
Formalizing a Strong Normalization Proof
for Moggi’s Computational Metalanguage

A case study in Isabelle/HOL-Nominal

Christian Doczkal ∗ Jan Schwinghammer
Saarland University, Saarbrücken, Germany

Abstract
Lindley and Stark have given an elegant proof of strong normaliza-
tion for various lambda calculi whose type systems preclude a di-
rect inductive definition of Girard-Tait style logical relations, such
as the simply typed lambda calculus with sum types or Moggi’s
calculus with monadic computation types. The key construction in
their proof is a notion of relational >>-lifting, which is expressed
with the help of stacks of evaluation contexts. We describe a for-
malization of Lindley and Stark’s strong normalization proof for
Moggi’s computational metalanguage in Isabelle/HOL, using the
nominal package.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic – mechanical
theorem proving

General Terms Theory, verification

Keywords HOL-Nominal, logical relations and >>-lifting

1. Introduction
Proofs of (strong) normalization for lambda calculi have long been
used as case studies for the formalization of programming language
meta-theory. An early example is the strong normalization proof
for System F by Altenkirch (1993), other examples include those
by Abel (2004), Berger et al. (2006), Donnelly and Xi (2007), and
Schürmann and Sarnat (2008).

Normalization proofs provide interesting case studies for for-
malization because they combine syntactic as well as more seman-
tic arguments about terms and reduction: just like proofs of type
safety by ‘progress and preservation,’ in a formalization one must
deal with variable binding, renaming and substitution, but usually
one also uses various induction and strong reasoning principles (for
instance, to define logical relations). Moreover, these proofs are
of moderate size, and their structure is generally well-understood.

∗ Support has been provided by a scholarship from the Saarbrücken Gradu-
ate School of Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LFMTP ’09, August 2, 2009, Montreal, Canada.
Copyright c© 2009 ACM 978-1-60558-529-1/09/08. . . $5.00

Thus, they provide a good point of reference for comparing a for-
malization to the a paper-and-pencil version of the proof, as well as
for comparing formalizations of the proof in different proof assis-
tants, and using different paradigms, to each other.

In the classic Girard-Tait reducibility method for proving nor-
malization, a family of sets of ‘reducible’ terms is defined by induc-
tion on types (Girard et al. 1989). For instance, a term of function
type σ→ τ is reducible if and only if its application to reducible
arguments (at type σ) yields a reducible term (at type τ). Adapting
these definitions to lambda calculi with a richer type structure can
be challenging. The computational metalanguage of Moggi (1991)
provides an example of such a calculus: its types contain ‘com-
putation types’ Tσ, of computations that return values of type σ.
The only way to deconstruct terms s of this type is by sequenc-
ing, s to x in t, which binds x in t to the result of s. (We use this
notation, instead of let x⇐s in t, as it corresponds to the scoping
of x.) Since the type Tτ of t is in general not smaller than the
type Tσ of s, the definition of reducibility at type Tσ cannot re-
fer to reducibility of terms at type Tτ . A similar problem arises
in the lambda calculus with sum types, where the case construct
for sum types prevents a straightforward inductive definition of the
reducibility predicates (cf. Prawitz 1971).

Lindley and Stark (2005) present an elegant strong normaliza-
tion proof for Moggi’s computational metalanguage. The difficulty
of defining a logical relation for computation types described above
is addressed by using a notion of >>-lifting of predicates. The ba-
sic idea is as follows: Given a stack of elimination constructs for
the computation type, k = (. . . ([·] to x1 in t1) . . .) to xk in tk, one
can plug in a term t to observe if the resulting term t ? k is strongly
normalizing. Asserting that [t] ? k is strongly normalizing for all
reducible terms t of type τ (where [t] is the trivial computation
immediately returning t) defines a notion of reducibility for Tτ -
expecting stacks. Then, a term t is defined to be reducible at type
Tτ whenever t ? k is strongly normalizing for all reducible Tτ -
expecting stacks k. Using this indirection via stacks, reducibility at
type Tτ is obtained from reducibility at type τ , giving rise to an
inductive definition of this type-indexed family of predicates with
properties sufficient to establish strong normalization. Lindley and
Stark’s technique is interesting because it also handles ‘commuting
conversions,’ like associativity for nested to-bindings in Moggi’s
calculus, and it is sufficiently robust to adapt to, e.g., sum types.

In this paper, we describe a formalization of the published nor-
malization proof (Lindley and Stark 2005), as a case study simi-
lar in spirit to the formalized logical relations proofs by Narboux
and Urban (2008). Apart from the obvious question whether the
paper-and-pencil proof is correct (of which there was little doubt),
we are interested in how close we can stay to the original pub-
lished proof of Lindley and Stark (2005). Answering this question

will give some further indication of how well the Nominal datatype
package achieves the goal of permitting faithful formalizations of
informal reasoning about languages with binding constructs, and
it may point to (current) short-comings and possible areas for im-
provements. We believe that a closer look at Lindley and Stark’s
proof is interesting for the following reasons. First, the calculus of
Moggi (1991) is slightly more complex than simply typed lambda
calculus: it has a second binding construct, and its commuting
conversions provide an example that requires non-trivial variable
freshness conditions, as these conversions rearrange the scoping.
Second, the formalization of stacks introduces a second datatype
with binding, and the interaction between stacks and terms requires
more complex patterns of recursion and induction compared to the
simply typed case.

The next section gives a brief reminder of the work on nominal
logic, which provides the foundation for the nominal package in
Isabelle/HOL. Section 3 gives an overview of our formalization,
focussing on those parts of the strong normalization proof that are
specific to the metalanguage. (The complete proof document can
be found at http://www.ps.uni-sb.de/Papers) In Section 4,
we discuss some aspects of this formalization more generally.

2. Nominal Logic
We recall the basic notions from work on nominal logic, on which
the Isabelle nominal datatype package is based (Pitts 2003, 2006;
Urban 2008), and which provides a formal justification for the
Barendregt variable convention used in informal proofs: one can
always find variables that are ‘fresh’ for the current context, and the
reasoning is independent of the particular choice of representatives
of α-equivalence classes.

Permutations, support and freshness We fix a countably infinite
set name of atomic names, which are used to represent object
level variables. Finite permutations of names can be represented as
(finite) lists π of transpositions [(a1 b1), (a2 b2), . . . , (ak bk)], and
the application π · a of π to a name a is defined by induction on
this list in the evident way. The finite permutations on name form a
group under composition, with a representation of the unit id given
by the empty list, composition represented by list concatenation,
and inverses by list reversal. The operation π · a is a special case
of a group action on a set X that is compatible with the list
representation of permutations: id ·x = x and (π1 ◦ π2) ·x =
π1 ·(π2 ·x), and if π1 · a = π2 · a for all a ∈ name then also
π1 ·x = π2 ·x, for all π1, π2 and all x ∈ X . Such a permutation
action determines the support of the elements of X:

a ∈ supp(x)
def⇔ {b ∈ name | (a b) ·x 6= x} is infinite

A nominal set is given by an action on X such that supp(x) is finite
for all x ∈ X . A name a is fresh for x, written a]x, if a /∈ supp(x).
In particular, for every element x of a nominal set there exists a
fresh name a]x. The support generalizes the usual notion of free
variable of a term: an important example of a nominal set is given
by terms modulo α-equivalence, which can be equipped with a
permutation action such that supp coincides with the free variables.

Nominal datatypes in Isabelle/HOL There are two approaches
to achieve finite supportedness in an implementation. First, it is
possible to work in a logic that only permits the description of
finitely supported objects by construction. This gives the existence
of fresh names for free but is inconsistent with several standard li-
braries, notably those using choice (Pitts 2006, Example 3.4). In
contrast, the approach of Urban (2008) is to work in the standard
higher-order logic of Isabelle/HOL, at the expense of additional
proof obligations whenever the finite support property is needed.
In the implementation this is alleviated by making good use of Is-
abelle’s axiomatic type class mechanism (Haftmann 2009): in most

practically relevant cases, the finite support property is inferred au-
tomatically from the type of an object. This includes in particular
nominal datatypes and tuples thereof.

A function f between nominal sets is equivariant if π ·(f x) =
f(π ·x) for all π and x, and a predicate P is equivariant if its char-
acteristic function is, i.e., if P (x) ⇔ P (π ·x). The equivariance
of relations is one of the prerequisites for the automatic derivation
of (strong) induction and inversion principles by the nominal pack-
age (Urban et al. 2007; Berghofer and Urban 2008), and is usually
assumed in informal proofs.

3. Formal Development
3.1 Terms and Types
The λml calculus is an extension of the simply typed λ-calculus
with the additional type constructor T and the following terms:

Γ ` t : τ

Γ ` [t] : Tτ

Γ ` s : Tσ Γ, x:σ ` t : Tτ

Γ ` s to x in t : Tτ

We deviate from Lindley and Stark (2005) by using typing contexts
instead of explicitly typed variables. This allows us to carry out a
large part of the normalization proof on untyped terms. Terms and
types are represented using nominal datatypes:
nominal-datatype trm =

Var name
| App trm trm
| Lam �name�trm
| To trm �name�trm (- to - in -)
| Ret trm ([-])

nominal-datatype ty =
TBase
| TFun ty ty (infix → 200)
| T ty

The notation �name�trm means that, e.g. in the lambda case
Lam x t, the variable x is bound. Equality on trm is α-equivalence
of the abstract syntax trees, and the permutation action that is de-
rived from the nominal-datatype declaration respects this equiv-
alence. It satisfies π ·(Lam x t) = Lam (π ·x) (π · t), and the sup-
port of a term is just its set of free variables. In particular, we have
Lam x t = (x y) ·(Lam x t) = Lam y ((x y) · t) for any y that is
not free in Lam x t.

Substitution on terms can be defined just as one would do
on paper, using the primitive recursion operator for nominal data
types. For the binder cases one may assume that the binder is
suitably fresh, and the nominal package provides very good support
for showing that primitive recursive functions are well defined
even in the presence of freshness requirements. This is all quite
standard (Urban 2008). In our case (ordinary) substitution t[x ::= s]
is defined as a special case of parallel substitution, written θ<t>,
which we need to state the Fundamental Theorem below.

The typing relation is a straightforward translation of the usual
typing rules in the style of Narboux and Urban (2008). We use lists
to implement contexts; in contrast to functions, finite lists over a
type of finitely supported objects have finite support. Here are the
cases corresponding to the two typing rules shown above:

inductive
typing :: (name×ty) list⇒trm⇒ty⇒bool (- ` - : -)

where [...]
| t4 [intro]: [[Γ ` s : σ]] =⇒ Γ ` [s] : T σ
| t5 [intro]: [[x] (Γ,s); Γ ` s : T σ ; ((x,σ)#Γ) ` t : T τ]]

=⇒ Γ ` s to x in t : T τ

3.2 Reduction and Strong Normalization
We use the standard βη-rules of the simply typed lambda calculus,
and define reductions in an arbitrary context by rules of the form

t 7→ t′ x] s

s to x in t 7→ s to x in t′
(1)

http://www.ps.uni-sb.de/Papers

Furthermore, we have the following new reduction rules:

[s] to x in t 7→ t[x ::= s] x] s

s to x in[x] 7→ s x] s

(s to x in t) to y in u 7→ s to x in(t to y in u) x](s, y, u), y](s, t)

In these rules, the freshness conditions on s and t are only needed
to make the reduction relation vc-compatible, a condition which
permits the automatic derivation of strong induction and inversion
principles (Urban et al. 2007; Berghofer and Urban 2008). Using
some explicit α-renaming, one can however show adequacy of the
vc-compatible formulation of the reduction relation with respect to
the standard presentation, which omits all these freshness require-
ments (except the ones on y and u in the final rule).

For the reduction relation, we define an inductive variant of
strong normalization (cf. Altenkirch 1993), given by the single
inference rule1: ^

t′. t 7→ t′ =⇒ SN t′

SN t
(2)

This definition of SN is convenient because it gives an induction
principle for strongly normalizing terms: to prove that P holds for
all strongly normalizing terms it suffices to show P (t) from the
assumption that P (t′) for all t 7→ t′. The alternative, used in the
proofs by Lindley and Stark, are inductions on the length max(t) of
a longest reduction sequence starting from a strongly normalizing
term t, for which we would need to establish first that the reduction
relation is finitely branching.

We can relate the definition of SN in (2) to one in phrased in
terms of reduction sequences. There is an easy inductive argument
showing that SN(t) implies the absence of infinite reduction se-
quences from t. There is also a fairly simple proof of the converse,
using the axiom of choice – without choice, one needs to work
harder and use more specific properties of the reduction relation.

3.3 Stacks and Dismantling
We declare stacks of sequencing constructs as lists of term ab-
stractions, exploiting the fact that term abstractions are primitive
to HOL-Nominal.

nominal-datatype stack = Id | St �name�trm stack ([-]-�-)

We also need the associated function of stack dismantling t ? k
mentioned in the Introduction, which plugs the term t into the con-
text of nested sequencing constructs represented by k. It satisfies:

t ? Id = t

t ?([x]n�k) = (t to x in n) ? k

Note that ? is not in the form of a primitive recursive function defi-
nition. Since the nominal package has no support for general recur-
sive functions involving binders, this means that one has to manu-
ally prove pattern completeness, right-uniqueness and termination.

As in (Lindley and Stark 2005), the reduction relation on terms
induces a notion of reduction on stacks, also denoted by 7→.

constdefs
stack-reduction :: stack ⇒ stack ⇒ bool (- 7→ -)
k 7→ k ′≡ ∀ (t ::trm) . (t ? k) 7→ (t ? k ′)

We can then define strong normalization also for stacks, using the
same single rule inductive definition that we used to define SN on
terms in (2) above. We call this predicate SSN.

1 V
and =⇒ denote the universal quantifier and implication at the meta

level. The latter also corresponds to the line in rule notation.

3.4 Reducibility of Terms and Stacks
We formalize the logical relation as mutually recursive functions
from types to sets of terms and stacks, respectively:

function RED :: ty ⇒ trm set and SRED :: ty ⇒ stack set
where

RED (TBase) = {t . SN(t)}
| RED (τ→σ) = {t . ∀ u ∈ RED τ . (App t u) ∈ RED σ }
| RED (T σ) = {t . ∀ k ∈ SRED σ . SN(t ? k) }
| SRED τ = {k . ∀ t ∈ RED τ . SN ([t] ? k) }

As sketched in the introduction, REDTσ implements the >>-
lifting with help of the auxiliary relation SREDσ . Informally, the
latter picks out a subset of stacks, which then provide ‘tests’ with
respect to which the normalization of terms at computation type
Tσ is observed.

Showing that the logical relation is well defined amounts to
proving that RED and SRED terminate. This is established through
the termination measure 2 · |τ | for arguments to RED, and 2 · |τ |+1
for arguments to SRED. The properties of the reducibility relation
we are interested in are the usual ones (Girard et al. 1989).

constdefs
NORMAL t ≡ ¬(∃ t ′. t 7→ t ′)
NEUT t ≡ (∃ x. t = Var x) ∨ (∃ u v. t = App u v)

CR1 τ ≡ ∀ t . (t∈RED τ −→ SN t)
CR2 τ ≡ ∀ t t ′. (t∈RED τ ∧ t 7→ t ′) −→ t ′∈RED τ
CR3-RED t τ ≡ ∀ t ′. t 7→ t ′−→ t ′∈RED τ
CR3 τ ≡ ∀ t . (NEUT t ∧ CR3-RED t τ) −→ t∈RED τ
CR4 τ ≡ ∀ t . (NEUT t ∧ NORMAL t) −→t∈RED τ

These properties state that reducibility entails strong normalization
(CR1), and that reducibility is closed under reduction (CR2) and
expansion (CR3).

Property CR4 is an easy consequence of CR3. The proof that
CR1-3 hold for all types is done by mutual induction on the type
structure. In fact, due to the modular nature of logical relations
proofs we could reuse the corresponding cases from the normaliza-
tion proof for the simply typed lambda calculus, which is included
as an example in the nominal datatype package (Nominal Methods
group 2009). Thus, we only need to cover the case of the monadic
type constructor T . We consider this case in detail for CR3. Under
the assumption that CR1-4 hold for REDσ , we show:

If NEUT(t) and t 7→ t′ implies t′ ∈REDTσ , then t∈REDTσ .

We first show the published paper-and-pencil proof (Lindley and
Stark 2005, Theorem 5) of this case, and then discuss the challenges
in formalizing it.

The proof of Lindley and Stark Let t be neutral such that t′ ∈
REDTσ whenever t 7→ t′. We have to show that (t ? k) is SN for
each k ∈ SREDσ . First, we have that [x] ? k is SN, as x ∈ REDσ

by the induction hypothesis. Hence k itself is SN, and we can work
by induction on max(k). Application t ? k may reduce as follows:

• t′?k, where t 7→ t′, which is SN as k∈ SREDσ and t′ ∈REDTσ .
• t ? k′, where k 7→ k′. For any s∈REDσ , [s] ? k is SN as

k∈ SREDσ; and [s] ? k 7→ [s] ? k′, so [s] ? k′ is also SN.
From this we have k′ ∈ SREDσ with max(k′) < max(k), so
by induction hypothesis t ? k′ is SN.

There are no other possibilities as t is neutral. Hence t ? k is
strongly normalizing for every k∈ SREDσ , and so t∈REDTσ as
required.
In this proof, max(k) denotes the length of a longest sequence of
stack reductions beginning at k.

Formalized proof First, we note that the general reasoning, i.e.,
showing strong normalization of t ? k by showing that all suc-

http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html

cessors are SN, directly corresponds to our introduction rule for
SN. Next, the sub-induction on max(k) can be handled more di-
rectly using the induction principle for SSN. To apply the latter,
we need to establish that SN(t ? k) implies SSN(k). The main dif-
ficulty is the extraction of k, since t ? k does not uniquely deter-
mine k. To achieve this, we define a single rule inductive relation
t ? k B k, and then show the more general claim that SN(t ? k) im-
plies ∀z.t ? k B z −→ SN(z). This is (a simplification of) a trick
used by the Nominal Methods group (2009) to address a similar
problem in the application case of the normalization proof for sim-
ply typed lambda calculus, where one needs to extract s from the
compound term App s t. In the case of App, extraction is a (partial)
function on terms, but the method equally applies in the case of ?
where extraction becomes a proper relation.

The major challenge in the formalization of the informal proof
above is the sentence concluding the case analysis, “There are no
other possibilities.” Its formalization requires an exhaustive case
analysis on the successors of t ? k. To enhance modularity and
readability, this case analysis is established separately as a rule:

t ? k 7→ r
^

t ′. [[t 7→ t ′; r = t ′ ? k]] =⇒ P

NEUT t
^

k ′. [[k 7→ k ′ ; r = t ? k ′]] =⇒ P

P
(3)

We want to prove soundness of this rule by induction on the struc-
ture of k, and the case k = Id is trivial. In the case where k =
[y]n�l the idea is to unfold the operation t ? k once and move the
first stack frame of k onto t, and we would like to apply the induc-
tion hypothesis with t∗ = t to y in n and l. However, t∗ clearly is
not neutral, so we have to generalize the claim. More precisely, we
obtain a rule dismantle-cases by replacing NEUT(t) in (3) with the
following two hypothesis about the possible interactions of t and k:V

s y n l .[[t = [s] ; k = [y]n�l ; r = (n[y::=s]) ? l]] =⇒ PV
u x v y n l .[[x] (y, n) ; t = u to x in v ;

k = [y]n�l ; r = (u to x in (v to y in n)) ? l]] =⇒ P

Now we can apply the induction hypothesis as a case rule. In the
case analysis on the successors of t∗ ? l (which is the same as t ? k)
most cases are tedious but straightforward. Interesting cases are
some of the reductions of t∗ = t to y in n. For example if n 7→ n′

we fix some arbitrary u and show that u to y in n 7→ u to y in n′

and hence u ? ([y]n�l) 7→ u ? ([y]n′�l). Thus by the definition
of stack reduction and the form of k we have some k′ such that
k 7→ k′, and from this can conclude P by hypothesis. The proof
makes extensive use of the strong inversion principles described
by Berghofer and Urban (2008). Having established the general
claim, we can easily instantiate it to the case where t is neutral,
giving the rule dismantle-cases’ shown in (3). This rule facilitates
a formalization of Lindley and Stark’s Theorem 5 very close to the
original proof (Figure 1).

3.5 Fundamental Theorem
The fundamental theorem of logical relations states that every ty-
peable term of type τ is contained in REDτ . As usual, it is proved
by induction on typing derivations, and a case analysis on the last
rule of the derivation. It needs to be generalized to open terms for
the induction to go through, by substituting terms reducible at the
corresponding type.

abbreviation
θ closes Γ ≡ ∀ x τ . ((x,τ) ∈ set Γ

−→ (∃ t . θ maps x to t ∧ t ∈ RED τ))

theorem Fundamental-Theorem:
assumes a: Γ ` t : τ and b : θ closes Γ
shows θ<t> ∈ RED τ

case 3 from 〈CR3 σ〉 have ih-CR4-σ : CR4 σ ..
{ fix t assume t ′-red :

V
t ′ . t 7→ t ′ =⇒ t ′∈ RED (T σ)

and neut-t : NEUT t
{ fix k assume k-red : k ∈ SRED σ

fix x have NEUT (Var x) unfolding NEUT-def by simp
hence Var x ∈ RED σ using normal-var ih-CR4-σ

by (simp add : CR4-def)
hence SN ([Var x] ? k) using k-red by simp
hence SSN k by (rule SN-SSN)
hence SN (t ? k) using k-red
proof (induct k rule:SSN .induct)

case (SSN-intro k)
have ih :

V
k ′. [[k 7→ k ′ ; k ′∈ SRED σ]] =⇒ SN (t ? k ′)

and k-red : k ∈ SRED σ by fact+
{ fix r assume r: t ? k 7→ r
hence SN r using neut-t
proof (cases rule:dismantle-cases ′)

case (M t ′) hence t-t ′: t 7→ t ′ and r-def : r = t ′ ? k .
from t-t ′ have t ′∈ RED (T σ) by (rule t ′-red)
thus SN r using k-red r-def by simp

next
case (K k ′) hence k-k ′: k 7→ k ′ and r-def : r = t ? k ′ .
{ fix s assume s ∈ RED σ

hence SN ([s] ? k) using k-red
by simp

moreover have [s] ? k 7→ [s] ? k ′

using k-k ′ unfolding stack-reduction-def ..
ultimately have SN ([s] ? k ′) ..
} hence k ′∈ SRED σ by simp
with k-k ′ show SN r unfolding r-def by (rule ih)

qed } thus SN (t ? k) ..
qed } hence t ∈ RED (T σ) by simp

} thus CR3 (T σ) unfolding CR3-def CR3-RED-def by blast

Figure 1. Formal version of CR3 for Tσ

In the proof of this theorem, one needs a ‘semantic’ variant of each
typing rule which states how to derive reducibility of a term from
reducibility of its subterms. For instance, in the case of lambda
abstraction this is asserted by the following lemma:

lemma abs-RED :
assumes ∀ s∈RED τ . t [x::=s]∈RED σ
shows Lam x t ∈RED (τ→σ)

Lindley and Stark (2005) cover only those cases that deal with
the new terms and typing rules. As for the proof of CR1-3, this
approach is reflected in our formalization, where we can reuse the
proof scripts from the simply typed lambda calculus. In fact, only
the cases for lambda abstraction and sequencing require an explicit
statement, all other cases in the proof of the fundamental theorem
are proved automatically by a single application of auto.

Thus, the remaining proof obligation is the lifting of reducibility
to sequencing, i.e., inferring s to x in t ∈ REDTτ from the corre-
sponding assumptions for terms Γ ` s : Tσ and Γ, x:σ ` t : Tτ .
Because of the definition of REDTτ in terms of stacks and SN, the
key lemma for this is that if SN(p) and SN(n[x ::= p] ? k), then
also SN(([p] to x in n) ? k). In Isabelle, we formalize this as:

lemma to-RED-aux:
assumes SN p and SN (n[x::=p] ? k) and x] p x] k
shows SN (([p] to x in n) ? k)

Lindley and Stark prove this lemma by (natural) induction on
|k|+max(n ? k)+max(p). Here we deviate from their proof, and
instead use our inductive characterization of strong normalization
to first establish a more general induction principle:

http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html
http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html

lemma triple-induct :
assumes a: SN (p)
and b : SN (q)
and hyp:

V
(p::trm) (q::trm) (k ::stack) .

[[
V

p ′ . p 7→ p ′ =⇒ P p ′ q k ;V
q ′ k . q 7→ q ′ =⇒ P p q ′ k ;V
k ′ . |k ′| < |k | =⇒ P p q k ′]] =⇒ P p q k

shows P p q k

Essentially, triple-induct is based on the lexicographic ordering
on (SN, 7→) × (SN, 7→) × (N, >), exploiting that 7→ is a well-
founded relation on the set of strongly normalizing terms. However,
this induction principle is more specific than the lexicographic
induction, for which the first part of ‘hyp’ would be replaced byV

p ′ q k . [[SN (q) ; p 7→ p ′]] =⇒ P p ′ q k .

Since we do not need this generality (which would in fact lead to
an induction hypothesis that is more difficult to apply), we derive
triple-induct directly in the above form.

One interesting consequence of using triple-induct, rather than
natural induction on |k|+max(n ? k)+max(p), is that we do not
have to establish that k 7→ k′ ⇒ |k′| ≤ |k|. This is otherwise re-
quired in the proof of to-RED-aux to handle the case of a reduction
occurring somewhere inside k. Also, note that the triple-induct rule
abstracts from the fact that one of the strongly normalizing terms
on which we induct is given in the form of dismantling the stack
k. For the instantiation we therefore prove that for any term q with
SN(q) we have:V

m . [[q = m ? k ; SN(m[x::=p] ? k)]]
=⇒ SN (([p] to x in m) ? k)

(4)

After instantiation with p, q, and k, triple-induct provides us with
the following induction hypotheses:

have ih-p:V
p ′ m . [[p 7→ p ′; q = m ? k ; SN (m[x::=p ′] ? k); x] p ′; x] k]]

=⇒ SN (([p ′] to x in m) ? k) by fact
have ih-q:V

q ′ m k .[[q 7→ q ′; q ′ = m ? k ; SN (m[x::=p] ? k); x] p; x] k]]
=⇒ SN (([p] to x in m) ? k) by fact

have ih-k :V
k ′ m . [[|k ′| < |k |; q = m ? k ′; SN (m[x::=p] ? k ′);

x] p; x] k ′]] =⇒ SN (([p] to x in m) ? k ′) by fact

Once again we follow the reasoning of Lindley and Stark, this time
by showing that all successors of ([p] to x in m) ? k are strongly
normalizing. Hence, we fix some r, assume

([p] to x in m) ? k 7→ r ,

and reason by inversion. Unfortunately, the case rule dismantle-
cases’ defined in Section 3.4 does not allow us to choose names
for the binders in the cases where there is an interaction between
[p] to x in m and the first stack frame of k. As a consequence, it
gives rise to equations of the form

[p] to x in n = u to x′ in v

for arbitrarily chosen, fresh x′. Since we have ensured that x itself
is suitably fresh, we would prefer to obtain equations of the form

[p] to x in m = u to x in v

when doing inversion on [p] to x in m?k 7→ r, as this immediately
yields s = [p] and v = m without further alpha-renaming. This is
achieved by strengthening dismantle-cases to the following form:

lemma dismantle-strong-cases:
fixes t :: trm
assumes r: t ? k 7→ r
and f : y] (t ,k ,r) x] (z,t ,k ,r) z] (t ,k ,r)

and T :
V

t ′ . [[t 7→ t ′ ; r = t ′ ? k]] =⇒ P
and K :

V
k ′ . [[k 7→ k ′ ; r = t ? k ′]] =⇒ P

and B :
V

s n l . [[t = [s] ; k = [y]n�l ; r = (n[y::=s]) ? l]]
=⇒ P

and A :
V

u v n l . [[x] (z,n) ; t = u to x in v ; k = [z]n�l ;
r = (u to x in (v to z in n)) ? l]] =⇒ P

shows P

The change from the weak dismantle-cases rule to dismantle-
strong-cases is that the variables y, x and z (cases B and A) are
no longer bound, but become free variables of the theorem. When
deriving the strong rule from the weak one, we need to show each
case for universally quantified names but the respective hypothesis
of the strong case rule only provides the claim for specific (exter-
nally chosen) names. In the case of a β-reduction, we get t = [s],
k = [y ′]n�l, and r = (n[y ′::=s]) ? l for some fixed name y ′.
Either y = y ′ and we can apply B directly or y] n (using f) and
we can α-rename and apply B as well. The case for A follows the
same pattern but is more tedious due to the nested binding struc-
ture. The rule dismantle-strong-cases can also be seen as a strong
inversion principle for the three place relation t ? k 7→ r, where the
freshness conditions imposed by f correspond to those described
by Berghofer and Urban (2008) for inductively defined relations.

Using this strong case rule we obtain a a proof of to-RED-aux
staying relatively close to the informal reasoning of Lindley and
Stark. After applying the dismantle-strong-cases rule, we reason as
follows: The case of toplevel reductions occurring in [p] to x in m
can be handled by hypothesis. The case of the commuting conver-
sion interacting with the top frame reduces the length of k but does
not change q or p and so this is handled by ih-k. These are the cases
spelled out by Lindley and Stark (2005).

The second interaction from our case rule cannot occur, which
leaves us with reductions occurring within k, m, or p. The first two
of these are easily handled by the induction hypothesis ih-q. But the
case of a reduction in p requires a special treatment. To apply the
induction hypothesis, we have to derive SN(m[x ::= p′] ? k) from
SN(m[x ::= p] ? k). For this, we actually need to reason about the
reflexive, transitive closure of the reduction relation, obtained from
Isabelle’s built-in closure operator, and written 7→∗ as usual. We
can easily establish that strong normalization does not only extend
to immediate successors, but also to the transitive case.

lemma SN-trans : [[p 7→∗ p ′ ; SN p]] =⇒ SN p ′

So the last remaining proof obligation is to show:

lemma red-subst : p 7→ p ′ =⇒ (m[x::=p]) 7→∗ (m[x::=p ′])

The proof is a straightforward induction on the term p but requires
transitive versions of all context rules of the reduction relation. To
complete the proof of to-RED-aux we instantiate q in (4) with n ? k
and therefore m with n.

This establishes the Fundamental-Theorem from which we con-
clude that all well-typed terms are strongly normalizing using the
identity substitution and CR1.

4. Discussion
Our whole development is performed using the Isar structured
proof language (Wenzel 2002). This allows us to naturally fol-
low the forward reasoning style of Lindley and Stark (2005), even
though the natural deduction reasoning in Isabelle/HOL is centered
around backward proofs. The use of Isar has further benefits: for in-
stance, we could port the complete development from Isabelle2008
to Isabelle2009, without touching any of the proofs.

We believe that we achieve the goal of ‘faithfully’ formalizing
Lindley and Stark’s paper-and-pencil proof. Clearly we need to
reason in much smaller steps, and formulate additional lemmas,
most notably those for case analyses (like dismantle-cases and

dismantle-strong-cases) and tailor-made induction principles (like
triple-induct). Once this has been done, however, the statement of
lemmas and proofs like the one shown in Figure 1 become pretty
direct translations of their informal counterparts. As mentioned
earlier, we were also able to directly reuse large portions of a
previously formalized normalization proof for the simply typed
lambda calculus (Nominal Methods group 2009). This provided a
pleasant analogy in our development to the approach of Lindley
and Stark, who show only the cases specific to Moggi’s calculus.

Since our formalization stays reasonably close to the informal
reasoning, we can confirm that Lindley and Stark’s proofs are
correct, apart from one small inaccuracy: With regard to stack
reductions (cf. definition in Section 3.3), Lindley and Stark claim
that k 7→ k′ if and only if x ? k 7→ x ? k′ for any variable x, without
any further restrictions on x. However, the proposed proof of this
claim – using the preservation of reduction under substitution –
only works if x] (k, k′). The proof becomes significantly more
tedious if one drops the freshness requirement x] k′, and we have
no formal proof for an arbitrary variable x. (But we also do not
have a counterexample.) On the other hand, this claim about stack
reduction is not essential to the overall proof: Lindley and Stark use
it only to establish the fact that stack reduction does not increase
the stack length, i.e. that k 7→ k′ implies |k′| ≤ |k|, for which the
trivial direction from left to right suffices. Our formalization does
not even use this property of stack reduction, since we replaced
Lindley and Stark’s induction involving |k| as summand by the
stronger induction principle triple-induct, shown in Section 3.5. Of
course, this would also apply to the informal proof.

The strong induction and inversion principles are very conve-
nient in proofs: a finitely supported ‘freshness context’ can be cho-
sen, and the variables that appear in induction hypotheses will be
fresh for this context. Since these principles are unsound for ar-
bitrary inductively defined relations (Berghofer and Urban 2008,
Section 2), their automatic derivation requires the relation to sat-
isfy the vc-condition. This condition demands that all predicates
appearing in the definition must be equivariant, and that the intro-
duction rules of the relation must conform to a second, syntacti-
cally defined restriction: basically, this restriction amounts to the
fact that a variable occurring in a binding position somewhere in a
rule cannot also appear free in the conclusion of the rule.

While equivariance of all our relations is easy to show, the syn-
tactic restriction forces us to add freshness conditions, for instance
to the introduction rules of the reduction relation in Section 3.2,
that are not needed in informal proofs. Proofs involving these addi-
tional freshness conditions quickly become unwieldy; one example
are the context rules for 7→∗ used in red-subst, which can be proved
automatically for the standard formulation of 7→ but become te-
dious with the additional freshness conditions. Therefore we fol-
low the approach suggested by Berghofer and Urban (2008) and
show the equivalence of the introduction rules adhering to the vc-
condition and the standard ones, which can then be used instead. In
Berghofer and Urban’s example of the reduction relation of sim-
ply typed lambda calculus, β-reduction is the only problematic
rule. In contrast, in our case each rule with a sequencing construct
s to x in t in its conclusion requires the condition x] s. All the ad-
equacy proofs, showing that these freshness conditions can be re-
moved from each of our reduction rules, follow a ‘standard’ pattern
(with the exception of associativity which involves two binders, and
rearranges them), so some automatic support for these proofs could
be feasible.

Related to the vc-conditions, note that there is a subtlety in the
proof sketch for the case analysis on t ? k 7→ r from Section 3.4.
There, we fixed some arbitrary term u and showed that s 7→ s′

implies u to y in s 7→ u to y in s′. Due to the missing freshness
condition y] u (since u must be chosen arbitrarily, and only af-

ter y has been chosen), this reduction step does not directly follow
with the introduction rules of the vc-compatible version (1) of the
reduction relation. This is similar to the limitation of Nominal Is-
abelle’s strong induction principles noted by Aydemir et al. (2008,
Section 4.6), where the freshness context must be instantiated when
induction is invoked, and therefore cannot ensure additional fresh-
ness requirements possibly needed when the hypotheses are subse-
quently applied. However, since our development includes a proof
of adequacy of the vc-compatible reduction relation with respect to
the standard one, the freshness condition y] u is not needed. Alter-
natively, if one does not want to prove adequacy (which involves
a fair amount of α-renaming), one could replace the term u with
some suitably fresh variable x and use the fact that x] (k, k′) and
x ? k 7→ x ? k′ also implies k 7→ k′. In this particular case, the
freshness requirements for k and k′ can be easily satisfied.

In summary, our formalization benefits from the automatic
derivation of induction principles for nominal datatypes and the
good support provided by the nominal package for the definition of
primitive recursive functions over nominal datatypes, such as the
substitution operation. Unfortunately, there is no similar machin-
ery available for non-primitive recursive definitions, like the stack
dismantling operation t ? k: we have to prove its basic properties
manually. At the moment we do not know of other such examples,
however, so it is unclear whether it is worth to try and extend the
theory in this direction. The strong induction and case analysis
principles (Berghofer and Urban 2008) were extremely helpful to
avoid several of the proofs being obscured with inessential rea-
soning about alpha-equivalence. Other case studies (Bengtson and
Parrow 2007) make similar observations about the indispensability
of strong induction and case rules to keep proofs manageable. To
take full advantage of the automatic derivation of strong induction
and case rules we have to add several additional freshness require-
ments, in particular to the reduction relation. These are needed to
satisfy the (technical) vc-condition of Berghofer and Urban (2008),
which is too restrictive for calculi with let-like binding structures.
Essentially, one has to add an extra freshness condition whenever a
term appears outside of the scope of a binder.

Schürmann and Sarnat (2008) present an approach to logical re-
lation proofs in Twelf, which have proved challenging before. Their
key idea is to additionally represent an ‘assertion logic’ in Twelf,
and then formalize reasoning about the logical relation in this as-
sertion logic rather than the meta-logic of Twelf. Schürmann and
Sarnat illustrate their technique with several examples, including a
normalization proof along the lines of Lindley and Stark (2005). A
technical difference is that they prove weak normalization (more
precisely, the existence of β-short η-long normal forms), and their
formalization has a rather different feel due to the use of the asser-
tion logic and a representation with higher-order abstract syntax.
A more detailed comparison between the formalizations could be
interesting.

Previously, the first author has used Lindley and Stark’s proof
technique to show strong normalization for the call-by-push-value
calculus of Levy (2004). This calculus has a richer set of types,
for instance including product and sum types of arbitrary (even
infinite) arity. At present, it is unclear to us how to best represent
such syntactic features, and thereby also adapt the formalized proof
to Levy’s calculus.

Acknowledgments
We thank the Nominal Methods group and the members of the
Isabelle mailing list for their helpful answers to our questions.

References
Andreas Abel. Normalization for the Simply Typed λ-calculus in Twelf. In

Informal Proceedings LFM’04, 2004.
Thorsten Altenkirch. A formalization of the strong normalization proof

for System F in LEGO. In TLCA, volume 664 of LNCS, pages 13–28.
Springer, 1993.

Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack,
and Stephanie Weirich. Engineering formal metatheory. In POPL, pages
3–15. ACM Press, 2008.

Jesper Bengtson and Joachim Parrow. Formalising the π-Calculus Using
Nominal Logic. In FOSSACS, volume 4423 of LNCS, pages 63–77.
Springer, 2007.

Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichten-
berg. Program extraction from normalization proofs. Studia Logica, 82
(1):25–49, 2006.

Stefan Berghofer and Christian Urban. Nominal inversion principles. In
TPHOLs, volume 5170 of LNCS, pages 71–85. Springer, 2008.

Kevin Donnelly and Hongwei Xi. A formalization of strong normalization
for simply-typed lambda-calculus and System F. Electr. Notes Theor.
Comput. Sci., 174(5):109–125, 2007.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, vol-
ume 7 of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1989.

Florian Haftmann. Haskell-style type classes with Isabelle/Isar, 2009. URL
http://isabelle.in.tum.de/doc/classes.pdf.

Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis,
volume 2 of Semantics Structures in Computation. Springer, 2004.

Sam Lindley and Ian Stark. Reducibility and >>-lifting for computation
types. In TLCA, volume 3461 of LNCS, pages 262–277. Springer, 2005.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):
55–92, 1991.

Julien Narboux and Christian Urban. Formalising in Nominal Isabelle
Crary’s completeness proof for equivalence checking. Electr. Notes
Theor. Comput. Sci., 196:3–18, 2008.

Nominal Methods group. Strong normalization for the simply typed
lambda calculus, 2009. URL http://isabelle.in.tum.de/dist/
library/HOL/HOL-Nominal/Examples/SN.html.

Andrew M. Pitts. Nominal logic, a first order theory of names and binding.
Inf. Comput., 186(2):165–193, 2003.

Andrew M. Pitts. Alpha-structural recursion and induction. J. ACM, 53(3):
459–506, 2006.

Dag Prawitz. Ideas and results in proof theory. In Second Scandinavian
Logic Symposium, volume 63 of Studies in Logic and the Foundations of
Mathematics, pages 235–307. North-Holland, 1971.

Carsten Schürmann and Jeffrey Sarnat. Structural logical relations. In LICS,
pages 69–80. IEEE Computer Society, 2008.

Christian Urban. Nominal techniques in Isabelle/HOL. J. Autom. Reason.,
40(4):327–356, 2008.

Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s
variable convention in rule inductions. In CADE-21, volume 4603 of
LNCS, pages 35–50. Springer, 2007.

Markus M. Wenzel. Isabelle/Isar — a versatile environment for human-
readable formal proof documents. PhD thesis, Technische Universität
München, 2002.

http://www.tcs.informatik.uni-muenchen.de/~abel
http://dx.doi.org/10.1007/BFb0037095
http://dx.doi.org/10.1007/BFb0037095
http://doi.acm.org/10.1145/1328438.1328443
http://dx.doi.org/10.1007/978-3-540-71389-0_6
http://dx.doi.org/10.1007/978-3-540-71389-0_6
http://dx.doi.org/10.1007/s11225-006-6604-5
http://dx.doi.org/10.1007/978-3-540-71067-7_10
http://dx.doi.org/10.1016/j.entcs.2007.01.021
http://dx.doi.org/10.1016/j.entcs.2007.01.021
http://www.PaulTaylor.EU/stable/Proofs+Types.html
http://isabelle.in.tum.de/doc/classes.pdf
http://dx.doi.org/10.1007/11417170_20
http://dx.doi.org/10.1007/11417170_20
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/j.entcs.2007.09.014
http://dx.doi.org/10.1016/j.entcs.2007.09.014
http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html
http://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal/Examples/SN.html
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://doi.acm.org/10.1145/1147954.1147961
http://doi.ieeecomputersociety.org/10.1109/LICS.2008.44
http://dx.doi.org/10.1007/s10817-008-9097-2
http://dx.doi.org/10.1007/978-3-540-73595-3_4
http://dx.doi.org/10.1007/978-3-540-73595-3_4
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html

	Introduction
	Nominal Logic
	Formal Development
	Terms and Types
	Reduction and Strong Normalization
	Stacks and Dismantling
	Reducibility of Terms and Stacks
	Fundamental Theorem

	Discussion

