
A Proof of Strong Normalization for Call-by-push-value

Christian Doczkal a, Jan Schwinghammer a,∗

a Programming Systems Lab, Saarland University, Saarbrücken, Germany

Abstract

The call-by-push-value (CBPV) calculus is a general framework within which one can study computational effects such as state,
nondeterminism, and input/output. Compared to the simply typed lambda calculus, the CBPV type system is much more fine-
grained and distinguishes between value and computation types. We give a self-contained proof of strong normalization for
CBPV, employing a notion of >>-closure to adapt the Girard-Tait method to CBPV computation types.

Key words: Programming calculi, formal semantics, normalization

1 Introduction

The call-by-push-value (CBPV) calculus was introduced
by Levy as a means to study the call-by-name and call-
by-value semantics of lambda calculus in a single frame-
work [4,5]. As a consequence, CBPV is much more fine-
grained than simply typed lambda calculus: a central
idea is to distinguish values from computations, both
at the level of terms and types.

While there is a great amount of evidence that CBPV
achieves the goal of providing a useful meta language
for semantics, less is known about its operational
properties. Previously, operational aspects of CBPV
have only been considered in the form of big-step
evaluation, where termination is comparatively easy to
establish, and a (deterministic) CK-machine semantics.

In this short note we prove the strong normaliza-
tion of the calculus, when equipped with full (non-
deterministic) βη reduction.

1.1 The Problem

In the classic Girard-Tait reducibility method for prov-
ing normalization, a family of sets of ‘reducible’ terms
is defined by induction on types [11,3]. For instance, a
term of function type A → B is reducible iff its appli-
cation to reducible arguments (of type A) yields a re-
ducible term (of type B).

∗Corresponding author.
URLs: www.ps.uni-sb.de/~doczkal (Christian Doczkal),

www.ps.uni-sb.de/~jan (Jan Schwinghammer).

Adapting the definition of these predicates to call-by-
push-value is problematic. For example, CBPV provides
a type FA, of computations that return values of type
A. The only way to deconstruct terms M of this type
is by sequencing, M to x.N, where the type B of N
need not be related to A in any way. As a consequence
the definition of the set of reducible terms of type FA
cannot in general refer to reducibility of terms of type B.

Indeed, the same problem arises in Moggi’s computa-
tional metalanguage [9], and also in the simply typed
lambda calculus with sums, where the elimination
constructs for monadic and sum types, resp., prevent
straightforward inductive definitions of reducibility
(cf. [10,1]). An alternative to a direct proof of strong
normalization is to consider simulations in calculi that
are already known to be terminating. E.g. [2] considers
encodings of the lambda calculus with sums into the
simply typed lambda calculus. While such an approach
could be possible for CBPV, we note that already in [2]
the encoding is rather subtle and non-trivial.

1.2 Reducibility and Stacks

Inspired by recent work of Lindley and Stark on the
strong normalization of Moggi’s computational meta-
language, we prove the strong normalization of CBPV
with stacks. The central proof idea is the >>-lifting sug-
gested in [7], although we found it slightly more con-
venient to use a >>-closure operation. With the help of
stacks that represent evaluation contexts, one can di-
rectly observe strong normalization of arbitrary com-
putations.

In fact, in using >>-closure we obtain a pleasingly

Draft 9 November 2007

Γ , x:A `v x : A
Γ `c M : B

Γ `v thunk M : UB
Γ ` V : UB

Γ `c force V : B

Γ `v V : Aj
Γ `v

〈
j, V

〉
:
∑
i∈I Ai

(j ∈ I)
Γ `v V :

∑
i∈I Ai ∀i ∈ I. Γ , x:Ai `c Mi : B

Γ `c pm V as {. . . , 〈i, x〉 .Mi , . . .} : B

Γ `v ? : 1

Γ `v V : A Γ `v V ′ : A′

Γ `v
(
V,V ′

)
: A×A′

Γ `v V : A×A′ Γ , x:A,y :A′ `c M : B
Γ `c pm V as (x, y) .M : B

Γ `v V : A
Γ `c returnV : FA

Γ `c M : FA Γ , x:A `c N : B
Γ `c M to x.N : B

∀i ∈ I. Γ `c Mi : Bi
Γ `c λ{. . . , i.Mi , . . .} :

∏
i∈I Bi

Γ `c M :
∏
i∈I Bi

Γ `c M j : Bj
(j ∈ I)

Γ , x:A `c M : B
Γ `c λx.M : A→ B

Γ `c M : A→ B Γ `v V : A
Γ `c M V : B

Fig. 1. CBPV terms

straightforward, uniform definition of reducibility for
computations, defined as adjoints to sets of reducible
stacks. The strict separation between values and com-
putations in CBPV is emphasized by the fact that re-
ducibility of the former is defined without recourse to
elimination constructs.

As in [7], the consideration of stacks allows for a treat-
ment not only of βη reductions but also of permutation
conversions. These reemerge as reductions on stacks,
and it is then easily seen that each application decreases
the length of the stack.

The next section recalls Levy’s calculus (Section 2.1)
and presents its small-step operational semantics (Sec-
tion 2.2). Section 3.1 defines the >>-closure we have in
mind, and the reducibility predicates. Once their prop-
erties are developed (Section 3.2), proving strong nor-
malization is a trivial consequence.

2 The Call-by-push-value calculus

2.1 Syntax

2.1.1 Terms and Types

As mentioned above, CBPV distinguishes between val-
ues denoted by V,W , and computations, denoted M,N.
Correspondingly there are value types, ranged over by
A, and computation types, ranged over by (underlined)
letters B, C. Types are defined by the following gram-

mar, where I stands for a finite index set:

A ::= UB |
∑
i∈I Ai | 1 | A×A

B ::= FA |
∏
i∈I Bi | A→ B

Here, UB is the type of ‘thunks’ of computations of
type B, and 1 is a unit type. Note that sums and binary
products are value types while general products

∏
i∈I Bi

and function types A→ B belong to computation types:∏
i∈I Bi has projections, whereas binary products A×A′

(as well as sums) use pattern matching in their respec-
tive elimination constructs. Finally, FA is the type of
‘returners’, that embed values as trivial computations.

Figure 1 defines the (typed) syntax of CBPV: there are
judgements Γ `v V : A for values, and Γ `c M : B for
computations. In either case, only value types appear in
the type context Γ = x1:A1, . . . , xn:An. The keyword pm
stands for pattern matching, and M to x.N denotes the
sequencing of computations: if M returns a value, then
N is executed, with the value bound to x. We refer to [5]
for a motivation of the choice of these constructs. (The
notation in loc. cit. differs from ours in that application
M V is written in reverse order as V ‘M .)

We write Val(A) for the set of (closed) values V such
that � `v V : A. Likewise, we define Comp(B) as the set
of computations M where � `c M : B.

2.1.2 Stacks and stack typing

Stacks were introduced to CBPV as a conceptual device
for structuring the semantics, and also appear naturally

2

Γ `s nil : C Ç C

Γ , x:A `c M : B Γ `s K : B Ç C
Γ `s [·] to x.M ::K : FA Ç C

Γ `s K : Bj Ç C
Γ `s j ::K :

∏
i∈I Bi Ç C

(j ∈ I)

Γ `v V : A Γ `s K : B Ç C
Γ `s V ::K : (A→ B) Ç C

Fig. 2. Stacks and stack typing

in abstract machine-based operational semantics [5,6].
Intuitively, stacks represent the context of a CBPV com-
putation, and thus there are stack frames correspond-
ing to the sequential composition of computations, and
projections from products, and to function arguments.
They are defined formally in Figure 2, where B Ç C de-
notes the type of stacks that represent computations
of type C once a computation of type B is plugged
in. We write Stk(B) for the set of stacks K such that
� `s K : B Ç C for some C.

The dismantling of a stack is defined by moving frames
from the stack onto the term:

M • nil = M
M • ([·] to x.N ::K) = (M to x.N) •K

M • j ::K = (M j) •K
M • V ::K = (M V) •K

This operation is employed as a tool for reasoning about
stacks in [6], along with the concatenation of stacks. We
will also make heavy use of dismantling below when
lifting reducibility predicates from value types to com-
putation types. It is easy to see that Γ `c M : B and
Γ `s K : B Ç C implies Γ `c M •K : C.

2.2 Operational Semantics

Several concrete operational semantics of CBPV have
been considered in previous work, amongst them a
big-step semantics, and an (equivalent) formulation in
terms of a CK machine. The reduction rules we consider
here are derived from the equational theory of CBPV as
presented in [5], which contains both these semantics,
and is itself preserved by all the denotational models of
CBPV. The rules are collected in Figure 3, and fall into
three categories described in more detail next.

β reductions

force (thunk M) -→ M
pm

〈
j, V

〉
as {. . . , 〈i, x〉 .Mi , . . .} -→ Mj[V /x]

pm (V ,W) as (x, y) .M -→ M[V /x,W /y]
return V to x.M -→ M[V /x]
λ{. . . , i.Mi , . . .} j -→ Mj

(λx.M) V -→ M[V /x]

η reductions (where x, y ∉ fv(M))

thunk (force V) -→ V
pmV as {. . . , 〈i, x〉 .M[〈i, x〉 / z], . . .} -→ M[V /z]

pm V as (x, y).M[(x, y) / z] -→ M[V /z]
M to x.(return x) -→ M
λ{. . . , i.(M i), . . .} j -→ M

λx.(M x) -→ M

permutative reductions (where x ∉ fv(M ′′, V))

(M to x.M′) to y.M ′′ -→ M to x.(M ′ to y.M′′)
(M to x.M′) j -→ M to x.(M j)
(M to x.M ′)V -→ M to x.(M V)

Fig. 3. Operational semantics

2.2.1 β reductions

There are six β rules, one for each type constructor
(there is none for 1). As mentioned above, values of
sum and product types are deconstructed using pat-
tern matching. Projection pairs, on the other hand, are
similar to procedures except that they are applied to a
tag and correspondingly no binding takes place.

2.2.2 η reductions

There are also six η rules (again there is none for terms
of type 1). Note that the rules for pattern matching
assume that all occurrences of the pattern variables in
M are again in the form of the pattern.

2.2.3 Permutative reductions

Permutative conversions appear in many calculi with
binding constructs other than lambdas, and have ‘ad-
ministrative’ character: they serve to rearrange paren-
thesis, thus enabling further reductions. Their logical
significance, via the Curry-Howard correspondence, is
to establish the subformula property with respect to
natural deduction proofs e.g. in the presence of dis-
junctions.

In the equational theory of CBPV there are three such
permutative conversions which distribute the elimina-

3

tion construct [·] to x.M ′ for returner types FA over
those of the other computation types.

2.2.4 Reductions on stacks

The reduction rules on terms induce a reduction on
stacks, by

K -→ K′ ⇐⇒ ∀M. M •K -→ M •K′

Intuitively, K -→ K′ if this reduction is possible inde-
pendent of the particular termM plugged in. The length
|K| of a stack K = Fn :: . . . ::F1 :: nil is n.

Lemma 1 (Stack length) For all K,K′, if K -→ K′ then
|K| ≥ |K′|.

PROOF. Since the reduction cannot depend on a spe-
cific term plugged into K, it must be caused either
by reduction within a single stack frame, or by an
interaction between adjacent stack frames. In the
former case, it is clear that the length cannot in-
crease (it may decrease, though, in the case where
K = Fn :: . . . :: [·] to x.return x ::K′′ -→ Fn :: . . . ::K′′ by
an η reduction). The only interaction between stack
forms is due to the permutative reductions, which also
give |K′| = |K| − 1.

3 Strong Normalization

We write SN for the set of strongly normalizing terms
(either values, computations, or stacks). Since -→ is
finitely branching, we can associate to each term P ∈
SN the length ν(P) ∈ N of a longest reduction se-
quence from P . Note that P[Q/x] ∈ SN implies that
P ∈ SN .

3.1 Reducibility for Computation Types and Stacks

For every computation type B we consider the pair of
operations

(·)> : P(Comp(B))→ P(Stk(B))
T> = {K ∈ Stk(B) ∀M ∈ T . M •K ∈ SN}
(·)> : P(Stk(B))→ P(Comp(B))
S> = {M ∈ Comp(B) ∀K ∈ S. M •K ∈ SN}

It is easy to see that these operations form a Galois con-
nection between the complete lattices of sets of com-
putations and sets of stacks, ordered by inclusion: for
all T and S,

T ⊆ S> ⇐⇒ T> ⊇ S

Thus they induce a closure operation T , T>>, and we
will make use of the following property below.

redv
UB = {thunk M M ∈ redc

B}
redv∑

i∈I Ai = {
〈
j, V

〉
j ∈ I, V ∈ redv

Aj}
redv

1 = {?}
redv

A×A′ = {
(
V,V ′

)
V ∈ redv

A, V ′ ∈ redv
A′}

redc
B = (reds

B)
>

reds
FA = {return V V ∈ redv

A}
>

reds∏
i∈I Bi = {λ{. . . , i.Mi , . . .} ∀j. Mj ∈ redc

Bj}
>

reds
A→B = {λx.M ∀V ∈ redv

A. M[V /x] ∈ redc
B}
>

Fig. 4. Reducibility candidates

Fact 2 (Extensiveness) The operation (·)>> is exten-
sive, i.e., T ⊆ T>> for every T ⊆ Comp(B).

Figure 4 defines type-indexed families redv
A and redc

B of
reducible terms, by induction on types. In fact, this is
achieved by simultaneously defining a similar family of
reducibility candidates reds

B on stacks. In the following
we can restrict attention to closed terms, due to the fol-
lowing observation (which relies on the extensiveness
of the operation T , T>>).

Fact 3 (Inhabitation) For all types A and B there are
V ∈ Val(A) and M ∈ Comp(B) such that V ∈ redv

A and
M ∈ redc

B , resp.

3.2 Proving Strong Normalization

We proceed ‘as usual’, by first proving that reducibility
implies strong normalization, is reduction-closed, and
expansion-closed. A computation M is neutral if it is
not an introduction form, i.e., if it is not one of return V ,
λ{. . . , i.Mi , . . .}, or λx.M′.

Lemma 4 For all value types A the following holds:

(V1) If V ∈ redv
A then V ∈ SN .

(V2) If V ∈ redv
A and V -→ V ′ then V ′ ∈ redv

A.

Similarly, for all computation types B:

(S1) If K ∈ reds
B then K ∈ SN .

(S2) nil ∈ reds
B .

and

(C1) If M ∈ redc
B then M ∈ SN .

(C2) If M ∈ redc
B and M -→ M′ then M′ ∈ redc

B .
(C3) If M′ ∈ redc

B for all M′ such that M -→ M′, and M
is neutral, then M ∈ redc

B .

PROOF. The properties are proved simultaneously by
induction on the type. We establish (V1) and (V2) first.

4

• For 1 this is immediate since ? is the only term to
consider.

• For UB assume that V = thunk M . If V ∈ redv
UB

then M ∈ redc
B , thus M ∈ SN by part (C1) of the

induction hypothesis. We show V ∈ SN by induc-
tion on ν(M). If M is not of the form force W then
V -→ V ′ only if V ′ = thunkM′ andM -→ M′. But then
ν(M ′) < ν(M) and the result follows by induction
hypothesis. If M = force W then there is additionally
the η reduction V -→ W possible. Now W ∈ Val(UB)
implies that W = thunk N for some N. But then also
M = force(thunk N) -→ N by β reduction. In partic-
ular, ν(N) < ν(M) and we can apply the induction
hypothesis again.

A similar case distinction on the reducts of V shows
that (V2) holds, using part (C2) of the induction hy-
pothesis for the subterm M .

• For
∑
i∈I Ai and A×A′, (V1) and (V2) follow by induc-

tion hypothesis, using the fact that all reductions are
necessarily found in proper subterms of V ∈ redv∑

i∈I Ai
and V ∈ redv

A×A′ , respectively.

Next, for computation types, we consider (S1). Assume
K ∈ reds

B , then by Fact 3 there exists some N ∈ redc
B .

Thus,N•K ∈ SN by definition of redc
B = (reds

B)
>

. Since
K -→ K′ only if for all N, N • K -→ N • K′, the strong
normalization of K follows.

We prove (S2):

• Since for all V ∈ Val(A), V ∈ redv
A implies V ∈ SN

by part (V1) of the induction hypothesis, we obtain
return V • nil = return V ∈ SN . Hence, nil ∈ reds

FA.
• To show nil ∈ reds

A→B , let M = λx.N ∈ Comp(A → B)
be such that N[V /x] ∈ redc

B for all V ∈ redv
A. By

part (C1) of the induction hypothesis,N[V /x] ∈ SN .
From this it is easy to conclude that M • nil = M ∈
SN , which was to show.

• AssumeM = λ{. . . , i.Mi , . . .} ∈ Comp(
∏
i∈I Bi) is such

that Mi ∈ redc
Bi for all i. Thus by induction Mi ∈ SN

which implies M • nil = M ∈ SN .

Now (C1)–(C3) can be proved uniformly for all computa-
tion types: property (C1) follows directly sinceM ∈ redc

B

and (S2) imply, by definition of redc
B = (reds

B)
>

, that
M = M • nil ∈ SN .

Next, assume M ∈ redc
B and M -→ M′. Let K ∈ reds

B ;
to establish (C2) we must show that M ′ • K ∈ SN . But
since M -→ M′ implies M • K -→ M′ • K this is just a
consequence of M • K ∈ SN which follows from the
reducibility of M .

Finally, to prove (C3), assume that M is neutral and
M′ ∈ redc

B for all M ′ such that M -→ M′, and let K ∈
reds

B . As seen in the proof of (S1) above, K is strongly
normalizing so that we can use induction on ν(K) to

prove M • K ∈ SN , from which M ∈ redc
B follows

since K ∈ reds
B was chosen arbitrarily. Since M is as-

sumed neutral, the only possible reduction descendants
of M •K are M′ •K and M •K′. The former is strongly
normalizing as M′ ∈ redc

B and K ∈ reds
B , while for the

latter we have ν(K′) < ν(K) and thus the induction hy-
pothesis applies.

Next, we aim to show that every typable, closed term
is reducible. To this end, we must generalize to terms
with free variables in order to obtain an induction hy-
pothesis that is sufficiently strong. This gives the fol-
lowing statement, corresponding to the ‘basic lemma’
of logical relations for lambda calculus [8].

Lemma 5 (Fundamental property) Suppose that Γ =
x1:A1, . . . xn:An and Vi ∈ redv

Ai for all i = 1, . . . , n.

(1) If Γ `v V : A then V[~V / ~x] ∈ redv
A.

(2) If Γ `c M : B then M[~V / ~x] ∈ redc
B .

By parts (V1) and (C1) of Lemma 4 it is therefore imme-
diate that closed typable terms are strongly normaliz-
ing. This extends to open terms by observing that V ∈
SN iff return V ∈ SN , and M ∈ SN iff λ~x.M ∈ SN .
Thus we have shown:

Theorem 6 (Strong normalization) Reduction in CBPV
is strongly normalizing.

It remains to prove Lemma 5, which we do in the fol-
lowing.

Lemma 7 If K ∈ reds
BÇC and M[V /x] ∈ redc

B for all
V ∈ redv

A, then [·] to x.M ::K ∈ reds
FAÇC .

PROOF. Let V ∈ redv
A. We must show that N =

return V • ([·] to x.M ::K) = (return V to x.M) • K ∈
SN . By assumption and Lemma 4 (V1,C1), both
V ∈ SN and M[V /x] • K ∈ SN , and we proceed
by induction on ν(V) + ν(M • K) + |K|. Consider the
reductions of N:

• By a β reduction, N -→ M[V /x]•K which is strongly
normalizing.

• If M = return x then, by an η reduction, N -→
return V • K. This is just M[V /x] • K thus strongly
normalizing.

• If K = [·] to y.P ::K′ then, by a permutative reduc-
tion, N -→ return V • ([·] to x.(M to y.P) ::K′). Thus
|K′| < |K|, and since M to y.P •K′ = M •K the induc-
tion hypothesis applies.

• If K = j ::K′ then, by a permutative reduction, N -→
return V • ([·] to x.M j ::K′). Again |K′| < |K| and
M j • K′ = M • K means the induction hypothesis is
applicable.

5

• The case where K = W ::K and N reduces by a per-
mutative conversion to return V •([·] to x.M W ::K′)
is similar.

• All other reductions of N are confined to either V , M
or K, and thus strictly decrease either ν(V) or ν(M •
K). Moreover, by Lemma 1, |K| does not increase, so
the induction hypothesis applies.

Lemma 8 If K ∈ reds
B and V ∈ redv

A then V ::K ∈
reds

A→B .

PROOF. Suppose M = λx.N is such that N[V /x] ∈
redc

B for all V ∈ redv
A. We must show that M • (V ::K) ∈

SN . By Definition of redc
A→B , the extensiveness of (·)>>

and Lemma 4 (C1), M ∈ SN and we can proceed by
induction on ν(M) + ν(V) + ν(K). The only case that
is not directly handled by the induction hypothesis is
the β reduction M • (V ::K) -→ N[V /x] • K. But now
reducibility of K and N[V /x] imply strong normaliza-
tion of N[V /x] •K, by definition of reds

B .

Similarly, it is not difficult to prove

Lemma 9 Suppose K ∈ reds
Bk and j ∈ I. Then j ::K ∈

reds∏
i∈I Bi .

PROOF of Lemma 5. The properties are proved simul-
taneously, by induction on the typing derivations. We
distinguish cases, depending on the last typing rule ap-
plied in the derivation.

• If Γ `v xi : Ai then clearly Vi ∈ redv
Ai by assumption.

• The case Γ `v ? : 1 is immediate by definition of redv
1.

• The cases Γ `v
〈
j, V

〉
:
∑
i∈I Ai , Γ `v (V , V ′) : A × A′

and Γ `v thunk M : UB follow by induction hypothe-
sis and the definition of the respective predicate.

• The cases Γ `c return V : FA, Γ `c λx.M : A → B
and Γ `c λ{. . . , i.Mi , . . .} :

∏
i∈I Bi follow by induction

hypothesis, extensiveness of (·)>> and the definition
of the respective predicate.

• If Γ `c force V : B then W = V[~V / ~x] ∈ redv
UB by

induction hypothesis, so that by Lemma 4 (V1), W ∈
SN . We prove forceW ∈ redc

B by induction on ν(W).
By definition of redv

UB , W = thunk M for some M ∈
redc

B , and if force W -→ N then either N = M ∈ redc
B ,

or else N = force W ′ for some W ′. By Lemma 4 (V2),
W ′ ∈ redv

UB , and since ν(W ′) < ν(W) we have N ∈
redc

B also in this case. By Lemma 4 (C3), force W ∈
redc

B .
• If Γ `c pm V as (x, y) .M : B then by induction

hypothesis and definition of redv
A×A′ , V[~V / ~x] =

(W,W ′) for some W ∈ redv
A and W ′ ∈ redv

A′ , thus
M[~V,W,W ′ / ~x, x, y] ∈ redc

B . By Lemma 4 (V1,C1) we

can use induction on ν(W) + ν(W ′) + ν(M[~V / ~x])
to prove that N = pm (W,W ′) as (x, y) .M[~V / ~x] is
reducible. Consider its possible reducts:

· IfN -→ M[~V,W,W ′ / ~x, x, y] by β then this has been
established above.

· If M[~V / ~x] is of the form P[(x, y) / z] for some P
such that x, y ∉ fv(P) then N -→ P[(W,W ′) / z] =
M[~V,W,W ′ / ~x, x, y] by η reduction, and again this
is reducible.

· If N -→ N′ by some reduction within W,W ′ or
M[~V / ~x] then reducibility follows by induction hy-
pothesis.

There are no other reducts, hence by Lemma 4 (C3)
also N ∈ redc

B .
• The case Γ `c pm V as {. . . ,

〈
j, x

〉
.Mj , . . .} : B

is proven similarly, showing by induction on
ν(V[~V / ~x]) +

∑
i∈I ν(Mi[~V / ~x]) that all reduc-

tions lead to reducible terms and then applying
Lemma 4 (C3).

• If Γ `c M to x.N : B then we must show, for any
K ∈ reds

FA, that M to x.N • K ∈ SN or equivalently,
thatM •([·] to x.N ::K) ∈ SN . But this is clear, since
M ∈ redc

FA and [·] to x.N ::K ∈ reds
FA by induction

hypothesis and Lemma 7 above.
• The cases Γ `c M V : B and Γ ` M j : Bj are similarly

handled by induction and Lemma 8 and Lemma 9,
after pushing V and j , resp., onto the stack.

References

[1] N. Benton, G. M. Bierman, V. de Paiva, Computational types
from a logical perspective, Journal of Functional Programming
8 (2) (1998) 177–193.

[2] P. de Groote, On the strong normalisation of intuitionistic
natural deduction with permutation-conversions., Information
and Computation 178 (2) (2002) 441–464.

[3] J.-Y. Girard, Interprétation fonctionelle et élimination des
coupures dans l’arithmétique d’ordre supérieur, Thèse de
doctorat d’état, Université de Paris VII (1972).

[4] P. B. Levy, Call-by-push-value: A subsuming paradigm, in:
J.-Y. Girard (ed.), Proceedings Typed Lambda Calculi and
Applications (TLCA’99), vol. 1581 of Lecture Notes in Computer
Science, Springer, 1999.

[5] P. B. Levy, Call-By-Push-Value, vol. 2 of Semantic Structures in
Computation, Kluwer, 2004.

[6] P. B. Levy, Adjunction models for call-by-push-value with stacks,
Theory and Applications of Categories 14 (2005) 75–110.

[7] S. Lindley, I. Stark, Reducibility and >>-lifting for computation
types, in: P. Urzyczyn (ed.), Typed Lambda Calculi and
Applications (TLCA’05), vol. 3461 of Lecture Notes in Computer
Science, Springer, 2005.

[8] J. C. Mitchell, Foundations for Programming Languages, MIT
Press, 1996.

[9] E. Moggi, Notions of computation and monads, Information and
Computation 93 (1991) 55–92.

[10] D. Prawitz, Ideas and results in proof theory, in: J. E. Fenstad
(ed.), Proceedings of the Second Scandinavian Logic Symposium,
vol. 63 of Studies in Logic and the Foundations of Mathematics,
North-Holland, 1971.

[11] W. W. Tait, Intensional interpretation of functionals of finite
type I, Journal of Symbolic Logic 32 (2) (1967) 198–212.

6

	Introduction
	The Problem
	Reducibility and Stacks

	The Call-by-push-value calculus
	Syntax
	Operational Semantics

	Strong Normalization
	Reducibility for Computation Types and Stacks
	Proving Strong Normalization

	References

