
Dominane Constraints in Context Uni�ationJoahim Niehren1 and Alexander Koller21 Programming Systems Lab, Universit�at des Saarlandes, Saarbr�uken,Germany, www.ps.uni-sb.de/~niehren2 Department of Computational Linguistis, Universit�at des Saarlandes,Saarbr�uken, Germany, www.oli.uni-sb.de/~kollerAbstrat. Tree desriptions based on dominane onstraints are popu-lar in several areas of omputational linguistis inluding syntax, seman-tis, and disourse. Tree desriptions in the language of ontext uni�-ation have attrated some interest in uni�ation and rewriting theory.Reently, dominane onstraints and ontext uni�ation have both beenused in di�erent underspei�ed approahes to the semantis of sope,parallelism, and their interation. This raises the question whether bothdesription languages are related. In this paper, we show for a �rst timethat dominane onstraints an be expressed in ontext uni�ation. Wealso prove that dominane onstraints extended with parallelism on-straints are equal in expressive power to ontext uni�ation.Keywords. Computational linguistis, underspei�ation, tree desrip-tions, omputational logis, uni�ation theory.1 IntrodutionLogial tree desriptions are popular in many areas of omputational linguistisand omputer siene. They are used to model data strutures in logi pro-gramming, to reason with propositions and proofs in automated dedution, andto represent all kinds of syntati or semanti strutures in omputational lin-guistis. In this paper, we investigate the relationship between tree desriptionsbased on dominane onstraints and those in the language of ontext uni�ation.Two Languages of Tree Desriptions. Dominane onstraints are popular fordesribing trees throughout omputational linguisti. In syntax, they serve fordeterministi parsing [MHF83℄ and to ombine TAG and uni�ation grammars[VS92℄. In underspei�ed treatments of sope ambiguities, variants of dominaneonstraints appear somewhat impliitly in many plaes [Rey93,Bos96℄ and expli-itly in two reent approahes [ENRX98,Mus98℄. Even more reently, dominaneonstraints have been applied to disourse semantis [GW98℄, and they havebeen used to model information growth and partiality [MVK98℄.In general, the problem of solving dominane onstraints is NP-omplete [KNT98℄.Nevertheless, [DG99℄ desribes an implementation of a dominane onstraintsolver whih runs eÆiently on pratial examples from sope underspei�a-tion and disourse. This solver is implemented based on �nite set onstraints in



the Mozart System [Moz99℄, the most reent implementation of the onurrentonstraint programming language Oz [Smo95℄.Context uni�ation (CU) was introdued in rewriting and uni�ation theory[Com92,SS94℄. CU an be onsidered as seond-order linear uni�ation [L�ev96℄,whih is a restrition of higher-order uni�ation, or as an extension of string uni-�ation [SSS98℄. The deidability question for CU is a prominent open problem[RTA98℄. A deidable fragment of CU alled strati�ed uni�ation has been usedto show the deidability of distributive uni�ation [SS97℄ and for solving one-step rewriting onstraints [NPR97a,NTT99℄. It is shown in [SSS99℄ that ontextuni�ation with two ontext variables { eah of whih may our an arbitrarynumber of times { is deidable. The proof is by redution to string uni�ation,whih is deidable aording to Makanin's famous result [Mak77,Sh93℄.Tree Desriptions in Semanti Underspei�ation. Reently, tree desriptionsbased on dominane onstraints and ontext uni�ation have been proposed forthe same appliation to natural-language semantis [ENRX98,NPR97a,Kol99℄.There, the goal was to �nd a uniform language providing underspei�ed repre-sentations for the semantis of sope, parallelism, anaphora, and their intera-tions (for a survey of semanti underspei�ation, see e.g. [vP96℄). The ommonharateristi of both approahes is that they view the formulae of the semantirepresentation as trees and desribe these trees. The role of dominane on-straints in this ontext is to desribe sope ambiguities; they are extended withonstrutions for desribing parallelism and anaphori and variable binding toobtain the Constraint Language over Lambda Strutures (CLLS).Contribution. If CU and CLLS are used for the same appliation, an immediatequestion is if there is a formal relationship between the two languages that sayssomething about their relative expressive power.In this paper, we show that the fragment of CLLS whih provides dominaneand parallelism onstraints is equal in expressive power to ontext uni�ation.We do this by giving satis�ability preserving, polynomial time enodings in bothdiretions. The most interesting (and non-obvious) part of the onstrution isto enode dominane onstraints in ontext uni�ation. One we know how todo that, the rest of this diretion is easy. The inverse enoding an be deduedfrom a result in [NPR97a℄.Plan of the Paper. In Setion 2 we illustrate why enoding dominane onstraintsinto ontext uni�ation is nontrivial. In Setion 3, we reall the fundamentalde�nitions of trees and ontexts. These de�nitions are used in Setion 4, wherewe present dominane and parallelism onstraints and briey review a linguistiexample. They are also used in Setion 5, where we reall ontext uni�ation,disuss �rst results on its expressive power, and give a linguisti example, too.Setion 6 ontains the enoding of dominane and parallelism onstraints in CU,and Setion 7 the inverse enodings. We onlude in Setion 8.



2 What is the Problem?It is not obvious to enode dominane onstraints in ontext uni�ation. Theproblem is that both languages desribe trees from di�erent perspetives. Wenow illustrate the di�erene by an example.Two Perspetives on Trees. Dominane onstraints (and CLLS as a whole)desribe relations between the nodes of the same tree (or a more general �-struture). In ontrast, the language of CU models relations between di�erenttrees and ontexts. In CU, one annot speak diretly about the nodes of a tree;but we shall use ontexts to speak about ourrenes of subtrees later in thispaper.The perspetive taken when speaking about the nodes of the same tree is alledinternal in [BGMV93℄, in ontrast to the external perspetive where one relatesseveral trees. Both views have a long tradition in logis. The internal view istaken in modal logi and in seond-order monadi logi (SnS) [Rab69℄, whereasthe external view is popular in uni�ation theory [MM82,Col84,BS93℄ and forset onstraints [HJ90,AW92,TDT00℄. In feature logis [KR86,Smo92℄, both per-spetives have been employed and ompared [BS95,MN00℄.Dominane versus Subtree Constraints. Dominane onstraints ontain nodevalued variables that we write as apital letters X;Y; Z. An atomi dominaneonstraint X��Y holds in a tree (struture) if the node denoted by X is above(stritly or not) the node denoted by Y .A �rst idea for enoding dominane onstraints in CU is to replae eah atomidominane onstraint by a subtree onstraint [Ven87℄, whih an be expressedin CU in a very simple way. Subtree onstraints have tree valued variables forwhih we use lower ase letters x; y; z. A subtree onstraint x�y says that thedenotation of y is a subtree of the denotation of x.Although they look very similar, there is an important di�erene between dom-inane and subtree onstraints: Dominane onstraints an speak about our-renes of subtrees by speifying their root nodes, whereas subtree onstraintsan't.An Example. Beause of this di�erene, the naive enoding of dominane assubtree onstraints does not preserve satis�ability. As an example, we onsiderthe dominane onstraint in (1) and the \orresponding" subtree onstraint (2).(1) X:f(X1; X2) ^X1��Y ^X2��Y =(2) x=f(x1; x2) ^ x1�y ^ x2�y 6= f � X� X1 � X2� Y



The dominane onstraint (1) is depited by the graph to the right. It desribestrees in whih the node denoted by X is labeled with a binary funtion symbol fand has two (distint) hildren denoted by X1 and X2. Furthermore, it requiresthat there is a node, denoted by Y , whih is below X1 and X2. This is impossiblein a tree. Thus, (1) is unsatis�able.The subtree onstraint (2) requires that x, x1, x2, and y denote trees. The treefor x has two diret subtrees denoted by x1 and x2, whih in turn have a ommonsubtree y (not neessarily at the same position). The subtree onstraint (2) issatis�able; one solution is obtained by mapping y, x1, and x2 to the tree a, andx to the tree f(a; a). The two ourrenes of y in the subtree onstraint (2) referto di�erent ourrenes the tree a in f(a; a).3 Trees and ContextsUnderstanding the notions of trees and ontexts is essential for this paper. Wenext de�ne both notions and explain the views on them we will adopt.We assume a signature � of funtion symbols ranged over by f; g, eah of whihis equipped with a �xed arity ar(f) � 0. Constants, ranged over by a; b, arefuntion symbols with arity 0. We assume that � ontains at least two funtionsymbols, one of whih is not onstant. Note that we do not restrit our signatureto be �nite.Trees. A (�nite onstrutor) tree � is a ground term onstruted from funtionsymbols in �. For instane, f(f(a; b); ) is a tree whose root node is labeled withf and whih has three leaves labeled by a; b; .An equivalent de�nition of trees, whih makes the nodes and node labels of thetree expliit, is based on tree domains. Let IN be the set of natural numbersn � 1 and IN� the set of words over natural numbers. � is the empty word, andthe onatenation of two words � and �0 is written by juxtaposition ��0. A path�0 is a pre�x of � if there is a �00 suh that �0�00 = �.A tree domain D is a nonempty pre�xed-losed subset of IN�. That is,D ontainspaths whih are words of positive integers; they an intuitively be identi�ed withthe nodes of the tree. A labeling funtion is a funtion L : D ! � de�nedon a tree domain D whih satis�es for all � 2 D and k 2 IN: �k 2 D i�1 � k � ar(L(�)). A tree, then, is a pair (D;L) of a tree domain and a labelingfuntion.The two de�nitions of trees an be onneted by assoiating with eah tree � atree domain D� and a labeling funtion L� : D� ! � as follows:Df(�1;::: ;�n) = f�g [ fk� j 1 � k � n; � 2 D�kgLf(�1;::: ;�n)(�) = �f if � = �L�k(�0) if � = k�0; 1 � k � n; �0 2 D�kFor instane, the tree � = f(g(a); b) has the tree domain D� = f�; 1; 11; 2g andthe labeling funtion L� with L� (�) = f , L� (1) = g, L� (11) = a, and L� (2) = b.
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τFig. 1. A ontext  with hole �0.
Lemma 1. For every �nite tree domain D and labeling funtion L : D ! �there exists a unique tree � suh that D� = D and L� = L.Whenever � is a tree and � a path in D� , we de�ne the subtree �:� of � at � asthe unique tree with the following properties (otherwise �:� is unde�ned):D�:� = f�0 j ��0 2 D�gL�:�(�0) = L� (��0) for all ��0 2 D�Lemma 2. For all trees � and paths � 2 D� if f = L� (�) and ar(f) = n then�:� = f(�:(�1); : : : ; �:(�n)) :Contexts. Intuitively, a ontext is a tree with a hole. More formally, we introduea speial symbol � that we all hole marker and assign it the arity ar(�) = 0. Aontext  is a ground term over � [ f�g whih ontains exatly one ourreneof the hole marker. For instane, f(a; f(�; b)) is a ontext, but f(�; f(�; b)) isn't.We shall use the letter � for trees over � and the letter  for ontexts (i.e. speialtrees over � [ f�g).The hole of a ontext  is the ourrene of the hole marker in . More preisely,the hole is the unique path �0 2 D suh that L(�0) = �. Fig. 1 shows a ontextwith hole �0.We will freely onsider ontexts as funtions that map trees to trees. Appliation[� ℄ of a ontext  to a tree � is de�ned by[� ℄ = [�=�℄That is, [� ℄ is the result of substituting the hole marker � in  by � . Theontext � orresponds to the identity funtion on trees. This illustrates that thehole marker an be seen as a �-bound variable (rather than a onstant or a freevariable). Conatenation  Æ0 of ontexts (seen as funtions from trees to trees)an be de�ned as [0=�℄.Lemma 3. For a ontext  with hole � and all trees � , it holds that [� ℄:� = � .



Contexts in Trees. Sine ontexts are ground terms over a speial signature, wehave already de�ned subtree seletion for ontexts. If  is a ontext and � 2 Dthen :� is either a tree over � or a ontext. It is a ontext i� � is a pre�x(proper or not) of the hole of .Given a tree � and a path � 2 D� , we write the ontext obtained by replaingthe subtree of � at � with the symbol � as ���. More preisely, ��� is de�nedas the ontext with domain D��� = f�0 j � not a proper pre�x of �0g and thelabeling funtion whih assigns L���(�0) = L� (�0) for all �0 2 D��� n f�g andL���(�) = �.Lemma 4. For all � and � 2 D� it holds that ���[�:�℄ = � .Given a pre�x �1 of �2 and a tree � with �2 2 D� , we de�ne ��1�2 to be theontext of � between �1 and �2:��1�2 = (���2):�1 = (�:�1)�� where �1� = �2:4 Dominane and Parallelism ConstraintsWe now present the language of dominane and parallelism onstraints whih isa fragment of the onstraint language over �-strutures CLLS [ENRX98℄. CLLSalso has onstruts for dealing with variable binding and anaphora, but we ignorethese for the purpose of this paper.Our notion of dominane onstraints di�ers slightly from the one used e.g. byVijay-Shanker [VS92℄; these languages are mostly based on feature trees as om-mon in omputational linguistis, whereas our trees are onstrutor trees.4.1 Tree StruturesWe �rst de�ne tree strutures, logial strutures representing trees. Tree stru-tures �x the interpretation of a set of prediate symbols. Based on tree strutures,we will de�ne the syntax and semantis of our onstraint language in the usualTarskian style.We assoiate with every tree � a logial struture M� , the tree struture of� . The domain of the tree struture M� oinides with the tree domain of � .Furthermore,M� provides interpretations for the binary relation symbol��, a 4-ary relation symbol :=:�:=:, and a relation symbol :f of arity ar(f) + 1 for everyfuntion symbol f 2 �. We use the same symbols for relations and relationsymbols; there shouldn't be any danger of onfusion. For instane, we write����0 in order to say that the relation �� holds for the pair (�; �0), whereasX��X 0 is an atomi onstraint built from the relation symbol �� and variablesX;X 0. A relation symbol is generally interpreted by the relation of the samename.If f 2 � and ar(f) = n, then the labeling relation �:f(�1; : : : ; �n) is true in M�i� L� (�) = f and �i = �i for all 1 � i � n. The dominane relation ����0 is



g � X� Y� Z
f �g � Xf � Yf �b � a � Za � a �

Fig. 2. The dominane onstraint X:g(Y ) ^ Y��Z and of one of its solutions.
true in M� i� �; �0 2 D� and � is a pre�x of �0. Finally, the parallelism relation�1=�01��2=�02 holds if the ontexts ��01�1 and ��02�2 exist and oinide:�1=�01��2=�02 holds in M� i� �1���01; �2���02; and ��1�01 = ��2�02 :Intuitively, this means the subtrees of � below �1 and �2 have the same struture,exept for the subtrees below �01 and �02, whih may be di�erent.4.2 The Constraint LanguageWe assume an in�nite set of node variables X;Y; Z. A parallelism onstraint 'is given by the following abstrat syntax:' ::= X��Y j X :f(X1; : : : ; Xn) j X=X 0�Y=Y 0 j ' ^ '0A parallelism onstraint is a onjuntion of atomi onstraints for the domi-nane, labeling, and parallelism relations. A dominane onstraint is parallelismonstraint without atomi onstraints X=X 0�Y=Y 0 for parallelism.The semantis of parallelism onstraints is given by interpretation over arbitrarytree strutures M� . A solution of a parallelism onstraint ' onsists of a treestruture M� and a variable assignment � into its domain that satis�es allatomi onstraints in '. We write (M� ; �) j= ' if (M� ; �) is a solution of '.Note that the onstraintX :a ^ Y :a has solutions where X and Y denote distintnodes both of whih are labeled with a.We often display a dominane onstraint and its solutions graphially. For in-stane, the onstraint X :g(Y ) ^ Y��Z and one of its solutions are displayed inFig. 2. Note that additional material (printed in light gray) has been �lled intothe spae between the nodes denoted by Y and Z and above X . The dominaneonstraint does not say anything about these regions.The areful reader might have notied that dominane onstraints an be ex-pressed by parallelism onstraints without atomi onstraints for dominane.Lemma 5. The equivalene X��Y $ X=Y�X=Y is valid in all tree strutures.



X1:8u(X3) ^X3:!(X4; X5)^X4:man(X6) ^X6:varu^X2:9v(X7) ^X7: ^ (X8; X9)^X8:woman(X10) ^X10:varv^X5��X11 ^X9��X11^X11:love(X12; X13)^X12:varu ^X13:varv
8u � X1! � X3man � X4varu � X6 � X5 9v � X2^ � X7woman � X8varv � X10love � X11varu � X12 varv � X13 � X9

Fig. 3. An underspei�ed representation of the meaning of Example 3.
4.3 Appliation to Semanti Underspei�ationAs examples for the linguisti appliation of dominane and parallelism on-straints, we briey review a sope ambiguity and a very simple VP ellipsis. Forthe �rst example, onsider the sentene (3), whih is a lassial sope ambiguity.(3) Every man likes a woman.The readings of this sentene an be represented by the prediate logi formulaein (4) and (5).(4) 8u:(man(u)! 9v:(woman(v) ^ love(u; v)))(5) 9v:(woman(v) ^ 8u:(man(u)! love(u; v)))A ompat underspei�ed representation of both readings is given by the dom-inane onstraint in Fig. 3. The semanti representation of the sentene is on-sidered as a tree, whih is then desribed by a dominane onstraint.Ellipses an be modeled with parallelism onstraints expressing that the treesorresponding to the semantis of soure and target sentenes must be the sameexept for the respetive parallel elements. For instane, the semantis of (6) anbe desribed by (7).(6) John sleeps. Mary does too.(7) X :sleep(X 0) ^ X 0:john ^ Y 0:mary ^ X=X 0�Y=Y 0We annot go into this in more detail here and refer the reader to [ENRX98℄ foran in-depth disussion (in partiular on the interation of sope and ellipses).5 Context Uni�ationContext uni�ation is the problem of solving equations between tree valuedterms in the two-sorted algebra T C of trees and ontexts. We �rst introdue



x=g(y)^ y=C(z) x 7! g(f(f(b; a); a));y 7! f(f(b; a); a);C 7! f(f(b; � ); a);z 7! a:Fig. 4. The equation system x=g(y) ^ y=C(z) and one of its solutions.
equations between tree-valued terms and then show that they an also expressequations between ontext-valued terms. Finally, we sketh an appliation tosemanti underspei�ation.5.1 Syntax and Semantis of CUThe algebra of trees and ontexts T C over � is a two-sorted algebra whosedomains are the set of trees and the set of ontexts over �. The operationsprovided by T C are tree onstrution and funtional appliation of ontexts totrees. Eah funtion symbol f 2 � is interpreted as an ar(f)-ary tree onstrutor,whih maps a tuple (�1; : : : ; �n) of trees to the tree f(�1; : : : ; �n). The appliation[� ℄ of a ontext  to a tree � has already been de�ned.For both sorts of T C, we assume an in�nite set of variables: tree variables x; y; zand ontext variables C. A tree-valued term t is built from tree variables, appli-ations of funtion symbols in �, and appliation of ontext variables.t ::= x j f(t1; : : : ; tn) j C(t) (ar(f) = n)In partiular, every tree is a tree-valued term.A variable assignment into T C is a funtion � that assign trees to tree variablesand ontexts to ontext variables. Variable assignments an be lifted homomor-phially to tree-valued terms:�(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn))�(C(t)) = �(C)[�(t)℄:A variable assignment � into T C is a solution of an equation system (i.e. aonjuntion of equations between terms) if �(t) = �(t0) holds for all equationst = t0 in this system. Context uni�ation is the problem of solving suh equationsystems over T C. An example for a solution of the equation system x=g(y) ^y=C(z) is given in Fig. 4. The similarity between Figures 2 and 4 is intended.5.2 Properties of ContextsThe following three lemmas are quite simple, but will failitate a lot of laterwork.



Lemma 6. Two ontexts  and 0 are equal i� their holes are the same andthere is a tree � suh that [� ℄ = 0[� ℄.Note that the existene of a single tree � suh that [� ℄ = 0[� ℄ is suÆient.Proof. The \)" diretion is trivial. For the other diretion, all we have to proveis that the domains of the ontexts  and 0 are equal; this immediately impliesequality of the labeling funtions, sine for every � 2 D exept for the (ommon)hole, L(�) = L[� ℄(�) = L0[� ℄(�) = L0(�).Let's say that the ommon hole of  and 0 is �0. Then [� ℄ = 0[� ℄ implies thefollowing equalities:D [ �0 D� = D[� ℄ = D0[� ℄ = D0 [ �0 D� :As the unions on both sides are between sets whose respetive intersetion isf�0g, it follows that D = D0 . utWe next express a orrespondene between nodes and their ontexts.Lemma 7. Let � be a tree and �1 a pre�x of �2 with �1; �2 2 D� . Then ��1�2 isthe unique ontext suh that �:�1 = ��1�2 [�:�2℄ .Proof. From Lemma 4 it follows that �:�1 = ��1�2 [�:�2℄. The uniqueness of ��1�2follows from Lemma 6. utLemma 8. Let �1 be a pre�x of �2, �2 a pre�x of �3, and � a tree whose domainontains �1, �2, and �3. Then ��1�2 Æ ��2�3 = ��1�3 .Proof. Straightforward. ut5.3 Equations between Context-Valued TermsIn the onstrution in the next setion, it will be onvenient to use equationsbetween ontext-valued terms, suh as C = C1ÆC2. This notation emphasizes thefuntional harater of ontexts. In this setion, we show that these equations anin fat be expressed by equations between tree-valued terms. A ontext-valuedterm u has the following abstrat syntax:u ::= C j � j f(t1; : : : ; ti; u; ti+1 : : : ; tn) j u Æ u0We onservatively extend T C by onatenation  Æ0 of ontexts and lift variableassignments � to ontext-valued terms as follows. As above, we de�ne that � isa solution of an equation u=u0 i� it maps u and u0 to the same ontext.�(�) = ��(f(t1; : : : ; u; : : : ; tn)) = f(�(t1); : : : ; �(u); : : : ; �(tn))�(u Æ u0) = �(u) Æ �(u0)Now we an de�ne syntati insertion u[t℄ of tree-valued into ontext-valuedterms in the obvious way. This produes tree-valued terms with the property�(u[t℄) = �(u)[�(t)℄. With this operation, we an express eah equation betweenontext-valued terms as a onjuntion of equations between tree-valued terms.



Proposition 1 (Equations between ontext valued terms). Let �1 and�2 be two di�erent trees. Then the following equivalene holds:u=u0 $ u[�1℄=u0[�1℄ ^ u[�2℄=u0[�2℄:Note that our restrition on the signature in Setion 3 implies that two di�erenttrees really exist.Proof. The diretion from left to right is trivial. For the right-to-left diretion,we show that the ontexts  and 0 denoted by u and u0 must be equal. To thisend, we only need to show that  and 0 have the same hole; then their equalityfollows from Lemma 6.Let's say that � and �0 are the holes of  and 0, respetively. The path � annotbe a proper pre�x of �0 or vie versa. Otherwise, [�1℄ = 0[�1℄ would not besatis�ed. Sine �0 2 D0[�1℄, either �0 2 D , or � is a proper pre�x of �0. But �is no pre�x (proper or not) of �0, so �0 2 D . As �0 and � are not a pre�x ofeah other, it follows that [�1℄:�0=[�2℄:�0. Hene, by Lemma 3,[�1℄:�0 = 0[�1℄:�0 = �1[�2℄:�0 = 0[�2℄:�0 = �2:So in ontradition to our assumptions, we have derived that �1 = �2. ut5.4 Appliation to Semanti Underspei�ationIt is quite simple to express a sope ambiguity by using equations betweenontext-valued terms. An underspei�ed representation of the meaning of Ex-ample 3 is given below. x> = C1(love(varu; varv))C1 = C2(8u(!(man(varu); C3)))C1 = C4(9v(^(woman(varv); C5)))The semantis of the whole sentene is represented by the tree denoted by x>in solutions of the above equations. The �rst equation states that the semantidesription ontains a desription of the semantis of the verb love. The ontextof the verb semantis is denoted by C1. The seond equation requires that aquanti�er every man is plaed within the ontext denoted by C1, i.e. above theverb. The third equation states that another quanti�er a woman has also beplaed above the verb.6 Parallelism Constraints into Context Uni�ationIn this setion, we enode parallelism onstraints (and thus dominane on-straints) into ontext uni�ation. More preisely, we show that for every paral-lelism onstraint ', there is an equation system [['℄℄ in the language of ontext



[[X��Y ℄℄p = 9C (CX Æ C = CY ) (C fresh)[[X:f(X1; : : : ; Xn)℄℄p = V1�i�n CXi = CX Æ f(x1; : : : ; �; : : : ; xn) if (n � 1)[[X:a℄℄p = x=a[[X=X 0�Y=Y 0℄℄p = 9C (CX0=CX Æ C ^ CY 0=CY Æ C) (C fresh)[['1 ^ '2℄℄p = [['1℄℄p ^ [['2℄℄pFig. 5. Pre-enoding of dominane and parallelism onstraints.
uni�ation with the same solutions (up to a simple orrespondene). We freelyuse equations between ontext-valued terms, whih is safe aording to Propo-sition 1.We will proeed as follows: First, we de�ne the enoding and onsider someexamples. Seond, we lift the enoding to the �rst-order theory of parallelismonstraints and prove its orretness.For the proof, we will relate every solution (M� ; �) of a parallelism onstraintto a variable assignment [[M� ; �℄℄ into T C whih solves the enoded onstraint.With this terminology, the key result (Proposition 3) of our orretness proof(whih makes the term \have the same solutions" preise) an be stated like this:For an arbitrary dominane onstraint ' and its enoding [['℄℄ as a CU equationsystem, the following equivalene holds.(M� ; �) j= ', T C; [[M� ; �℄℄ j= [['℄℄As illustrated in Setion 2, the main obstale that we must overome in ourenoding of dominane onstraints is to provide the power to talk about o-urrenes of subtrees. The entral idea is to talk about nodes (ourrenes ofsubtrees) by talking about their ontexts. For instane, the two ourrenes ofa in the term f(a; a) an be spei�ed by the ontexts represented by f(a; �) andf(�; a) respetively.6.1 The EnodingLet us de�ne the enoding of a parallelism onstraint '. We assoiate with everyvariable X appearing in a ' a ontext variable CX (whose purpose it is to denotethe ontext starting at the root of the tree and whose hole is the node denotedby X) and a tree variable x (whose purpose it is to denote the tree below X).In addition, we introdue a new tree variable x> that we want to denote theentire tree. To ensure that these new variables interat orretly, we impose thefollowing onstraint, Root('), where FV(') are the free variables of ':Root(') = ^X2FV(')x>=CX(x)



In addition, we de�ne a pre-enoding [[ � ℄℄p as in Figure 5. The omplete enoding[[ � ℄℄ is obtained as [['℄℄ = [['℄℄p ^ Root('):An atomi dominane onstraint X��X 0 is pre-enoded by 9C (CX0=CX Æ C),whih expresses that the ontext of the node X an be enlarged by addingmore material below its hole to obtain the ontext X 0. An atomi parallelismonstraint X=X 0�Y=Y 0 is pre-enoded by 9C (CX Æ C = CX0 ^ CY Æ C = CY 0),whih expresses that the ontext of the node X an be enlarged to the ontextX 0 by adding the same material as for enlarging the ontext of Y to that of Y 0.The pre-enoding of X :f(X1; : : : ; Xn) requires for all 1 � i � n that the ontextabove Xi is the ontext above X , enlarged with f(x1; : : : ; �; : : : ; xn), where thehole is at position i. For a nullary labeling onstraint X :a, the pre-enodingrequires x = a.Proposition 2 (Enoding Parallelism Constraints). A parallelism on-straint ' is satis�able i� its enoding Root(') ^ [['℄℄p is a satis�able equationsystem of ontext uni�ation.Proof. The proposition will be a simple onsequene of Theorem 1, the analogousresult for �rst-order formulae. ut6.2 ExamplesBefore we turn to the �rst-order ase, let us onsider some examples. First, wereonsider Example (1) from Setion 2. When we tried to enode this dominaneonstraint as a subtree onstraint (2), we lost unsatis�ability. However, our newenoding works just �ne. (8) shows the pre-enoding of the example; we haveleft the Root formula away, as it is not neessary for the unsatis�ability in thisase.(1) X : f(X1; X2) ^X1��Y ^X2��Y(8) CX1=CX Æ f(�; x2) ^ CX2=CX Æ f(x1; �) ^ CX1 Æ C=CY ^ CX2 Æ C 0=CYWe an see that (8) is unsatis�able in the following way. As CX1 Æ C = CY andCX2 Æ C 0=CY , CX1 Æ C=CX2 Æ C 0. In this equation, we an substitute CX1 byCX Æ f(�; x2) and CX2 by CX Æ f(x1; �) and obtain f(�; x2) Æ C=f(x1; �) Æ C 0,whih is learly unsatis�able beause the holes are di�erent on both sides.Another example will serve to show that the Root formula is really neessary toobtain the orret results. (10) is the (omplete) enoding of the (unsatis�able)dominane onstraint (9) (a and b are di�erent onstants):(9) X :a ^ Y :b ^ X��Y(10) x>=CX (x) ^ x>=CY (y) ^ x=a ^ y=b ^ CX Æ C = CYThe pre-enoding alone (i.e. the last three onjunts) is satis�able; togetherwith the Root formula, it isn't. x>=CX (x) ^ x>=CY (y) implies CX(x)=CY (y),whih, when ombined with CX Æ C = CY , yields x=C(y). When using x=a ^y=b as a substitution, we obtain a=C(b), whih is not satis�able.



[['℄℄ = [['℄℄p (' atomi)[[�1 ^ �2℄℄ = [[�1℄℄ ^ [[�2℄℄[[:�℄℄ = :[[�℄℄[[9X:�℄℄ = 9CX9x:(x>=CX(x) ^ [[�℄℄)Fig. 6. Enoding losed �rst-order formulas over parallelism onstraints.
6.3 Enoding First-Order FormulaeIn Fig. 6, the enoding of parallelism onstraints is lifted to �rst-order formulae�. If we restrit ourselves to losed �rst-order formulae, an expliit Root formulais no longer needed; its omponents are distributed among the enodings ofexistential quanti�ers. If we write ~9� for the existential losure of a formula �,then it holds for all dominane onstraints ' that:~9 (Root(') ^ [['℄℄p) = [[~9'℄℄Hene, the orretness of the enoding Root(') ^ [['℄℄p laimed in Prop. 2 followsfrom the orretness of the enoding of �rst-order sentenes.Now let us turn to the proof of the �rst-order ase. First, we formulate theorrespondene [[�; �℄℄V we announed above. This funtion maps pairs of treestrutures M� and variable assignments mapping the variables in V to the do-main of � to variable assignments into T C. The goal is that if the argumentssatisfy a given dominane onstraint, the result will satisfy its enoding.[[M� ; �℄℄V (x>) = �[[M� ; �℄℄V (x) = �:�(X) for all x suh that X 2 V[[M� ; �℄℄V (CX ) = � ��(X) for all CX suh that X 2 V :With this de�nition, the following proposition holds.Proposition 3. Let M� be a tree struture, � a variable assignment, and �a �rst-order formula over the parallelism onstraints. Then � is satis�ed by(M� ; �) i� [[�℄℄ is satis�ed by [[M� ; �℄℄FV(�).Proof. We prove the proposition by strutural indution. First, we show that itis true for the atomi onstraints; towards the end of the proof, we ondut theindution steps. Throughout the proof, we write � = [[M� ; �℄℄FV(�) for brevity.{ X��Y . The treatment of X=X 0�Y=Y 0 is analogous.\)" Assume that (M� ; �) satis�es X��Y ; we show that � satis�es the en-oding 9C (CX Æ C=CY ). Our assumption means that �(X) is a pre�x



of �(Y ). Hene, we an onstrut a variable assignment �0 that is like �,but assigns ��(X)�(Y ) to C. By Lemma 8, �0 solves CX Æ C=CY and, thus,� is a solution of [[X��Y ℄℄.\(" Assume that 9C (CX Æ C=CY ) is satis�ed by �. Then there must be aontext  suh that �(CX ) Æ  = �(CY ); hene, �(X) must be a pre�xof �(Y ), and (M� ; �) satis�es X��Y .{ X :f(X1; : : : ; Xn), where n � 1\)" Assume that (M� ; �) satis�es X :f(X1; : : : ; Xn); we assume 1 � i � nand onlude that � satis�es all equations CXi=CXÆf(x1; : : : ; �; : : : ; xn)where the hole marker � is at position i.Let u be the ontext-valued term CX Æ f(x1; : : : ; �; : : : ; xn). We �rstshow that the holes of �(u) and �(CXi ) are the same, and then thattheir values on �(xi) are equal. (Here we need n � 1, as xi would notexist otherwise.) From Lemma 6, we an then onlude �(u) = �(CXi).The hole of �(CXi ) = � ��(Xi) is �(Xi), and that of �(u) is �(X)i. Sine(M� ; �) is a solution of X :f(X1; : : : ; Xn), we have �(X)i = �(Xi), andhene the holes are equal.We already notied that �(X)i = �(Xi) for all 1 � i � n. Lemma 2implies that �(x) = �:�(X) = f(�:�(X)1; : : : ; �:�(X)n)= f(�:�(X1); : : : ; �:�(Xn))= f(�(x1); : : : ; �(xn))Based on this equation and Lemma 7, we are now in the position to prove�(u)(�(xi)) = �(CXi )(�(xi)) (and thus �(u) = �(CXi ) as required):�(u)(�(xi)) = � ��(X)[f(�(x1); : : : ; �(xn)℄ = � ��(X)[�(x)℄ = ��(CXi )(�(xi)) = � ��(Xi)[�(xi)℄ = �\(" Assume that � solves the equation CX = CXi Æ f(x1; : : : ; �; : : : ; xn) forsome 1 � i � n, where the hole � is at position i. Lemma 7 yields� = � ��(X)[�:�(X)℄ = �(CX )[�(x)℄� = � ��(Xi)[�:�(Xi)℄ = �(CXi )[�(xi)℄ = �(CX )[f(�(x1); : : : ; �(xn))℄Sine ontext funtions are one-to-one and �(CX ) is a ontext funtion,these equations imply �(X) = f(�(x1); : : : ; �(xn)). This is equivalent to�:�(X) = f(�:�(X1); : : : ; �:�(Xn));whih in turn means that (M� ; �) solves X :f(X1; : : : ; Xn).{ X :a\)" Assume that (M� ; �) satis�es X :a. Sine ar(a) = 0, it follows that�:�(X) = a, so � solves x=a.\(" Assume that � satis�es x=a; then �(x) = �:�(X) = a and, hene,(M� ; �) solves X :a.



Of the omplex ases, negation and onjuntion are trivial. Existential quanti�-ation is more interesting:{ 9X:�\)" We assume that (M� ; �) satis�es 9X:�; so there is a path � suh that(M� ; �[�=X ℄) solves �. By indution hypothesis, [[M� ; �[�=X ℄℄℄FV(�)satis�es [[�℄℄. On the free variables of �, this variable assignment agreeswith [[M� ; �℄℄FV(9X�)[�:�=X; � ��=CX ℄, and the latter variable assignmentsatis�es x> = CX (x) as well. Thus [[M� ; �℄℄FV(9X�) solves [[9X�℄℄.\(" We assume that � = [[M� ; �℄℄FV(9X�) solves 9CX9x([[�℄℄ ^ x>=CX (x)).There is a � suh that �[�:�=x; � �� ℄ solves [[�℄℄. Sine �[�:�=x; � ��=CX ℄ isequal to [[M� ; �[�=X ℄℄℄FV(�) on all free variables of [[�℄℄, it follows fromthe indution hypothesis that (M� ; �[�=X ℄) solves �. Hene (M� ; �)solves 9X�. utCorollary 1 (Enoding First-Order Formulae). A losed �rst-order for-mula � over dominane and parallelism onstraints is satis�ed by a pair (M� ; �)i� there is a variable assignment � into T C that solves [[�℄℄ suh that �(x>) = � .7 Context Uni�ation into Parallelism ConstraintsWe �nally show how to express equations of ontext uni�ation by parallelismonstraints. This is not obvious but it follows from a result of [NPR97a℄ whihshows that CU has the same expressive power as equality up-to onstraints.Equality up-to onstraints an be translated to parallelism onstraints plus sim-ilarity onstraints. Finally, one an get rid of similarity onstraints by a neattrik.An equality up-to onstraint is a onjuntion of atomi onstraints of the fol-lowing form, whih are interpreted in the algebra T C. ::= x=x0=y=y0 j x=f(x1; : : : ; xn) j  ^  0An atomi equality up-to onstraint x=x0=y=y0 is satis�ed by a variable as-signment � into T C if there is a ontext  suh that �(x) = [�(x0)℄ and�(y) = [�(y0)℄. Intuitively, this is the ase i� the trees denoted by x and yare equal, up to an ourrene of x0 in x and of y0 in y respetively. Equalityup-to onstraints are equivalent to ontext uni�ation:Proposition 4 (Equality up-to Constraints and CU [NPR97a℄). Forevery equation system of ontext uni�ation, there is a satisfation equivalentequality up-to onstraint, and vie versa.With this result, it remains to enode equality up-to onstraints into parallelismonstraints. This would be simple if parallelism onstraints ould express simi-larity onstraints. A similarity onstraint has the form X�Y and is interpretedby the similarity relation. A similarity relationship ���0 holds for two nodes if�:� = �:�0 (i.e. if the s ubtrees below � and �0 are the same).



[[x=x0=y=y0℄℄�1 = X=X 00�Y=Y 00 ^X 0�X 00 ^ Y 0�Y 00 (X 00; Y 00 fresh)[[x=f(x1; : : : ; xn)℄℄�1 = X:f(X 01; : : : ; X 0n) ^Vni=1Xi�X 01 (X 01; : : : ; X 0n fresh)Fig. 7. Enoding equality up-to into parallelism and similarity onstraints.
Lemma 9. If the signature � ontains a single onstant, then parallelism on-straints an express similarity onstraints.Proof. Let a be the unique onstant of �. Every �nite tree must ontain a nodelabeled with a; so the following equivalene holds for all tree models:X�Y $ 9Z9Z 0(Z:a ^ Z 0:a ^ X=Z�Y=Z 0) utIf the number of onstants in � is �nite, we an express X�Y by a �nite dis-juntion; but this would not lead to a polynomial time transformation. But thereis a neat trik to work around whih even applies for in�nitely many onstants.Lemma 10. For every signature �, there exists a signature �0 with a singleonstant suh that parallelism and similarity onstraints over � an be translatedin linear time into satis�ability equivalent onstraints of the same kind over �0.Proof. For any signature�, let �0 be the signature onsisting of all non-onstantsymbols of �, plus the onstants of � onsidered as unary funtion symbols, plusa new onstant a. We transform eah parallelism onstraint ' into a onstraint'0 by replaing every onstraint X :b by 9Y (X :b(Y ) ^ Y :a). Now it is easy tosee that ' is satis�able over � i� '0 is satis�able over �0. utTheorem 1 (Parallelism Constraints = Context Uni�ation). For everyparallelism onstraint ', there is a satis�ability equivalent equation system ofontext uni�ation, and vie versa.Proof. The orretness of an enoding of parallelism onstraints into CU is statedin Proposition 2.For the onverse, we �rst express CU by equality up-to onstraints aording toProposition 4. Seond, we enode equality up-to onstraints by parallelism andsimilarity onstraints. This is quite easy; an enoding [[ ℄℄�1 is de�ned in Figure7. In order to enode  , we assume a node variable X for every tree variable xourring in  . The variable X is supposed to denote the root node of an our-rene of x in the solution of the enoding of '. It is obvious that [[ � ℄℄�1 preservessatis�ability. The enoding of x=x0=y=y0 expresses that somewhere below thenodes X and Y , there are nodes X 00 and Y 00 the trees below whih look justlike the trees below the nodes X 0 and Y 0, and the ontexts between X and X 00



and Y and Y 00 are equal. (Note that this is a weaker ondition than parallelismitself; it does not say anything about the loations of the nodes denoted by X 0and Y 0.) The enoding of equation x=f(x1; : : : ; xn) works similarly: It expressesthat X is labeled with f and that its subtrees look just like the subtrees belowthe X1; : : : ; Xn.Third, we swith to a signature with a single onstant whih we an do aord-ing to Lemma 10. We an now express all similarity onstraints by parallelismonstraints (Lemma 9) whih ompletes the proof. ut8 ConlusionThe main result of this paper is that ontext uni�ation has the same expressivepower as parallelism onstraints. Parallelism onstraints subsume dominaneonstraints. The most involved part was to embed dominane onstraints intoCU. The inverse diretion from CU to parallelism onstraints proeeds via adeviation through equality up-to onstraints, whih have the same expressivessas CU as well.The orrespondene between CU and CLLS has two important onsequenes.For one, it allows us to transfer omplexity and deidability results. For thetime being, however, the deidability of either language is unknown. Conversely,the satis�ability problem of dominane onstraints is shown NP-omplete in[KNT98℄. Of ourse, NP-hardness for several fragments of CU was well knownbefore.The other onsequene is that CU an be easily expressed by parallelism on-straints in CLLS [ENRX98℄ whih explains why the linguisti appliation givenfor CU in [NPR97b℄ arries over to CLLS. Furthermore, this appliation of CUis lari�ed. In earlier papers, sope ambiguities ould be desribed in CU butonly in a somewhat intransparent fashion. In the light of the results presented,it beomes lear that the equations used previously were really just enodingsof dominane and parallelism onstraints.Aknowledgments We are deeply indebted to Peter Ruhrberg, a former ol-league of ours who onjetured the presented relationship long before CLLS wasfound. It is a pleasure to thank all members (student or not) of the CHORUSprojet. The researh reported here was supported by the SFB 378 at the Uni-versit�at des Saarlandes and the Esprit Working Group CCL II (EP 22457).9 Referenes[AW92℄ Alexander Aiken and E.L. Wimmers. Solving Systems of Set Constraints.In International Conferene on Logi in Computer Siene, pages 329{340,June 1992.[BGMV93℄ P. Blakburn, C. Gardent, and W. Meyer-Viol. Talking about trees. InEuropean Chapter of the Assoiation of Comp. Linguistis, 1993.
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