. Choice . 16

4 Introduction to Isabelle/HOL-Nominal 17
4.1 Short Description of the Isabelle System 17
4.2 Writing Proof Scripts in Isabelle 19
4.3 The Isar Structured Proof Language 19

4.3.1 Calculatorial reasoning 20
4.3.2 Generalized elimination 21
4.3.3 Induction and case analysis 21
4.3.4 Raw proof blocks . 22

4.4 The Most Frequently used Proof Methods 22
4.4.1 Simplification . 23
4.4.2 The classical reasoner 23
4.4.3 The auto method . 24
4.4.4 Sledgehammer and metis 24

4.5 From HOL to HOL-Nominal 24
4.5.1 Atoms and support in HOL-Nominal 25
4.5.2 Identifying terms up to α-equivalence 26

vii

4.5.3 Induction and recursion over α-terms 27
4.5.4 Rule inductions and nominal inversion 28

5 Formalization 29
5.1 The Calculus . 29

5.1.1 Typing . 31
5.1.2 Substitution . 32
5.1.3 Facts about substitution 33

5.2 The Reduction Relation . 35
5.3 Strong Normalization . 39
5.4 Stacks . 41

5.4.1 Stack dismantling . 41
5.4.2 Reduction and substitution for stacks 43

5.5 Reducibility for Terms and Stacks 44
5.6 Properties of the Reducibility Relation 45

5.6.1 Strong normalization for subterms and stacks 46
5.6.2 A new case construct on the reducts of t ? k 47
5.6.3 Proof of the properties of reducibility 51

5.7 Abstraction Preserves Reducibility 54
5.8 Sequencing Preserves Reducibility 55

5.8.1 Triple induction principle 55
5.8.2 Strengthening of the dismantle case rule 57
5.8.3 Strong normalization and substitution 59
5.8.4 Central lemma . 61

5.9 Fundamental Theorem . 64
5.9.1 Strong normalization theorem 66

6 Evaluation 67
6.1 How Faithful is the Formalization 67

6.1.1 Calculus and basic properties 67
6.1.2 Dismantling and the case analysis 68
6.1.3 Deviations . 68

6.2 Trusted Base . 69
6.2.1 Stack reductions and variables 69

6.3 Related Work . 70
6.3.1 HOL-Nominal vs. Locally Nameless 70
6.3.2 Structural Logical Relations in Twelf 71

6.4 Future Research Directions 71
6.4.1 Inductively defined relations 71
6.4.2 Functions . 72

viii

CHAPTER 1

Introduction

Proving theorems about languages with binding is still one of the major chal-
lenges when working with proof assistants [ABF+05]. This thesis contains
a formalization of a normalization proof using >>-lifting, as introduced by
Lindley and Stark [LS05]. It uses the Nominal package of the Isabelle proof
assistant, to deal with α-equivalence classes of terms.

Proofs of (strong) normalization for lambda calculi have long been used as
case studies for the formalization of programming language meta-theory. An
early example is the strong normalization proof for System F by Altenkirch
[Alt93], other examples include [Abe04, BBLS06, DX07, SS08]. Normaliza-
tion proofs provide interesting case studies for formalization, because they
combine syntactic as well as more semantic arguments about terms and re-
duction: one must deal with variable binding, renaming, and substitution,
but one also employs semantically interesting techniques like logical rela-
tions.

Logical relations for monadic types The >>-lifting technique is a
method for proofs via logical relations. It allows us to handle type con-
structors with elimination constructs that are not inductive on the type
structure. One example for such types is the monadic type constructor T
of Moggi’s computational metalanguage [Mog91], which provides a type-
theoretic framework for the description of effectful computations.

In the case of function types σ → τ , the elimination construct, application,
yields terms of the smaller type τ . This is used in the definition of the logical

1

Chapter 1. Introduction

relation at function type. In contrast, the elimination construct for terms
of type T σ, the to-binding1, has the following typing rule:

Γ ` s : T σ Γ;x : σ ` t : T τ
Γ ` s to x in t : T τ

,

which results in terms of arbitrarily complex type T τ . The >>-lifting ap-
proach uses an auxiliary structure of stacks to obtain a logical relation,
defined by induction on the type structure, even for the type constructor
T . Moreover, the approach does not only apply to Moggi’s computational
metalanguage λml but can also be applied to the λ-calculus with sum-types
and to the Call-By-Push-Value calculus [Lev99, Doc07], which has several
different computation types.

The Barendregt Variable Convention In the programming language
literature, terms are often identified up to α-equivalence. Issues arising from
this identification are usually glossed over in informal proofs and [LS05] is
no exception. In particular in any proof by induction on the structure of λ-
terms, the cases involving binders are only shown for some variable which is
chosen to be suitably fresh. This is usually referred to as Barendregt Vari-
able Convention: “If M1 . . .Mn occur in a certain mathematical context
(e.g. definition, proof), then in these terms all bound variables are chosen
to be different from the free variables”[Bar85, Page 26]. Use of this con-
vention allows fairly slick informal proofs. Unfortunately, formalizing this
convention in proof assistants is far from trivial.

Choice of the proof assistant Available proof assistants vary greatly,
both in their logical foundations as well as usability and the quality of docu-
mentation. One goal of this thesis was to get acquainted with a tool that is
applicable to a broad range of applications. This ruled out proof assistants
like Twelf2, which is based on the Edinburgh Logical Framework [HHP93].
Compared with other proof assistants, Twelf has a relatively weak meta-
logic and is specifically targeted at developing metatheory of programming
languages and logics.

Among the general purpose interactive theorem provers, Coq3 and Is-
abelle4 are widely used. The current version of Coq is based on an extension
of the Calculus of Constructions [CH88] with inductive types [CP90]. This
gives rise to a very powerful logic, the Calculus of inductive Constructions.
The main focus of the Coq system is the development of certified programs.

1We differ in our notation from [LS05], see Section 2.1 for details and motivation.
2http://www.twelf.org
3http://coq.inria.fr
4http://isabelle.in.tum.de

2

http://www.twelf.org
http://coq.inria.fr
http://isabelle.in.tum.de

Isabelle and its main object logic HOL, implementing classical higher-
order logic, offer good support for proof automation and are rather well doc-
umented. With the Isar structured proof language [Wen02], the Isabelle sys-
tem is geared towards creating formal proof documents – documents which
are machine checkable while remaining human readable.

Another aspect influencing the choice of the proof assistant is the handling
of bound variables. In Coq, there is limited support for reasoning using a
locally nameless representation (see Section 6.3.1). The Isabelle approach to
handling binders builds upon nominal logic [Pit03, Pit06], a logic specifically
designed to support names and binding. The Isabelle logic HOL-Nominal is
an extension of classical higher-order logic with support for reasoning about
names and binding. In particular, it allows the definition of data types with
built-in α-equivalence. It also provides induction principles for α-equated
terms and inductively defined relations that allow reasoning close to the
Barendregt Variable Convention. This, together with my background in
higher-order logic and simple type theory, made Isabelle/HOL-Nominal a
sensible choice.

Formalizing >>-lifting The main goal of this thesis is not to increase
the trust in Lindley and Stark’s strong normalization result on the λml-
calculus. This result is well known and had already been established by
Benton et al. [BBDP98] via translation into the simply-typed λ-calculus
with sum types. Instead, our formalization of >>-lifting is a non-trivial case
study with a particular emphasis placed on the handling of bound variables.
The reduction relation for λml includes the commuting conversion:

(s to x in t) to y in u 7→ s to x in (t to y in u) where x /∈ fv(u) ,

which involves multiple binders and a change in the binding structure. As
we will see in Chapter 5, handling of this rule shows some of the major
limitations of the Nominal package in its current state.

Furthermore, we want to obtain a faithful formalization of Lindley and
Stark’s proof. The Isar structured proof language and the document prepa-
ration system allow the creation of formal proof documents. This thesis,
in particular Chapter 5, is such a formal proof document. Although the
detail required to allow machine checking greatly increases the length of the
proofs, the central arguments are still those of [LS05]. Furthermore, the
reasoning principles employed in the key lemmas are established separately.
This makes it possible to follow the reasoning of Lindley and Stark in those
parts that are spelled out in [LS05] rather closely. Since the informal proof
has a rather moderate size, the formalization, though being substantially
longer, can still be presented in its entirety.

3

Chapter 1. Introduction

1.1 Outline

In Chapter 2 we briefly outline the central ideas of >>-lifting. Chapter 3
contains an introduction to nominal logic. This forms the theoretical base for
the implementation of the Isabelle logic HOL-Nominal, which is described
together with a general overview of the Isabelle system in Chapter 4. Hence,
no familiarity with nominal logic or Isabelle is assumed. Chapter 5 contains
the full formalization of the strong normalization proof for λml using >>-
lifting. This chapter is generated from the theory file itself. In Chapter 6 we
evaluate how the Nominal package aids in keeping the formalization close
to informal reasoning. We conclude with a discussion of related work and
possible research directions.

4

CHAPTER 2

Strong Normalization via >>-lifting

In this chapter we will briefly describe the central aspects of Lindley and
Stark’s paper Reducibility and >>-lifting for Computation Types [LS05],
which presents a type directed proof of strong normalization for Moggi’s
computational metalanguage [Mog91]. The computational metalanguage is
an extension of the simply-typed λ-calculus with monadic types.

Normalization proofs using the logical relations proof technique are very
modular in nature, since every syntactic construct and its associated typing
rule can be handled mostly independent of the others. In fact, [LS05] only
mentions abstractions and products when introducing the calculus and refers
to Girard et al.’s book [GTL89] for the corresponding cases of their proofs.
We want to base our formalization on [Nom], a formalization of [GTL89,
Chapter 6], which is distributed with the Isabelle proof assistant. This
formalization does not include products. Therefore, we will only deal with
a reduced fragment of the metalanguage disregarding product types.

In the next section we introduce the computational metalanguage. In Sec-
tion 2.2 we state the normalization theorem we want to formalize. We also
introduce the inductive characterization of strong normalization employed
Chapter 5 and relate it to the definition in terms of infinite sequences usually
found in the literature. Section 2.3 briefly explains the structure of Lindley
and Stark’s normalization proof.

2.1 The λml-calculus

We use a presentation of the λml-calculus (Figure 2.1), which differs slightly
from the version presented by Lindley and Stark. Instead of the Church-
style typed variables employed in [LS05], we use a Curry-style/domain-free

5

Chapter 2. Strong Normalization via >>-lifting

[BS00] presentation of the calculus. One reason for this is the way binding
is handled in the nominal package and is explained in Section 4.5.1.

Furthermore, we make slight changes to the syntax of the calculus, because
we want to use the syntax presented here also as concrete syntax for the
calculus in the formalization in Chapter 5. Therefore, we use a different
syntactic form for the monadic binding (sequencing) construct. Whereas
Lindley and Stark use a monadic let binding written let x ⇐ s in t, we
use a monadic to-binding, written s to x in t. This notation, which is also
used in Call-By-Push-Value [Lev99], has two benefits. In our notation, the
order of the subterms represents the binding structure which, as will be seen
later, interacts nicely with the nominal datatype declaration of the Nominal
package. Furthermore, the commuting conversion (T.assoc in Figure 2.1)
really looks like an associativity rule rule. Also, we write abstractions as
Λx.t since using λ would clash with abstraction in Isabelle/HOL.

The last change is in the reduction relation. For readability, reduction
in λ-calculi is usually presented by distinguishing some top-level reductions
and the contexts in which these reductions may occur. If one wants to
prove things formally, this requires formalizing some relation of top-level
reductions, contexts with holes, and the action of plugging a term into a hole
all in the presence of alpha equivalence and binding issues. Although this
approach might scale better to calculi with lots of reduction rules it would
complicate the proof we are aiming for. Instead, we opt for a formalization
of a reduction relation which directly includes context rules.

2.2 Strong Normalization

The theorem we ultimately want to formalize is the following:

Theorem 2.2.1. If Γ ` t : τ then t is strongly normalizing.

Strictly speaking, we have only defined the premise of the theorem so far.
So in order to formalize the theorem in a proof assistant we also need to make
explicit what it means for a term to be strongly normalizing. The standard
definition of strong normalization is that a term t is strongly normalizing if
there is no infinite sequence of reductions beginning with t. We call a term
with such a sequence (possibly) diverging written as formula:

Definition 2.2.2 (Diverging).

DIV t ≡ ∃S ∈ N→ trm. S 0 = t ∧ ∀n. S n 7→ S(n+ 1)

The drawback of this definition is that, as shown below, the absence of
such infinite sequences alone does not provide an upper bound on the length
of the longest reduction sequence.

6

2.2. Strong Normalization

Syntax:

Types: σ, τ ∈ ty ::= ι | σ → τ | T σ
Terms: s, t ∈ trm ::= x | Λx.t | s t | s to x in t | [s]

Typing:

(x : τ) ∈ Γ
Γ ` x : τ

Γ;x : σ ` t : τ
Γ ` Λx.t : σ → τ

Γ ` t : σ → τ Γ ` s : σ
Γ ` t s : τ

Γ ` t : τ
Γ ` [t] : T τ

Γ ` s : T σ Γ;x : σ ` t : T τ
Γ ` s to x in t : T τ

Reductions:

s 7→ s′

s t 7→ s′ t

t 7→ t′

s t 7→ s t′ (Λx.t)s 7→ t[x ::= s]
→ .β

t 7→ t′

Λx.t 7→ Λx.t′
x /∈ fv(t)
Λx.t x 7→ t

→ .η

s 7→ s′

s to x in t 7→ s′ to x in t

t 7→ t′

s to x in t 7→ s to x in t′

[s] to x in t 7→ t[x ::= s]
T.β

s to x in [x] 7→ s
T.η

x /∈ fv(u)
(s to x in t) to y in u 7→ s to x in (t to y in u)

T.assoc

t 7→ t′

[t] 7→ [t′]

Figure 2.1: The λml-calculus

7

Chapter 2. Strong Normalization via >>-lifting

Example 2.2.3. The relation {(o, n) | n ∈ N} ∪ {(n + 1, n) | n ∈ N}
is terminating but there is no upper bound on the length of the longest
sequence beginning at o.

To obtain such and upper bound, which Lindley and Stark denote with
max (t) and frequently do induction on, one has to know that the reduction
relation is finitely branching as well as the fact that for any finitely branching
relation without upper bound on the longest sequence in the relation there
also exists an infinite sequence (Königs Lemma, a special case of [Kőn26]).

One can, however, obtain the same result using an inductive formalization
of strong normalization. The two requirements on the notion of strong nor-
malization are that (i) there should be some induction principle allowing
us to apply the induction hypothesis whenever a strongly normalizing term
makes a reduction step, and (ii) it should exclude infinite sequences. This
leads to the following single rule inductive definition of strong normalization
which is originally due to Altenkirch [Alt93].

Definition 2.2.4 (Strong normalization).

∀t′. t 7→ t′ =⇒ SN t′

SN t

This definition also appears in [Nom]. Requirement (i) is satisfied, because
we get the following induction principle, which is automatically derived by
Isabelle from Definition 2.2.4.

SN t
∀t. (∀t′. t 7→ t′ =⇒ SN t′ ∧ ∀t′. t 7→ t′ =⇒ P t′) =⇒ P t

P t

The definition also fulfills (ii) since we can prove SN t ⇐⇒ ¬DIV t. We
defer formally establishing this fact to Chapter 5.

Thus, we have established the meaning of Theorem 2.2.1. In the next
section we will shortly outline the central ideas of the original proof in [LS05].
We assume some familiarity with the logical relations proof technique for the
simply-typed λ-calculus. See [GTL89] for details.

2.3 >>-lifting for Computation Types

The logical relations proof technique for proving strong normalization of the
simply-typed λ-calculus proceeds in three steps. First, one defines a logical
(reducibility) relation by induction on the type structure of the calculus.
Then, one proves, by induction on the type structure, simultaneously that
all reducible terms are strongly normalizing, reducibility is preserved under

8

2.3. >>-lifting for Computation Types

reduction, and satisfies the expansion property – if a term t is neutral (does
not interact with its context) and all immediate successors are reducible, so
is t. Finally, one shows the fundamental theorem of logical relations, i.e.
that all typeable terms are reducible and hence strongly normalizing.

For the base type ι, reducibility is just strong normalization, and for
function types, the reducibility relation is easily defined using the elimination
construct for the → type constructor.

Definition 2.3.1 (Reducibility, I).

t ∈ RED ι ⇐⇒ SN t

t ∈ REDσ→τ ⇐⇒ ∀s ∈ REDσ. t s ∈ REDτ

However, the elimination construct for monadic types is not inductive on
the type structure. This needs to be the case since the type constructor T
is meant to encapsulate arbitrary computational effects. So going from T σ
to σ would mean “forgetting” the computational effects. To salvage this,
Lindley and Stark introduce stacks: nested sequences of to-bindings.

Definition 2.3.2 (Stacks and dismantling). Stacks are given through the
grammar:

K ∈ stack ::= [x]s� K | Id ,

and t ? k, the associated action of dismantling a term t into k is defined as:

t ? Id = t

t ? ([x]s� K) = (t to x in s) ? K

Note that the argument order of the dismantling operation is switched in
comparison to [LS05] and that we use ? instead of @, since the latter clashes
with list concatenation in Isabelle. It would produce two valid types for
t@[s]. Using these definitions, one can define reducibility for for stacks and
computation types.

Definition 2.3.3 (Reducibility, II).

t ∈ REDT σ ⇐⇒ ∀K ∈ SREDσ. SN (t ? K)
K ∈ SREDσ ⇐⇒ ∀t ∈ REDσ. SN ([s] ? K)

Although the reducibility relation is defined by induction on the type
structure of the calculus, the elements of the various relations are untyped
terms. For example, any normal term is an element of RED ι. Similarly,
variables are reducible at any type. The reducibility predicate satisfies the
following conditions, which were already mentioned above (where neutral
terms are variables and applications).

9

Chapter 2. Strong Normalization via >>-lifting

Definition 2.3.4 (Properties of reducibility).

(CR1) t ∈ REDτ =⇒ SN(t)
(CR2) t ∈ REDτ ∧ t 7→ t′ =⇒ t′ ∈ REDτ

(CR3) neutral(t) ∧ (∀t′.t 7→ t′ =⇒ t′ ∈ REDτ) =⇒ t ∈ REDτ

In [LS05] the authors only show the cases for the type constructor T . The
subcases for CR1 and CR2 are rather simple but CR3 requires to extend
the notion of reduction and strong normalization to stacks.

Definition 2.3.5 (Stack reduction). K 7→ K ′ ≡ ∀t. t ? K 7→ t ? K ′

Strong normalization for stacks then looks exactly as the corresponding
property of terms given in Section 2.2. The proof idea for CR3 is then
to take some neutral term t such that t 7→ t′ =⇒ t′ ∈ REDT σ and some
K ∈ SREDσ, use the induction hypothesis to show that K is strongly nor-
malizing, and then show SN (t?K) by induction on the length of the longest
reduction sequence beginning at K.

Once the properties of reducibility are established, the next step is to
prove the fundamental theorem of logical relations: All (well-typed) terms
are reducible. This amounts to proving that all typing rules preserve re-
ducibility. Since abstraction and sequencing bind variables, one has to gen-
eralize the claim to Γ-closing substitutions. A substitution is Γ-closing if
it substitutes terms which are reducible at the corresponding type for all
variables mentioned by the context Γ.

Theorem 2.3.6 (Fundamental Theorem of Logical Relations).
If θ is Γ-closing and Γ ` t : τ then θ<t> ∈ REDτ .

For the case of the to-binding one has show:

Lemma 2.3.7. if s ∈ REDT σ and ∀p ∈ REDσ. t[x ::= p] ∈ REDT τ then
s to x in t ∈ REDT τ .

Unfolding all the definitions, this is a straightforward consequence of:

Lemma 2.3.8. Let p and n be terms and K a stack such that SN (p) and
SN (n[x ::= p] ? K). Then SN (([p] to x in n) ? K)

This lemma turned out to be difficult to formalize. Lindley and Stark
[LS05] prove this by induction on |K| + max(n ? K) + max(p), which can-
not be formalized directly due to our inductive characterization of strong
normalization. The reasoning then continues by case distinction on the suc-
cessors of ([p] to x in n)?K, which also was surprisingly tedious to formalize.
We defer the details to Chapter 5.

Given Theorem 2.3.6, strong normalization of all well-typed terms is a
trivial consequence using the identity substitution and CR1.

10

CHAPTER 3

Nominal Logic

When reasoning about structures with binders, such as λ-calculi, these struc-
tures and most of their properties are usually defined by induction. There-
fore it seems natural to do most proofs concerning these calculi by struc-
tural induction. Unfortunately, it happens quite frequently that in proofs
by structural induction the case of a binding construct can be shown easily
for names that are “suitably fresh”, but not for all names, as the structural
induction principle requires.

To simplify proofs and concentrate on the crucial aspects, terms are of-
ten identified up to α-equivalence. The cases of variable-binding constructs
within inductive proofs are usually only shown for some suitably chosen
representative of the α-equivalence class. This is often referred to as the
Barendregt Variable Convention [Bar85], which states that one can choose
all bound variables mutually distinct and distinct from any variables occur-
ring in the current context. There are two underlying assumptions to this
approach, which are usually not verified in pen-and-paper proofs.

1. There are always variables that are fresh for the current context.

2. All the predicates and constructions one ever deals with are equi-
variant, meaning that they are invariant under consistent renaming
of variables.

Both of these assumptions are nontrivial and need to be considered when
formalizing proofs with an interactive theorem prover like Isabelle/HOL.
The first assumption above might be invalidated if the context mentions the
set of all variables. The second assumption is also nontrivial because not
everything that looks like the definition of a function is actually consistent.

11

Chapter 3. Nominal Logic

More precisely, it need not be well defined on α-equivalence classes, as shown
in the example below

Example 3.0.9. The following is a “function” that returns the set of im-
mediate subterms of some lambda term.

ist x = ∅
ist(t1 t2) = {t1, t2}
ist(λx.t) = {t}

This is a perfectly valid function when defined on raw (unequated) λ-terms.
However, if we identity terms up to alpha equivalence, we have λx.x =
λy.y but ist(λx.x) = {x} 6= {y} = ist(λy.y) which would introduce an
inconsistency.

In the remainder of this chapter, we will give an overview of the develop-
ment of Nominal Logic (cf. [Pit03, Pit06]) which addresses the issues above.
The logic is built around the notions of atoms, permutations, and support,
as described in the next section.

3.1 Atoms, Permutations, and Support

To formalize any sort of binding, one first has to formalize the entities which
can be bound. These entities are commonly referred to as atoms. The termi-
nology dates back to the roots of Nominal Logic in the Fraenkel-Mostowski
permutation model of set theory [Jec71]. Atom sorts are abstract sets with
infinitely many atoms of that sort. To accommodate calculi with multiple
bindable entities, as for example the second-order λ-calculus [GTL89, Rey74]
with its term and type variables, there is an infinite number of atom sorts.

Definition 3.1.1 (Atoms). We fix a countably infinite family of atom sorts
(Ai)i∈N such that the sets Ai are countably infinite and mutually disjoint
and define A =

⋃
i Ai

Definition 3.1.2 (Permutations). Let Perm be the set of all finite, sort-
respecting atom permutations.

Perm ≡
{
π ∈ A→ A

∣∣∣∣ π is bijective ∧ finite {a | π(a) 6= a}
∧ ∀i∀a ∈ Ai. π(a) ∈ Ai

}
We denote the identity on A by id and the special case of a transposition

of a and b is written (a b).

Note that the finite sort-respecting atom permutations form a group under
composition which is generated from the set of atom transpositions. Next
we define what it means for an element of Perm to act on a set.

12

3.1. Atoms, Permutations, and Support

Definition 3.1.3 (Action). An action of Perm on a set X is a function
· : Perm ×X → X such that id · x = x and π · (π′ · x) = (π ◦ π′) · x. For the
set A we define π · a = π a, which gives an action of Perm on A.

The permutation action on some set X also determines the notion of sup-
port for its elements x ∈ X. The notion of support is the central definition
of nominal logic. It is meant to capture the intuition of “free” occurrences
of names in finite structures, but is general enough to also apply to infinite
structures.

Definition 3.1.4 (Support). The support of x is defined as:

supp(x) ≡
⋃
i

{a ∈ Ai | infinite{b ∈ Ai | (a b) · x 6= x}}

Example 3.1.5 (λ-calculus). Consider the λ-calculus with the set of vari-
ables chosen to be some atom sort Ai. If we use raw λ-terms and the per-
mutation action specified below we obtain the following notion of support:

π · x = π x supp(x) = {x}
π · (s t) = (π · s) (π · t) supp(s t) = supp(s) ∪ supp(t)

π · (λx.t) = λ(π · x).π · t supp(λx.t) = supp(t)∪{x}

Note that the action of perm above is also well defined, if we identify terms
up to α-equivalence. In this case, we obtain the support below, which exactly
captures the usual notion of free variables.

supp(x) = {x}
supp(s t) = supp(s) ∪ supp(t)

supp(λx.t) = supp(t)−{x}

Hence, it is natural do define freshness of some atom a for some object x,
written a] x, simply as a not being in the support of x.

Definition 3.1.6 (Freshness). a] x ≡ a /∈ supp(x)

Although the support of x precisely captures the usual intuition of free
variables, this definition is cumbersome to work with. Most of the time,
one is only interested in showing that some object has finite support. The
reason for this is the following proposition which allows us to obtain fresh
variables for any finitely supported context.

Proposition 3.1.7. finite(supp(x)) =⇒ ∀i ∃a ∈ Ai. a] x

13

Chapter 3. Nominal Logic

Hence, one defines the auxiliary notion of a set supporting some object,
which, as we will see, is one way to quickly show that something has finite
support. The definition is also fairly natural. It only requires that swap-
ping two atoms which are not in the supporting set should leave the object
unchanged.

Definition 3.1.8 (Supports). S supports x ≡ ∀a a′ /∈ S. (a a′) · x = x

This auxiliary definition has a number of nice properties.

Proposition 3.1.9. For any finite sets A and B we have:
A supports x ∧B supports x =⇒ A ∩B supports x .

Proposition 3.1.10. supp(x) supports x

Proposition 3.1.11. finiteS ∧ S supports x =⇒ supp(x) ⊆ S

For a proof of the last proposition see [Urb08]. From these properties
it immediately followings that for any finitely supported object, supp(x) is
indeed the intersection over all finite supports. The example below however
shows that the restriction to finite supporting sets is necessary in each of
the propositions.

Example 3.1.12. Consider some Ai with the action of Perm on P(Ai)
defined by π ·X = {π · x | x ∈ X}. We split Ai into even] odd using some
bijection from Ai to N. Both sets support themselves and each other but
supp(even) = supp(odd) = Ai. Hence, neither set contains supp(even) and
their intersection, the empty set, supports neither odd nor even.

The example above shows that structures with infinite support can behave
rather unintuitively. Furthermore, we certainly want all structures incorpo-
rating binders to be finitely supported to guarantee the existence of fresh
variables. This leads to the definition of a nominal set below.

Definition 3.1.13 (Nominal set). A nominal set is a set X together with
an action of Perm such that

∀x ∈ X : finite(suppx))

There are quite a lot of examples of nominal sets and in particular, as
we will see later, it is even possible to build a logic in which everything is
finitely supported.

Example 3.1.14. 1. Both the raw lambda terms and the α-equated λ-
terms from above are nominal sets with respect to the given permuta-
tion action.

2. Each Ai is a nominal set with permutation action π · a = π(a)

3. The set N of natural numbers becomes a nominal set with π · n = n
as action of Perm.

14

3.2. Products and Functions

3.2 Products and Functions

In order to use nominal reasoning in any expressive logic, it is necessary to
lift nominal sets along the type structure of the logic. For product types
this is straightforward as show in the definition below.

Definition 3.2.1. Given two nominal sets X and Y , the set X × Y is a
nominal set, defining π·(x, y) = (π·x, π·y) to be the action of perm associated
with X × Y . One can easily show that supp((x, y)) = supp(x) ∪ supp(y)

For function types this is however a little more complicated. One can
obtain a well behaved action of perm on function types.

Definition 3.2.2. Given two nominal sets X and Y we obtain an action of
perm on X → Y by setting π ·f = λx. π · (f(π−1 ·x)). Here X → Y denotes
the set of (set theoretic) functions from X to Y .

While maybe looking unusual at first sight, the action on X → Y is equiv-
alent to π · (f x) = (π · f) (π · x), which ensures that function application
is respected by atom permutations. The definition is forced from the re-
quirement that X → Y together with the usual application function be the
exponential in the Cartesian closed category whose objects are sets equipped
with an action of perm and whose morphisms preserve this action. Unfor-
tunately, not every element of X → Y is finitely supported with respect to
the atom permutation above. One such example is shown below.

Example 3.2.3. For any function f : N→ Ai, Ran(f) ⊆ supp(f). For this
we show that for any a ∈ Ran(f) the set {b | (a b) · f 6= f} is infinite. We
have for any a ∈ Ran(f), b 6= a and n ∈ f−1(a) that:

((a b) · f)n = (λn.(a b) · f((a b) · n))n = (a b) · a = b 6= a = f n .

Since for any a ∈ Ran there exists some n ∈ f−1(a) and infinitely many
b different from a, we have Ran(f) ⊆ supp(f). On the other hand there
certainly are surjective functions in N → Ai, which cannot be finitely sup-
ported.

One can restrict to finitely supported functions defining.

X →fs Y = {f : X → Y | finite(supp(f))}

This makes X →fs Y a nominal set as well. Using the standard isomorphism
between P(X) and X → B one can also define the nominal set of finitely
supported subsets Pfs(X) for any nominal set X. One can easily calculate
that the action of perm derived this way is the one used in Example 3.1.12.

15

Chapter 3. Nominal Logic

3.3 Finite Support vs. Choice

Most of the functions, sets, and predicates one encounters when reasoning
about programming languages are finitely supported. There is however one
very important exception. There exists no function C : (A →fs B) →fs B
satisfying

∃x.f x =⇒ f(C f) ,

the axiom of choice. See [Pit06, Example 3.4]. This is be no means unex-
pected since Nominal Logic builds on the Fraenkel-Mostowski permutation
model of set theory [Jec71], which is also incompatible with the axiom of
choice. On the other hand, one can show that the function application op-
eration, the currying operation as well as the constantly true function and
the equality predicate all define functions which have empty support. Hence
one has a Finite Support Principle stating that any function defined from
finitely supported functions using classical higher-order logic without choice
is itself finitely supported [Pit06].

Thus, there are in principle two ways to deal with the issue of finite sup-
port. First, can build a logic, without a choice operator, in which everything
is finitely supported. This has the nice side effect that Proposition 3.1.7 sim-
plifies to ∀i ∃a ∈ Ai. a] x, hence one can always obtain a fresh name in any
circumstance. Such a logic was developed by Gabbay [Gab02].

The drawback of this approach is that some very basic parts of the li-
braries found in proof assistants like Isabelle/HOL are built using the ax-
iom of choice. Hence, all these libraries would have to be adapted. Many
applications of the axiom of choice could probably be replaced by explicit
constructions. However, Section 5.3 shows that using the axiom of choice
can simplify formal reasoning significantly.

The second approach to dealing with finite support is to not restrict to
finitely supported functions and relations and work in standard higher-order
logic including choice. This has the benefit that all the libraries remain us-
able, but at the price that one has to show finite support whenever one wants
to apply a theorem relying on it. This includes in particular α-structural
recursion and induction principles as developed in [Pit06]. We will make use
of this approach in the context of Isabelle/HOL-Nominal, an extension to
Isabelle/HOL that is built on this second approach to nominal logic [Urb08].

16

CHAPTER 4

Introduction to Isabelle/HOL-Nominal

The formalization in Chapter 5 uses the Isabelle system. In particular, the
the chapter is generated through the Isabelle document preparation system,
which is centered around the development of formal proof documents. In
this chapter we introduce the basics of the Isabelle system, its logic and proof
methods as well as a brief overview of the Isar structured proof language.
Any such overview is, by definition, incomplete. The goal of this chapter is
mainly to provide the information necessary to understand the development
in Chapter 5.

Section 4.1 describes the meta-logic of the Isabelle system. Sections 4.2
and 4.3 describe two approaches to developing proofs in Isabelle. Having
described the structure of Isabelle proofs, Section 4.4 briefly explains the
most important proof methods used in Chapter 5. The introduction to
Isabelle is supplemented by Section 4.5, a description of how the Nominal
package implements nominal logic in Isabelle.

4.1 Short Description of the Isabelle System

Isabelle is designed to be a generic framework for developing formal proofs
in a variety of different logics, including first-order logic (FOL), higher-
order logic (HOL), higher-order logic of computable functions (HOLCF),
ZF set theory, etc. All these logics are specified in the meta-logic Pure,
which is an instance of intuitionistic higher-order logic. The meta-logic
uses the simply-typed λ-calculus with αβη-conversion as term language. It
has the logical connectives =⇒,

∧
, and ≡, representing logical entailment

(meta-implication), generality (meta-universal-quantifier) and equality (cf.
[PN94, Pau89]).

17

Chapter 4. Introduction to Isabelle/HOL-Nominal

This simple logic is then used to specify the axioms for the logical con-
stants (∀, ∃,−→,¬,∧, . . .) of the various object logics. Using the notation
[[P1 ; . . . ; Pn]] =⇒ Q for P1 =⇒ . . . =⇒ Pn =⇒ Q, the introduction and
elimination rules for implication and universal quantifier for example are:

(P =⇒ Q) =⇒ P −→ Q (impI)
[[P −→ Q ; P ; Q =⇒ R]] =⇒ R (impE)

(
∧

x . P x) =⇒ ∀ x . P x (allI)
[[∀ x . P x ; P x =⇒ R]] =⇒ R (allE)

The rules above are presented in the same way they are displayed when
using the search function of the Isabelle system within the HOL logic. This
hides the fact that there is a difference between meta-level terms and object-
level terms. Whenever appropriate, object-level formulae are automatically
coerced into meta-level propositions. It is useful to think of meta-level terms
of the form [[P ; Q]] =⇒ R as rules of the form

P Q

R

However, the premises of these rules may be rules themselves. The meta-
logic distinguishes two different types of variables which logically serve the
same purpose but are handled differently by the system. Schematic vari-
ables, written ?x, are variables which may be instantiated using (higher-
order) unification when applying the rule. Ordinary variables, as used with
the

∧
binder, need to be instantiated separately. Hence,

∧
x. P x =⇒ Q x

and P ?x =⇒ Q ?x are logically the same, but are handled differently by
the Isabelle system. As done in the rules for the logical connectives, we will
drop the ? most of the time, especially if all variables occurring free in the
rule are schematic.

Within the Isabelle system, the terms of the meta-logic actually serve
several purposes. In addition to representing inference rules as described
above, derived rules of the form [[G0 ; . . . ; Gn]] =⇒ C are also used to
represent proof states, where the Gi are the current goals and C is the
claim to be proven. This proof state is then refined using resolution of the
proof state with some rule to form a new proof state [Pau89, Chapter 1].
This process uses higher-order unification. While higher-order unification
lacks most general unifiers and is undecidable, algorithms performing well
in practice were already developed by Huet in 1975 [Hue75].

When one tries to prove some proposition C, the initial proof state is
the trivial rule C =⇒ C. which is then refined until all subgoals are “dis-
charged” and one obtains C as derived rule. This style of proving theorems
is commonly referred to as backwards proof. The remainder of this chapter
deals with the practical aspects of proving. A very good starting point for
this is the extensive Isabelle tutorial [NPW09].

18

4.2. Writing Proof Scripts in Isabelle

4.2 Writing Proof Scripts in Isabelle

There are two ways of proving facts in the Isabelle system. Both start by
specifying the fact in the theory file using the lemma or theorem directive.
This puts the Isabelle interpreter into the prove mode which presents the
lemma to be proven as a goal to the user. This means that of the internal
proof state [[G0 ; . . . ; Gn]] =⇒ C only the Gi are shown. From here, there
are two different ways to procede.

In prove mode one can apply a proof method via apply(method). This
may modify the current proof state in an arbitrary manner and keeps the
Isabelle interpreter in prove mode. This allows several apply statements to
be issued one after the other until no proof goals remain and the proof can
be finished via done. This style of proof has the advantage that backward
proofs are usually relatively easy to come up with, and it is also quite close
to the internals of the Isabelle system.

But this kind of proof also has its disadvantages. The first disadvantage
is that the proof state remains implicit, and therefore the proof document
(the LATEX version of the theory file) does not contain this information.
This makes the theory files impossible to read for humans. The second
disadvantage is one of stability. Long sequences of apply statements may
break between one version of Isabelle and the next, because improvements
to the various proof methods may cause these to return another (maybe
simpler) proof state in which the subsequent method is no longer applicable,
causing the proof to fail at that point.

Furthermore, the backward structure of apply-style proofs is incompatible
with the forward reasoning usually employed in informal documents. Hence,
if one wants to preserve the structure of some existing informal proof, some
forward reasoning infrastructure is required.

4.3 The Isar Structured Proof Language

The currently preferred way of writing Isabelle proof scripts is to use the Isar
structured proof language. It mimics to some extent the language usually
used in pen-and-paper proofs and is meant to produce formal proof docu-
ments that remain human readable. Furthermore, it can be used to close the
gap between the backwards proof centered Isabelle system and the forward
reasoning style that mathematics is usually presented in.

A simplified grammar for the Isar language developed by Wenzel [Wen02]
and presented for the practical user in [Nip, Wen08] is displayed in Fig-
ure 4.1. A proof is either atomic using by or compound using proof . . .
qed. A simple compound proof may begin with some initial proof step and

19

Chapter 4. Introduction to Isabelle/HOL-Nominal

proof ::= proof method? statement∗ qed

| by method

statement ::= fix variables
| assume proposition+

| (from fact∗)? (show | have) proposition+ proof

proposition ::= (label :)? formula
fact ::= label

Figure 4.1: Simplified Isar Grammar

then consists of a series of statements ending with a show statement, which
should establish the conclusion of the theorem.

The most important statement is of the form from facts have l: propo-
sition proof which takes some set of named facts and establishes a new fact
named l to be used later in the proof. Since the proof machinery of Is-
abelle/HOL is built on natural deduction and backwards proofs, the stating
of intermediate facts with from . . . have can be used to facilitate forward
reasoning in a backwards proof oriented system.

Note that both the statement of a claim as well as the initial proof method
may introduce several independent subgoals which need to be solved indi-
vidually using different show statements. When a claim stated using show
is proven, Isabelle creates a rule. All variables introduced using fix become
schematic variables, all assumptions made using assume become premises,
and the final claim becomes the conclusion. This rule is then used to solve
one of the current goals.

Hence, fix is used to introduce meta-level universal quantifiers and as-
sume is used to introduce meta-level implications. This connects the Isar
language very tightly to the meta-logic Pure.

4.3.1 Calculatorial reasoning

In addition to the simple grammar above there are a number of extensions
that are used heavily in the formal development of Chapter 5. There are
some special names for facts that are currently in scope in a proof. The name
this always refers to the most recently established fact. Since from this is
needed very often, it can be abbreviated by then. Furthermore, then show
is abbreviated by thus and then have is abbreviated by hence. Therefore,
one of the most important ways to simplify proof scrips is to use proper
chaining in order to avoid explicit naming of facts.

20

4.3. The Isar Structured Proof Language

Another special name is calculation. It can be used to successively estab-
lish a list of facts needed for some key step in the proof. The use is

have A . . .
moreover have B . . .
moreover have C . . .
ultimately show theorem

A variant of the chaining scheme above is the combination of also and
finally which does not collect the different facts that are established in a
list, but applies transitivity rules to them. This allows equational rewriting
in the style m0 = m1 = . . . = mn, where each equality mi = mi+1 is justified
by a separate (usually atomic) proof. In this context “. . . ” refers to the right
hand side of the last claim.

4.3.2 Generalized elimination

The Isar language also provides a nice generalized elimination construct.
The statement

obtain x where ϕ by method

first establishes ∧
thesis . (

∧
x . ϕ =⇒ thesis) =⇒ thesis

as a soundness check to justify the existence of some x with property ϕ.
Afterwards, x is fixed as a new name, and ϕ is introduced as a new fact.
The most common use of this pattern is existential elimination where ∃x.ϕ is
a fact from the current context. In Chapter 5, this scheme is used frequently
to obtain fresh variables.

4.3.3 Induction and case analysis

The Isar language also has support for inductive proofs and case analysis.
In an inductive proof there usually tend to be a large number of universally
quantified variables and hypothesis which all originate from the applied in-
duction rule. To prove any of these cases one would need to use fix and
assume to get all these hypotheses before beginning the actual proof. To do
all of this in one step there is the case keyword, which is used case(CaseId
vars), and binds all the hypotheses to CaseId with the newly introduced
variables named according to vars. For instance, given the following list
datatype:

datatype a list = Nil | Cons a list ,

the skeleton of a proof by structural induction on a list ls would look as
follows:

21

Chapter 4. Introduction to Isabelle/HOL-Nominal

proof(induct ls)
case Nil ... show ?case

next
case (Cons x xs) ... show ?case

qed

Within the cases of an an inductive proof, like the one on the variable ls
above, this variable is replaced by the variables introduced in the various
cases. Therefore, any facts referring to ls need to be chained into the proof
as current facts to obtain variants where ls is replaced by Nil or Cons x xs
respectively.

Note the use of ?case in the code fragment above. When opening some
case of an inductive proof or case analysis, ?case is always bound to the
conclusion of the associated subgoal. Furthermore, in any proof, ?theorem
is bound to the conclusion of the theorem.

4.3.4 Raw proof blocks

Another useful tool for more complicated proofs are raw proof blocks. A
raw proof block behaves like a normal proof, but it does not establish some
explicitly stated fact. Instead, the result of the proof block is the last claim
that is established. Known facts pass { unchanged, but facts involving
locally fixed variables and assumptions are generalized by }. For example,
the proof block

{fix t ′ assume t 7→ t ′ have SN t ′ proof }

results in t 7→ ?t ′ =⇒ SN ?t ′, which can be used to prove SN t, following
the informal style of not mentioning the intermediate universal quantifier.

4.4 The Most Frequently used Proof Methods

This section explains the most frequently used proof methods in the formal-
ization in Chapter 5. A very fundamental proof method is rule. Given a
rule r, rule r tries to use the current facts to eliminate premises of r and
then unifies the conclusion of r with the current goal. Without argument,
rule tries to choose the rule automatically from predefined rule sets (see Sec-
tion 4.4.2). As simple proofs “by rule” are fairly common, the Isar language
introduces “..” as an abbreviation. In this way, one can extend the example
above to

{fix t ′ assume t 7→ t ′ have SN t ′ proof } thus SN t ..

Further methods include simplification and (automated) classical reasoning
as explained next.

22

4.4. The Most Frequently used Proof Methods

4.4.1 Simplification

The starting point for all simplification is the default simpset which contains
a number of theorems of the form

[[Q1 ; . . . ; Qn]] =⇒ Pl = Pr

The simplification method simp tries to simplify the current subgoal via
rewriting, matching some part of the current goal or the premises with Pl and
replacing this with Pr. This process uses higher order unification and may
instantiate meta variables both in the current goal and the simplification
rule being applied. If the list of premises is nonempty, n new subgoals are
created where each of them requires some Qi to be proven from the premises
of the original goal. Each of these is again subject to simplification.

After applying a rewrite rule, a solver tool is called which tries to solve
the simplified subgoal using some restricted set of rules. Usually, this only
includes solving trivial goals like t = t or True. This process repeats until no
further simplification rules apply. Since the power of the simplifier depends
heavily on the simpset, this can be modified when calling the simplifier.
Thus, a standard proof by simplification might look as follows:

by(simp add : abs-fresh sapp-fresh)

In rare occasions, a rewriting might render other rules inapplicable, caus-
ing the proof to fail. In these situations it is necessary to also delete some
rules from the simpset, which can be done using del instead of add.

4.4.2 The classical reasoner

An important method for automated proving is the blast method which
invokes a classical tableau prover. It performs proof search in an untyped
manner, reconstructing an Isabelle natural deduction proof once a tableau
proof has been found. In contrast to the simplifier which simplifies the
subgoal as far as possible and then returns this as the new proof state, blast
either proves the goal fully automatically or fails outright.

The classical reasoner uses the default classical ruleset to prove the sub-
goal. This includes, in particular, rules for the logical connectives and all the
facts that are declared as introduction rules using the [intro] or the [intro!]
attribute. This is particularly useful for inductively defined relations such as
7→ in Section 5.2. The difference between the two attributes is that the “!”
marks the rule as safe, which means that it is applied eagerly without back-
tracking. This also applies to [elim] and [dest] which add elimination and
destruction rules respectively. As with the simpset for simplification, the
set of classical rules can also be modified directly when calling the classical
reasoner.

23

Chapter 4. Introduction to Isabelle/HOL-Nominal

4.4.3 The auto method

The auto method is the most commonly used proof method in this formal-
ization. It combines simplification with classical reasoning, making it a very
powerful tool. All options modifying either the simpset or the classical rule
set are also applicable to auto. Since auto is targeted at solving all the triv-
ial subgoals, by default, it applies to all the current goals at the same time.
This makes it especially suited to prove all the trivial subgoals that remain
in an inductive proof, once the interesting cases have been dealt with.

4.4.4 Sledgehammer and metis

Apart from the proof search mechanisms that are provided by the Isabelle
system, one can also use external provers like E1 or SPASS2. When issuing
the sledgehammer command, the current goal and all currently known
facts are converted to clausal form and transfered to the external tool. These
industrial strength provers can sometimes deal with this enormous amount
of information and find a proof for the current subgoal.

However, since these tools are not aware of the Isabelle system, they do
not return a proof object that can be used to verify the proof found. Instead,
the external tool returns the subset of the known facts that are part of the
proof which was found. This set of facts can then be given to metis3, which
in most cases is capable of finding a proof with this reduced set of facts and
outputs a detailed proof Isabelle can parse.

4.5 From HOL to HOL-Nominal

With the basics of the Isabelle system in place, we now explain briefly how
α-equated terms are implemented in Isabelle. The Isabelle logic image HOL-
Nominal is an implementation of the second approach noted in Section 3.3.
It provides infrastructure for reasoning about atoms and support without
restricting everything to be finitely supported. We follow the description
given by Urban [Urb08]. HOL-Nominal is only a definitional extension of
the HOL logic. As long as one trusts in the soundness of HOL, there is no
soundness argument required.

1http://www4.informatik.tu-muenchen.de/˜schulz/WORK/eprover.html
2http://www.spass-prover.org/
3http://www.gilith.com/software/metis/

24

4.5. From HOL to HOL-Nominal

4.5.1 Atoms and support in HOL-Nominal

Each theory in HOL-Nominal begins with some atom-decl id-list which
specifies the names of the atom sorts one wants to use in the formalization.
Hence, for practical purposes, one has to restrict to finitely many atom sorts.
It is for this reason that we cannot use Church-style typed variables. This
would require an infinite supply of atom sorts, indexed by the types of the
λml-calculus, which cannot be represented using the nominal package.

The Isabelle implementation uses lists of swappings to represent elements
of Perm, with the permutation action on atoms defined by recursion on the
list:

[] · a = a

((a1 a2) :: π) · a =

a2 if π · a = a1

a1 if π · a = a2

a otherwise

Due to the typing constraints on lists, this representation of permutations
does not generate the whole group Perm but only those permutations affect-
ing a single atom sort. For the formalization of λml, we only need one atom
sort, hence, we ignore this issue and restrict to a single atom sort called
name. Any element of (name×name) list certainly represents some element
of Perm in the sense of Section 3.1, hence all the definitions from Chapter
3 apply. However, the list representation of permutations is not unique, so
one also needs a notion of equivalence of permutations.

Definition 4.5.1 (Permutation Equality). Two permutations are equal,
written π1 , π2, if for all atoms a, we have π1 · a = π2 · a.

Definition 4.5.2 (Permutation types and finitely supported types). A type
α is a permutation type, written pt α, if there is an action of perm defined
on it which satisfies the conditions from Definition 3.1.3 and also satisfies
π1 , π2 =⇒ π1 · x = π2 · x. A permutation type α whose elements are all
finitely supported is called a finitely supported type, written fs α.

Note that fs α coresponds to the type α being a nominal set. In HOL-
Nominal, the type predicates pt and fs are used as specifications of type
classes over HOL types. Following the constructions in Section 3.2, one
obtains the following propositions:

Proposition 4.5.3. If pt α and pt β we have pt name, pt bool, pt unit,
pt (α × β), pt (α → β), pt (α set), and pt (α list) using the permutation
actions from Figure 4.2.

Proposition 4.5.4. If fs α and fs β we have fs name, fs bool, fs unit,
fs (α× β), and fs (α list) using the permutation actions from Figure 4.2

25

Chapter 4. Introduction to Isabelle/HOL-Nominal

A : π · a = π a

bool : π · b = b

unit : π · () = ()
α× β : π · (x1, x2) = (π · x1, π · x2)

α⇒ β : π · f = λx.π · (f(π−1 · x))
α set : π ·X = {π · x | x ∈ X}
α list : π · [] = []

π · (x :: xs) = (π · x) :: (π · xs)

Figure 4.2: Permutation actions on HOL types

4.5.2 Identifying terms up to α-equivalence

The cornerstone of the HOL-Nominal logic is an implementation of data-
types with a built-in notion of α-equivalence. This is achieved by first
defining pre-terms, using weak higher-order abstract syntax, and then in-
ductively defining a subset of these pre-terms, whose elements correspond
to α-equivalence classes. For example, one defines a nominal datatype of
λ-terms as follows:

nominal-datatype trm = Var name | App trm trm | Lam �name� trm

Here, Lam �name� trm means that a is bound in Lam a t. This datatype
declaration is first translated into a regular datatype, which uses weak
higher-order abstract syntax for the case of abstractions.

datatype trm ′ = Var ′ name
| App ′ trm ′ trm ′

| Lam ′ (name ⇒ trm ′ option)

As equality for functions of type name ⇒ trm ′ option is undecidable,
one wants to restrict terms of the type trm ′ to only use some restricted
set of functions in the Lam case which represent α-equivalence classes and
for which equality is decidable. For this reason one introduces abstraction
functions, which represent α-equivalence classes.

Definition 4.5.5 (Abstraction functions).

[a].t ≡ λb. if b = a then t else if b] t then Some((a b) · t) else None

26

4.5. From HOL to HOL-Nominal

Finally, one can (inductively) define a subset of the type trm ′, restrict-
ing the constructor Lam to abstraction functions. The nominal-datatype
declaration derives this subset and exports it as type trm to the user, trans-
lating Lam a t to Lam ′ ([a].t), Var to Var ′, and App to App ′.

Nominal datatypes derived in this way are equipped with an action of
perm that simply pushes the permutation to the subterms (see Exam-
ple 3.1.5). A nominal-datatype declaration may only refer to finitely
supported types, making the datatype itself finitely supported. Hence, to-
gether with Proposition 4.5.4, this allows the type checker to immediately
establish finite support almost all cases, in particular for tuples of λ-terms.

4.5.3 Induction and recursion over α-terms

Having identified terms up to α-equivalence, one can build up infrastructure
to allow formal proofs close to the informal reasoning using the Barendregt
Variable Convention. For these proofs, the Nominal package provides, in
addition to the standard structural induction principle, also a strong induc-
tion principle. Using this strong induction principle, one needs to prove the
cases for binders only for names which are suitably fresh. In this context,
suitably fresh means fresh for any finitely supported context that is provided
when starting the induction. A direct comparison of the standard and the
strong induction rules for the λml-calculus, as used in the formalization, can
be found in Figure 5.1.

Furthermore, the nominal-datatype command provides a primitive re-
cursion combinator which allows freshness conditions on the binders occur-
ring in the defining equations. This greatly simplifies defining functions by
primitive structural recursion over nominal datatypes.

Unfortunately, not every function one wants to use in formal developments
can be defined using primitive recursion. However, we will see that it is more
difficult, but still feasible, to define functions over nominal datatypes that
use more general recursion schemes.

The rather technical theoretical development of these recursion and induc-
tion principles appears in [Pit06] and the adaptation to the Isabelle frame-
work can be found in [Urb08]. One of the technical aspects of the primitive
recursion combinator is the freshness condition for binders (FCB). Infor-
mally stated the FCB requires that any binder that occurs on the left hand
side of a defining equation must be fresh for the right hand side of that
equation. Consider the variable x in the to-case of substitution:

x] (s,y ,v) =⇒ (s to x in t)[y ::=v] = s[y ::=v] to x in t [y ::=v]

Here, one has to choose x to be fresh not only for y and v to avoid capture
and allow the substitution to be moved to the subterm. To satisfy the FCB,

27

Chapter 4. Introduction to Isabelle/HOL-Nominal

x also has to be fresh for the term s, which is outside of the scope of x.
As this example shoes, these additional freshness conditions may lead an
unusual presentation of affected concepts.

4.5.4 Rule inductions and nominal inversion

While using the variable convention in inductive proofs over terms is always
possible, using the variable convention in rule inductions can lead to faulty
reasoning. First, not every inductively defined relation is equivariant. But
even for equivariant relations, it is not always sound to assume that the
binders occurring in a rule are fresh for the context. Consider the Unbind
relation for the simply-typed λ-calculus from [UBN07],

x ↪→ [], x s t ↪→ [], s t
t ↪→ xs, t′

λx.t ↪→ x :: xs, t′

which is well defined and equivariant. However, assuming that x is fresh for
xs may lead to faulty reasoning as x also occurs free in the conclusion of the
rule. In [UBN07], Urban et al. introduce a sufficient condition, that allows
reasoning using the variable condition in rule inductions. An inductively
defined relation is vc-compatible if:

1. all the predicates and functions occurring in the side conditions are
equivariant, and

2. the side conditions imply that all variables occurring in binding posi-
tion are mutually distinct and fresh for the conclusion of the rule.

Note that this second condition fails for the Unbind relation above.
Berghofer and Urban [BU08] show that the same condition also allows

the strengthening of the inversion principles in such a way that the variables
occurring in the various cases can be chosen upon instantiation of the rule.
Suppose we know s to x in t 7→ r and want to use inversion of the 7→ relation.
Using the standard inversion principle the case of a β-reduction gives the
following equations: s to x in t = [u] to y in v and r = v[y ::= u]. Using
the injectivity principle for α-terms, this would require reasoning about the
equality of [x].t and [y].v. With the strong inversion principle one can chose
y to be x, provided x is fresh for s and r, giving the equations s to x in t =
[u] to x in v and r = v[x ::= u], from which t = v follows immediately. This
simplifies inversion significantly.

Now we have everything in place to start the formalization.

28

CHAPTER 5

Formalization

This chapter contains the full formalization of the strong normalization the-
orem for the λml-calculus. The first section deals with the formalization of
syntax, typing, and substitution. Section 5.2 contains the formalization of
the reduction relation. For technical reasons, the reduction relation needs
to be stated with additional freshness requirements on the variables occur-
ring in binding position. So we show that these freshness conditions do not
change the relation being defined. Section 5.3 contains a formal treatment
of the inductive characterization of strong normalization. The rest of the
Chapter deals with stacks, reducibility, and the normalization theorem.

5.1 The Calculus

As explained in Section 4.5.1, we begin the theory file by declaring name to
be our only atom sort. Furthermore, we use a nominal datatype to represent
the terms of the λml-calculus, using the syntax introduced in Chapter 2

atom-decl name

nominal-datatype trm =
Var name
| App trm trm
| Lam �name�trm (Λ - . - [0 ,120] 120)
| To trm �name�trm (- to - in - [141 ,0 ,140] 140)
| Ret trm ([-])

The weak and strong induction principles provided by the nominal-
datatype declaration above are listed in Figure 5.1. The first rule is weak,

29

Chapter 5. Formalization

trm.induct :∧
name. ?P (Var name)∧
trm1 trm2 . [[?P trm1 ; ?P trm2]] =⇒ ?P (App trm1 trm2)∧
name trm. ?P trm =⇒ ?P (Λ name . trm)∧
trm1 name trm2 . [[?P trm1 ; ?P trm2]] =⇒ ?P (trm1 to name in trm2)∧
trm. ?P trm =⇒ ?P [trm]

?P ?trm

trm.strong-induct :∧
name z . ?P z (Var name)∧
trm1 trm2 z . [[

∧
z . ?P z trm1 ;

∧
z . ?P z trm2]] =⇒ ?P z (App trm1 trm2)∧

name trm z . [[name] z ;
∧

z . ?P z trm]] =⇒ ?P z (Λ name . trm)∧
trm1 name trm2 z .

[[name] z ; name] trm1 ;
∧

z . ?P z trm1 ;
∧

z . ?P z trm2]]
=⇒ ?P z (trm1 to name in trm2)∧
trm z . (

∧
z . ?P z trm) =⇒ ?P z [trm]

?P ?z ?trm

Figure 5.1: Induction principles for the term datatype

because one has to prove the binder cases (third and fourth premise) for all
names, whereas the second rule only requires one to prove the binder cases
for names which are suitably fresh.

Note that the premises of these rules neither refer to the context ?z, nor to
the variable ?trm, but to universally quantified variables of the same type.
This means that any current facts referring to ?z or ?trm need to be replaced
by new facts as explained in Section 4.3.3.

We add the injectivity principle for trm to the default simpset and instan-
tiate some of the lemmas from the parent theory Nominal to the current
setting.

declare trm.inject [simp]
lemmas name-swap-bij = pt-swap-bij ′′[OF pt-name-inst at-name-inst]
lemmas ex-fresh = exists-fresh ′[OF fin-supp]

The second lemmas statement produces the lemma

ex-fresh:∃ c::name. c] (z :: ′a::fs-name)

where z can be instantiated to any finitely supported term. Some other
frequently used, automatically derived facts can be found in Figure 5.2.

30

5.1. The Calculus

alpha: ([a].x = [b].y) =
(a = b ∧ x = y ∨ a 6= b ∧ x = [(a, b)] · y ∧ a] y)

alpha’: ([a].x = [b].y) =
(a = b ∧ x = y ∨ a 6= b ∧ [(b, a)] · x = y ∧ b] x)

abs-fresh: b] [a].x = (b = a ∨ b] x)
fresh-atm: a] b = (a 6= b)

fresh-prod: a] (x , y) = (a] x ∧ a] y)
exists-fresh’: finite (supp x) =⇒ ∃ c. c] x

Figure 5.2: Some automatically derived facts

Furthermore, we establish a useful variant of the other alpha renaming lem-
mas.

lemma alpha ′′ :
fixes x y :: name and t ::trm
assumes a: x] t
shows [y].t = [x].([(y ,x)] · t)

proof −
from a have aux : y] [(y , x)] · t

by (subst fresh-bij [THEN sym, of - - [(x ,y)]])
(auto simp add : perm-swap calc-atm)

thus ?thesis
by(auto simp add : alpha perm-swap name-swap-bij fresh-bij)

qed

5.1.1 Typing

Even though our types do not involve binders, we still need to formalize
them as nominal datatypes to obtain a permutation action. This is required
to establish equivariance of the typing relation.

nominal-datatype ty =
TBase
| TFun ty ty (infix → 200)
| T ty

Since, as explained in Section 4.5.1, we cannot use typed variables; we have
to formalize typing contexts. Isabelle does not provide a type for finite
functions, hence typing contexts are formalized as lists. A context is valid
if no name occurs twice.

inductive
valid :: (name×ty) list ⇒ bool

where
v1 [intro]: valid []
| v2 [intro]: [[valid Γ;x]Γ]]=⇒ valid ((x ,σ)#Γ)

31

Chapter 5. Formalization

equivariance valid

lemma fresh-ty :
fixes x :: name and τ ::ty
shows x] τ

by (induct τ rule: ty .induct) (auto)

lemma fresh-context :
fixes Γ :: (name×ty)list
assumes a: x] Γ
shows ¬(∃ τ . (x ,τ)∈set Γ)

using a
by (induct Γ) (auto simp add : fresh-prod fresh-list-cons fresh-atm)

inductive
typing :: (name×ty) list⇒trm⇒ty⇒bool (- ` - : - [60 ,60 ,60] 60)

where
t1 [intro]: [[valid Γ; (x ,τ)∈set Γ]] =⇒ Γ ` Var x : τ
| t2 [intro]: [[Γ ` s : τ→σ; Γ ` t : τ]] =⇒ Γ ` App s t : σ
| t3 [intro]: [[x] Γ; ((x ,τ)#Γ) ` t : σ]] =⇒ Γ ` Λ x . t : τ→σ
| t4 [intro]: [[Γ ` s : σ]] =⇒ Γ ` [s] : T σ
| t5 [intro]: [[x] (Γ,s); Γ ` s : T σ ; ((x ,σ)#Γ) ` t : T τ]]

=⇒ Γ ` s to x in t : T τ
equivariance typing
nominal-inductive typing

by(simp-all add : abs-fresh fresh-ty)

Except for the explicit requirement that contexts be valid in the variable
case and the freshness requirement on s in t5, this typing relation is a direct
translation of the original typing relation in [LS05] to the setting using
contexts. The nominal-inductive command derives the strong induction
and case rules described in Section 4.5.4. The strong induction principle will
be used in the proof of the fundamental theorem of logical relations.

5.1.2 Substitution

Here we introduce substitution on the terms defined above. Since we need
parallel substitution for the fundamental theorem, we define it first and in-
troduce ordinary substitution as an abbreviation. Unfortunately, the func-
tion type name ⇒ trm is not finitely supported. Thus, as was the case with
contexts, the easiest approach is to formalize substitutions as lists.

fun
lookup :: (name×trm) list ⇒ name ⇒ trm

where
lookup [] x = Var x
| lookup ((y ,e)#θ) x = (if x=y then e else lookup θ x)

32

5.1. The Calculus

lemma lookup-eqvt [eqvt]:
fixes pi ::name prm
and θ::(name×trm) list
and x ::name
shows pi · (lookup θ x) = lookup (pi · θ) (pi · x)

by (induct θ) (auto simp add : eqvts)

nominal-primrec
psubst :: (name×trm) list ⇒ trm ⇒ trm (-<-> [95 ,95] 205)

where
θ<Var x> = lookup θ x
| θ<App s t> = App (θ<s>) (θ<t>)
| x] θ =⇒ θ<Λ x .s> = Λ x . (θ<s>)
| θ<[t]> = [θ<t>]
| [[x] θ ; x] t]] =⇒ θ<t to x in s> = (θ<t>) to x in (θ<s>)

by(finite-guess+ , (simp add : abs-fresh)+ , fresh-guess+)

lemma psubst-eqvt [eqvt]:
fixes pi ::name prm
shows pi · (θ<t>) = (pi · θ)<(pi · t)>

by(nominal-induct t avoiding : θ rule:trm.strong-induct)
(auto simp add : eqvts fresh-bij)

The lemma psubst-eqvt states that substitution, like all our constructions,
is equivariant. Having defined parallel substitution, we define substitution
for a single variable as an abbreviation of the parallel case. Furthermore,
we show the usual defining equations as a lemma and add it to the default
simpset. The effect of this is that single variable substitution behaves just
as if defined directly, and also interacts smoothly with the parallel case.

abbreviation
subst :: trm ⇒ name ⇒ trm ⇒ trm (-[-::=-] [200 ,100 ,100] 200)

where
t [x ::=t ′] ≡ ([(x ,t ′)])<t>

lemma subst [simp]:
shows (Var x)[y ::=v] = (if x = y then v else Var x)

and (App s t)[y ::=v] = App (s[y ::=v]) (t [y ::=v])
and x] (y ,v) =⇒ (Λ x . t)[y ::=v] = Λ x .t [y ::=v]
and x] (s,y ,v) =⇒ (s to x in t)[y ::=v] = s[y ::=v] to x in t [y ::=v]
and ([s])[y ::=v] = [s[y ::=v]]

by(simp-all add : fresh-list-cons fresh-list-nil)

5.1.3 Facts about substitution

To be able to work comfortably with substitution, we need a couple of
lemmas about substitution that concern the interaction of substitution and

33

Chapter 5. Formalization

freshness.

lemma subst-rename:
assumes a: y] t
shows ([(y ,x)]·t)[y ::=v] = t [x ::=v]

using a
by(nominal-induct t avoiding : x y v rule: trm.strong-induct)

(auto simp add : calc-atm fresh-atm abs-fresh fresh-prod fresh-aux)
lemmas subst-rename ′ = subst-rename[THEN sym]

lemma forget : x] t =⇒ t [x ::=v] = t
by(nominal-induct t avoiding : x v rule: trm.strong-induct)

(auto simp add : abs-fresh fresh-atm)

lemma fresh-fact :
fixes x ::name
assumes x : x] v x] t
shows x] t [y ::=v]

using x
by(nominal-induct t avoiding : x y v rule: trm.strong-induct)

(auto simp add : abs-fresh fresh-atm)

lemma fresh-fact ′:
fixes x ::name
assumes x : x] v
shows x] t [x ::=v]

using x
by(nominal-induct t avoiding : x v rule: trm.strong-induct)

(auto simp add : abs-fresh fresh-atm)

lemma subst-lemma:
assumes a: x 6=y
and b: x] u
shows s[x ::=v][y ::=u] = s[y ::=u][x ::=v [y ::=u]]

using a b
by(nominal-induct s avoiding : x y u v rule: trm.strong-induct)

(auto simp add : fresh-fact forget)

lemma id-subs:
shows t [x ::=Var x] = t

by(nominal-induct t avoiding : x rule:trm.strong-induct) auto

In addition to the facts on simple substitution we also need some facts on
parallel substitution. In particular we want to be able to extend a parallel
substitution with an ordinary one.

lemma lookup-fresh:
fixes z ::name
assumes z]θ z]x
shows z] lookup θ x

34

5.2. The Reduction Relation

using assms
by(induct rule: lookup.induct)

(auto simp add : fresh-list-cons)

lemma lookup-fresh ′:
assumes a: z]θ
shows lookup θ z = Var z

using a
by (induct rule: lookup.induct)

(auto simp add : fresh-list-cons fresh-prod fresh-atm)

lemma psubst-fresh-fact :
fixes x :: name
assumes a: x] t and b: x] θ
shows x] θ<t>

using a b
by(nominal-induct t avoiding : θ x rule:trm.strong-induct)

(auto simp add : lookup-fresh abs-fresh)

lemma psubst-subst :
assumes a: x] θ
shows θ<t>[x ::=s] = ((x ,s)#θ)<t>
using a

by(nominal-induct t avoiding : θ x s rule: trm.strong-induct)
(auto simp add : fresh-list-cons fresh-atm forget

lookup-fresh lookup-fresh ′ fresh-prod psubst-fresh-fact)

5.2 The Reduction Relation

With substitution in place, we can now define the reduction relation on
λml-terms. To derive strong induction and case rules, all the rules must be
vc-compatible. In the case of the reduction relation stated in Chapter 2, this
requires some additional freshness conditions. Note that in this particular
case the additional freshness conditions only serve the technical purpose of
automatically deriving strong reasoning principles. To show that the version
with freshness conditions defines the same relation as the one in Figure 2.1,
we also state this version and prove equality of the two relations.

inductive std-reduction :: trm ⇒ trm ⇒ bool (- - [80 ,80] 80)
where

std-r1 [intro!]:s s ′ =⇒ App s t App s ′ t
| std-r2 [intro!]:t t ′ =⇒ App s t App s t ′

| std-r3 [intro!]:App (Λ x . t) s t [x ::=s]

| std-r4 [intro!]:t t ′ =⇒ Λ x . t Λ x . t ′

| std-r5 [intro!]:x] t =⇒ Λ x . App t (Var x) t

35

Chapter 5. Formalization

| std-r6 [intro!]:[[s s ′]] =⇒ s to x in t s ′ to x in t
| std-r7 [intro!]:[[t t ′]] =⇒ s to x in t s to x in t ′

| std-r8 [intro!]:[s] to x in t t [x ::=s]
| std-r9 [intro!]:x] s =⇒ s to x in [Var x] s
| std-r10 [intro!]: [[x] y ; x] u]]

=⇒ (s to x in t) to y in u s to x in (t to y in u)
| std-r11 [intro!]: s s ′ =⇒ [s] [s ′]

inductive
reduction :: trm ⇒ trm ⇒ bool (- 7→ - [80 ,80] 80)

where
r1 [intro!]:s 7→ s ′ =⇒ App s t 7→ App s ′ t
| r2 [intro!]:t 7→ t ′ =⇒ App s t 7→ App s t ′

| r3 [intro!]:x] s =⇒ App (Λ x . t) s 7→ t [x ::=s]

| r4 [intro!]:t 7→ t ′ =⇒ Λ x . t 7→ Λ x . t ′

| r5 [intro!]:x] t =⇒ Λ x . App t (Var x) 7→ t

| r6 [intro!]:[[x] (s,s ′) ; s 7→ s ′]] =⇒ s to x in t 7→ s ′ to x in t
| r7 [intro!]:[[x] s ; t 7→ t ′]] =⇒ s to x in t 7→ s to x in t ′

| r8 [intro!]:x] s =⇒ [s] to x in t 7→ t [x ::=s]
| r9 [intro!]:x] s =⇒ s to x in [Var x] 7→ s
| r10 [intro!]: [[x] (y ,s,u) ; y] (s,t)]]

=⇒ (s to x in t) to y in u 7→ s to x in (t to y in u)
| r11 [intro!]: s 7→ s ′ =⇒ [s] 7→ [s ′]
equivariance reduction
nominal-inductive reduction

by(auto simp add : abs-fresh fresh-fact ′ fresh-prod fresh-atm)

In order to show adequacy, the extra freshness conditions in the rules r3,
r6, r7, r8, r9, and r10 need to be discharged. Furthermore, we make the
classical reasoners, used in auto and blast, aware of the new rules by adding
them as introduction rules to the classical rule set. To avoid conflicts, the
old rules are then deleted.

lemma r3 ′[intro!]: App (Λ x . t) s 7→ t [x ::=s]
proof −

obtain x ′::name where s: x ′] s and t : x ′] t
using ex-fresh[of (s,t)] by (auto simp add : fresh-prod)

from t have App (Λ x . t) s = App (Λ x ′ . ([(x ,x ′)] · t)) s
by (simp add : alpha ′′)

also from s have . . . 7→ ([(x , x ′)] · t)[x ′::=s] ..
also have . . . = t [x ::=s] using t

by (auto simp add : subst-rename ′) (metis perm-swap)
finally show ?thesis .

qed
declare r3 [rule del]

36

5.2. The Reduction Relation

lemma r6 ′[intro]:
fixes s :: trm
assumes r : s 7→ s ′

shows s to x in t 7→ s ′ to x in t
using assms
proof −

obtain x ′::name where s: x ′] (s, s ′) and t : x ′] t
using ex-fresh[of (s,s ′,t)] by (auto simp add : fresh-prod)

from t have s to x in t = s to x ′ in ([(x ,x ′)] · t)
by (simp add : alpha ′′)

also from s r have . . . 7→ s ′ to x ′ in ([(x , x ′)] · t) ..
also from t have . . . = s ′ to x in t

by (simp add : alpha ′′)
finally show ?thesis .

qed
declare r6 [rule del]

lemma r7 ′[intro]:
fixes t :: trm
assumes t 7→ t ′

shows s to x in t 7→ s to x in t ′

using assms
proof −

obtain x ′::name where f : x ′] t x ′] t ′ x ′] s x ′] x
using ex-fresh[of (t ,t ′,s,x)] by(auto simp add :fresh-prod)

hence a: s to x in t = s to x ′ in ([(x ,x ′)] · t)
by (auto simp add : alpha ′′)

from assms have ([(x ,x ′)] · t) 7→ [(x ,x ′)] · t ′

by (simp add : eqvts)
hence r : s to x ′ in ([(x ,x ′)] · t) 7→ s to x ′ in ([(x ,x ′)] · t ′)

using f by auto
from f have s to x in t ′ = s to x ′ in ([(x ,x ′)] · t ′)

by (auto simp add : alpha ′′)
with a r show ?thesis by (simp del : trm.inject)

qed
declare r7 [rule del]

lemma r8 ′[intro!]: [s] to x in t 7→ t [x ::=s]
proof −

obtain x ′::name where s: x ′] s and t : x ′] t
using ex-fresh[of (s,t)] by (auto simp add : fresh-prod)

from t have [s] to x in t = [s] to x ′ in ([(x ,x ′)] · t)
by (simp add : alpha ′′)

also from s have . . . 7→ ([(x , x ′)] · t)[x ′::=s] ..
also have . . . = t [x ::=s] using t

by (auto simp add : subst-rename ′) (metis perm-swap)
finally show ?thesis .

qed
declare r8 [rule del]

37

Chapter 5. Formalization

lemma r9 ′[intro!]: s to x in [Var x] 7→ s
proof −

obtain x ′::name where f : x ′] s x ′] x
using ex-fresh[of (s,x)] by(auto simp add :fresh-prod)

hence s to x ′ in [Var x ′] 7→ s by auto
moreover have s to x ′ in ([Var x ′]) = s to x in ([Var x])

by (auto simp add : alpha fresh-atm swap-simps)
ultimately show ?thesis by simp

qed
declare r9 [rule del]

While discharging these freshness conditions is easy for rules involving only
one binder it unfortunately becomes quite tedious for the assoc rule r10.
This is due to the complex binding structure of this rule which includes
four binding occurrences of two different names. Furthermore, the binding
structure changes from the left to the right: On the left hand side, x is only
bound in t, whereas on the right hand side the scope of x extends over the
whole term t to y in u.

lemma r10 ′[intro!]:
assumes xf : x] y x] u
shows (s to x in t) to y in u 7→ s to x in (t to y in u)

proof −
obtain y ′::name — suitably fresh

where y : y ′] s y ′] x y ′] t y ′] u
using ex-fresh[of (s,x ,t ,u,[(x , x ′)] · t)]
by (auto simp add : fresh-prod)

obtain x ′::name
where x : x ′] s x ′] y ′ x ′] y x ′] t x ′] u

x ′] ([(y ,y ′)] · u)
using ex-fresh[of (s,y ′,y ,t ,u,([(y ,y ′)] · u))]
by (auto simp add : fresh-prod)

from x y have yaux : y ′] [(x , x ′)] · t
by(simp add : fresh-left perm-fresh-fresh fresh-atm)

have (s to x in t) to y in u = (s to x in t) to y ′ in ([(y ,y ′)] · u)
using 〈y ′] u〉 by (simp add : alpha ′′)

also have . . . = (s to x ′ in ([(x ,x ′)] · t)) to y ′ in ([(y ,y ′)] · u)
using 〈x ′] t 〉 by (simp add : alpha ′′)

also have . . . 7→ s to x ′ in (([(x ,x ′)] · t) to y ′ in ([(y ,y ′)] · u))
using x y yaux by (auto simp add : fresh-prod)

also have . . . = s to x ′ in (([(x ,x ′)] · t) to y in u)
using 〈y ′] u〉 by (simp add : abs-fun-eq1 alpha ′′)

also have . . . = s to x in (t to y in u)
proof (subst trm.inject)

from xf x have swap: [(x ,x ′)] · y = y [(x ,x ′)] · u = u
by(auto simp add : fresh-atm perm-fresh-fresh)

with x show s = s ∧ [x ′].([(x , x ′)] · t) to y in u = [x].t to y in u
by (auto simp add : alpha ′′[of x ′ - x] abs-fresh abs-fun-eq1 swap)

38

5.3. Strong Normalization

qed
finally show ?thesis .

qed
declare r10 [rule del]

Since now all the introduction rules of the vc-compatible reduction relation
exactly match their standard counterparts, both directions of the adequacy
proof are trivial inductions.

theorem adequacy : s 7→ t = s t
by (auto elim:reduction.induct std-reduction.induct)

Next we show that the reduction relation preserves freshness and is in turn
preserved under substitution.

lemma reduction-fresh:
fixes x ::name
assumes r : t 7→ t ′

shows x] t =⇒ x] t ′

using r
by(nominal-induct t t ′ avoiding : x rule: reduction.strong-induct)

(auto simp add : abs-fresh fresh-fact fresh-atm)

lemma reduction-subst :
assumes a: t 7→ t ′

shows t [x ::=v] 7→ t ′[x ::=v]
using a
by(nominal-induct t t ′ avoiding : x v rule: reduction.strong-induct)

(auto simp add : fresh-atm fresh-fact subst-lemma fresh-prod abs-fresh)

5.3 Strong Normalization

Next we need to formalize what it means for a term to be strongly nor-
malizing. As already motivated in Section 2.2, we use an inductive vari-
ant of strong normalization, It allows for inductive proofs on terms be-
ing strongly normalizing, without establishing that the reduction relation is
finitely branching.

inductive
SN :: trm ⇒ bool

where
SN-intro: (

∧
t ′ . t 7→ t ′ =⇒ SN t ′) =⇒ SN t

It remains to be shown that this definition actually excludes infinite se-
quences of reductions. We define a term t to be diverging, written DIV t, if
there is some infinite sequence S of reductions beginning at t.

39

Chapter 5. Formalization

constdefs
DIV :: trm ⇒ bool
DIV t ≡ ∃ (S ::nat ⇒ trm) . t = S 0 ∧ (∀ n . S n 7→ S (n + 1))

theorem SN t =⇒ ¬ DIV t
proof (induct rule:SN .induct)

case (SN-intro t)
have ih:

∧
t ′. t 7→ t ′ =⇒ ¬ DIV t ′ by fact

moreover have DIV t =⇒ ∃ t ′ . t 7→ t ′ ∧ DIV t ′

proof −
assume DIV t from this obtain S ::nat⇒trm

where S : t = S 0 ∧ (∀ n . S n 7→ S (n + 1))
unfolding DIV-def ..

let ?t = S 1 let ?S = λ n . S (n + 1)
from S have t 7→ ?t by auto
moreover {

from S have ?t = ?S 0 ∧ (∀ n . ?S n 7→ ?S (n + 1)) by auto
hence DIV ?t unfolding DIV-def by auto}

ultimately show ?thesis by blast
qed
ultimately show ¬ DIV t using ih by blast

qed

Incidentally, the converse direction holds as well. Our proof requires the
axiom of choice and hence would not have been possible in a logic where
everything has finite support. The claim could probably also be proven with-
out the use of choice, but this would, for example, require the construction
of an order on the set of terms to be able to select the least successor that
is not SN.

theorem ¬ SN t =⇒ DIV t
proof −

fix t assume t : ¬ SN t
let ?NSN = { t . ¬ SN t }
have ∀ t ∈ ?NSN . ∃ t ′ . t 7→ t ′ ∧ ¬ SN t ′

by (auto intro: SN-intro)
hence ∃ f . ∀ t ∈ ?NSN . t 7→ f t ∧ ¬ SN (f t)

by (rule bchoice)
from this obtain f where f : ∀ t ∈ ?NSN . t 7→ f t ∧ ¬ SN (f t) ..
let ?S = λ n . (fˆn) t
{ fix n from t f have ?S n 7→ ?S (n + 1) ∧ ¬ SN (?S (n + 1))

by (induct n) auto }
hence t = ?S 0 ∧ (∀ n . ?S n 7→ ?S (n + 1)) by auto
thus DIV t unfolding DIV-def by(rule exI [where x=?S])

qed

For the formalization, we merely need that strong normalization is preserved
under reduction and some lemmas on normal terms.

40

5.4. Stacks

lemma SN-preserved [intro]:
assumes a: SN t t 7→ t ′

shows SN t ′

using a by (cases) (auto)

constdefs
NORMAL :: trm ⇒ bool
NORMAL t ≡ ¬(∃ t ′. t 7→ t ′)

lemma normal-var : NORMAL (Var x)
unfolding NORMAL-def by (auto elim: reduction.cases)

lemma normal-implies-sn : NORMAL s =⇒ SN s
unfolding NORMAL-def by(auto intro: SN-intro)

5.4 Stacks

As explained in Chapter 2.3, the monadic type structure of the λml-calculus
does not lend itself to an easy definition of a logical relation along the type
structure of the calculus. Therefore, we need to introduce stacks as an
auxiliary notion to handle the monadic type constructor T . Stacks can be
thought of as lists of term abstractions [x].t. Our notation for stacks is
chosen with this resemblance in mind.

nominal-datatype stack = Id | St �name�trm stack ([-]-�-)

lemma stack-exhaust :
fixes c :: ′a::fs-name
shows k = Id ∨ (∃ y n l . y] l ∧ y] c ∧ k = [y]n�l)

by(nominal-induct k avoiding : c rule: stack .strong-induct) (auto)

nominal-primrec
length :: stack ⇒ nat (|-|)

where
|Id | = 0
| y] L =⇒ length ([y]n�L) = 1 + |L|
by(finite-guess+,auto simp add : fresh-nat ,fresh-guess)

5.4.1 Stack dismantling

Together with the stack datatype, we introduce the notion of dismantling
a term onto a stack. Unfortunately, the dismantling operation has no easy
primitive recursive formulation. The Nominal package, however, only pro-
vides a recursion combinator for primitive recursion. This means that for
dismantling one has to prove pattern completeness, right uniqueness, and
termination explicitly.

41

Chapter 5. Formalization

This takes a little more effort than using nominal-primrec and the mostly
canonical proof to discharge the finite support and freshness requirements.
However, once this has been done, the defining equations can be used as
simplification rules just as if defined with nominal-primrec.

function
dismantle :: trm ⇒ stack ⇒ trm (- ? - [160 ,160] 160)

where
t ? Id = t |
x] (K ,t) =⇒ t ? ([x]s�K) = (t to x in s) ? K

proof − — pattern completeness
fix P :: bool and arg ::trm × stack
assume id :

∧
t . arg = (t , stack .Id) =⇒ P

and st :
∧

x K t s. [[x] (K , t); arg = (t , [x]s�K)]] =⇒ P
{ assume snd arg = Id

hence P by (metis id [where t=fst arg] surjective-pairing) }
moreover
{ fix y n L assume snd arg = [y]n�L y] (L, fst arg)

hence P by (metis st [where t=fst arg] surjective-pairing) }
ultimately show P using stack-exhaust [of snd arg fst arg] by auto

next
— right uniqueness
— only the case of the second equation matching both args needs to be shown.

fix t t ′ :: trm and x x ′ :: name and s s ′ :: trm and K K ′ :: stack
let ?g = dismantle-sumC — graph of dismantle
assume x] (K , t) x ′] (K ′, t ′)

and (t , [x]s�K) = (t ′, [x ′]s ′�K ′)
thus ?g (t to x in s, K) = ?g (t ′ to x ′ in s ′, K ′)

by (auto intro!: arg-cong [where f =?g] simp add : stack .inject)
qed (simp-all add : stack .inject) — all other cases are trivial

Note the use of metis for the relatively simple goals above. The reason for
this is that simp and auto diverge if one adds surjective pairing (t = (fst
t , snd t) to the simpset whereas metis finds a proof within a fraction of a
second. Afterwards, we just have to establish termination which is simple
as the length of K decreases with every recursive call.

termination dismantle
by(relation measure (λ(t ,K). |K |))(auto)

Like all our constructions, dismantling is equivariant. Also, freshness can
be pushed over dismantling, and the freshness requirement in the second
defining equation is not needed

lemma dismantle-eqvt [eqvt]:
fixes pi :: (name × name) list
shows pi · (t ? K) = (pi · t) ? (pi · K)

by(nominal-induct K avoiding : pi t rule:stack .strong-induct)
(auto simp add : eqvts fresh-bij)

42

5.4. Stacks

lemma dismantle-fresh[iff]:
fixes x :: name
shows (x] (t ? k)) = (x] t ∧ x] k)

by(nominal-induct k avoiding : t x rule: stack .strong-induct)
(simp-all)

lemma dismantle-simp[simp]: s ? [y]n�L = (s to y in n) ? L
proof −

obtain x ::name where f : x] s x] L x] n
using ex-fresh[of (s,L,n)] by(auto simp add :fresh-prod)

hence t : s to y in n = s to x in ([(y ,x)] · n)
by(auto simp add : alpha ′′)

from f have [y]n�L = [x]([(y ,x)] · n)�L
by (auto simp add : stack .inject alpha ′′)

hence s ? [y]n�L = s ? [x]([(y ,x)] · n)�L by simp
also have . . . = (s to y in n) ? L using f t by(simp del :trm.inject)
finally show ?thesis .

qed

5.4.2 Reduction and substitution for stacks

We also need a notion of reduction on stacks. This reduction relation allows
us to define strong normalization not only for terms but also for stacks and
is needed to prove the properties of the logical relation later on.

constdefs
stack-reduction :: stack ⇒ stack ⇒ bool (- 7→ -)
k 7→ k ′ ≡ ∀ (t ::trm) . (t ? k) 7→ (t ? k ′)

While one could certainly obtain the same reduction relation by explicitly
stating reduction rules, the given definition provides a rather canonical way
for lifting properties of the term reduction relation to the reduction relation
on stacks. One example, shown below, is that freshness is preserved under
stack reduction.

lemma stack-reduction-fresh:
fixes k :: stack and x :: name
assumes r : k 7→ k ′ and f :x] k
shows x] k ′

proof −
from ex-fresh[of x] obtain z ::name where f ′: z] x ..
from r have Var z ? k 7→ Var z ? k ′ unfolding stack-reduction-def ..
moreover from f f ′ have x] Var z ? k by(auto simp add : fresh-atm)
ultimately have x] Var z ? k ′ by(rule reduction-fresh)
thus x] k ′ by simp

qed

43

Chapter 5. Formalization

lemma dismantle-red [intro]:
fixes m :: trm
assumes r : m 7→ m ′

shows m ? k 7→ m ′ ? k
using r
by (nominal-induct k avoiding : m m ′ rule:stack .strong-induct) auto

Next we define a substitution operation for stacks. The main purpose of
this is to distribute substitution over dismantling.

nominal-primrec
ssubst :: name ⇒ trm ⇒ stack ⇒ stack

where
ssubst x v Id = Id
| y] (k ,x ,v) =⇒ ssubst x v ([y]n�k) = [y](n[x ::=v])�(ssubst x v k)

by(finite-guess+ , (simp add : abs-fresh)+ , fresh-guess+)

lemma ssubst-fresh:
fixes y :: name
assumes y] (x ,v ,k)
shows y] ssubst x v k

using assms
by(nominal-induct k avoiding : y x v rule: stack .strong-induct)

(auto simp add : fresh-prod fresh-atm abs-fresh fresh-fact)

lemma ssubst-forget :
fixes x :: name
assumes x] k
shows ssubst x v k = k

using assms
by(nominal-induct k avoiding : x v rule: stack .strong-induct)

(auto simp add : abs-fresh fresh-atm forget)

lemma subst-dismantle[simp]: (t ? k)[x ::= v] = (t [x ::=v]) ? ssubst x v k
by(nominal-induct k avoiding : t x v rule: stack .strong-induct)

(auto simp add : ssubst-fresh fresh-prod fresh-fact)

5.5 Reducibility for Terms and Stacks

Following [Nom], we formalize the logical relation as a function RED of type
ty ⇒ trm set for the term part and accordingly SRED of type ty ⇒ stack
set for the stack part of the logical relation. Showing that these mutually
recursive functions terminate is therefore equivalent to showing that the
logical relation is correctly defined on the type structure.

lemma ty-exhaust : ty = TBase ∨ (∃ σ τ . ty = σ → τ) ∨ (∃ σ . ty = T σ)
by(induct ty rule:ty .induct) (auto)

44

5.6. Properties of the Reducibility Relation

function RED :: ty ⇒ trm set
and SRED :: ty ⇒ stack set
where

RED (TBase) = {t . SN (t)}
| RED (τ→σ) = {t . ∀ u ∈ RED τ . (App t u) ∈ RED σ }
| RED (T σ) = {t . ∀ k ∈ SRED σ . SN (t ? k) }
| SRED τ = {k . ∀ t ∈ RED τ . SN ([t] ? k) }
by(auto simp add : ty .inject , case-tac x rule: sum.exhaust ,insert ty-exhaust)

(blast)+

This is the second non-primitive function in the formalization. Since types
do not involve binders, pattern completeness and right uniqueness are mostly
trivial. The termination argument is not as simple as for the dismantling
function, because the definiton of SRED τ involves a recursive call to RED
τ of the same size.

nominal-primrec
tsize :: ty ⇒ nat

where
tsize TBase = 1
| tsize (σ→τ) = 1 + tsize σ + tsize τ
| tsize (T τ) = 1 + tsize τ

by (rule TrueI)+

In the termination argument below, Inl τ corresponds to the call RED τ ,
whereas Inr τ corresponds to SRED τ

termination RED
by(relation measure

(λ x . case x of Inl τ ⇒ 2 ∗ tsize τ
| Inr τ ⇒ 2 ∗ tsize τ + 1)) (auto)

5.6 Properties of the Reducibility Relation

After defining the logical relations we need to prove that the relation implies
strong normalization, is preserved under reduction, and satisfies the head
expansion property.

constdefs
NEUT :: trm ⇒ bool
NEUT t ≡ (∃ a. t = Var a) ∨ (∃ t1 t2 . t = App t1 t2)

constdefs
CR1 :: ty ⇒ bool
CR1 τ ≡ ∀ t . (t∈RED τ −→ SN t)

CR2 :: ty ⇒ bool
CR2 τ ≡ ∀ t t ′. (t∈RED τ ∧ t 7→ t ′) −→ t ′∈RED τ

45

Chapter 5. Formalization

CR3-RED :: trm ⇒ ty ⇒ bool
CR3-RED t τ ≡ ∀ t ′. t 7→ t ′ −→ t ′∈RED τ

CR3 :: ty ⇒ bool
CR3 τ ≡ ∀ t . (NEUT t ∧ CR3-RED t τ) −→ t∈RED τ

CR4 :: ty ⇒ bool
CR4 τ ≡ ∀ t . (NEUT t ∧ NORMAL t) −→t∈RED τ

lemma CR3-implies-CR4 [intro]: CR3 τ =⇒ CR4 τ
by (auto simp add : CR3-def CR3-RED-def CR4-def NORMAL-def)

5.6.1 Strong normalization for subterms and stacks

To prove CR1-3 for the type constructor →, we need a way to obtain SN s
from SN (App s t). This can not be defined using a simple function, since
HOL is a logic of total functions and we only want to project to the first
element of an application. One could use a function from trm to trm option
but this would not generalize to the case of dismantling below. Thus, we
define a one case inductive relation between terms establishing the desired
connection of App s t and s.

inductive
FST :: trm⇒trm⇒bool (- � - [80 ,80] 80)

where
fst [intro!]: (App t s) � t

lemma SN-of-FST-of-App:
assumes a: SN (App t s)
shows SN t

proof −
from a have ∀ z . (App t s � z) −→ SN z

by (induct rule: SN .induct)
(blast elim: FST .cases intro: SN-intro)

then show SN t by blast
qed

This lemma is a simplified version of the one used in [Nom]. Since we
have generalized our notion of reduction from terms to stacks, we can also
generalize the notion of strong normalization. The new induction principle
will be used to prove the T case of the properties of the reducibility relation.

inductive
SSN :: stack ⇒ bool

where
SSN-intro: (

∧
k ′ . k 7→ k ′ =⇒ SSN k ′) =⇒ SSN k

46

5.6. Properties of the Reducibility Relation

Furthermore, the approach for deriving strong normalization of subterms
from above can be generalized to terms of the form t ? k. In contrast to the
case of applications, t ? k does not uniquely determine t and k. Thus, the
extraction is a proper relation in this case.

inductive
SND-DIS :: trm ⇒ stack ⇒ bool (- B -)

where
snd-dis[intro!]: t ? k B k

Lemmas like SN-of-FST-of-App are usually not proven at all or proven by
contradiction – using the fact that any infinite sequence in a subterm im-
plies an infinite sequence in the whole term. For this reason, the inductive
proof below is shown in length, although it could have been proven using
automated reasoning tools similar to the case above.

lemma SN-SSN :
assumes a: SN (t ? k)
shows SSN k

proof −
from a have ∀ z . (t ? k B z) −→ SSN z
proof (induct rule: SN .induct)
case (SN-intro u)
have ih:

∧
u ′. u 7→ u ′ =⇒ ∀ z . u ′ B z −→ SSN z by fact

show ∀ z . u B z −→ SSN z
proof (intro allI impI)

fix z assume u B z
thus SSN z proof (cases rule:SND-DIS .cases)

case (snd-dis v -) hence u: u = v ? z by simp
{ fix z ′ assume z 7→ z ′

with u have u 7→ v ? z ′ by (simp add : stack-reduction-def)
hence ∀ z . (v ? z ′) B z −→ SSN z by (rule ih)
with u have SSN z ′ by blast }

thus SSN z ..
qed

qed
qed

thus SSN k by blast
qed

5.6.2 A new case construct on the reducts of t ? k

To prove the properties of the logical relation, the authors of [LS05] use
a case distinction on the reducts of t ? k, where t is a neutral term and
therefore no interaction occurs between t and k.

47

Chapter 5. Formalization

t ? k 7→ r
∧

t ′. [[t 7→ t ′; r = t ′ ? k]] =⇒ P

NEUT t
∧

k ′. [[k 7→ k ′ ; r = t ? k ′]] =⇒ P

P

We strive for a proof of this rule by structural induction on k. The general
idea of the case where k = [y]n�l is to move the first stack frame into the
term t and then apply the induction hypothesis as a case rule. Unfortunately,
this term is no longer neutral, so, for the induction to go through, we need to
generalize the claim to also include the possible interactions of non-neutral
terms and stacks.

lemma dismantle-cases:
fixes t :: trm
assumes r : t ? k 7→ r
and T :

∧
t ′ . [[t 7→ t ′ ; r = t ′ ? k]] =⇒ P

and K :
∧

k ′ . [[k 7→ k ′ ; r = t ? k ′]] =⇒ P
and B :

∧
s y n l .[[t = [s] ; k = [y]n�l ; r = (n[y ::=s]) ? l]] =⇒ P

and A:
∧

u x v y n l .[[x] y ; x] n ; t = u to x in v ;
k = [y]n�l ; r = (u to x in (v to y in n)) ? l]] =⇒ P

shows P
using assms
proof (nominal-induct k avoiding : t r rule:stack .strong-induct)

case (St y n L) note yfresh = 〈y] t 〉 〈y] r 〉 〈y] L〉
note IH = St(4)

and T = St(6) and K = St(7) and B = St(8) and A = St(9)

The hypothesis we get from the induction on the stack k can be found in Figure
5.3. We immediately strive for the induction hypothesis by using it as case rule
moving the first stack frame to the left of the dismantling operator. Hence we get
five cases corresponding to the premises of the induction hypothesis.

thus P proof (cases rule:IH [where b=t to y in n and ba=r])
case (2 r ′) have red : t to y in n 7→ r ′ and r : r = r ′ ? L by fact+

If m to y in n makes a step we reason by case distinction on the successors of m
to y in n. We want to use the strong inversion principle for the reduction relation.
For this we need that y is fresh for t to y in n and r′.

from yfresh r have y : y] t to y in n y] r ′

by (auto simp add : abs-fresh)
obtain z where z : z 6= y z] r ′ z] t to y in n

using ex-fresh[of (y ,r ′,t to y in n)]
by(auto simp add :fresh-prod fresh-atm)

from red r show P
proof (cases rule:reduction.strong-cases

[where x=yand xa=y and xb=y and xc=y and xd=y
and xe=y and xf =y and xg=z and y=y])

case (r6 s t ′ u) — if t makes a step we use assumption T

48

5.6. Properties of the Reducibility Relation

We can assume the following hypotheses:
t 7→ ?t ′ r = ?t ′ ? [y]n�L

P
T

[y]n�L 7→ ?k ′ r = t ? ?k ′

P
K

t = [?s] [y]n�L = [?y]?n�?l r = ?n[?y ::=?s] ? ?l
P

B

?x] ?y ?x] ?n t = ?u to ?x in ?v
[y]n�L = [?y]?n�?l r = (?u to ?x in ?v to ?y in ?n) ? ?l

P
A

And we get the following (large) induction hypothesis:

?b ? L 7→ ?ba∧
t ′. [[?b 7→ t ′; ?ba = t ′ ? L]] =⇒ P∧
k ′. [[L 7→ k ′ ; ?ba = ?b ? k ′]] =⇒ P∧
s y n l . [[?b = [s]; L = [y]n�l ; ?ba = n[y ::=s] ? l]] =⇒ P∧
x y n u v l .
[[x] y ; x] n; ?b = u to x in v ; L = [y]n�l ;
?ba = (u to x in v to y in n) ? l]]

=⇒ P
P

Figure 5.3: Hypotheses for dismantle-cases

49

Chapter 5. Formalization

with y have m: t 7→ t ′ r ′ = t ′ to y in n by auto
thus P using T [of t ′] r by auto

next
case (r7 - - n ′) with y have n: n 7→ n ′ and r ′: r ′ = t to y in n ′

by (auto simp add : alpha)

Since k = [y]n�L, the reduction n 7→ n ′ occurs within the stack k. Hence, we
need to establish this stack reduction.

have [y]n�L 7→ [y]n ′�L unfolding stack-reduction-def
proof

fix u have u to y in n 7→ u to y in n ′ using n ..
hence (u to y in n) ? L 7→ (u to y in n ′) ? L ..
thus u ? [y]n�L 7→ u ? [y]n ′�L

by simp
qed
moreover have r = t ? [y]n ′�L using r r ′ by simp
ultimately show P by (rule K)

next
case (r8 s -) — the case of a β-reduction is exactly B
with y have t = [s] r ′ = n[y ::=s] by(auto simp add : alpha)
thus P using B [of s y n L] r by auto

next
case (r9 -) — The case of an η-reduction is a stack reduction as well.
with y have n: n = [Var y] and r ′: r ′ = t

by(auto simp add : alpha)
{ fix u have u to y in n 7→ u unfolding n ..

hence (u to y in n) ? L 7→ u ? L ..
hence u ? [y]n�L 7→ u ? L by simp
} hence [y]n�L 7→ L unfolding stack-reduction-def ..
moreover have r = t ? L using r r ′ by simp
ultimately show P by (rule K)

next
case (r10 u - v) — The assoc case holds by A.
with y z have

t = (u to z in v)
r ′ = u to z in (v to y in n)
z] (y ,n) by (auto simp add : fresh-prod alpha)

thus P using A[of z y n] r by auto
qed (insert y , auto) — No other reductions are possible.

next

Next we have to solve the case where a reduction occurs deep within L. We get a
reduction of the stack k by moving the first stack frame “[y]n” back to the right
hand side of the dismantling operator.

case (3 L ′)
hence L: L 7→ L ′ and r : r = (t to y in n) ? L ′ by auto
{ fix s from L have (s to y in n) ? L 7→ (s to y in n) ? L ′

unfolding stack-reduction-def ..
hence s ? [y]n�L 7→ s ? [y]n�L ′ by simp
} hence [y]n�L 7→ [y]n�L ′ unfolding stack-reduction-def by auto

50

5.6. Properties of the Reducibility Relation

moreover from r have r = t ? [y]n�L ′ by simp
ultimately show P by (rule K)

next
case (5 x z n ′ s v K) — The “assoc” case is again a stack reduction
have xf : x] z x] n ′

— We get the following equalities
and red : t to y in n = s to x in v

L = [z]n ′�K
r = (s to x in v to z in n ′) ? K by fact+

{ fix u from red have u ? [y]n�L = ((u to x in v) to z in n ′) ? K
by(auto intro: arg-cong [where f =λ x . x ? K])

moreover
{ from xf have (u to x in v) to z in n ′ 7→ u to x in (v to z in n ′) ..

hence ((u to x in v) to z in n ′) ? K 7→ (u to x in (v to z in n ′)) ? K
by rule

} ultimately have u ? [y]n�L 7→ (u to x in (v to z in n ′)) ? K
by (simp (no-asm-simp) del :dismantle-simp)

hence u ? [y]n�L 7→ u ? [x](v to z in n ′)�K by simp
} hence [y]n�L 7→ [x](v to z in n ′)� K

unfolding stack-reduction-def by simp
moreover have r = t ? ([x](v to z in n ′)�K) using red

by (auto)
ultimately show P by (rule K)

qed (insert St , auto)
qed auto

Now that we have established the general claim, we can restrict t to neutral
terms only and drop the cases dealing with possible interactions.

lemma dismantle-cases ′[consumes 2 , case-names T K]:
fixes m :: trm
assumes r : t ? k 7→ r
and NEUT t
and

∧
t ′ . [[t 7→ t ′ ; r = t ′ ? k]] =⇒ P

and
∧

k ′ . [[k 7→ k ′ ; r = t ? k ′]] =⇒ P
shows P

using assms unfolding NEUT-def
by (cases rule: dismantle-cases[of t k r]) (auto)

5.6.3 Proof of the properties of reducibility

Now we are only two simple lemmas away from proving the properties of
the reducibility relation.

lemma red-Ret :
fixes t :: trm
assumes [s] 7→ t
shows ∃ s ′ . t = [s ′] ∧ s 7→ s ′

using assms by cases (auto)

51

Chapter 5. Formalization

lemma SN-Ret : SN u =⇒ SN [u]
by(induct rule:SN .induct) (metis SN .intros red-Ret)

All the properties of reducibility are shown simultaneously by induction on
the type. Lindley and Stark [LS05] only spell out the cases dealing with the
monadic type constructor T . We do the same by reusing the proofs from
[Nom] for the other cases. To shorten the presentation, these proofs are
folded as 〈Urban〉.

lemma RED-props:
shows CR1 τ and CR2 τ and CR3 τ

proof (nominal-induct τ rule: ty .strong-induct)
case TBase 〈Urban〉

next
case (TFun τ1 τ2) 〈Urban〉

next
case (T σ)
{ case 1 — follows from the fact that Id ∈ SRED σ

have ih-CR1-σ: CR1 σ by fact
{ fix t assume t-red : t ∈ RED (T σ)
{ fix s assume s ∈ RED σ

hence SN s using ih-CR1-σ by (auto simp add : CR1-def)
hence SN ([s]) by (rule SN-Ret)
hence SN ([s] ? Id) by simp
} hence Id ∈ SRED σ by simp
with t-red have SN (t) by (auto simp del : SRED .simps)
} thus CR1 (T σ) unfolding CR1-def by blast

next
case 2 — follows since SN is preserved under redcution
{ fix t t ′::trm assume t-red : t ∈ RED (T σ) and t-t ′: t 7→ t ′

{ fix k assume k : k ∈ SRED σ
with t-red have SN (t ? k) by simp
moreover from t-t ′ have t ? k 7→ t ′ ? k ..
ultimately have SN (t ′ ? k) by (rule SN-preserved)
} hence t ′ ∈ RED (T σ) by (simp del : SRED .simps)
} thus CR2 (T σ)unfolding CR2-def by blast

next
case 3 from 〈CR3 σ〉 have ih-CR4-σ : CR4 σ ..
{ fix t assume t ′-red :

∧
t ′ . t 7→ t ′ =⇒ t ′ ∈ RED (T σ)

and neut-t : NEUT t
{ fix k assume k-red : k ∈ SRED σ

fix x have NEUT (Var x) unfolding NEUT-def by simp
hence Var x ∈ RED σ using normal-var ih-CR4-σ

by (simp add : CR4-def)
hence SN ([Var x] ? k) using k-red by simp
hence SSN k by (rule SN-SSN)
then have SN (t ? k) using k-red
proof (induct k rule:SSN .induct)

52

5.6. Properties of the Reducibility Relation

Let t be neutral such that t′ ∈ REDT σ whenever t 7→ t′. We have to show
that (t ? k) is SN for each k ∈ SREDσ. First, we have that [x] ? k is SN , as
x ∈ REDσ by the induction hypothesis. Hence k itself is SN , and we can
work by induction on max(k). Application t ? k may reduce as follows:

• t′ ? k, where t 7→ t′, which is SN as k∈SREDσ and t′ ∈REDT σ.

• t?k′, where k 7→ k′. For any s∈REDσ, [s]?k is SN as k∈SREDσ; and
[s] ? k 7→ [s] ? k′, so [s] ? k′ is also SN . From this we have k′ ∈SREDσ

with max(k′) < max(k), so by induction hypothesis t ? k′ is SN .

There are no other possibilities as t is neutral. Hence t ? k is strongly
normalizing for every k∈SREDσ, and so t∈REDT σ as required.

Figure 5.4: Proof of the case T σ subcase CR3 as in [LS05]

case (SSN-intro k)
have ih :

∧
k ′. [[k 7→ k ′ ; k ′ ∈ SRED σ]] =⇒ SN (t ? k ′)

and k-red : k ∈ SRED σ by fact+
{ fix r assume r : t ? k 7→ r

hence SN r using neut-t
proof (cases rule:dismantle-cases ′)

case (T t ′) hence t-t ′: t 7→ t ′ and r-def : r = t ′ ? k .
from t-t ′ have t ′ ∈ RED (T σ) by (rule t ′-red)
thus SN r using k-red r-def by simp

next
case (K k ′) hence k-k ′: k 7→ k ′ and r-def : r = t ? k ′ .
{ fix s assume s ∈ RED σ
hence SN ([s] ? k) using k-red

by simp
moreover have [s] ? k 7→ [s] ? k ′

using k-k ′ unfolding stack-reduction-def ..
ultimately have SN ([s] ? k ′) ..
} hence k ′ ∈ SRED σ by simp
with k-k ′ show SN r unfolding r-def by (rule ih)

qed } thus SN (t ? k) ..
qed } hence t ∈ RED (T σ) by simp

} thus CR3 (T σ) unfolding CR3-def CR3-RED-def by blast
}

qed

The last case above shows that, once all the reasoning principles have been
established, some proofs have a formalization which is amazingly close to the
informal version. For a direct comparison, the informal proof is presented
in Figure 5.4.

53

Chapter 5. Formalization

Now that we have established the properties of the reducibility relation, we
need to show that reducibility is preserved by the various term constructors.
The only nontrivial cases are abstraction and sequencing.

5.7 Abstraction Preserves Reducibility

Once again we could reuse the proofs from [Nom]. The proof uses the
double-SN rule and the lemma red-Lam below. Unfortunately, this time the
proofs are not fully identical to the proofs in [Nom] because we consider
βη-reduction rather than β-reduction. The cases for η-reductions had to be
to “patched in”, mainly by changing the red-Lam lemma accordingly, but
some minor adjustments also had to be made to the abs-RED lemma.

lemma double-SN [consumes 2]:
assumes a: SN a
and b: SN b
and c:

∧
(x ::trm) (z ::trm).

[[
∧

y . x 7→ y =⇒ P y z ;
∧

u. z 7→ u =⇒ P x u]] =⇒ P x z
shows P a b

using a b c
〈Urban〉

lemma red-Lam:
assumes a: Λ x . t 7→ r
shows (∃ t ′. r = Λ x . t ′ ∧ t 7→ t ′) ∨ (t = App r (Var x) ∧ x] r)

proof −
obtain z ::name where z : z] x z] t z] r

using ex-fresh[of (x ,t ,r)] by (auto simp add : fresh-prod)
have x] Λ x . t by (simp add : abs-fresh)
with a have x] r by (simp add : reduction-fresh)
with a show ?thesis using z

by(cases rule: reduction.strong-cases
[where x =x and xa=x and xb=x and xc=x and

xd=x and xe=x and xf =x and xg=x and y=z])
(auto simp add : abs-fresh alpha fresh-atm)

qed

lemma abs-RED :
assumes asm: ∀ s∈RED τ . t [x ::=s]∈RED σ
shows Λ x . t ∈RED (τ→σ)
〈Urban〉

54

5.8. Sequencing Preserves Reducibility

5.8 Sequencing Preserves Reducibility

This section corresponds to the main part of the paper being formalized and
as such deserves special attention. In the lambda case one has to formalize
doing induction on max(s) + max(t) for two strongly normalizing terms s
and t (cf. [GTL89, Section 6.3]). Above, this was done through a double-SN
rule. The central Lemma 7 of Lindley and Stark’s paper uses an even more
complicated induction scheme. They assume terms p and n as well as a
stack K such that SN p and SN (n[x ::=p] ? K). The induction is then
done on |K|+max(n ? K) +max(p). See Figure 5.5 in for details.

5.8.1 Triple induction principle

Since we have settled for a different characterization of strong normalization,
we have to derive an induction principle similar in spirit to the double-SN
rule. There are, however, some complications. To prove the triple induct
principle one needs to keep the variables that the induction is performed on
independent from one another. Hence the double occurrence of K in the
sum above needs to be handled by a suitable abstraction when instantiating
the rule.

Furthermore, it turns out that it is not necessary to formalize the fact that
stack reductions do not increase the length of the stack.1 Doing induction on
the sum above, this is necessary to handle the case of a reduction occurring
in K. We differ from [LS05] and establish an induction principle which to
some extent resembles the lexicographic order on

(SN , 7→)× (SN , 7→)× (N, >) .

A direct translation would correspond to the lemma:

lemma triple-induct ′[consumes 2]:
assumes a: SN p
and b: SN (q)
and hyp:

∧
(p::trm) (q ::trm) (K ::stack) .

[[
∧

p ′ q K . [[SN q ; p 7→ p ′]] =⇒ P p ′ q K ;∧
q ′ K . q 7→ q ′ =⇒ P p q ′ K ;∧
K ′ . |K ′| < |K | =⇒ P p q K ′]] =⇒ P p q K

shows P p q K
oops

The rule derived this was is, however, more general (and hence more difficult
to instantiate) than the one we need. Thus, we use the variation below, in

1This possibility was only discovered after having formalized K 7→ K′ ⇒ |K| ≥ |K′|.
The proof of this seemingly simple fact was about 90 lines of Isar code.

55

Chapter 5. Formalization

Lemma 5.8.1. (Lemma 7) Let p, n be terms and K a stack such that SN (p)
and SN (n[x ::= p] ? K). Then SN (([p] to x in n) ? K)

Proof. We show by induction on |K|+max(n?K)+max(p) that the reducts
of ([p] to x in n)?K are all strongly normalizing. The interesting reductions
are as follows:

• T.β giving n[x ::= p] ?K which is strongly normalizing by hypothesis.

• T.η when n = [x] giving [p] ? K. But [p] ? K = n[x ::= p] ? K which is
again strongly normalizing by hypothesis

• T.assoc in the case where K = [y]m� K ′ with x /∈ fv(m); giving the
reduct ([p] to x in (n to y in m)) ? K. We aim to apply the induction
hypothesis with K ′ and (n to y in m) for K and n respectively. Now

(n to y in m)[x ::= p] ? K ′ = (n[x ::= p] to y in m) ? K ′

= n[x ::= p] ? K

which is strongly normalizing by induction hypothesis. Also

|K ′|+max((n to y in m)?K ′)+max(p) < |K|+max(n?K)+max(p)

as |K ′| < |K| and (n to y in m) ? K ′ = n ? K. This last equation
explains the use of max(n ? K); it remains fixed under T.assoc un-
like max(K) and max(n). Applying the induction hypothesis gives
SN(([p] to x in (n to y in m)) ? K) as required.

Other reductions are confined to K, n or p and can be treated by the in-
duction hypothesis, decreasing either max(n ? K) or max(p).

Figure 5.5: Proof of Lemma 7 as in [LS05]

56

5.8. Sequencing Preserves Reducibility

which the first hypothesis is only applicable to the original q and k, with
the benefit that we can drop the extra premise SN q.

lemma triple-induct [consumes 2]:
assumes a: SN (p)
and b: SN (q)
and hyp:

∧
(p::trm) (q ::trm) (k ::stack) .

[[
∧

p ′ . p 7→ p ′ =⇒ P p ′ q k ;∧
q ′ k . q 7→ q ′ =⇒ P p q ′ k ;∧
k ′ . |k ′| < |k | =⇒ P p q k ′]] =⇒ P p q k

shows P p q k
proof −

from a have
∧

q K . SN q =⇒ P p q K
proof (induct p)

case (SN-intro p)
have sn1 :

∧
p ′ q K . [[p 7→ p ′; SN q]] =⇒ P p ′ q K by fact

have sn-q : SN q SN q by fact+
thus P p q K
proof (induct q arbitrary : K)

case (SN-intro q K)
have sn2 :

∧
q ′ K . [[q 7→ q ′; SN q ′]] =⇒ P p q ′ K by fact

show P p q K
proof (induct K rule: measure-induct-rule[where f =length])

case (less k)
have le:

∧
k ′ . |k ′| < |k | =⇒ P p q k ′ by fact

{ fix p ′ assume p 7→ p ′

moreover have SN q by fact
ultimately have P p ′ q k using sn1 by auto }

moreover
{ fix q ′ K assume r : q 7→ q ′

have SN q by fact
hence SN q ′ using r by (rule SN-preserved)
with r have P p q ′ K using sn2 by auto }

ultimately show ?case using le
by (auto intro:hyp)

qed
qed

qed
with b show ?thesis by blast

qed

5.8.2 Strengthening of the dismantle case rule

Here we strengthen the case rule for terms of the form t ? k 7→ r. This is sim-
ilar to the nominal inversion rules described in Section 4.5.4. The freshness
requirements on x,y, and z correspond to those for the rule reduction.strong-
cases, the strong inversion principle for the reduction relation.

57

Chapter 5. Formalization

lemma dismantle-strong-cases:
fixes t :: trm
assumes r : t ? k 7→ r
and f : y] (t ,k ,r) x] (z ,t ,k ,r) z] (t ,k ,r)
and T :

∧
t ′ . [[t 7→ t ′ ; r = t ′ ? k]] =⇒ P

and K :
∧

k ′ . [[k 7→ k ′ ; r = t ? k ′]] =⇒ P
and B :

∧
s n l . [[t = [s] ;

k = [y]n�l ; r = (n[y ::=s]) ? l]] =⇒ P
and A:

∧
u v n l .

[[x] (z ,n); t = u to x in v ; k = [z]n�l ;
r = (u to x in (v to z in n)) ? l]] =⇒ P

shows P
proof (cases rule:dismantle-cases[of t k r P])

case (4 s y ′ n L) have ch:
t = [s]
k = [y ′]n�L
r = n[y ′::=s] ? L by fact+

The equations we get look almost like those we need to instantiate the hypothesis
B. The only difference is that B only applies to y, and since we want y to become
an instantiation variable of the strengthened rule, we only know that y satisfies f
and nothing else. But the condition f is just strong enough to rename y′ to y and
apply B.

with f have y = y ′ ∨ y] n
by (auto simp add : fresh-prod abs-fresh)

hence n[y ′::=s] = ([(y ,y ′)] · n)[y ::=s]
and [y ′]n�L = [y]([(y ,y ′)] · n)�L
by(auto simp add : name-swap-bij subst-rename ′ stack .inject alpha ′)

with ch have t = [s]
k = [y]([(y ,y ′)] · n)�L
r = ([(y ,y ′)] · n)[y ::=s] ? L
by (auto)

thus P by (rule B)
next

case (5 u x ′ v z ′ n L) have ch:
x ′] z ′ x ′] n
t = u to x ′ in v
k = [z ′]n�L
r = (u to x ′ in v to z ′ in n) ? L by fact+

We want to do the same trick as above but at this point we have to take care of the
possibility that x might coincide with x′ or z′. Similarly, z might coincide with z′.

with f have x : x = x ′ ∨ x] v to z ′ in n
and z : z = z ′ ∨ z] n
by (auto simp add : fresh-prod abs-fresh)

from f ch have x ′: x ′] n x ′] z ′

and xz ′: x = z ′ ∨ x] n
by (auto simp add :name-swap-bij alpha fresh-prod fresh-atm abs-fresh)

from f ch have x] z x] [z ′].n by (auto simp add : fresh-prod)
with xz ′ z have x] (z , ([(z , z ′)] · n))

58

5.8. Sequencing Preserves Reducibility

by (auto simp add : fresh-atm fresh-bij name-swap-bij
fresh-prod abs-fresh calc-atm fresh-aux fresh-left)

moreover from x ch have t = u to x in ([(x ,x ′)] · v)
by (auto simp add :name-swap-bij alpha ′)

moreover from z ch have k = [z]([(z ,z ′)] · n)�L
by (auto simp add :name-swap-bij stack .inject alpha ′)

The first two α-renamings are simple, but here we have to handle the nested binding
structure of the assoc rule. Since x scopes over the whole term v to z ′ in n, we
have to push the swapping over z′

moreover { from x have
u to x ′ in (v to z ′ in n) = u to x in ([(x ,x ′)] · (v to z ′ in n))

by (auto simp add :name-swap-bij alpha ′ simp del : trm.perm)
also from xz ′ x ′ have . . . = u to x in (([(x ,x ′)] · v) to z ′ in n)

by (auto simp add : abs-fun-eq1 swap-simps alpha ′′)
(metis alpha ′′ fresh-atm perm-fresh-fresh swap-simps(1) x ′)

also from z have . . . = u to x in (([(x ,x ′)] · v) to z in ([(z ,z ′)] · n))
by (auto simp add : abs-fun-eq1 alpha ′ name-swap-bij)

finally
have r = (u to x in (([(x , x ′)] · v) to z in ([(z , z ′)] · n))) ? L

using ch by (simp del : trm.inject) }
ultimately show P

by (rule A[where n=[(z , z ′)] · n and v=([(x , x ′)] · v)])
qed (insert r T K , auto)

5.8.3 Strong normalization and substitution

The lemma in Figure 5.5 assumes SN (n[x ::=p] ? K) but the actual induc-
tion in done on SN (n ? K). The stronger assumption SN (n[x ::=p] ? K)
is needed to handle the β and η cases.

lemma sn-forget :
assumes a: SN (t [x ::=v])
shows SN t

proof −
def dq : q ≡ t [x ::=v]
from a have SN q unfolding dq .
thus SN t using dq
proof (induct q arbitrary : t)

case (SN-intro q t)
hence ih:

∧
t ′. [[t [x ::=v] 7→ t ′[x ::=v]]] =⇒ SN t ′ by auto

{ fix t ′ assume t 7→ t ′

hence t [x ::=v] 7→ t ′[x ::=v] by (rule reduction-subst)
hence SN t ′ by (rule ih) }

thus SN t ..
qed

qed

59

Chapter 5. Formalization

lemma sn-forget ′:
assumes sn: SN (t [x ::=p] ? k)
and x : x] k
shows SN (t ? k)

proof −
from x have t [x ::=p] ? k = (t ? k)[x ::=p] by (simp add : ssubst-forget)
with sn have SN ((t ? k)[x ::=p]) by simp
thus ?thesis by (rule sn-forget)

qed

abbreviation
redrtrans :: trm ⇒ trm ⇒ bool (- 7→∗ -)
where redrtrans ≡ reductionˆ∗∗

To be able to handle the case where p makes a step, we need to establish p 7→
p ′=⇒ m[x ::=p] 7→∗ m[x ::=p ′] as well as the fact that strong normalization
is preserved for an arbitrary number of reduction steps. The first claim
involves a number of simple transitivity lemmas. Here we can benefit from
having removed the freshness conditions from the reduction relation as this
allows all the cases to be proven automatically. Similarly, in the red-subst
lemma, only those cases where substitution is pushed to two subterms needs
to be proven explicitly.
lemma red-trans:

shows r1-trans: s 7→∗ s ′ =⇒ App s t 7→∗ App s ′ t
and r2-trans: t 7→∗ t ′ =⇒ App s t 7→∗ App s t ′

and r4-trans: t 7→∗ t ′ =⇒ Λ x . t 7→∗ Λ x . t ′

and r6-trans: s 7→∗ s ′ =⇒ s to x in t 7→∗ s ′ to x in t
and r7-trans: [[t 7→∗ t ′]] =⇒ s to x in t 7→∗ s to x in t ′

and r11-trans: s 7→∗ s ′ =⇒ [s] 7→∗ ([s ′])
by − (induct rule: rtranclp-induct , (auto intro: transitive-closurep-trans ′)[2])+

lemma red-subst : p 7→ p ′ =⇒ (m[x ::=p]) 7→∗ (m[x ::=p ′])
proof(nominal-induct m avoiding : x p p ′ rule:trm.strong-induct)

case (App s t)
hence App (s[x ::=p]) (t [x ::=p]) 7→∗ App (s[x ::=p ′]) (t [x ::=p])

by (auto intro: r1-trans)
also from App have . . . 7→∗ App (s[x ::=p ′]) (t [x ::=p ′])

by (auto intro: r2-trans)
finally show ?case by auto

next
case (To s y n) hence

(s[x ::=p]) to y in (n[x ::=p]) 7→∗ (s[x ::=p ′]) to y in (n[x ::=p])
by (auto intro: r6-trans)

also from To have . . . 7→∗ (s[x ::=p ′]) to y in (n[x ::=p ′])
by (auto intro: r7-trans)

finally show ?case using To by auto
qed (auto intro:red-trans)

60

5.8. Sequencing Preserves Reducibility

lemma SN-trans : [[p 7→∗ p ′ ; SN p]] =⇒ SN p ′

by (induct rule: rtranclp-induct) (auto intro: SN-preserved)

5.8.4 Central lemma

Now we have everything in place we need to tackle the central “Lemma 7”
of [LS05]. The proof is quite long, but for the most part, the reasoning is
that of [LS05].

lemma to-RED-aux :
assumes p: SN p
and x : x] p x] k
and npk : SN (n[x ::=p] ? k)
shows SN (([p] to x in n) ? k)

proof −

The first problem we need to handle is that the triple induction principle, like
any induction rule, allows induction only on distinct variables. Hence, we need to
introduce a new variable q. We later want to instantiate q with n ? k. Furthermore,
we need to generalize the claim to arbitrary terms m, where q = m ? k. This is
needed to handle reductions occuring in n.

{ fix q assume SN q with p
have

∧
m . [[q = m ? k ; SN (m[x ::=p] ? k)]]
=⇒ SN (([p] to x in m) ? k)

using x
proof (induct p q rule:triple-induct [where k=k])

case (1 p q k) — We obtain an induction hypothesis for p, q, and k.
have ih-p:∧

p ′ m . [[p 7→ p ′; q = m ? k ; SN (m[x ::=p ′] ? k); x] p ′; x] k]]
=⇒ SN (([p ′] to x in m) ? k) by fact

have ih-q :∧
q ′ m k . [[q 7→ q ′; q ′ = m ? k ; SN (m[x ::=p] ? k); x] p; x] k]]
=⇒ SN (([p] to x in m) ? k) by fact

have ih-k :∧
k ′ m . [[|k ′| < |k |; q = m ? k ′; SN (m[x ::=p] ? k ′); x] p; x] k ′]]
=⇒ SN (([p] to x in m) ? k ′) by fact

have q : q = m ? k and sn: SN (m[x ::=p] ? k) by fact+
have xp: x] p and xk : x] k by fact+

Once again we want to reason via case distinction on the successors of a term
including a dismantling operator. Since this time we also need to handle the cases
where interactions occur, we want to use the strengthened case rule. We already
require x to be suitably fresh. To instantiate the rule, we need another fresh name.

{ fix r assume red : ([p] to x in m) ? k 7→ r
from xp xk have x1 : x] ([p] to x in m) ? k

by (simp add : abs-fresh)
with red have x2 : x] r by (rule reduction-fresh)
obtain z ::name where z : z] (x ,p,m,k ,r)

using ex-fresh[of (x ,p,m,k ,r)] by (auto simp add : fresh-prod)

61

Chapter 5. Formalization

have SN r
proof (cases rule:dismantle-strong-cases

[of [p] to x in m k r x x z])
case (5 r ′) have r : r = r ′ ? k and r ′: [p] to x in m 7→ r ′ by fact+

To handle the case of a reduction occurring somewhere in [p] to x in m, we need to
contract the freshness conditions to this subterm. This allows the use of the strong
inversion rule for the reduction relation.

from x1 x2 r
have xl :(x] [p] to x in m) and xr :x] r ′ by auto
from z have zl : z] ([p] to x in m) x 6= z

by (auto simp add : abs-fresh fresh-prod fresh-atm)
with r ′ have zr : z] r ′ by (blast intro:reduction-fresh)
— handle all reductions of [p] to x in m
from r ′ show SN r proof (cases rule:reduction.strong-cases

[where x=x and xa=x and xb=x and xc=x and xd=x
and xe=x and xf =xand xg=x and y=z])

The case where p 7→ p ′ is interesting, because it requires reasioning about the
reflexive transitive closure of the reduction relation.

case (r6 s s ′ t) hence ch: [p] 7→ s ′ r ′ = s ′ to x in m
using xl xr by (auto)

from this obtain p ′ where s: s ′ = [p ′] and p : p 7→ p ′

by (blast dest :red-Ret)
from p have ((m?k)[x ::=p]) 7→∗ ((m?k)[x ::=p ′])

by (rule red-subst)
with xk have ((m[x ::=p]) ? k) 7→∗ ((m[x ::=p ′]) ? k)

by (simp add : ssubst-forget)
hence sn: SN ((m[x ::=p ′]) ? k) using sn by (rule SN-trans)
from p xp have xp ′ : x] p ′ by (rule reduction-fresh)
from ch s have rr : r ′ = [p ′] to x in m by simp
from p q sn xp ′ xk
show SN r unfolding r rr by (rule ih-p)

next

case(r7 s t m ′) hence r ′ = [p] to x in m ′ and m 7→ m ′

using xl xr by (auto simp add : alpha)
hence rr : r ′ = [p] to x in m ′ by simp
from q 〈m 7→ m ′〉 have q 7→ m ′ ? k by(simp add : dismantle-red)
moreover have m ′ ? k = m ′ ? k .. — a triviality
moreover { from 〈m 7→ m ′〉 have (m[x ::=p]) ? k 7→ (m ′[x ::=p]) ? k

by (simp add : dismantle-red reduction-subst)
with sn have SN (m ′[x ::=p] ? k) .. }

ultimately show SN r using xp xk unfolding r rr by (rule ih-q)
next

case (r8 s t) — the β-case is handled by assumption
hence r ′ = m[x ::=p] using xl xr by(auto simp add : alpha)
thus SN r unfolding r using sn by simp

next

62

5.8. Sequencing Preserves Reducibility

case (r9 s) — the η-case is handled by assumption as well
hence m = [Var x] and r ′ = [p] using xl xr by(auto simp add : alpha)
hence r ′ = m[x ::=p] by simp
thus SN r unfolding r using sn by simp

qed (simp-all only : xr xl zl zr abs-fresh , auto)
— There are no other possible reductions of [p] to x in m.

next

case (6 k ′)
have k : k 7→ k ′ and r : r = ([p] to x in m) ? k ′ by fact+
from q k have q 7→ m ? k ′ unfolding stack-reduction-def by blast
moreover have m ? k ′ = m ? k ′ ..
moreover { have SN (m[x ::=p] ? k) by fact

moreover have (m[x ::=p]) ? k 7→ (m[x ::=p]) ? k ′

using k unfolding stack-reduction-def ..
ultimately have SN (m[x ::=p] ? k ′) .. }

moreover note xp
moreover from k xk have x] k ′

by (rule stack-reduction-fresh)
ultimately show SN r unfolding r by (rule ih-q)

next

The case of an assoc interaction between [p] to x in m and k is easily handled by
the induction hypothesis, since m[x ::=p] ? k remains fixed under assoc.

case (8 s t u L)
hence k : k = [z]u�L

and r : r = ([p] to x in (m to z in u)) ? L
and u: x] u
by(auto simp add : alpha fresh-prod)

let ?k = L and ?m = m to z in u
from k z have |?k | < |k | by (simp add : fresh-prod)
moreover have q = ?m ? ?k using k q by simp
moreover { from k u z xp have (?m[x ::=p] ? ?k) = (m[x ::=p]) ? k

by(simp add : fresh-prod forget)
hence SN (?m[x ::=p] ? ?k) using sn by simp }
moreover from xp xk k have x] p and x] ?k by auto
ultimately show SN r unfolding r by (rule ih-k)

qed (insert red z x1 x2 xp xk ,
auto simp add : fresh-prod fresh-atm abs-fresh)

} thus SN (([p] to x in m) ? k) ..
qed }

moreover have SN ((n[x ::=p]) ? k) by fact
moreover hence SN (n ? k) using 〈x] k 〉 by (rule sn-forget ′)
ultimately show ?thesis by blast

qed

Having established the claim above, we use it show that to-bindings preserve
reducibility.

63

Chapter 5. Formalization

lemma to-RED :
assumes s: s ∈ RED (T σ)
and t : ∀ p ∈ RED σ . t [x ::=p] ∈ RED (T τ)
shows s to x in t ∈ RED (T τ)

proof −
{ fix K assume k : K ∈ SRED τ
{ fix p assume p: p ∈ RED σ

hence snp: SN p using RED-props by(simp add : CR1-def)
obtain x ′::name where x : x ′] (t , p, K)

using ex-fresh[of (t ,p,K)] by (auto)
from p t k have SN ((t [x ::=p]) ? K) by auto
with x have SN ((([(x ′,x)] · t)[x ′::=p]) ? K)

by (simp add : fresh-prod subst-rename)
with snp x have snx ′: SN (([p] to x ′ in ([(x ′,x)] · t)) ? K)

by (auto intro: to-RED-aux)
from x have [p] to x ′ in ([(x ′,x)] · t) = [p] to x in t

by simp (metis alpha ′ fresh-prod name-swap-bij x)
moreover have ([p] to x in t) ? K = [p] ? [x]t�K by simp
ultimately have snx : SN ([p] ? [x]t�K) using snx ′

by (simp del : trm.inject)
} hence [x]t�K ∈ SRED σ by simp
with s have SN ((s to x in t) ? K) by(auto simp del : SRED .simps)
} thus s to x in t ∈ RED (T τ) by simp

qed

5.9 Fundamental Theorem

The remainder of this section follows [Nom] very closely. We first establish
that all well typed terms are reducible if we substitute reducible terms for
the free variables.

abbreviation
mapsto :: (name×trm) list ⇒ name ⇒ trm ⇒ bool (- maps - to - [55 ,55 ,55] 55)

where
θ maps x to e ≡ (lookup θ x) = e

abbreviation
closes :: (name×trm) list ⇒ (name×ty) list ⇒ bool (- closes - [55 ,55] 55)

where
θ closes Γ ≡ ∀ x τ . ((x ,τ) ∈ set Γ −→ (∃ t . θ maps x to t ∧ t ∈ RED τ))

theorem fundamental-theorem:
assumes a: Γ ` t : τ and b: θ closes Γ
shows θ<t> ∈ RED τ

using a b
proof(nominal-induct avoiding : θ rule: typing .strong-induct)

case (t3 a Γ σ t τ θ) — lambda case
〈Urban〉

64

5.9. Fundamental Theorem

next
case (t5 x Γ s σ t τ θ) — to case
have ihs :

∧
θ . θ closes Γ =⇒ θ<s> ∈ RED (T σ) by fact

have iht :
∧
θ . θ closes ((x , σ) # Γ) =⇒ θ<t> ∈ RED (T τ) by fact

have θ-cond : θ closes Γ by fact
have fresh: x] θ x] Γ x] s by fact+
from ihs have θ<s> ∈ RED (T σ) using θ-cond by simp
moreover
{ from iht have ∀ s∈RED σ. ((x ,s)#θ)<t> ∈ RED (T τ)

using fresh θ-cond fresh-context by simp
hence ∀ s∈RED σ. θ<t>[x ::=s] ∈ RED (T τ)

using fresh by (simp add : psubst-subst) }
ultimately have (θ<s>) to x in (θ<t>) ∈ RED (T τ) by (simp only : to-RED)
thus θ<s to x in t> ∈ RED (T τ) using fresh by simp

qed auto — all other cases are trivial

The final result then follows using the identity substitution, which is Γ-
closing since all variables are reducible at any type. This technique is stan-
dard for logical relations proofs.

fun
id :: (name×ty) list ⇒ (name×trm) list

where
id [] = []
| id ((x ,τ)#Γ) = (x ,Var x)#(id Γ)

lemma id-maps:
shows (id Γ) maps a to (Var a)

by (induct Γ) (auto)

lemma id-fresh:
fixes x ::name
assumes x : x] Γ
shows x] (id Γ)

using x
by (induct Γ) (auto simp add : fresh-list-nil fresh-list-cons)

lemma id-apply :
shows (id Γ)<t> = t

by (nominal-induct t avoiding : Γ rule: trm.strong-induct)
(auto simp add : id-maps id-fresh)

lemma id-closes:
shows (id Γ) closes Γ

proof −
{ fix x τ assume (x ,τ) ∈ set Γ

have CR4 τ by(simp add : RED-props CR3-implies-CR4)
hence Var x ∈ RED τ

by(auto simp add : NEUT-def normal-var CR4-def)

65

Chapter 5. Formalization

hence (id Γ) maps x to Var x ∧ Var x ∈ RED τ
by (simp add : id-maps)

} thus ?thesis by blast
qed

5.9.1 Strong normalization theorem

lemma typing-implies-RED :
assumes a: Γ ` t : τ
shows t ∈ RED τ

proof −
have (id Γ)<t>∈RED τ
proof −

have (id Γ) closes Γ by (rule id-closes)
with a show ?thesis by (rule fundamental-theorem)

qed
thust ∈ RED τ by (simp add : id-apply)

qed

theorem strong-normalization:
assumes a: Γ ` t : τ
shows SN (t)

proof −
from a have t ∈ RED τ by (rule typing-implies-RED)
moreover have CR1 τ by (rule RED-props)
ultimately show SN (t) by (simp add : CR1-def)

qed

This finishes our formalization effort. The last theorem corresponds directly
to Theorem 2.2.1, the theorem we set out to prove in Chapter 2. As noted
initially, this whole chapter is generated from the Isabelle theory file, which
consists of roughly 1500 lines of proof code. The reader is invited to replay
some of the more technical proofs using the theory file provided at the
authors website.2 A shorter proof script might have been obtained using
simple apply scripts instead of Isar structured proofs, but this would have
largely obscured the proof.

2http://www.ps.uni-sb.de/∼doczkal/master/

66

http://www.ps.uni-sb.de/~doczkal/master/

CHAPTER 6

Evaluation

In the first part of this chapter, we assess how much the nominal package
helps in keeping the formalization in Chapter 5 close to the pen-and-paper
version. This is followed by a discussion of the trusted base. In Section 6.3,
we briefly discuss some alternatives to nominal reasoning in Isabelle. We
conclude our evaluation by pointing out two restrictions of the Nominal
package that, we believe, warrant further investigation.

6.1 How Faithful is the Formalization

On of the main aspects of the Isabelle/Isar is the creation of formal proof
documents, documents that are both, human readable and machine check-
able. In this section, we want to evaluate how faithful our formalization is
to the (well readable) original proof.

6.1.1 Calculus and basic properties

Using nominal datatypes and some syntax annotations, terms and types can
be represented very close to the pen-and-paper version, but as motivated
in Section 4.5.1, we had to move to a domain-free version of λml. Since
we started the formalization of the calculus from scratch, all the simple
properties of the calculus, notably those of substitution, need to be proven
explicitly. Here one can see one of the strengths of the Nominal package.
Substitution is easily defined using the provided primitive recursion combi-
nator, and all the properties of substitution have simple inductive proofs,
using only nominal-induct and auto. This is possible because of the strong
induction principles, derived by the nominal package.

67

Chapter 6. Evaluation

In the case of the reduction relation, we need to impose more freshness
conditions than the pen-and-paper style presentation. These freshness con-
ditions are needed purely for the technical benefit of automatically deriving
strong reasoning principles. This is unfortunate, since the reduction relation
is, as we have shown, compatible with reasoning using the variable conven-
tion. However, this can not be established automatically, since the relation
is not vc-compatible.

6.1.2 Dismantling and the case analysis

The nominal package offers good support for defining primitive recursive
functions over α-terms, but support for non-primitive recursion is currently
very limited. The Isabelle function package only works on nominal datatypes
which do not involve binders and therefore behave like regular datatypes
having a permutation action associated with them. Defining non-primitive
recursive functions, like the dismantling function, requires explicit proofs of
pattern completeness, right-uniqueness and termination. These properties
are usually taken for granted in informal proofs. Similarly, we had to invest
substantial work to derive the case distinction on reductions of the form
t ? k 7→ r. In this particular case, formalizing the central reasoning principle
requires about as much work as its applications.

In this context, we note that the preferred nominal reasoning style, avoid-
ing explicit alpha renaming, requires collecting the various freshness condi-
tions during the course of reasoning and satisfying them using some strong
induction rule. While this overhead of collecting freshness conditions is neg-
ligible for small proofs, it can become a real burden in proofs that are already
lengthy and complex. In the main lemmas dismantle-cases and to-RED-aux,
this problem is alleviated to some extent by having shown adequacy of the
reduction relation, removing many of the freshness requirements.

6.1.3 Deviations

Apart from working in a domain-free setting, there are two other aspects,
where our formalization differs significantly from [LS05]. First, the strong
normalization theorem shown in Chapter 5 relies on a formalization of strong
normalization differing from the one Lindley and Stark use. As can be seen,
for example by comparing Figure 5.4 with the corresponding case of RED-
props, the differing characterizations have, in most situations, little influence
on the course of reasoning.

There is one exception, which is the only point where the argument in
Chapter 5 deviates significantly from [LS05]. Lindley and Stark prove their
central Lemma 7 (Figure 5.5) by induction on |k|+max(n?k)+max(p). To
be able to apply the induction hypothesis in the case where k makes a step,

68

6.2. Trusted Base

this requires establishing the fact that stack reduction does not increase the
stack length. Since our notion of strong normalization does not directly
provide bounds on the length of reduction sequences, this could not be
formalized directly. Hence, in Section 5.8.4, we use the stronger triple-induct
principle, allowing us to handle the case of a reduction k 7→ k′ by using
the induction hypothesis regardless of the length of k′. This simplification
naturally also applies to the pen-and-paper version of the proof, making
redundant the stack length lemma and its rather informal proof in [LS05].

6.2 Trusted Base

In formal proofs it is reasonable to explicitly state ones trusted base. Here,
the trusted base was kept as small as possible. It mainly includes consis-
tency of HOL and correctness of (the proof checking part of) its Isabelle
implementation. HOL-Nominal is only a definitional extension of HOL, so
it does not increase the trusted base. Beyond that, we have to trust that
the definitions and theorems stated in the logic actually have the intended
meaning. Due to our use of nominal logic, which allows theorems to be
stated exactly as one would do on paper, this coding gap is minimal. Using
a vc-compatible version of the reduction relation does not extend the trusted
base, since we have proven adequacy with respect to the version presented
in Section 2.1. Likewise for the nonstandard definition of strong normal-
ization, which is shown equivalent to the prevalent definition in terms of
infinite sequences.

6.2.1 Stack reductions and variables

In this context, we mention the one minor inaccuracy we found in [LS05].
Lindley and Stark state the definition of stack reductions as follows:

k 7→ k′ ≡ ∀t. t ? k 7→ t ? k′

!⇐⇒ x ? k 7→ x ? k′

for any variable x, claiming that the equivalence above follows since re-
duction is preserved under substitution. While the “=⇒” direction holds
trivially, the “⇐=” direction only follows from the preservation of reduction
under substitution if we have both x] k and x] k′. It is possible to drop
the second freshness condition via case analysis on the reduction relation.
While the proposed proof fails, the claim still appears reasonable, since the
reduction relation does not depend on any term being an unbound variable.

In Chapter 5, we only need the trivial direction of the above equivalence,
but this hinges on the adequacy proof of the reduction relation. Aydemir et
al. [ACP+08] note that one of the drawbacks of the nominal approach, as

69

Chapter 6. Evaluation

opposed to the locally nameless approach (see below), is that the freshness
contexts for the variables has to be provided upon instantiation of a strong
case/induction rule r. This means there is no easy way to ensure freshness
of the names stemming from the various cases of r for terms introduced
later on. However, fixing arbitrary terms is required for the introduction of
stack reductions, if using the definition directly. This provided the initial
motivation for the adequacy proof, eliminating freshness restrictions on those
rules involved in showing stack reductions. On the other hand, obtaining
fresh variables in the middle of a proof is easy. So the above equivalence,
even the resticted version, requiring freshness for k and k′, could also be
used in these cases. This would allow skipping the adequacy proof, adding
the trivial, but tedious to obtain, adequacy result to the trusted base.

6.3 Related Work

Nominal reasoning is certainly not the only way to formalize reasoning about
inductively defined data structures incorporating binders. Here, we point
out two alternatives, both requiring less metatheory than the nominal ap-
proach, but at the expense of a significantly larger coding gap.

6.3.1 HOL-Nominal vs. Locally Nameless

Aydemir et al. [ACP+08] develop a lightweight alternative to nominal rea-
soning. One part of this theme is to use a locally nameless representation
[MP99, Ler07] of the λ-calculus, which, like the De Bruijn representation
[Bru72], has a single representative for every alpha equivalence class. The
locally nameless approach uses variables only when they occur free and uses
De Bruijn indices for bound variables. Unlike nominal datatypes, where
every element of the datatype corresponds to some λml term, the locally
nameless representation requires an extra predicate to check whether the
term is locally closed, meaning that all occurring indices are bound by some
lambda. If one wants to reason about an abstraction, one can open the body
of the abstraction with some suitable variable, writing tx for the body of λt
opened with x.

In this context, the authors propose cofinite quantification to reason about
inductively defined relations involving binders. Instead of specifying rules
using the standard (existential) presentation of rules, one employs (cofinite-
ly quantified) rules which are only applicable if the premise holds for all
variables not in L, for some finite set L.

x /∈ fv(t) Γ, x : σ ` tx : τ
Γ ` λt : σ → τ

Exists
∀x /∈ L. Γ, x : σ ` tx : τ

Γ ` λt : σ → τ
Cofinite

Proving adequacy of the cofinite version can be difficult, but the cofinite

70

6.4. Future Research Directions

version provides very strong induction principles. While inverting the exis-
tential rule proves the premise only for some specific name, the cofinite rule
provides an infinite supply of names for which the premise holds.

Another advantage of the locally nameless approach is that it requires
very little infrastructure. Aydemir et al. provide an implementation of the
required metatheory in Coq. In the current state of development/documen-
tation, it requires, however, substantial experience with the Coq proof assis-
tant. The technique does not rely on any particular feature of Coq, hence,
the approach could be applied just as well to the Isabelle/HOL setting, but
this would require reimplementing the metatheory in Isabelle.

6.3.2 Structural Logical Relations in Twelf

We initially noted that Twelf has a relatively weak meta-logic. This pre-
cludes a direct definition of reducibility in the style of Section 5.5, but this
does not mean that it is entirely impossible to do logical relations proofs
in the Twelf framewok. Using Structural Logical Relations [SS08] one can
also do logical relation proofs in Twelf. The idea is to explicitly represent
reasoning about the logical relation in an auxiliary assertion logic. Due to
the weak meta-logic of Twelf, this approach requires to assume termination
of cut-elimination for this auxiliary logic, because the corresponding algo-
rithm does not termination check in Twelf. Using this approach, Sarnat and
Schürmann have even formalized a proof of weak normalization to β-short
η-long normal forms for the computational meta-language1, also following
[LS05] in the use of >>-lifting.

Sarnat and Schürmann handle the problem of alpha equivalence using
higher-order abstract syntax, where abstractions are represented as func-
tions from terms to terms. In contrast, the implementation of nominal logic
uses weak higher-order abstract syntax, representing abstraction functions
as functions of type name ⇒ trm option, as explained in Section 4.5.2.

6.4 Future Research Directions

There are a number of issues that came up while doing the formalization,
some of these may warrant further investigation.

6.4.1 Inductively defined relations

In [UBN07] Urban et al. describe conditions which allow the induction prin-
ciple for inductively defined relations to be strengthened automatically to

1www.twelf.org/slr

71

Chapter 6. Evaluation

include a variant of the Barendregt Variable Convention. The most impor-
tant restriction is that any variable occurring in binding position must be
fresh for the conclusion of the rule. Unfortunately, this condition requires
the corresponding relations to be stated with additional freshness conditions.
As shown in Section 5.2, for some relations these additional freshness con-
ditions (as one would hope) do not change the relation being defined. This
implies that for these relations the freshness conditions are semantically not
necessary.

One particularly easy case are variables which occur only in binding po-
sition and all occurrences of the binder in the rule have the same scope.
Here one can always establish the required freshness for the conclusion of
the rule via alpha renaming. The proofs for r3, r6, r7, r8, and r9 (pages
36-39) all largely follow one of two patterns, depending on whether the re-
duction occurs underneath the binder or in another subterm. So there is
the hope to refine the notion of vc-compatibility or at least automate these
proofs. However, the cases where one binder appears in the scope of another
– as in the assoc rule r10 – are rather tedious by hand, and removing these
freshness conditions automatically appears to be difficult.

6.4.2 Functions

Another issue worthwile investigating is to add some support for non-
primitive recursion involving binders. There seems to be no theoretical work
on this subject so far. On the other hand, the right uniqueness proof for
the dismantling function only depends on the fact that the function maps
α-equivalent arguments to recursive calls on α-equivalent arguments. A first
step may be to generalize this to arbitrary tail recursive functions satisfying
the invariant above.

72

BIBLIOGRAPHY

[Abe04] Andreas Abel. Normalization for the Simply Typed λ-calculus
in Twelf. In LFM’04: Fourth International Workshop on Logical
Frameworks and Meta-Languages, Informal Proceedings, 2004.

[ABF+05] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,
J. Nathan Foster, Benjamin C. Pierce, Peter Sewell, Dim-
itrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and
Steve Zdancewic. Mechanized metatheory for the masses: The
poplmark challenge, 2005. http://www.cis.upenn.edu/˜plclub/
wiki-static/poplmark.pdf.

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce,
Randy Pollack, and Stephanie Weirich. Engineering formal
metatheory. In POPL ’08: Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 3–15, New York, NY, USA, 2008. ACM.

[Alt93] Thorsten Altenkirch. A formalization of the strong normalization
proof for System F in LEGO. In TLCA, volume 664 of Lecture
Notes in Computer Science, pages 13–28. Springer-Verlag, 1993.

[Bar85] Hendrik Pieter Barendregt. The lambda calculus, volume
103 of Studies in logic and the foundations of mathematics.
Elsevier/North-Holland, rev. ed., 2nd printing 1985 edition, 1985.

[BBDP98] P. N. Benton, G. M. Bierman, and V. C. V. De Paiva. Com-
putational types from a logical perspective. J. Funct. Program.,
8(2):177–193, 1998.

73

http://www.tcs.informatik.uni-muenchen.de/~abel
http://www.tcs.informatik.uni-muenchen.de/~abel
http://www.cis.upenn.edu/~plclub/wiki-static/poplmark.pdf
http://www.cis.upenn.edu/~plclub/wiki-static/poplmark.pdf
http://doi.acm.org/10.1145/1328438.1328443
http://doi.acm.org/10.1145/1328438.1328443
http://dx.doi.org/10.1007/BFb0037095
http://dx.doi.org/10.1007/BFb0037095
http://dx.doi.org/10.1017/S0956796898002998
http://dx.doi.org/10.1017/S0956796898002998

Bibliography

[BBLS06] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut
Schwichtenberg. Program extraction from normalization proofs.
Stud. Log., 82(1):25–49, 2006.

[Bru72] N. G. De Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with application
to the church-rosser theorem. Indag. Math, 34:381–392, 1972.

[BS00] Gilles Barthe and Morten Heine Sørensen. Domain-free pure type
systems. J. Funct. Program., 10(5):417–452, 2000.

[BU08] Stefan Berghofer and Christian Urban. Nominal Inversion Prin-
ciples. In TPHOLs ’08: Proceedings of the 21st International
Conference on Theorem Proving in Higher Order Logics, volume
5170 of Lecture Notes in Computer Science, pages 71–85, Berlin,
Heidelberg, 2008. Springer-Verlag.

[CH88] Thierry Coquand and Gerard Huet. The calculus of construc-
tions. Inf. Comput., 76(2-3):95–120, 1988.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined
types. In COLOG ’88: Proceedings of the International Con-
ference on Computer Logic, pages 50–66, London, UK, 1990.
Springer-Verlag.

[Doc07] Christian Doczkal. Strong normalisation of call-by-push-value.
B.Sc. thesis, Universität des Saarlandes, 2007.

[DX07] Kevin Donnelly and Hongwei Xi. A formalization of strong
normalization for simply-typed lambda-calculus and System F.
Electr. Notes Theor. Comput. Sci., 174(5):109–125, 2007.

[Gab02] Murdoch J. Gabbay. FM-HOL, a higher-order theory of names.
In F. Kamareddine, editor, 35 Years of Automath. Heriot-Watt
University, Edinburgh, Scotland, April 2002.

[GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and
Types. Cambridge University Press, New York, NY, USA, 1989.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. J. ACM, 40(1):143–184, 1993.

[Hue75] Gérard P. Huet. A unification algorithm for typed lambda-
calculus. Theor. Comput. Sci., 1(1):27–57, 1975.

[Jec71] Thomas J. Jech. Fraenkel-Mostowski models. In Lectures in
Set Theory with Particular Emphasis on the Method of Forc-
ing, volume 217 of Lecture Notes in Mathematics, pages 122–125.
Springer, 1971.

74

http://dx.doi.org/10.1007/s11225-006-6604-5
http://dx.doi.org/10.1017/S0956796800003750
http://dx.doi.org/10.1017/S0956796800003750
http://dx.doi.org/10.1007/978-3-540-71067-7_10
http://dx.doi.org/10.1007/978-3-540-71067-7_10
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/j.entcs.2007.01.021
http://dx.doi.org/10.1016/j.entcs.2007.01.021
http://doi.acm.org/10.1145/138027.138060
http://doi.acm.org/10.1145/138027.138060
http://dx.doi.org/10.1007/BFb0061156

Bibliography

[Kőn26] Dénes Kőnig. Sur les correspondances multivoques des ensem-
bles. Fund. Math., 8:114–134, 1926.

[Ler07] Xavier Leroy. A locally nameless solution to the poplmark chal-
lenge. 2007. http://hal.inria.fr/inria-00123945/en/.

[Lev99] Paul Blain Levy. Call-by-push-value: A subsuming paradigm.
In TLCA, volume 1581 of Lecture Notes in Computer Science,
pages 228–242. Springer-Verlag, 1999.

[LS05] Samuel Lindley and Ian Stark. Reducibility and >>-lifting for
Computation Types. In Proceedings of Typed Lambda Calculi
and Applications (TLCA ’05), volume 3461 of Lecture Notes in
Computer Science, pages 262–277. Springer, Apr 2005.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Com-
put., 93(1):55–92, 1991.

[MP99] James Mckinna and Robert Pollack. Some lambda calculus and
type theory formalized. J. Autom. Reason., 23:373–409, 1999.

[Nip] Tobias Nipkow. A Tutorial Introduction to Structured
Isar Proofs. http://isabelle.in.tum.de/dist/Isabelle/doc/isar-
overview.pdf.

[Nom] Nominal Methods Group. Strong normalisation proof from the
proofs and types book. http://isabelle.in.tum.de/dist/library/
HOL/HOL-Nominal/Examples/SN.html.

[NPW09] Tobias Nipkow, Lawrence C. Paulson, and Markus Wen-
zel. A Proof Assistant for Higher-Order Logic, April 2009.
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf.

[Pau89] L. C. Paulson. The foundation of a generic theorem prover. J.
Autom. Reason., 5(3):363–397, 1989.

[Pit03] Andrew M. Pitts. Nominal logic, a first order theory of names
and binding. Inf. Comput., 186(2):165–193, 2003.

[Pit06] Andrew M. Pitts. Alpha-structural recursion and induction. J.
ACM, 53(3):459–506, 2006.

[PN94] L. C. Paulson and T. Nipkow. Isabelle: A Generic Theorem
Prover, volume 828/1994 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 1994.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Pro-
gramming Symposium, Proceedings Colloque sur la Programma-
tion, pages 408–423, London, UK, 1974. Springer-Verlag.

75

http://hal.inria.fr/inria-00123945/en/
http://dx.doi.org/10.1007/11417170_20
http://dx.doi.org/10.1007/11417170_20
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf
http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html
http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html
http://isabelle.in.tum.de/dist/Isabelle/doc/tutorial.pdf
http://dx.doi.org/10.1007/BF00248324
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://doi.acm.org/10.1145/1147954.1147961

Bibliography

[SS08] Carsten Schürmann and Jeffrey Sarnat. Structural Logical Rela-
tions. In LICS ’08: Proceedings of the 2008 23rd Annual IEEE
Symposium on Logic in Computer Science, pages 69–80, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[UBN07] Christian Urban, Stefan Berghofer, and Michael Norrish. Baren-
dregts variable convention in rule inductions. In CADE ’07:
Proceedings of the 21th International Conference on Automated
Deduction, volume 4603 of Lecture Notes in Computer Science,
pages 35–50. Springer, 2007.

[Urb08] Christian Urban. Nominal Techniques in Isabelle/HOL. J. Au-
tom. Reason., 40(4):327–356, 2008.

[Wen02] Markus M. Wenzel. Isabelle/Isar – a versatile environment for
human-readable formal proof documents. PhD thesis, Technische
Universiät München, 2002. Revised version to cover Isabelle 2002.

[Wen08] Makarius Wenzel. The Isabelle/Isar Reference Manual, June
2008. http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf.

76

http://dx.doi.org/10.1109/LICS.2008.44
http://dx.doi.org/10.1109/LICS.2008.44
http://dx.doi.org/10.1007/s10817-008-9097-2
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf

	Introduction
	Outline

	Strong Normalization via TT-lifting
	The Lam-ml-calculus
	Strong Normalization
	TT-lifting for Computation Types

	Nominal Logic
	Atoms, Permutations, and Support
	Products and Functions
	Finite Support vs. Choice

	Introduction to Isabelle/HOL-Nominal
	Short Description of the Isabelle System
	Writing Proof Scripts in Isabelle
	The Isar Structured Proof Language
	Calculatorial reasoning
	Generalized elimination
	Induction and case analysis
	Raw proof blocks

	The Most Frequently used Proof Methods
	Simplification
	The classical reasoner
	The auto method
	Sledgehammer and metis

	From HOL to HOL-Nominal
	Atoms and support in HOL-Nominal
	Identifying terms up to alpha-equivalence
	Induction and recursion over alpha-terms
	Rule inductions and nominal inversion

	Formalization
	The Calculus
	Typing
	Substitution
	Facts about substitution

	The Reduction Relation
	Strong Normalization
	Stacks
	Stack dismantling
	Reduction and substitution for stacks

	Reducibility for Terms and Stacks
	Properties of the Reducibility Relation
	Strong normalization for subterms and stacks
	A new case construct on the reducts of t * k
	Proof of the properties of reducibility

	Abstraction Preserves Reducibility
	Sequencing Preserves Reducibility
	Triple induction principle
	Strengthening of the dismantle case rule
	Strong normalization and substitution
	Central lemma

	Fundamental Theorem
	Strong normalization theorem

	Evaluation
	How Faithful is the Formalization
	Calculus and basic properties
	Dismantling and the case analysis
	Deviations

	Trusted Base
	Stack reductions and variables

	Related Work
	HOL-Nominal vs. Locally Nameless
	Structural Logical Relations in Twelf

	Future Research Directions
	Inductively defined relations
	Functions

