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Abstract
Semi-unification (unification combined with matching) has been proven undecidable by Kfoury,
Tiuryn, and Urzyczyn in the 1990s. The original argument reduces Turing machine immortality via
Turing machine boundedness to semi-unification. The latter part is technically most challenging,
involving several intermediate models of computation.

This work presents a novel, simpler reduction from Turing machine boundedness to semi-
unification. In contrast to the original argument, we directly translate boundedness to solutions of
semi-unification and vice versa. In addition, the reduction is mechanized in the Coq proof assistant,
relying on a mechanization-friendly stack machine model that corresponds to space-bounded Turing
machines. Taking advantage of the simpler proof, the mechanization is comparatively short and
fully constructive.
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1 Introduction

In the 1980s it was an actively studied, long-standing open problem whether the combination
of first-order unification and matching, both of which are decidable problems, is decidable.
This problem, called semi-unification, is: given a finite set of pairs (σ, τ) of first-order terms,
is there a valuation ϕ of term variables such that for each pair (σ, τ) we have ψ(ϕ(σ)) = ϕ(τ)
for some valuation ψ of term variables?

Semi-unification is directly related [10, 16] to type inference in an extension of the
Hindley–Milner type system [11, 19] (cf. the standard ML [20] programming language),
which allows for polymorphic recursion [21]. Therefore, computational properties of semi-
unification translate to type inference capabilities for polymorphic functional programming
languages, affecting programming language design. For a broad overview over properties of
semi-unification the reader is referred to [17, 13].

In the 1990s Kfoury, Tiuryn, and Urzyczyn have shown that semi-unification is un-
decidable [15, 17]. This negative result motivated exploration of decidable fragments of
semi-unification (for an overview see [18]). The original undecidability proof is quite so-
phisticated, reflecting the inherent intricacy of the semi-unification problem. It involves
Turing machine immortality, symmetric intercell Turing machine boundedness, path equation
derivability, and termination of a redex contraction procedure for semi-unification. Therefore,
it is challenging to verify the original proof down to the last detail, let alone mechanize it
in a proof assistant. Additionally, the original argument uses König’s lemma and it is not
obvious whether it can be presented constructively.

This work contributes to a better understanding of semi-unification in three aspects.
First, we present a simpler proof for the undecidability of semi-unification. The presented
technical argument connects an undecidable machine property (in immediate correspondence
with Turing machine boundedness) to solutions of semi-unification in a direct way. The key
contribution regarding this aspect is the function ζ (Definition 41) that constructs solutions
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9:2 Undecidability of Semi-Unification on a Napkin

for semi-unification instances. Second, we mechanize [2] (ca. 1500 lines of code in the
Coq [5] proof assistant) the presented argument, leaving little room for doubt regarding its
correctness. Third, König’s lemma in the original argument is replaced by the fan theorem.
The provided mechanization reveals full constructivity of the remaining reasoning.

Proof Synopsis

First, we reduce Turing machine immortality [12] (is there a diverging configuration?) to a
uniform boundedness problem for stack machines (is there a uniform bound on the number
of reachable configurations?). The considered, restricted class of stack machines, which we
call simple, is a mechanization-friendly presentation of space-bounded Turing machines.

Second, given a simple stack machineM, we encode each instruction ofM as a semi-
unification constraint, thereby constructing a finite set of constraints C. Each state ofM is
a variable in C. The resulting constraints are of restricted shape, which we also call simple.

Third, ifM is uniformly bounded, then we interpret configurations ofM as first-order
terms using an uncomplicated, computable function ζ. Most importantly, the interpretation
of an empty stack configuration in each state ofM is a solution for C.

Fourth, if C has a solution ϕ, then we construct a uniform bound forM from the maximal
depth of the syntax trees in the range of ϕ.

Fifth, the above constitutes an undecidability proof of semi-unification for simple con-
straints and immediately implies undecidability of semi-unification.

Key aspects of all of the above points, except the third, also appear in [17]. However, the
technically most challenging aspect of [17], which we are able to simplify, is to show that a
solution for a constructed semi-unification instance exists. Specifically, the function ζ is the
main contribution of this work towards a better understanding of semi-unification.

Organization of the Paper

Section 2 contains preliminary properties of simple semi-unification (Problem 15), which is a
restriction of semi-unification that transports undecidability (Theorem 1).

Section 3 contains preliminary properties of simple stack machines (Definition 16), which
are equivalent to space-bounded Turing machines. Additionally, uniform boundedness of
deterministic simple stack machines (Problem 26) is shown undecidable (Theorem 2).

Section 4 contains a reduction from uniform boundedness of deterministic simple stack
machines to simple semi-unification. Correctness of the reduction (Lemma 48 and Lemma 45)
results in undecidability of semi-unification (Theorem 4).

Section 5 provides an overview over the mechanization [2] of the presented reduction.
Section 6 concludes and lists potential future work.

2 Semi-unification Preliminaries

This section, following [17], recollects the basic definition and properties of semi-unification
(Problem 3).

I Definition 1 (Terms (T)). Let V be a countably infinite set of variables ranged over
by α, β, γ. The set of terms T, ranged over by σ, τ , is given by the grammar

σ, τ ∈ T ::= α | σ → τ

I Definition 2 (Valuation (ϕ), (ψ)). A valuation ϕ : V→ T assigns terms to variables, and
is tacitly lifted to terms.
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I Problem 3 (Semi-unification (SU)). Given a finite set {s1 ≤1 t1, . . . , sn ≤n tn} of indexed
inequalities, do there exist valuations ϕ,ψ1, . . . , ψn : V→ T such that ψi(ϕ(si)) = ϕ(ti) holds
for i = 1 . . . n?

Compared to first-order unification, semi-unification is non-structural. In a solvable
instance, the left-hand side of an indexed inequality may even appear as subterm of the
right-hand side (Example 4).

I Example 4. The indexed inequalities {α ≤1 α→ β, α→ α ≤2 β} are solved by the valu-
ations ϕ = {α Z⇒ α, β Z⇒ α → α}, ψ1 = {α Z⇒ α → (α → α)}, and ψ2 = {α Z⇒ α} because

ψ1(ϕ(α)) = α→ (α→ α) = ϕ(α→ β)
ψ2(ϕ(α→ α)) = α→ α = ϕ(β) y

Next, we introduce the notion of constraints (Definition 6) (called path equations in [17]).
Constraints play a key role connecting (constraint-based) semi-unification to the execution
of a stack machine. Intuitively, a constraint X .= Y reflects joinability of configurations X
and Y in a stack machine (cf. Section 4).

I Definition 5 (Binary Words (B∗)). Let B = {0, 1} be ranged over by a, b. The set B∗ of
words is ranged over by s, t, v, w.

I Definition 6 (Constraint (spαpt .= vpβpw)). A constraint has the shape spαpt .= vpβpw,
where α, β ∈ V and s, t, v, w ∈ B∗.

A constraint is simple if it has the shape apαpε .= εpβpb, where α, β ∈ V, a, b ∈ B, and ε is
the empty word.

In order to connect words with valuations, we define valuation compositions (Definition 7)
and path functions on terms (Definition 8).

I Definition 7 (Valuation Composition (ψv)). Let ψ0, ψ1 : V → T be valuations. For a
word v ∈ B∗, the composed valuation ψv : T→ T is such that

ψε(σ) = σ ψwa(σ) = ψw(ψa(σ))

I Definition 8 (Path Function (πv)). For a word v ∈ B∗, the partial path function πv : T 9 T
is such that

πε(σ) = σ π0w(σ → τ) = πw(σ) π1w(σ → τ) = πw(τ) (otherwise πv(σ) is undefined)

Intuitively, a simple constraint apαpε .= εpβpb is satisfied by a valuation triple (ϕ,ψ0, ψ1),
if ψa(ϕ(α)) = πb(ϕ(β)). The absence of ψ0 and ψ1 on the right-hand side captures matching
as part of semi-unification. Similarly to [17], the respective side spαpt of a constraint is
interpreted wrt. a valuation triple (ϕ,ψ0, ψ1) by the term which arises when we apply ψs
to ϕ(α) and then select a subterm via πt. This interpretation is captured by the following
model relation (|=).

I Definition 9 (Model Relation (|=)). A valuation triple (ϕ,ψ0, ψ1) models a constraint
spαpt .= vpβpw, written (ϕ,ψ0, ψ1) |= spαpt .= vpβpw, if πt(ψs(ϕ(α))) = πw(ψv(ϕ(β))).

For a set C of constraints, we write (ϕ,ψ0, ψ1) |= C if (ϕ,ψ0, ψ1) |= C for all C ∈ C.
For a set C of constraints and a constraint C, we write C |= C if for all valuation

triples (ϕ,ψ0, ψ1) such that (ϕ,ψ0, ψ1) |= C we have (ϕ,ψ0, ψ1) |= C.

FSCD 2020



9:4 Undecidability of Semi-Unification on a Napkin

As a side note, path equation derivability of [17] is sound for (|=). The following
Example 10, Example 11, and Example 13 illustrate positive and negative cases for models.

I Example 10. Let C = {0pαpε .= εpβp1, 1pγpε .= εpβp1, 1pαpε .= εpγp0} be a set of simple
constraints. We have (ϕ,ψ0, ψ1) |= C, where

ϕ = {α Z⇒ α, β Z⇒ β0 → (β10 → β11), γ Z⇒ γ0 → γ1}
ψ0 = {α Z⇒ β10 → β11}
ψ1 = {α Z⇒ γ0, γ0 Z⇒ β10, γ1 Z⇒ β11}

I Example 11. Let C = {0pαpε .= εpβp1, 1pγpε .= εpβp1, 1pαpε .= εpγp0} be a set of simple
constraints. We have C |= 0pαp0 .= 11pαpε, because for any valuations ϕ,ψ0, ψ1 such that
(ϕ,ψ0, ψ1) |= C we have

π0(ψ0(ϕ(α))) = π0(π1(ϕ(β))) = π0(ψ1(ϕ(γ))) = ψ1(π0(ϕ(γ))) = ψ1(ψ1(ϕ(α)))

The depth of a term is the maximal depth of its syntax tree, and is non-decreasing under
substitution.

I Definition 12 (Term Depth (depth)). The function depth : T→ N is such that

depth(α) = 0 depth(σ → τ) = 1 + max{depth(σ),depth(τ)}

I Example 13. There is no valuation triple (ϕ,ψ0, ψ1) that models the simple constraint
1pαpε .= εpαp0. Otherwise, we would have

πε(ψ1(ϕ(α))) = π0(ψε(ϕ(α)))
=⇒ ψ1(ϕ(α)) = π0(ϕ(α))
=⇒ ψ1(σ → τ) = σ where ϕ(α) = σ → τ

=⇒ depth(ψ1(σ → τ)) = depth(σ)
=⇒ depth(ψ1(σ)) < depth(σ) which is a contradiction

Intuitively, the simple constraint 1pαpε .= εpαp0 corresponds to an unbounded computation
that transforms arbitrary many 1s on the left stack to 0s on the right stack (cf. Section 4).

The following Lemma 14 describes in which cases a simple constraint is modeled.

I Lemma 14. We have (ϕ,ψ0, ψ1) |= apαpε .= εpβpb iff one of the following conditions holds
b = 0 and ψa(ϕ(α))→ τ = ϕ(β) for some term τ ∈ T
b = 1 and σ → ψa(ϕ(α)) = ϕ(β) for some term σ ∈ T

Finally, we identify the following semi-unification problem based on simple constraints.
The importance of this restriction is pointed out in [17, Sec. 4], and its undecidability implies
the undecidability of semi-unification (Theorem 1). Intuitively, we will use a simple constraint
apαpε .= εpβpb to represent a stack machine transition from state α to state β, removing the
symbol a from the left stack and adding the symbol b to the right stack.

I Problem 15 (Simple Semi-unification (SSU)). Given a finite set C of simple constraints, do
there exist valuations ϕ,ψ0, ψ1 : V→ T such that (ϕ,ψ0, ψ1) |= C?



A. Dudenhefner 9:5

I Theorem 1. If simple semi-unification (Problem 15) is undecidable, then so is semi-
unification (Problem 3).

Proof. Let C = {0pαipε
.= εpβipbi | i = 1 . . . n} ∪ {1pαipε

.= εpβipbi | i = n+ 1 . . .m} be a set of
simple constraints. We define an instance D of semi-unification that reflects solvability of C
as follows.

Define σi =
{
αi → γi if bi = 0
γi → αi if bi = 1

, where γi is fresh for i = 1 . . .m. Define D as (for conve-

nience, we start indexing inequalities from 0)

σ1 → · · · → σn ≤0 β1 → · · · → βn

σn+1 → · · · → σm ≤1 βn+1 → · · · → βm

First, by Lemma 14, if D has a solution ϕ,ψ0, ψ1, then ψ0(ϕ(σi)) = ϕ(βi) for i = 1 . . . n,
and ψ1(ϕ(σi)) = ϕ(βi) for i = n+ 1 . . .m. Therefore, (ϕ,ψ0, ψ1) |= C.

Second, assume (ϕ,ψ0, ψ1) |= C. Define ϕ′ : V→ T such that ϕ′(γi) = γi for i = 1 . . .m,
and otherwise ϕ′(α) = ϕ(α). For a ∈ B, define ψ′a : V→ T such that ψ′a(γi) = π(1−bi)(ϕ(βi))
for i = 1 . . .m, and otherwise ψ′a(α) = ψa(α). By Lemma 14, ϕ′, ψ′0, ψ′1 solve D. J

3 Stack Machine Preliminaries

Instead of working with Turing machines (or symmetric intercell Turing machines of [17]),
we use a more convenient computational model of simple stack machines (Definition 16).
Intuitively, simple stack machines are a mechanization-friendly presentation of space-bounded
Turing machines (cf. proof of Theorem 2).

I Definition 16 (Simple Stack Machine (M)). Let p, q range over a countably infinite set S
of states. A simple stack machine M is a finite set of instructions of shape either ap −→ qb

or pa −→ bq, where p, q ∈ S and a, b ∈ B.
A configuration is a triple spppt, where p ∈ S is a state, s ∈ B∗ is the left stack, and t ∈ B∗

is the right stack. The set of all configurations is denoted by C.
The step relation (−→M) ⊆ C× C on configurations is given by
sapppt −→M spqpbt if (ap −→ qb) ∈M
spppat −→M sbpqpt if (pa −→ bq) ∈M

The reachability relation (−→∗M) ⊆ C× C on configurations is the reflexive, transitive
closure of (−→M). For brevity, we say machine for simple stack machine.

I Example 17. Consider the machineM = {(1p −→ p0)}, which pops 1s from the left stack
and pushes 0s onto the right stack.

We have that from the configuration X = 1npppε the configurations Ym = 1mppp0n−m such
that m ≤ n are reachable, i.e. X −→∗M Ym for m = 0 . . . n.

I Definition 18 (Deterministic). A machine M is deterministic if for all configurations
X,Y, Z ∈ C such that X −→M Y and X −→M Z we have Y = Z.

I Remark 19. The step relation for Turing machines is naturally connected to the step
relation for simple stack machines as follows. Say a Turing machine reading a symbol
a in state x writes a symbol b, transitions into a state y, and moves right. This local
behavior is described by the instructions ((x, a)0 −→ b(y, 0)) and ((x, a)1 −→ b(y, 1)),
where (x, a), (y, 0), (y, 1) ∈ S. The left (resp. right) stack describes the Turing machine tape
left (resp. right) of the current head position.

FSCD 2020



9:6 Undecidability of Semi-Unification on a Napkin

A distinctive machine feature is preservation of total available space under reachability
(Lemma 21).

I Definition 20 (Word Length (length)). The function length : B∗ → N is such that

length(ε) = 0 length(av) = 1 + length(v)

I Lemma 21. If spppt −→∗M vpqpw, then length(s) + length(t) = length(v) + length(w).

Proof. Instructions preserve the sum of stack lengths. J

Since machines operate in bounded space (as opposed to Turing machines that operate
on infinite tape), most machine properties, such as reachability (Lemma 22), are decidable.
This is most useful for a fully constructive mechanization.

I Lemma 22. It is decidable, whether for a machineM and configurations X,Y ∈ C, we
have X −→∗M Y .

Proof. By Lemma 21, the number of configurations reachable from X is finite and can be
searched exhaustively. J

Although boundedness (is for any configuration X the number of configurations reachable
from X finite?) is a trivially true machine property, uniform boundedness (Problem 26) is
undecidable (Theorem 2).

I Definition 23 (Uniformly Bounded). A machine M is uniformly bounded by a natural
number n ∈ N if for all configurations X ∈ C we have

|{Y ∈ C | X −→∗M Y }| ≤ n

For brevity, we say thatM is uniformly bounded ifM is uniformly bounded by some n ∈ N.

The following Example 24 illustrates a uniformly bounded machine.

I Example 24. The machine M = {(0p −→ q1), (q1 −→ 1p), (1p −→ q0), (q0 −→ 0p)} is
(by case analysis) uniformly bounded by n = 4. For instance, in case of a configuration
X = sapppt, where a ∈ B and s, t ∈ B∗, we have

|{Y ∈ C | X −→∗M Y }| = |{sapppt, spqp(1− a)t, s(1− a)pppt, spqpat}| = 4 ≤ n y

Complementarily, the following Example 25 illustrates a machine that is not uniformly
bounded. As will be shown in Section 4, this is because the simple constraint 1pαpε .= εpαp0 in
Example 13 has no model.

I Example 25. The machineM = {(1p −→ p0)} from Example 17 is not uniformly bounded,
because for any n ∈ N and the configuration X = 1npppε we have

|{Y ∈ C | X −→∗M Y }| = |{1mppp0n−m | 0 ≤ m ≤ n}| = n+ 1 > n y

I Problem 26 (Uniform Boundedness of Deterministic Simple Stack Machines (UBDSSM)).
Given a deterministic machineM, isM is uniformly bounded?

The intuition in the above Remark 19 is used in the following Theorem 2 to connect
unbounded simple stack machines to immortal Turing machines.



A. Dudenhefner 9:7

I Theorem 2. Uniform boundedness of deterministic simple stack machines (Problem 26) is
undecidable.

Proof. Weak truth-table reduction from Turing machine mortality [12]. Let T be a Turing
machine with moving tape over the alphabet B having states Q and transition function
δ : Q × B → Q × B × {L,R}. A generalized instantaneous description (GID)1 of T is a
pair (x, T ) ∈ Q×BZ, where x is the current state and T is the current tape content with the
currently scanned symbol T (0).

Let (Q× B) ⊆ S. Define a simple stack machineM having as instructions
(0(x, a) −→ (y, 0)b) and (1(x, a) −→ (y, 1)b) if δ(x, a) = (y, b, L)
((x, a)0 −→ b(y, 0)) and ((x, a)1 −→ b(y, 1)) if δ(x, a) = (y, b, R)

If T is deterministic, then so isM. Clearly, any finite number of T -transitions corresponds
toM-steps for a large enough starting configuration.

We now show that if we can decide whetherM is uniformly bounded, then we can decide
whether T is immortal, i.e. that T has a GID which has no terminal successor.

First, assume thatM is uniformly bounded by n. From a GID (x, T ) we have that T
cannot scan symbols initially positioned at i such that i < −n or i > n. Therefore, T is
immortal iff it loops in space 2n+ 1, which is decidable by exhaustive search.

Second, assume that every GID in T has a terminal successor. We use the fan theorem
(as formulated by [4]) to show thatM is uniformly bounded. Let B = B> ∪B⊥, where B>
is the set of binary words that encode terminating computational histories (finite sequences
of GIDs in bounded space) in T , and let B⊥ be the set of binary words that cannot be
extended to encode a terminating computational history. Since every GID in T has a terminal
successor, membership in B is decidable and B is a bar, i.e. every infinite binary sequence
has a finite prefix in B. By the fan theorem, B is a uniform bar, i.e. there exists an n ∈ N
such that any word in B has a prefix of length at most n that is in B. As a result, encoded
terminating computational histories are of length at most n. Therefore, M is uniformly
bounded by n. J

I Remark 27. In the above proof of Theorem 2, we deliberately use the fan theorem instead
of König’s lemma (used in [17, Corollary 5]). In constructive mathematics, the fan theorem,
which is valid in Brouwer’s intuitionism, is weaker than König’s lemma (cf. [22]), which is
valid classically.

I Remark 28. Peculiarly, for counter machines, as another model of computation, uniform
boundedness is decidable (similarly to [14, Thm. 2]), whereas boundedness is not (similarly
to [14, Thm. 1]). For simple stack machines it is vice versa.

3.1 Narrow Configurations
Clearly, a configuration from which no configuration with an empty left or right stack is
reachable does not fully utilize the space it is provided. Therefore, key to boundedness are
configurations that have an empty left or right stack, as such configurations may require
additional space to reach further configurations. Extending this thought, in this section we
identify a property of configurations, which we call narrowness (Definition 34) which plays a
pivotal role in the overall argument and is part of the main contribution.

1 An instantaneous description (ID) requires the tape content to be 0 except for finitely many positions.

FSCD 2020
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We can view machine instructions as a restricted rewriting system. Such a view induces
the notion of joinable configurations (Definition 29). For deterministic machines, configu-
ration joinability is an equivalence relation (Lemma 30) with a system of representatives
(Definition 31).

I Definition 29 (Joinable (∼M)). Two configurations X,Y ∈ C are joinable in a machineM,
written X ∼M Y , if there exists a configuration Z such that X −→∗M Z and Y −→∗M Z.

I Lemma 30. If a machine M is deterministic, then (∼M) is an equivalence (reflexive,
symmetric, transitive) relation on configurations.

Proof. Clearly, (∼M) is reflexive and symmetric. Since M is deterministic, we have
that (−→M) is confluent. Therefore, for any configurations X1, X2, X3, Y1, Y2 such that
X1 −→∗M Y1, X2 −→∗M Y1, X2 −→∗M Y2, and X3 −→∗M Y2 there exists a configuration Z
such that X1 −→∗M Y1 −→∗M Z and X3 −→∗M Y2 −→∗M Z. Therefore, (∼M) is transi-
tive. J

I Definition 31 (Representative ([X]M)). The representative of a configuration X ∈ C in a
deterministic machineM, written [X]M, is the lexicographically smallest configuration Y
such that X ∼M Y .

I Lemma 32. For configurations X,Y ∈ C, we have [X]M = [Y ]M iff X ∼M Y .

I Remark 33. By Lemma 21 and Lemma 22 the representative [X]M of a configuration X
inM is computable, and joinability (∼M) is decidable.

Next, we identify a key property (Definition 34) of configurations, that connects machine
computation with semi-unification (cf. Section 4).

I Definition 34 (Narrow). A configuration X is narrow in a machineM, if there exists a
state p ∈ S and a word s ∈ B∗ such that X ∼M spppε.

I Remark 35. For a state p ∈ S, the configuration εpppε is narrow in any machineM.

I Remark 36. Similarly to Lemma 22, it is decidable, whether for a machine M and
configuration X ∈ C, we have that X is narrow inM.

I Example 37. In the machineM = {(p1 −→ 0r), (1q −→ r1)} the configuration 0ppp11 is
narrow because 0ppp11 −→∗M 00prp1←−∗M 001pqpε, that is we have 0ppp11 ∼M 001pqpε.

Narrow configurations play a pivotal role for uniform boundedness (Lemma 38 and
Lemma 39). Additionally, narrowness is the decisive property which we use to construct
solutions for semi-unification instances (Definition 41 and Definition 42).

I Lemma 38. If a machineM is uniformly bounded, then there exists m ∈ N such that for
all narrow inM configurations spppt ∈ C we have length(t) ≤ m.

Proof. If spppt is narrow in M, then there are a configurations s′pp′pε and vpqpw such that
spppt −→∗M vpqpw and s′pp′pε −→∗M vpqpw. If M is uniformly bounded by n, then we have
| length(t)− length(w)| ≤ n and | length(ε)− length(w)| ≤ n. Therefore, length(t) ≤ 2n. J
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I Lemma 39. LetM be a deterministic machine. If there exists m ∈ N such that for all
narrow inM configurations εpppt ∈ C we have length(t) ≤ m, thenM is uniformly bounded.

Proof. Let m ∈ N be such that for all narrow in M configurations εpppt ∈ C we have
length(t) ≤ m. Let n ∈ N and let X = spppt reach at least n configurations such that
(length(s) + length(t)) is minimal. We show thatM is uniformly bounded by showing

n ≤ 1 + |{s′pp′pt′ ∈ C | length(s′) + length(t′) ≤ m and p′ occurs inM}| (?)

We have X −→∗M εpqpw for some state q ∈ S and word w ∈ B∗. Otherwise, left stacks of
all configurations reachable from X would have the same prefix, which could be removed.
Similarly, we have X −→∗M vprpε for some state r ∈ S and word v ∈ B∗. Since M is
deterministic, (−→M) is confluent. Therefore, the configuration εpqpw is narrow inM.

Finally, by Lemma 21, for any configuration s′pp′pt′ such that X −→∗M s′pp′pt′ we have
length(s′) + length(t′) = length(s) + length(t) = length(w) ≤ m, showing (?). J

4 Undecidability of Semi-unification

In this section we fix a deterministic machine M. Our goal is to construct a specific
instance CM (Definition 40) of simple semi-unification such that the machineM is uniformly
bounded if (Lemma 48) and only if (Lemma 45) CM is solvable.

For brevity, we omitM in notations in this section, i.e. we write (∼) for (∼M), write C
for CM, say narrow for narrow inM, etc. All definitions in this section tacitly depend onM.

Let us tacitly inject S into V, i.e. S ⊆ V. Additionally, for each configuration X ∈ C we
fix a distinct variable αX ∈ V.

I Definition 40 (Specific instance C). The set C of simple constraints is given by

C = {apppε .= εpqpb | (ap −→ qb) ∈M} ∪ {bpqpε .= εpppa | (pa −→ bq) ∈M}

4.1 Uniform Boundedness of M to Solvability of C
In this subsection we assume thatM is uniformly bounded and construct a solution ϕ,ψ0, ψ1
(Definition 42) for C. Surprisingly, this can be done directly via the following function ζ

(Definition 41), based on the notion of narrow configurations (Definition 34).

I Definition 41 (ζ). IfM is uniformly bounded, then the function ζ : C→ T is given by

ζ(spppt) =
{
ζ(spppt0)→ ζ(spppt1) if spppt is narrow
α[spppt] otherwise

By Lemma 38, ζ is well-defined and computable (cf. Remark 36 and Remark 33).
Computability of ζ is essential for a fully constructive argument.

I Definition 42 (Valuations ϕ,ψ0, ψ1). The valuation ϕ : V→ T is such that

ϕ(p) = ζ(εpppε) (otherwise ϕ(α) = α)

For a ∈ B, the valuation ψa : V→ T is such that

ψa(αspppt) = ζ(aspppt) (otherwise ψa(α) = α)
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The function ζ respects joinability (Lemma 43), i.e. it can be lifted to (∼) equivalence
classes.

I Lemma 43. For configurations X,Y ∈ C such that X ∼ Y we have ζ(X) = ζ(Y ).

Proof. We show ζ(spppt) = ζ(vpqpw) by induction on depth(ζ(spppt)).
Case spppt is narrow: By Lemma 30, the configuration vpqpw is narrow. Therefore,

ζ(spppt) = ζ(spppt0)→ ζ(spppt1) (IH)= ζ(vpqpw0)→ ζ(vpqpw1) = ζ(vpqpw)

Case spppt is not narrow: By Lemma 30, the configuration vpqpw is not narrow. Therefore,

ζ(spppt) = α[spppt]
Lem. 32= α[vpqpw] = ζ(vpqpw) J

Since the function ζ respects joinability, it absorbs ψ0 and ψ1 (Lemma 44).

I Lemma 44. For a ∈ B and configuration spppt ∈ C, we have ψa(ζ(spppt)) = ζ(aspppt).

Proof. We show ψa(ζ(spppt)) = ζ(aspppt) by induction on depth(ζ(spppt)).
Case spppt is narrow: We have that aspppt is narrow, and

ψa(ζ(spppt)) = ψa(ζ(spppt0)→ ζ(spppt1)) = ψa(ζ(spppt0))→ ψa(ζ(spppt1))
(IH)= ζ(aspppt0)→ ζ(aspppt1) = ζ(aspppt)

Case spppt is not narrow: Let vpqpw = [spppt]. We have

ψa(ζ(spppt)) = ψa(α[spppt]) = ζ(avpqpw) Lem. 43= ζ(aspppt) J

As a result, the valuations ϕ,ψ0, ψ1 solve C (Lemma 45).

I Lemma 45. IfM is uniformly bounded, then (ϕ,ψ0, ψ1) |= C.

Proof. Configuration where both stacks are empty are trivially narrow (Remark 35).
Case apppε .= εpqpb ∈ C: We have (ap −→ qb) ∈M, therefore apppε ∼ εpqpb. We have

ψa(ϕ(p)) = ψa(ζ(εpppε)) Lem. 44= ζ(apppε) Lem. 43= ζ(εpqpb) = πb(ζ(εpqpε)) = πb(ϕ(q))

Case bpqpε .= εpppa ∈ C: We have (pa −→ bq) ∈M, therefore bpqpε ∼ εpppa. We have

ψb(ϕ(q)) = ψb(ζ(εpqpε))
Lem. 44= ζ(bpqpε) Lem. 43= ζ(εpppa) = πa(ζ(εpppε)) = πa(ϕ(p)) J

Essentially, the function ζ interprets machine configurations as terms from which the
solution (ϕ,ψ0, ψ1) of C is constructed. Traditionally, this step in the overall argument [17]
relies on on a more complicated path equation derivability and termination of a redex
contraction procedure for semi-unification. Arguably, the function ζ is the main insight of
this work, as it contributes to a simpler, fully constructive translation of machine boundedness
to solvability of semi-unification.
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4.2 Solvability of C to Uniform Boundedness ofM
In this subsection we assume that there exist valuations ϕ,ψ0, ψ1 such that (ϕ,ψ0, ψ1) |= C,
and we show thatM is uniformly bounded.

Intuitively, we show that joinability is sound for constraint semantics (Corollary 47) based
on soundness of the step relation for constraint semantics (Lemma 46).

I Lemma 46. For configurations X,Y ∈ C such that X −→ Y we have C |= X
.= Y .

Proof. Let ϕ,ψ0, ψ1 be valuations such that (ϕ,ψ0, ψ1) |= C.
Case sapppt −→ spqpbt: We have apppε .= εpqpb ∈ C. Therefore, ψa(ϕ(p)) = πb(ϕ(q)) and

πt(ψsa(ϕ(p))) = πt(ψs(ψa(ϕ(p)))) = πt(ψs(πb(ϕ(q)))) = πbt(ψs(ϕ(q)))

Case spppat −→M sbpqpt: We have bpqpε .= εpppa ∈ C. Therefore, ψb(ϕ(q)) = πa(ϕ(p)) and

πat(ψs(ϕ(p))) = πt(ψs(πa(ϕ(p)))) = πt(ψs(ψb(ϕ(q)))) = πt(ψsb(ϕ(q))) J

I Corollary 47. For configurations X,Y ∈ C such that X ∼ Y we have C |= X
.= Y .

As a result, narrow configurations εpppt do not admit arbitrary long right stacks t, because
πt(ϕ(p)) is undefined if length(t) exceeds depth(ϕ(p)). The bound on depth for the range
of ϕ immediately induces a uniform bound forM (Lemma 48).

I Lemma 48. If there exist valuations ϕ,ψ0, ψ1 such that (ϕ,ψ0, ψ1) |= C, then M is
uniformly bounded.

Proof. Let εpppt ∈ C be narrow, i.e. εpppt ∼ spqpε for some state q ∈ S and word s ∈ B∗. By
Corollary 47, we have πt(ϕ(p)) = ψs(ϕ(q)) ∈ T. Therefore,

length(t) ≤ max{depth(ϕ(r)) | r ∈ S and r occurs inM}

By Lemma 39,M is uniformly bounded. J

Key to the construction of a uniform bound in the above proof is the characterization of
uniform boundedness via narrow configurations (Lemma 39).

4.3 Main Result
Overall, we obtain undecidability of semi-unification (Theorem 4) via undecidability of simple
semi-unification (Theorem 3).

I Theorem 3. Simple semi-unification (Problem 15) is undecidable.

Proof. By Theorem 2, uniform boundedness of deterministic machines (UBDSSM) is un-
decidable. Section 4 gives a reduction from UBDSSM to simple semi-unification, for which
correctness is shown by Lemma 45 and Lemma 48. J

I Theorem 4. Semi-unification is undecidable.

Proof. By Theorem 3 and Theorem 1. J
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Let us illustrate the construction, revisiting the uniformly bounded machine of Example 24.

I Example 49. Let M = {(0p −→ q1), (q1 −→ 1p), (1p −→ q0), (q0 −→ 0p)}. Then,
C = {0pppε .= εpqp1, 1pppε .= εpqp1, 1pppε .= εpqp0, 0pppε .= εpqp0}. Narrow inM configurations are
sprpε for words s ∈ B∗ and states r ∈ S, and spqpa for words s ∈ B∗ and symbols a ∈ B.
Therefore (not writing out representatives), we have

ϕ(p) = ζ(εpppε) = ζ(εppp0)→ ζ(εppp1) = α[εppp0] → α[εppp1]

ϕ(q) = ζ(εpqpε) = ζ(εpqp0)→ ζ(εpqp1)
=
(
ζ(εpqp00)→ ζ(εpqp01)

)
→
(
ζ(εpqp10)→ ζ(εpqp11)

)
= (α[εpqp00] → α[εpqp01])→ (α[εpqp10] → α[εpqp11])

ψa(αεpppb) = ζ(apppb) = α[apppb] for a, b ∈ B

Overall, the valuations ϕ,ψ0, ψ1 model C, i.e. (ϕ,ψ0, ψ1) |= C. For example, we have
(ϕ,ψ0, ψ1) |= 0pppε .= εpqp1 because 0ppp1 ∼ εpqp11 and 0ppp1 ∼ εpqp11 imply

ψ0(ϕ(p)) = ψ0(α[εppp0] → α[εppp1]) = ψ0(αεppp0 → αεppp1) = α[0ppp0] → α[0ppp1]

= α[εpqp10] → α[εpqp11] = π1(ϕ(q))

5 Mechanization

This section provides an overview over the mechanization [2] in the Coq proof assistant of
the reduction presented in Section 4.

The mechanization can be considered self-contained code supporting the mathematical
argument and its constructivity. In addition, it is compatible with the framework of synthetic
undecidability results [9, 8, 7] in synthetic computability theory [3].

5.1 Semi-unification
Terms (Definition 1) are mechanized in SemiU/SemiU_prelim.v as the inductive type
Inductive term : Set :=

| atom : nat -> term
| arr : term -> term -> term.

Correspondingly, application of valuations is mechanized as
Definition valuation : Set := nat -> term.

Fixpoint substitute (f: valuation ) (t: term) : term :=
match t with
| atom n => f n
| arr s t => arr ( substitute f s) ( substitute f t)
end.

Solvability of semi-unification inequalities is mechanized as
Definition inequality : Set := (term * term ).

Definition solution (ϕ : valuation ) : inequality -> Prop :=
fun ’(s, t) => exists (ψ : valuation ),

substitute ψ ( substitute ϕ s) = substitute ϕ t.

Correspondingly, semi-unification is mechanized in SemiU/SemiU.v as the predicate
Definition SemiU (p: list inequality ) := exists (ϕ: valuation ),

forall (c: inequality ), In c p -> solution ϕ c.
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5.2 Simple Stack Machines
Machines (ssm) are mechanized in SM/SSM_prelim.v as lists of instructions.
Definition stack : Set := list bool.
Definition state : Set := nat.
Definition config : Set := stack * state * stack.
Definition dir : Set := bool.
Definition symbol : Set := bool.
Definition instruction : Set := state * state * symbol * symbol * dir.
Definition ssm : Set := list instruction .

For example, (p, q, a, b, true) : instruction corresponds to the instruction (ap −→ qb),
and (p, q, b, a, false) : instruction corresponds to the instruction (pb −→ aq). This
is captured by the inductive predicate Inductive step (M : ssm) : config -> config -> Prop,
that mechanizes the step relation.

Deterministic machines (dssm) admit only functional step predicates and reachability
(reachable) is the reflexive, transitive closure of step.

Definition deterministic (M: ssm) := forall (X Y Z: config ),
step M X Y -> step M X Z -> Y = Z.

Definition dssm := { M : ssm | deterministic M }.

Definition reachable (M: ssm) : config -> config -> Prop :=
clos_refl_trans config (step M).

Uniform boundedness (bounded) of deterministic machines (dssm) is mechanized in SM/DSSM_UB.v

as the predicate DSSM_UB.
Definition bounded (M: ssm) (n: nat) : Prop :=

forall (X: config ), exists (L: list config ),
( forall (Y: config ), reachable M X Y -> In Y L) /\ length L <= n.

Definition DSSM_UB (M: dssm) := exists (n: nat), bounded ( proj1_sig M) n.

5.3 Main Result
Many-one reducibility (�) of a predicate p : X -> Prop to a predicate q : Y -> Prop is mech-
anized in Reduction.v as
Definition reduces X Y (p : X -> Prop) (q : Y -> Prop) :=

exists f : X -> Y, forall x, p x <-> q (f x).
Notation "p � q" := ( reduces p q) (at level 50).

The main result is mechanized in SemiU/DSSM_UB_to_SemiU.v as
Theorem DSSM_UB_to_SemiU : DSSM_UB � SemiU.
Proof.

apply ( reduces_transitive DSSM_UB_to_SSemiU ).
exact SSemiU_to_SemiU .

Qed.

The above shows that we first reduce DSSM_UB to simple semi-unification (mechanized in
SemiU/SSemiU.v as the predicate SSemiU) and then reduce SSemiU to SemiU. Mechanization
details of DSSM_UB_to_SSemiU are found in SemiU/SSemiU/DSSM_UB_to_SSemiU_argument.v.

Informative decidability of narrowness is mechanized in DSM/DSSM/DSSM_facts.v as
Lemma narrow_dec (X: config ) : decidable ( narrow X).
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Based on decidability of narrowness, the key function ζ (Definition 41) is mechanized as
Fixpoint ζ (n: nat) (X: config ) : term :=

match n with
| 0 => atom (embed (nf X))
| S n =>

match X with
| (A, x, B) =>

if narrow_dec (A, x, B) then
arr (ζ n (A, x, B++[ false ])) (ζ n (A, x, B++[ true ]))

else atom (embed (nf X))
end

end.

where nf X mechanizes the representative of the mechanized configuration X (Definition 31).
The parameter n is initialized with a uniform bound of the underlying machine.

Finally, Lemma 45 and Lemma 48 are mechanized as
Lemma soundness {M: dssm} :

DSSM_UB M -> SSemiU ( SM_to_SUcs ( proj1_sig M)).

Lemma completeness {M: dssm }:
SSemiU ( SM_to_SUcs ( proj1_sig M)) -> DSSM_UB M.

Overall, the mechanization encompasses 1500 lines of code, where two thirds show
machine properties (such as decidability of narrowness) and one third is dedicated to the
main argument of Section 4.

6 Conclusion

Traditionally, the association of an undecidable property for Turing machines with solvability
of semi-unification is, arguably, opaque. It is established via the symmetric closure of
intercell Turing machines, path equation derivability, and termination of a redex contraction
procedure for semi-unification [17]. The main novelty of the presented approach is the direct
association of an undecidable boundedness property with solutions of semi-unification via
certain (narrow) machine configurations. As a consequence, we obtain a simpler argument
for the undecidability of semi-unification. Additionally, this allows for a fully constructive
mechanization of a reduction from uniform boundedness of deterministic simple stack machines
(Problem 26) to semi-unification (Problem 3).

There are at least two reasonable goals to pursue next.
First, there exists a larger Coq framework [9] containing various undecidability results.

The mechanization presented in Section 5 is a significant part of the ongoing effort to
mechanize a reduction from the Turing machine halting problem to semi-unification. It
is unclear whether a comprehensive reduction can be given fully constructively, as the
presented mechanization starts with uniform boundedness. The reduction from the Turing
machine halting problem (as of now) requires the fan theorem (which is part of Brouwer’s
constructivism, but is not considered fully constructive by Bishop). Nevertheless, it is an
improvement over König’s lemma used in [17]. There is reason to believe, that eliminating
immortality as an intermediate step may allow for a fully constructive reduction. This is
why the mechanization in Section 5 starts with boundedness as opposed to immortality.

Second, related work on semi-unification mostly follows the original approach (e.g. [1, 6]).
We anticipate that the more direct argument, presented in this work, can be adapted to
the related scenarios. Specifically, the presented approach seems promising to realize a
fully constructive mechanization of the undecidability of unification modulo synchronous
distributivity [1].
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