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Abstract—The undecidability of both typability and type check-
ing for System F (polymorphic lambda-calculus) was established
by Wells in the 1990s. For type checking Wells gave an as-
tonishingly simple reduction from semi-unification (first-order
unification combined with first-order matching). For typability
Wells developed an intricate calculus to control the shape of
type assumptions across type derivations via term structure. This
calculus of invariant type assumptions allows for a reduction
from type checking to typability. Unfortunately, this approach
relies on heavy machinery that complicates surveyability of the
overall argument.

The present work gives comparatively simple, direct reduction
from semi-unification to System F typability. The key observation
is as follows: in the existential setting of typability, it suffices to
consider some specific (but not all, as for invariant type assump-
tions) type derivations. Additionally, the particular result requires
only to consider closed types without nested quantification.

The undecidability of type checking is obtained via a folklore
reduction from typability.

Profiting from its smaller footprint, correctness of the new
approach is witnessed by a mechanization in the Coq proof
assistant. The mechanization is incorporated into the existing Coq
library of undecidability proofs. For free, the library provides
constructive, mechanically verified many-one reductions from
Turing machine halting to both System F typability and System F
type checking.

Index Terms—lambda-calculus, system F, typability, type check-
ing, undecidability, constructive mathematics, mechanization

I. INTRODUCTION

System F [1] (also known as polymorphic λ-calculus [2])
is a typed λ-calculus which captures the notion of paramet-
ric polymorphism in functional programming. It is an inte-
gral component (λ2) of Barendregt’s λ-cube [3], and it cor-
responds to intuitionistic second-order propositional logic via
the Curry–Howard isomorphism (for an overview see [4]).

Variants of System F form the basis of functional program-
ming languages such as Haskell and Standard ML. Therefore,
the decision problems of type checking (given a type environ-
ment Γ, a term M , and a type τ , can M be assigned τ in Γ?)
and typability (given a term M , can M be assigned some type
in some type environment?) are of practical relevance for pro-
gramming language design. Since first asked in the 1980s [5],
for (Curry-style) System F decidability of both type checking
and typability was a long-standing open problem, until an-
swered negatively in the 1990s by Wells [6], [7]. The argument
is by reduction from semi-unification [8] (first-order unification
combined with first-order matching) to type checking, and by

reduction from type checking to typability. While the reduction
from semi-unification to type checking is astonishingly simple,
the same cannot be said for the reduction from type checking
to typability. For this, Wells contributes an intricate calculus
of invariant type assumptions to control the shape of types
via term structure. The undecidability of typability is a simple
consequence of a much stronger theorem [7, Theorem 6.14],
which establishes control over types across all type derivations.

Unfortunately, the generality of Wells’ argument has a down-
side. It requires heavy machinery to force types to bend the
proverbial knee to terms. Correspondingly, the argument is
challenging to survey (in the sense of Bassler [9]), teach, and
mechanically verify1. As a result, it is natural to ask for a more
reductionistic2 alternative, focused exclusively on the decision
problems at hand.

The present work gives a simpler argument for the un-
decidability of System F typability and type checking. As
before, the argument is by reduction from two-inequality semi-
unification (given pairs (σ1, τ1), (σ2, τ2) of simple types, are
there substitutions ϕ,ψ1, ψ2 such that ψ1(ϕ(σ1)) = ϕ(τ1) and
ψ2(ϕ(σ2)) = ϕ(τ2)?). The key observation is that for invariant
type assumptions a lot of effort is required to account for
all possible types and type derivations. However, in order to
reduce semi-unification to typability this is not necessary. For
example, it suffices to only consider type assumptions with
no free variables and no nested quantification. Additionally,
in the existential setting of typability there is no need to con-
trol all possible type derivations. This allows us to introduce
a simpler tool, prenex simulation (Lemma 29), in order to
reduce semi-unification to typability. Prenex simulation can
be understood as a weaker sibling of Wells’ main technical
result [7, Theorem 6.14], restricted to closed types without
nested quantification and tailored towards typability (cf. Defini-
tion 19 of restricted typability). A notable novelty of the present
work is the emphasis on the type assumption (w : θ) where
θ := ∀a.∀b. a→ b→ b→ a (cf. Section III-B). It is used to
build simply typed terms from terms typed by corresponding
subtypes. For example, if terms M and N are assigned simple
types τ and σ respectively, then the term (wM N) is assigned
the simple type σ → τ .

1In fact, the author tried and failed to mechanize invariant type assumptions
using the Coq proof assistant.

2“[Reductionism is] the practice of analysing and describing a complex
phenomenon in terms of its simple or fundamental constituents, especially
when this is said to provide a sufficient explanation.” (dictionary definition)978-1-6654-4895-6/21/$31.00 ©2021 IEEE



Finally, combined with a folklore reduction from typability
to type checking, we obtain the undecidability of both.

A tangible benefit of the reductionistic approach is the feasi-
bility to verify the results mechanically. In fact, the argument
is mechanized using the Coq proof assistant and contributed
to the Coq Library of Undecidability Proofs [10]. For free, the
library provides constructive, mechanically verifiable evidence
for many-one equivalence of System F typability and System F
type checking. The contributed mechanization integrates nicely
along the existing mechanized (as part of the library) unde-
cidability result for System F inhabitation [11]. Following the
design philosophy of the library, the main argument is pre-
sented as a chain of constructive many-one reductions starting
from a variant of semi-unification (Problem 30). Specifically,
a predicate P over the domain X (constructively) many-one
reduces to a predicate Q over the domain Y , if there exists
a computable function f : X → Y such that for all x ∈ X
we (constructively) have P (x) ⇐⇒ Q(f(x)). Clearly, if P
is undecidable, then so is Q.

The rest of the present work is organized as follows.
Section II: Preliminaries on System F typability (Problem 6)

and type checking (Problem 7).
Section III: Restricted typability (Definition 19) and prenex

simulation (Lemma 29), which constitute the technical
contribution.

Section IV: Preliminaries on left-uniform, two-inequality
semi-unification (Problem 34).

Section V: Many-one reduction from left-uniform, two-
inequality semi-unification to System F typability
(Lemma 40) using prenex simulation.

Section VI: Folklore many-one reduction from System F ty-
pability to System F type checking (Lemma 42).

Section VII: Overview over mechanized results as part of the
Coq Library of Undecidability Proofs [10].

Section VIII: Concluding remarks.

II. SYSTEM F
In this section we recapitulate the Curry-style System F type

assignment (Definition 4) which assigns polymorphic types
(Definition 2) to λ-terms (Definition 1) in a type environment
(Definition 3).

Definition 1 (λ-Terms (L)). The set of λ-terms L, ranged over
by M,N , is given by the grammar

M,N ∈ L ::= x | (M N) | (λx.M)

where x, y, z range over a countably infinite set of term vari-
ables.

For brevity, we omit superfluous parentheses where (λ)
binds weakest and term application associates to the left. We
abbreviate λx1. . . . λxn.M by λx1 . . . xn.M .

Definition 2 (Types (T)). Let V be a countably infinite set
of type variables ranged over by a, b, c. The set of types T,
ranged over by σ, τ, ρ, is given by the grammar

σ, τ, ρ ∈ T ::= a | (σ → τ) | (∀a. τ)

Again, we omit superfluous parentheses where (∀) binds
weakest and (→) associates to the right. For example, we

have ∀a. a→ ∀b. b→ a =

(
∀a.
(
a→

(
∀b. (b→ a)

)))
. We

abbreviate ∀a1. . . .∀an. τ by ∀~a. τ where ~a is the sequence
a1 . . . an.

As is usual, free variables of a term M (resp. type τ ), denoted
by var(M) (resp. var(τ)), are those which occur in M (resp. τ )
and are not bound by λ (resp. ∀). We follow the usual binder
hygiene, i.e. any term (resp. type) variable is bound at most
once, bound variables of two terms (resp. types) are distinct,
and bound variables are distinct from free variables. Replacing
occurrences of a free type variable a in σ by τ is denoted by
σ[a := τ ]. The more general notion of substitution ϕ : V→ T
is tacitly lifted from the variable to the type domain.

We denote by ∀. σ the type ∀a1 . . . an. σ such that
{a1, . . . an} = var(σ) and the sequence a1 . . . an is sorted
by occurrence in σ from left to right. For example,
∀. a→ b→ b→ a = ∀a b. a→ b→ b→ a.

A type environment, ranged over by Γ,∆, is a finite set of
type assumptions of shape (x : σ) with distinct term variables
in its domain.

Definition 3 (Type Environment, Domain, Extension, Free
Type Variables).

Γ,∆ ::= {x1 : σ1, . . . , xn : σn}
where xi 6= xj for 1 ≤ i < j ≤ n

dom(Γ) := {x1, . . . , xn}
Γ, x : σ := Γ ∪ {x : σ} if x 6∈ dom(Γ)

var(Γ) :=
⋃
{var(σ) | (x : σ) ∈ Γ}

The rules of the Curry-style3 System F with judgements of
shape Γ `M : τ , are given by the below Definition 4 (cf. [7,
Figure 4]).

Definition 4 (Curry-style System F Type Assignment).
(Var)

Γ, x : τ ` x : τ

Γ, x : σ `M : τ
(Abs)

Γ ` λx.M : σ → τ

Γ `M : σ → τ Γ ` N : σ (App)
Γ `M N : τ

Γ `M : σ a 6∈ var(Γ)
(Gen)

Γ `M : ∀a. σ

Γ `M : ∀a. σ (Inst)
Γ `M : σ[a := τ ]

We write Γ �M , if we are not interested in the particular
type assigned to M in Γ (Definition 5).

Definition 5 (Typability in Environment). An environment Γ
types a term M , denoted Γ �M , if there exists a type τ such
that Γ `M : τ .

3In comparison, the Church-style presentation of System F includes type
information on term level (cf. [4, Section 12]).



We consider the decision problems of typability (Problem 6)
and type checking (Problem 7), both of which are proven
undecidable by Wells [7, Theorem 6.16].

Problem 6 (Typability). Given a term M , is there an environ-
ment Γ and a type τ such that Γ `M : τ?

Problem 7 (Type Checking). Given an environment Γ, a term
M , and a type τ , does Γ `M : τ hold?

Quantifier-free types are called simple (Definition 8).

Definition 8 (Simple Types (T→)). A type τ ∈ T is simple,
denoted τ ∈ T→, if either τ ∈ V or τ = σ′ → τ ′ for some
simple types σ′ and τ ′.

For reference, the following Definition 9 and Fact 10 list
common terms, types, and typings.

Definition 9 (Notable Terms and Types).

I := λx.x K := λx y.x ω := λx.x x ⊥ := ∀a. a

Fact 10 (Notable Typings).
• ∅ ` I : ∀a. a→ a
• ∅ ` K : ∀a. a→ ∀b. b→ a
• ∅ ` ω : ⊥ → ⊥

System F type derivations enjoy weakening, cut elimination
for terms [4, Chapter 12] (subject reduction), and cut elimina-
tion for types [12, Theorem 3] ((Inst) before (Gen) property [7,
Lemma 3.2]). This implies the following properties (Fact 11)
of System F.

Fact 11 (Notable Typing Properties).
1) If Γ ` KM N : τ , then Γ `M : τ and Γ �N .
2) If Γ ` λx.M : σ → τ , then Γ, x : σ `M : τ .
3) If Γ, x : ∀~a. σ → τ ` x : σ′ → τ ′,

then ϕ(σ → τ) = σ′ → τ ′ for some ϕ : V→ T.
4) Γ `M : τ iff Γ, x : σ `M : τ where x 6∈ var(M).

For Curry-style System F the (Gen) and (Inst) rules do
not influence term structure. Therefore, a quantification ∀a. σ
where a 6∈ var(σ) is of little interest. A ∀I-type (Definition 12)
does not contain such superfluous quantifications.

Definition 12 (∀I-Type). A type τ is ∀I, denoted τ ∈ T∀I, if
for every subtype ∀a. σ of τ we have a ∈ var(σ).

Typability of a term M is equivalent to typability of M in
the ∀I-fragment of System F by the following Lemma 13.

Lemma 13. If Γ ` M : τ , then [Γ]∀I ` M : [τ ]∀I, where the
function [·]∀I : T→ T∀I is such that

[a]∀I = a

[σ → τ ]∀I = [σ]∀I → [τ ]∀I

[∀a. σ]∀I =

{
∀a. [σ]∀I if a ∈ var(σ)

[σ]∀I otherwise

and [Γ]∀I denotes {x : [σ]∀I | (x : σ) ∈ Γ}.

Proof. Induction on the type derivation.

Remark 14. The converse of Lemma 13 does not hold. Con-
sider the types σ := a → ∀b. a and τ := a → a. We have
[σ]∀I = [τ ]∀I = a → a, and therefore {x : [σ]∀I} ` x : [τ ]∀I.
However, {x : σ} 6` x : τ . Otherwise, by Fact 11.3 we would
have the contradiction ϕ(∀b. a) = a for some ϕ : V→ T.

Relying on Lemma 13, we assume all types to be ∀I-types
in the remainder of the present work.

Remark 15. The restriction to ∀I-types is strictly weaker
than the restriction to canonical type expressions [7, Defini-
tion 3.10] in the original argument. In particular, canonical
type expressions dictate the order of occurrences of bound type
variables, which is more difficult to establish mechanically
(cf. Section VII).

III. PRENEX SIMULATION

In this section we establish the key prenex simulation
(Lemma 29) in the ∀I-fragment of System F. Intuitively, prenex
simulation allows us to fix (in the context of typability) type
assumptions (x : ∀. σ) where σ is simple.

Remark 16. Types ∀. σ where σ is simple almost coincide with
polytypes (or type schemes) [13, Section 3.4] in Hindley–Milner
type systems. The only difference is that a polytype may refer
to basic types, which are not present in our setting. The key
similarity is that quantifiers appear only at the top level.

Using prenex simulation, it is easy (cf. [7, Section 4]) to
reduce semi-unification to System F typability (Section V).

A. Invariant Type Assumption (x : a→ a)

Let us recapitulate the construction of terms Jx[·] for which
every type derivation necessarily contains the type assumption
(x : a→ a) for some fresh type variable a. The construction
of terms Jx[·] in the following Lemma 17 is essentially the
same as of the known term J [7, Lemma 6.3]4.

Lemma 17. Let M be a term, let x be a term variable, and let

Jx[M ] :=
(
λy.K (y y) (y ω)

) (
λx.K x (K (λz.x (x z))M)

)
We have that for all environments Γ such that x 6∈ dom(Γ)
there is a type variable a 6∈ var(Γ) such that Γ � Jx[M ] iff
Γ, x : a→ a �M .

Proof. Let Γ be an environment such that x 6∈ dom(Γ).
If Γ, x : a→ a �M , then it is easy to verify that Γ�Jx[M ]

holds using Fact 10 and the type assumptions z : ⊥ and
y : ∀a. (a→ a)→ a→ a.

For the converse, assume Γ � Jx[M ]. For some ~a, σ, and τ
we have

1) Γ, x : σ ` K x (K (λz.x (x z))M) : τ
2) Γ, x : σ ` x : τ
3) Γ, y : ∀~a. σ → τ � y y
4) Γ, y : ∀~a. σ → τ � y ω

4Historically, the discovery of the term J [7, Lemma 6.3] and its properties,
which took several years of search, can be considered the key milestone in
the overall undecidability proof for System F typability.



The specific type assumption (y : ∀~a. σ → τ) in (3) and (4)
is such that the type of y matches the type of the term
λx.K x (K (λz.x (x z))M) due to the top-level application.

Due to (3), the leftmost type variable in σ is some a 6∈ var(Γ)
such that a ∈ ~a. Otherwise, considering the nesting depth of
(→) to the left, we could not derive some type σ′ → τ ′ for the
first occurrence of y and the type σ′ for the second occurrence
of y. Similarly considering (4), if for ω we derive some type
∀~b. (∀~c. σ′′)→ τ ′′, then leftmost type variable in σ′′ is c such
that c ∈ ~c. Due to the subterm x z in (1) we have σ 6= a.
Overall, we have σ = ∀~b. a→ ρ for some ~b, ρ such that a 6∈ ~b.

It remains to show that ρ = a. Due to the subterm x (x z)
in (1) we have that either ρ = a, ρ = b for some b ∈ ~b, or
ρ = ⊥. The last two cases are impossible due to (2) and (3).

Overall, we have σ = a→ a, and due to (1) and Fact 11.1
we have Γ, x : a→ a �M .

Remark 18. Since a 6∈ var(Γ) in Lemma 17, we can replace a
by any fresh type variable.

The purpose of a type assumption (x : a→ a) is twofold.
First, we can establish type variable equality (used in
Lemma 27) because

{x : a→ a, y1 : a1, y2 : a2} �K(x y1)(x y2) iff a1 = a = a2

Second, we can ensure that some subtypes are type variables
(used in Lemma 27 and Lemma 29) because

Γ, x : a→ a, q : ∀~b. σ → τ � q (x z) implies σ ∈ V

B. Restricted Typability

Similarly to invariant type assumptions [7, Section 5], we
want to characterize typability of a term while relying on some
fixed type assumption. This is made precise in the following
Definition 19.

Definition 19 (Restricted Typability, N ∈ M |(x:σ)). Given
a term M and a type assumption (x : σ), the set of terms
M |(x:σ) is as follows. A term N is a member of M |(x:σ) if
for all environments Γ such that x 6∈ dom(Γ) we have Γ �N
iff Γ, x : σ �M .

Remark 20. By Wells’ main technical result [7, Theorem 6.14]
using invariant type assumptions, we know that given a term M
and a type assumption (x : σ) we can compute a term N such
that N ∈M |(x:σ). However, the particular construction requires
heavy machinery which constitutes the core technical argument.
In the present work we consider only assumptions of certain
shape, allowing for a different, simpler approach.

A notable property of Curry-style (as opposed to Church-
style) System F is the ability to generalize type assumptions
without affecting the corresponding term (Lemma 21).

Lemma 21. If Γ, x : τ � M and {x : σ} ` x : τ , then
Γ, x : σ �M .

Proof. Replace in the corresponding type derivation occur-
rences of (Var) for x : τ by weakened type derivations of
{x : σ} ` x : τ .

As a result of the above Lemma 21, for some type assump-
tions, such as (x : ⊥), it is straightforward to construct from a
given term M a term N such that N ∈M |(x:⊥) (Lemma 22).

Lemma 22. Let M be a term and let x be a term variable.
We have (λx.M) ∈M |(x:⊥).

Proof. Let Γ be such that x 6∈ dom(Γ).
First, assume Γ, x : ⊥ �M . Therefore, we have

Γ ` λx.M : ⊥ → τ for some type τ , i.e. Γ � λx.M .
Second, assume Γ � λx.M . In the corresponding type

derivation the (Abs) rule is applied such that we have
Γ, x : σ ` M : τ for some types σ, τ . By Lemma 21, we
obtain Γ, x : ⊥ �M .

Remark 23. The above proof of Lemma 22 illustrates the
main difference between restricted typability and invariant type
assumptions [7, Section 5]. In particular, the constructed term
λx.M does not induce the type assumption (x : ⊥) in every
type derivation, as would be required for an invariant type
assumption. In fact, it is challenging to construct a term with
(x : ⊥) as an invariant type assumption (cf. term J in [7,
Lemma 6.3]).

Consider the type assumption (w : θ) where (for the remain-
der of this section)

θ := ∀. a→ b→ b→ a

If we can assign a type σ to a term N and a type τ to a term M ,
then we can assign the type σ → τ to the term wM N . This
observation is made systematic in the following Definition 24.

Definition 24 (〈·〉w∆). Let w be a term variable and let ∆ be
an environment. The partial function 〈·〉w∆ : T→ → L is such
that

〈a〉w∆ = y if (y : a) ∈ ∆ for a unique y
〈σ → τ〉w∆ = w 〈τ〉w∆ 〈σ〉w∆

The following Example 25 uses 〈·〉w∆ to construct simply
typed terms from terms typed by respective simple subtypes.

Example 25. Consider ∆ := {yc : c, yd : d}, w ∈ V, and
σ := ((c→ d)→ c)→ c.
We have 〈σ〉w∆ = w yc (w yc (w yd yc)), and

∆, w : θ ` w yd yc : c→ d

∆, w : θ ` w yc (w yd yc) : (c→ d)→ c

∆, w : θ ` 〈σ〉w∆ : σ

In fact, in the above Example 25 the type σ is the only type
that can be assigned to 〈σ〉w∆ in ∆, w : θ. This is established
by the following Lemma 26.

Lemma 26. Let σ ∈ T→ be a simple type such that
var(σ) = {a1, . . . , an}, and let ∆ := {y1 : a1, . . . , yn : an}.

If {y1 : b1, . . . , yn : bn, w : θ} ` 〈σ〉w∆ : τ ,
then τ = σ[a1 := b1, . . . , an := bn].

Proof. Routine induction on σ.



In order to assume (w : θ) for typability of a term M , the
following Lemma 27 gives a member W of M |(w:θ). Intuitively,
the construction of W relies on three building blocks5. First,
Jx[·] is used to establish the type assumption (x : a→ a) for
some fresh type variable a. Second, the term W1 is used to
establish that for the term variable q the type of (q z) is gen-
eral enough. This excludes type assumptions (q : σ) where σ
contains too many arrows. Third, the term W2 is used to
establish that the type of (q z) is not too general, and can be ob-
tained by specializing θ. This excludes type assumptions (q : σ)
where σ contains too few arrows or too many distinct type
variables. By Lemma 21, this allows for the type assumption
(q : ∀b′. (b′ → b′)→ ∀a′. a′ → b′ → b′ → a′), and the term
K (q z) (. . .) is used to establish the assumption (w : θ).

Lemma 27. Let M be a term and let w be a term variable.
We have W ∈M |(w:θ), where

W := Jx[λz.(λw.M) (W1W2)]

x, z 6∈ var(M)

W1 := λq.K (q z) (q x (x z) (x z) (x z))

W2 := λp y1 y2 y3.K y1 (K (p y2) (p y3))

Proof. Let Γ be an environment such that w, x, z 6∈ dom(Γ),
and let c 6∈ var(Γ) (cf. Remark 18).

If Γ, w : θ �M , then it is easy to verify that
Γ, x : c→ c � λz.(λw.M) (W1W2) using Fact 10 and
the type assumptions p : b′ → b′, y1 : a′, y2 : b′, y3 : b′,
q : ∀b′. (b′ → b′)→ ∀a′. a′ → b′ → b′ → a′, z : ⊥, and w : θ
where a′, b′ are fresh. By Lemma 17, we obtain Γ �W .

For the converse, assume Γ �W . By Lemma 17, we have
Γ, x : c→ c � λz.(λw.M) (W1W2). Therefore, for some σ, τ ,
~b, σ′, τ ′, and ρ′ we have

1) Γ′ = Γ, x : c→ c, z : ρ′

2) Γ′, q : σ ` K (q z) (q x (x z) (x z) (x z)) : τ
3) Γ′, q : σ ` q z : τ
4) σ = ∀~a. σ′ → τ ′

5) Γ′, p : σ′ ` λy1 y2 y3.K y1 (K (p y2) (p y3)) : τ ′

6) Γ′, p : σ′ ` λy1 y2 y3.y1 : τ ′

7) Γ′, w : τ �M
Due to the subterm (q x) in (2) we have either σ′ = b′ for

some b′ ∈ ~a or σ′ = b′ → b′′ for some b′, b′′. The first case is
not possible due to the subterm (p y2) in (5).

In (2) the only derivable type of the subterm (x z) is c.
Therefore, τ ′ = ∀~b. a′ → ∀~c1. c1 → ∀~c2. c2 → τ ′′ for some
type variable sequences ~b,~c1,~c2, some type variables a′, c1, c2,
and some type τ ′′.

Due to the subterms (p y2) and (p y3) in (5) we have
b′ = c1 = c2.

Due to (6) we have τ ′′ = a′.
Overall, we have τ ′ = ∀~b. a′ → b′ → b′ → a′. Therefore,

due to (3) we have τ = ∀~d. ρ1 → ρ2 → ρ2 → ρ1 for some
variable sequence ~d and some types ρ1 and ρ2. By Lemma 21
and (7), we obtain Γ, w : θ �M .

5The construction of W is similar to [7, Lemma 6.4] without the restriction
to λI-terms.

Remark 28. Similarly to Remark 23, the type assumption
(w : θ) is not invariant across all type derivations for the
constructed term W . For example, consider the term M := w.
It is easy to verify that {x : a→ a} � λz.(λw.M) (W1W2)
using Fact 10 and the type assumptions p : a → a, y1 : a,
y2 : a, y3 : a, q : (a → a) → a → a → a → a, z : ⊥, and
w : a→ a→ a→ a. In particular, (w : θ) is not assumed in
a type derivation for the term M . To enforce an invariant type
assumption (w : θ) across all type derivations more machinery
would be required.

Already, in the following Lemma 29 we can give a member
V of M |(v:∀. σ) for any simple type σ. The particular type
assumptions (v : ∀. σ) suffice for a straightforward reduction
from semi-unification to typability in Section V. The intuition
for the construction of the term V ∈ M |(v:∀. σ) is almost
exactly as for the proof of Lemma 27. The only difference
being that we now use the term 〈σ〉w∆ to establish the desired
type shape.

Lemma 29 (Prenex Simulation). Let M be a term, let v be
a term variable, and let σ ∈ T→ be a simple type such that
{a1, . . . , an} = var(σ). We have V ∈M |(v:∀. σ), where

V := Jx[λz.(λv.M) (V1 V2)]|(w:θ)

x, z, w 6∈ var(M)

V1 := λq.K (q z . . . z︸ ︷︷ ︸
n times

) (q (x z) . . . (x z)︸ ︷︷ ︸
n times

)

V2 := λy1 . . . yn.〈σ〉w{y1:a1,...,yn:an}

Proof. Let Γ be an environment such that v, x, z, w 6∈ dom(Γ),
and let c 6∈ var(Γ) ∪ var(σ) (cf. Remark 18). Wlog. we have
var(Γ) ∩ var(σ) = ∅.

If Γ, v : ∀. σ �M , then it is easy to verify that
Γ, x : c→ c, w : θ � λz.(λv.M) (V1 V2) using Fact 10 and the
assumptions y1 : a1, . . . , yn : an, q : ∀. a1 → · · · → an → σ,
and w : θ. Therefore, we obtain Γ � V .

For the converse, assume Γ � V . By Lemma 17, we
have Γ, x : c→ c, w : θ � λz.(λv.M) (V1 V2). Therefore, by
Lemma 27, for some τ , ~b1, . . .~bn, σ1, . . . , σn, σ′, τ ′, and ρ′

we have

1) Γ′ := Γ, x : c→ c, w : θ, z : ρ′

2) Γ′, q : σ′ ` K (q z . . . z) (q (x z) . . . (x z)) : τ
3) Γ′, q : σ′ ` q z . . . z : τ
4) σ′ = ∀~b1. σ1 → · · · → ∀~bn. σn → τ ′

5) Γ′, y1 : σ1, . . . , yn : σn ` 〈σ〉w{y1:a1,...yn:an} : τ ′

6) Γ′, v : τ �M
In (2) the only derivable type of the subterm (x z) is c.

Due to the subterm (q (x z) . . . (x z)) in (2) we have σi ∈ V
for i = 1 . . . n. Due to (5), by Lemma 26, we have
τ ′ = σ[a1 := σ1, . . . , an := σn].

Due to (3), (4) we have τ = ∀~d. σ[a1 := ρ1, . . . , an := ρn]
for some variable sequence ~d and some types ρ1, . . . ρn.

By Lemma 21 and (6), we obtain Γ, w : ∀. σ �M .

This concludes our necessary System F tool kit.



IV. SEMI-UNIFICATION

Semi-unification is an undecidable [8, Theorem 12] combi-
nation of first-order unification and first-order matching. For
the undecidability result, it suffices to restrict term syntax to
simple types and consider only two term pairs (Problem 30). A
pivotal insight of Wells’ work is a direct connection between
semi-unification and System F type checking [7, Theorem 4.1].

In this section, we recollect necessary definitions and prop-
erties of semi-unification from existing work [8], [14]. Addi-
tionally, we apply two slight adjustments to semi-unification
(which can be found inlined into the monolithic proof of [7,
Theorem 4.1]) to further streamline the transition to System F.

The following Problem 30 is the exact restriction of semi-
unification used by Wells [7, Theorem 4.1].

Problem 30 (Two-inequality Semi-unification). Given two
pairs (σ1, τ1), (σ2, τ2) ∈ T2

→ of simple types, are there substi-
tutions ϕ,ψ1, ψ2 : V→ T→ with simple codomains such that
ψ1(ϕ(σ1)) = ϕ(τ1) and ψ2(ϕ(σ2)) = ϕ(τ2)?

Theorem 31 ([8, Remark for Theorem 12]). Two-inequality
semi-unification (Problem 30) is undecidable.

Remark 32. The known undecidability results for semi-
unification rely on either König’s lemma [8] or Brouwer’s
fan theorem [14] (neither of which is provable in axiom-free
Coq). However, the argument (reducing Turing machine halt-
ing to semi-unification) in the Coq Library of Undecidability
Proofs [10] is an improved, axiom-free version of [14].

The following Example 33 illustrates non-structural proper-
ties of a solvable semi-unification instance.

Example 33. Consider the semi-unification instance
(a, b→ b), (a→ a, b). Intuitively, a solution for the considered
instance needs to unify and match a with b → b, and
also unify and match a → a with b, which at first
seems structurally contradictory. However, it is solved by
substitutions ϕ,ψ1, ψ2 such that ϕ(a) = a, ϕ(b) = a → a,
ψ1(a) = (a → a) → a → a, and ψ2(a) = a. That is, we
have ψ1(ϕ(a)) = (a → a) → a → a = ϕ(b → b) and
ψ2(ϕ(a→ a)) = a→ a = ϕ(b).

As our first adjustment, we consider a left-uniform restric-
tion (Problem 34) for which the first components of a semi-
unification instance are equal.

Problem 34 (Left-uniform, Two-inequality Semi-unifica-
tion). Given pairs (σ, τ1), (σ, τ2) ∈ T2

→, are there substitu-
tions ϕ,ψ1, ψ2 : V→ T→ such that ψ1(ϕ(σ)) = ϕ(τ1) and
ψ2(ϕ(σ)) = ϕ(τ2)?

Lemma 35. Two-inequality semi-unification (Problem 30)
many-one reduces to left-uniform, two-inequality semi-
unification (Problem 34).

Proof. Given pairs (σ1, τ1), (σ2, τ2) ∈ T2
→, let a1, a2 be fresh

type variables. Construct the simple types σ′ := σ1 → σ2,
τ ′1 := τ1 → a2, and τ ′2 := a1 → τ2. Consider the pairs
(σ′, τ ′1), (σ′, τ ′2).

First, assume ψ1(ϕ(σ1)) = ϕ(τ1) and ψ2(ϕ(σ2)) = ϕ(τ2).
Construct the substitution ϕ′ such that ϕ′(a1) := ψ2(ϕ(σ1)),
ϕ′(a2) := ψ1(ϕ(σ1)), and otherwise ϕ′(a):=ϕ(a).
We have ψ1(ϕ′(σ′)) = ϕ(τ1)→ ϕ′(a2) = ϕ′(τ ′1) and
ψ2(ϕ′(σ′)) = ϕ′(a1) → ϕ(τ2) = ϕ′(τ ′2). Therefore,
ϕ′, ψ1, ψ2 solve the left-uniform instance (σ′, τ ′1), (σ′, τ ′2).

Second, assume ψ1(ϕ(σ′)) = ϕ(τ ′1) and ψ2(ϕ(σ′)) = ϕ(τ ′2).
We have ψ1(ϕ(σ1)) = ϕ(τ1) and ψ2(ϕ(σ2)) = ϕ(τ2). There-
fore, ϕ,ψ1, ψ2 solve the given instance (σ1, τ1), (σ2, τ2).

Corollary 36. Left-uniform, two-inequality semi-unification
(Problem 34) is undecidable.

As our second adjustment, we show that the codomain of sub-
stitutions ϕ,ψ1, ψ2 can be extended to (not necessarily simple)
types. For this, we define the function prune (Definition 37)
from types to simple types, which transports solvability of
semi-unification (Corollary 39 of the auxiliary Lemma 38).

Definition 37 (prunea : T → T→). For a ∈ V the function
prunea : T→ T→ is such that

prunea(b) = b for b ∈ V
prunea(σ → τ) = prunea(σ)→ prunea(τ)

prunea(∀b. τ) = a

Lemma 38. Let σ ∈ T, let ψ : V → T, and let a ∈ V such
that a 6∈ var(σ). There exists a substitution ψ′ : V→ T→ such
that ψ′(prunea(σ)) = prunea(ψ(σ)).

Proof. For ψ′(b) :=

{
a if b = a

prunea(ψ(b)) otherwise
the claim

follows by routine induction on σ.

The following Corollary 39 shows how for a semi-unification
instance a solution in types is transported to a solution in simple
types.

Corollary 39. Let σ, τ ∈ T→, let ψ,ϕ : V → T such that
ψ(ϕ(σ)) = ϕ(τ) , and let a 6∈ var(ϕ(σ)). Define the substitu-
tion ϕ′ : V→ T→ such that ϕ′ := prunea ◦ϕ. There exists a
substitution ψ′ : V→ T→ such that

ψ′(ϕ′(σ)) = prunea(ψ(ϕ(σ))) = ϕ′(τ)

V. TYPABILITY

In this brief section we use prenex simulation (Lemma 29)
to reduce left-uniform, two-inequality semi-unification (Prob-
lem 34) to System F typability (Problem 6). The construction
is analogous to Wells’ reduction from semi-unification to Sys-
tem F type checking, and can be understood as partial evaluation
of [7, Theorem 4.1] combined with [7, Theorem 6.15].

Lemma 40. Left-uniform, two-inequality semi-unification
(Problem 34) many-one reduces to System F typability (Prob-
lem 6).

Proof. Given an instance (σ, τ1), (σ, τ2) of left-uniform,
two-inequality semi-unification, construct the simple types
σ′ := σ → σ, τ ′1 := τ1 → τ1, τ ′2 := τ2 → τ2, and the type
environment Γ := {x : ∀. (a→ a)→ a, y : ∀. τ ′1 → τ ′2 → σ′}.



Using Lemma 29, construct the terms

N ∈
(
x (λz.y z z)

)
|(x:∀. (a→a)→a)

M ∈ N |(y:∀. τ ′
1→τ ′

2→σ′)

We show that (σ, τ1), (σ, τ1) is solvable iff M is typable.
First, if (σ, τ1), (σ, τ2) is solved by ϕ,ψ1, ψ2, then

Γ � x (λz.y z z) using the type assumption z : ∀. ϕ(σ′) and
typing y by ϕ(τ ′1 → τ ′2 → σ′). Specifically, ψi(ϕ(σ)) = ϕ(τi)
for i = 1, 2 allows the occurrences of z to be typed by ϕ(τ ′1)
and ϕ(τ ′2) respectively. Therefore, we obtain ∅ �M .

For the converse, assume Γ′ � M for some type environ-
ment Γ′. Since var(M) = ∅, by Fact 11.4 and Lemma 29
we have that Γ � x (λz.y z z). Therefore, for some ρ we
have Γ, z : ρ ` y z z : ρ. Therefore, there exists a substitution
ϕ′ : V→ T such that

• Γ, z : ρ ` z : ϕ′(τ ′1)

• Γ, z : ρ ` z : ϕ′(τ ′2)

• ρ = ∀~a. ϕ′(σ′)
By Fact 11.3 there are substitutions ψ′1, ψ

′
2 : V → T such

that ψ′1(ϕ′(σ′)) = ϕ′(τ ′1) and ψ′2(ϕ′(σ′)) = ϕ′(τ ′2). By Corol-
lary 39 we obtain a solution of (σ, τ1), (σ, τ2).

Corollary 41. System F typability (Problem 6) is undecidable.

VI. TYPE CHECKING

This brief section contains a folklore reduction from Sys-
tem F typability (Problem 6) to System F type checking (Prob-
lem 7).

Lemma 42. System F typability (Problem 6) many-one reduces
to System F type checking (Problem 7).

Proof. Given a term M , let {x1, . . . , xn} = var(M),
and construct M ′ := K I (λx1 . . . xn.M), Γ′ := ∅, and
τ ′ := ∀a. a→ a. We show that M is typable iff Γ′ `M ′ : τ ′.

First, assume that M is typable, i.e. Γ `M : τ for some type
environment Γ and some type τ . By Fact 11.4, we can assume
that Γ = {x1 : σ1, . . . , xn : σn} for some types σ1, . . . , σn.
Applying the (Abs) rule n times we obtain

∅ ` λx1 . . . xn.M : σ1 → · · · → σn → τ

By Fact 10 we can construct the following type derivation

Γ′ ` K : ∀a. a→ ∀b. b→ a (Inst)
Γ′ ` K : τ ′ → ∀b. b→ τ ′ Γ′ ` I : τ ′ (App)

Γ′ ` K I : ∀b. b→ τ ′ (Inst)
Γ′ ` K I : (σ1 → · · · → σn → τ)→ τ ′

Finally, using rule (App) we obtain Γ′ `M ′ : τ ′.
Second, since M is a subterm of M ′, a type derivation

of Γ′ ` M ′ : τ ′ necessarily contains a type derivation of
Γ `M : τ for some type environment Γ and some type τ .

Corollary 43. System F type checking (Problem 7) is unde-
cidable.

VII. MECHANIZATION

All results in the present work are mechanized using the Coq
proof assistant [15] and are integrated into the Coq Library of
Undecidability Proofs [10]. Since the library contains a many-
one reduction from Turing machine halting to semi-unification
(cf. [14]), we obtain many-one reductions from Turing machine
halting to both System F typability and System F type checking.
Computability and correctness of the corresponding reduction
functions is witnessed by the mechanization in axiom-free Coq.

Profiting from the presented simpler undecidability proofs,
the overall mechanization encompasses 70 LOC for self-
contained problem specification and 1300 LOC for presented
arguments. Additionally, it relies on a existing collection (span-
ning 3000 LOC) of generic System F results containing genera-
tion, substitution, subject reduction, and normalization lemmas.
Said collection is part of a previously mechanized undecidabil-
ity result for System F inhabitation [11].

A. Coq Library of Undecidability Proofs

At the core of the Coq Library of Undecidability Proofs is
the following mechanized notion of many-one reducibility6

Definition reduction {X Y} (f : X -> Y)
(P : X -> Prop) (Q : Y -> Prop) :=
forall x, P x <-> Q (f x).

Definition reduces {X Y}
(P : X -> Prop) (Q : Y -> Prop) :=
exists f : X -> Y, reduction f P Q.

Notation "P � Q" := (reduces P Q).

In the above, a predicate P over the domain X many-one
reduces to a predicate Q over the domain Y, denoted P � Q, if
there exists a function f : X -> Y such that for all x in the
domain X we have P x iff Q (f x). Implemented in axiom-free
Coq any such function f : X -> Y is computable. Since Coq’s
logic is constructive, a proof of P x <-> Q (f x) cannot rely
on classical principles such as functional extensionality, the
law of excluded middle, or choice axioms. As a side note,
this approach is compatible with the anti-classical synthetic
computability theory [16].

One-tape Turing machine halting is mechanized as
HaltTM 17 as an adaptation [17] of prior work [18] in com-
putability theory, and constitutes the key undecidable problem
in the library. Therefore, a mechanized proof of HaltTM 1 � Q,
where the predicate Q mechanizes a decision problem Q, faith-
fully witnesses a constructive many-one reduction from Turing
machine halting to Q. In fact, the particular many-one reduction
function could be extracted from the mechanized proof as a
λ-term (in the call-by-value λ-calculus model of computation)
using existing techniques [19]. For the formulation of unde-
cidability results, a decision procedure for the the decision
problem Q would mechanically induce a decision procedure
for the Turing machine halting problem.

6theories/Synthetic/Definitions.v
7theories/TM/TM.v

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/Synthetic/Definitions.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/TM/TM.v


B. Mechanized System F

Curry-style System F type assignment (Definition 4) is mech-
anized as the inductive predicate8

type_assignment :
environment -> pure_term -> poly_type -> Prop

where environment mechanizes type environments, pure_term
mechanizes terms, and poly_type mechanizes types as follows
Inductive pure_term : Type :=
| pure_var : nat -> pure_term
| pure_app : pure_term -> pure_term -> pure_term
| pure_abs : pure_term -> pure_term.

Inductive poly_type : Type :=
| poly_var : nat -> poly_type
| poly_arr : poly_type -> poly_type -> poly_type
| poly_abs : poly_type -> poly_type.

Definition environment := list poly_type.

Variable binding is addressed via the unscoped de Bruijn ap-
proach [20] supported by the Autosubst 2 [21] library.

The following predicates SysF_TYP and SysF_TC mechanize
System F typability and type checking respectively.
Definition SysF_TYP :
pure_term -> Prop :=

fun M => exists Gamma t,
type_assignment Gamma M t.

Definition SysF_TC :
environment * pure_term * poly_type -> Prop :=
fun ’(Gamma, M, t) =>

type_assignment Gamma M t.

As a result, Coq proofs of HaltTM 1 � SysF_TYP9 and
HaltTM 1 � SysF_TC10 witness correctness of the underlying
arguments of Corollary 41 and Corollary 43 respectively via
rigorous mechanical verification. Constructivity of the corre-
sponding arguments can be mechanically certified using the
Print Assumptions [22] command.

The main technical contribution, i.e. prenex simulation
(Lemma 29), is mechanized as11

Theorem pure_typable_intro_prenex M s n :
is_simple s ->
allfv_poly_type (gt n) s -> { N |
forall Gamma,

pure_typable (map tidy
(many_poly_abs n s :: Gamma)) M <->

pure_typable (map tidy Gamma) N }.

In the above, the arguments are a pure_term M, a simple
poly_type s, and a nat n which is an upper bound on the free
variables in s (mechanized by natural numbers). The result
is a computable pure_term N such that for any environment

Gamma typability of M in Gamma with the additional assumption
many_poly_abs n s (which abstracts all free variables in s) is
characterized by typability of N in Gamma. Notably, the function
tidy mechanizes the function [·]∀I from Lemma 13 restricting
typability to the ∀I-fragment of System F.

8theories/SystemF/SysF.v
9theories/SystemF/Reductions/HaltTM_1_to_SysF_TYP.v
10theories/SystemF/Reductions/HaltTM_1_to_SysF_TC.v
11theories/SystemF/Util/pure_typable_prenex.v

C. Challenges and Design Decisions

Conceptualizing and mechanizing a proof, there are at least
two different goals that can be of interest.

On the one hand, it is valuable to have a concise mechaniza-
tion for the exact problem at hand using the simplest argument.
From a software engineering point of view, such a focused
approach is easier to survey, maintain, adapt, and integrate.

On the other hand, it is worthwhile to develop a universal
framework, containing broader concepts. Such concepts may
improve the overall understanding of the problem at hand and
can be used for similar problems. Such a general approach puts
more emphasis on the methods (rather than merely verifying a
single result), and is likely to contribute to new insights.

While present work aims for the former goal, the traditional
argument by Wells [7] is along the lines of the latter. Initially,
the author tried to mechanize the exact traditional argument
using the Coq proof assistant. However, such a mechanization
has to overcome several technical difficulties.

First, the pervasive use of contexts (terms with a variable-
capturing holes) hinders a mechanization based upon the
de Bruijn or locally nameless term representations. Additionally,
global type environments used by invariant type assumptions [7,
Definition 5.1] depend on the actual names of bound variables.
Therefore, it is difficult to utilize existing, mature infrastructure
(e.g. Autosubst 2) for variable binding12.

Second, forming canonical type expressions [7, Defini-
tion 3.10] requires non-local (wrt. type syntax, assuming
monadic binding) operations such as sorting of abstracted vari-
ables13. In the structurally recursive setting of Coq, it requires
extra infrastructure to argue modulo an equivalence relation
with non-substructural normalization.

Third, for the construction of invariant type assumptions, it
is relevant which intermediate judgments are part of a type
derivation (cf. [7, Definition 5.1]). Therefore, type assignment
cannot be treated entirely at the level of (proof-irrelevant)
propositions.

While none of the above technical difficulties are prohibitive,
their solution requires additional effort before any argument
regarding invariant type assumptions is mechanized. In sum, it
boils down to the question14:

What is a suitable presentation of terms, types, and
type assignment in order to mechanize invariant type
assumptions?

The present work came into existence because the author
failed to answer this question. In particular, the key design
decision for the the presented mechanized undecidability results
was to rely on the off-the-shelf de Bruijn representation, as
provided by the Autosubst 2 library. This forced a fundamental
revision of the concept of invariant type assumptions, leading to
its weaker restricted typability alternative. Most importantly, for

12For a discussion on existing approaches see [23].
13The normalization procedure [7, Definition 3.10] is not compatible with

the de Bruijn type representation, because the order of abstractions is dictated
by the representation.

14This question resembles the POPLmark challenges [24].

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/SystemF/SysF.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/SystemF/Reductions/HaltTM_1_to_SysF_TYP.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/SystemF/Reductions/HaltTM_1_to_SysF_TC.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/SystemF/Util/pure_typable_prenex.v


restricted typability names of bound variables are immaterial.
Further, it relies only on top-level judgments, and therefore is
easily presented as a (proof-irrelevant) proposition. Still, this
restricted setting suffices to inspect the decision problems at
hand, and ultimately, leads to simpler proofs. As added benefit,
the mechanization does not require additional ingenuity, since
most proofs are carried out simply by structural induction
and repeated application of inversion principles. Further, it
is easy to see that the presented predicates type_assignment,
SysF_TYP, and SysF_TC faithfully mechanize System F type
assignment, typability, and type checking.

VIII. CONCLUSION

Compared to Wells’ monumental technical argument for
the undecidability (and equivalence) of System F typability
and type checking, the presented proofs seem rather mundane.
The contributing observation is that a direct reduction from
(a fragment of) semi-unification to System F typability (with-
out System F type checking as an intermediate step) can be
achieved by comparatively simple means. Admittedly, the new
approach is a one-trick pony that is hardly suited for any other
result, while Wells’ calculus of invariant type assumptions is of
more general interest. Also, in favor of a simpler mechanization,
the new approach does not adopt canonical type expressions,
which are essential for the development of the original ar-
gument. The presented prenex simulation lemma (the main
technical contribution of the present work) is a much weaker
version of an existing result [7, Theorem 6.14]. In particular,
it cannot handle free type variables or nested quantification,
and it cannot be used to control the shape of type assumptions
across all type derivations.

Still, the presented weaker approach suffices to show the
undecidability of System F typability and type checking, with
comparatively little effort. Therefore, it is easier to survey [9],
teach, and mechanically verify. Notably, the provided mecha-
nization witnesses correctness and constructivity (in the sense
of axiom-free Coq) of the overall argument. For free (relying
on previously mechanized results), integration into the Coq li-
brary of undecidability proofs establishes mechanically verified,
constructive many-one reductions from Turing machine halting
to both typability and type checking, implying their many-one
equivalence. Yet, the task to mechanize Wells’ broader theory
of invariant type assumptions for a comprehensive verification
of properties of System F remains open.

The restricted nature of properties used, raises an interesting
question: is there a natural, minimal, conservative fragment of
System F exposing undecidable typability (and type checking)?
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