
Constructive Many-one Reduction from the
Halting Problem to Semi-unification
Andrej Dudenhefner !

Saarland University, Saarbrücken, Germany

Abstract
The undecidability of semi-unification (unification combined with matching) has been proven by
Kfoury, Tiuryn, and Urzyczyn in the 1990s. The original argument is by Turing reduction from
Turing machine immortality (existence of a diverging configuration).

There are several aspects of the existing work which can be improved upon. First, many-one
completeness of semi-unification is not established due to the use of Turing reductions. Second,
existing mechanizations do not cover a comprehensive reduction from Turing machine halting to
semi-unification. Third, reliance on principles such as König’s lemma or the fan theorem does not
support constructivity of the arguments.

Improving upon the above aspects, the present work gives a constructive many-one reduction from
the Turing machine halting problem to semi-unification. This establishes many-one completeness
of semi-unification. Computability of the reduction function, constructivity of the argument, and
correctness of the argument is witnessed by an axiom-free mechanization in the Coq proof assistant.
The mechanization is incorporated into the existing Coq library of undecidability proofs. Notably, the
mechanization relies on a technique invented by Hooper in the 1960s for Turing machine immortality.

An immediate consequence of the present work is an alternative approach to the constructive
many-one equivalence of System F typability and System F type checking, compared to the argument
established in the 1990s by Wells.

2012 ACM Subject Classification Theory of computation → Computability

Keywords and phrases constructive mathematics, undecidability, mechanization, semi-unification

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.18

Acknowledgements The author is grateful for encouragement and assistance by Paweł Urzyczyn
and the members of the programming systems lab led by Gert Smolka at Saarland University.

1 Introduction

Semi-unification is the combination of first-order unification and first-order matching. That
is, given a finite set of pairs of first-order terms, is there a valuation φ such that for each
pair (σ, τ) in the set of first-order terms we have ψ(φ(σ)) = φ(τ) for some valuation ψ? Semi-
unification naturally arises in type inference for functional and logic programs [30, 26, 19]
which allow for polymorphic recursion [34]. Intuitively, the valuation φ establishes global
code invariants, and the individual valuations ψ establish additional local conditions for each
polymorphic function application. While both first-order unification and first-order matching
are decidable problems, the status of semi-unification remained open throughout the 1980s,
until answered negatively by Kfoury, Tiuryn, and Urzyczyn [25, 27]. The undecidability
of semi-unification impacted programming language design and analysis with respect to
polymorphic recursion [31, 21], loop detection [36], and data flow [12]. Another prominent
result based on the undecidability of semi-unification is the undecidability of System F [18, 37]
typability and type checking [39]. Of course, the negative result motivated the complementary
line of work [31] in search for expressive, decidable fragments of semi-unification. A notable
decidable fragment is acyclic semi-unification, used for standard ML typability [28].

© Andrej Dudenhefner;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrej.dudenhefner@cs.uni-saarland.de
https://orcid.org/0000-0003-1104-444X
https://doi.org/10.4230/LIPIcs.CSL.2022.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 From Halting to Semi-unification

Due to the importance of semi-unification in functional programming, it is natural to ask
for surveyable evidence (both locally and globally in the sense of [4]) for its undecidability.
The original undecidability proof [25] is quite sophisticated, and it was recently simplified [10]
and partially mechanized (in the Coq proof assistant). Unfortunately, there are several
aspects that obstruct surveyability of previous work.

First, existing arguments rely on the undecidability of Turing machine immortality, shown
by Hooper [20]. The corresponding construction has received more attention [24], however,
it was never published in full detail. Hooper remarks:

A routine and unimaginative analysis-of-cases proof would point this out more clearly;
but it has remained unwritten since, as a rather tedious insult to the alert, qualified
reader, it would surely remain unread.

While the omissions are justified by accessibility, they hinder verification in full detail. The
existing mechanization [10] of the undecidability of semi-unification does not improve upon
this aspect, as it treats the undecidability of Turing machine immortality axiomatically.

Second, existing arguments use principles such as excluded middle, König’s lemma [25],
or the fan theorem [10] that do not support constructivity of the arguments. As a result,
anti-classical theories, such as synthetic computability theory [5], may be in conflict with
such constructions. The question arises, whether non-constructive principles are inherent to
semi-unification or could be avoided.

Third, existing arguments use Turing reductions and are insufficient to establish many-
one completeness of semi-unification. Hitherto, a many-one reduction from Turing machine
halting to semi-unification is not given.

This work improves upon the above aspects as follows. It provides a comprehensive
chain of many-one reductions from Turing machine halting to semi-unification, replacing
immortality with uniform boundedness. Crucially, each many-one reduction is mechanized
in full detail in the Coq proof assistant [8]. The mechanization witnesses correctness and
constructivity of the argument. Specifically, the notion of a constructive proof is identified
with an axiom-free Coq mechanization (cf. calculus of inductive constructions). It neither
assumes functional extensionality (cf. homotopy type theory), Markov’s principle (cf. Russian
constructivism), nor the fan theorem (cf. Brouwer’s intuitionism). Finally, the mechanization
is integrated into the Coq Library of Undecidability Proofs [17], and contributes a (first of
its kind) mechanized variant of Hooper’s immortality construction [20].

The described improvements allow for an alternative approach to show many-one equiv-
alence of System F typability and System F type checking, compared to the argument
established in the 1990s by Wells [39]. The original argument interreduces type checking and
typability directly, which requires a technically sophisticated argument. Having a constructive
many-one reduction from Turing machine halting to semi-unification at our disposal (together
with recursive enumerability of System F typability and type checking), it suffices (and is
simpler) to reduce semi-unification to type checking and typability individually [11].

Synopsis
The reduction from Turing machine halting to semi-unification is divided into several
reduction steps. Each reduction step is many-one, constructive, and mechanized as part
of the Coq Library of Undecidability Proofs [17]. In particular, a predicate P over the
domain X constructively many-one reduces to a predicate Q over the domain Y , if there
exists a computable function f : X → Y such that for all x ∈ X we constructively have
P (x) ⇐⇒ Q(f(x)).

A. Dudenhefner 18:3

Section 2: Turing machine halting is reduced to two-counter machine halting (Lemma 3)
using Minsky’s argument [33, Section 14.1]. This step simplifies the machine model.

Section 3: Two-counter machine halting is reduced to one-counter machine 1-halting
(Lemma 12), adapting Minsky’s observation [33, Section 14.2]. This step prepares
the machine model for nested simulation via two-stack machines without symbol search.

Section 4.1: One-counter machine 1-halting is reduced to deterministic, length-preserving
two-stack machine uniform boundedness (Lemma 26), adapting Hooper’s construction
for Turing machine immortality [20]. This step transitions the machine problem from
halting to uniform boundedness.

Section 4.2: Deterministic, length-preserving two-stack machine uniform boundedness is
reduced to confluent, simple two-stack machine uniform boundedness (Lemma 35),
simplifying machine structure. This step enables reuse of the existing mechanized
reduction from a uniform boundedness problem to semi-unification [10].

Section 5.1: Confluent, simple two-stack machine uniform boundedness is reduced to simple
semi-unification (Lemma 46), strengthening previous work [10]. This step transitions to
an undecidable fragment of semi-unification.

Section 5.2: Simple semi-unification is reduced to right-uniform, two-inequality semi-unifi-
cation (Lemma 50), establishing the main result (Theorem 53).

Section 6: Outline of the mechanization of the above reduction steps.

2 Two-counter Machines

The key insight of recent work [10] establishes a direct correspondence between semi-unification
and a uniform boundedness problem for a machine model. In order to reduce Turing machine
halting to such a problem, in this section we consider two-counter machines as a well-
understood, mechanized [16], and more convenient intermediate model of computation.

Two-counter machines, pioneered by Minsky [33, Section 14.1], are a restricted form of
register machines and constitute a particularly simple, Turing-complete model of computation.
A two-counter machine (Definition 1) stores data in two counters, each containing a natural
number. A program instruction may either increment or decrement a counter value, and
modify the current program index. To avoid partiality, we model halting via a trivial cycle.
The size of a two-counter machine is the length, denoted | · |, of the list of its instructions.

▶ Definition 1 (Two-counter Machine (M)). A two-counter machine M is a list of instructions
of shape either inc0, inc1, dec0 j, or dec1 j, where j ∈ N is a program index.

A configuration of M is of shape (i, (a, b)), where i ∈ N is the current program index
and a, b ∈ N are the current counter values.

The step relation of M on configurations, written (−→M), is given by
if |M| ≤ i, then (i, (a, b)) −→M (i, (a, b)) and we say (i, (a, b)) halts
if inc0 is the i-th instruction of M, then (i, (a, b)) −→M (i+ 1, (a+ 1, b))
if inc1 is the i-th instruction of M, then (i, (a, b)) −→M (i+ 1, (a, b+ 1))
if dec0 j is the i-th instruction of M, then (i, (0, b)) −→M (i+ 1, (0, b))
and (i, (a+ 1, b)) −→M (j, (a, b))
if dec1 j is the i-th instruction of M, then (i, (a, 0)) −→M (i+ 1, (a, 0))
and (i, (a, b+ 1)) −→M (j, (a, b))

The reachability relation of M on configurations, written (−→∗
M), is the reflexive,

transitive closure of (−→M).
A configuration (i, (a, b)) is terminating in M, if we have (i, (a, b)) −→∗

P (i′, (a′, b′)) for
some halting configuration (i′, (a′, b′)).

CSL 2022

18:4 From Halting to Semi-unification

Despite its remarkable simplicity, the halting problem for two-counter machines (Prob-
lem 2) is undecidable (Corollary 4).

▶ Problem 2 (Two-counter Machine Halting). Given a two-counter machine M and two
natural numbers a, b ∈ N, is the configuration (0, (a, b)) terminating in M?

▶ Lemma 3. The Turing machine halting problem many-one reduces to the two-counter
machine halting problem (Problem 2).

Proof Sketch. Minsky describes the simulation of Turing machines by machines with four
registers [33, Section 11.2] working on Gödel encodings. Then, machines with four registers
are simulated by two-counter machines [33, Theorem 14.1-1]. ◀

▶ Corollary 4. Two-counter machine halting (Problem 2) is undecidable.

▶ Remark 5. Minsky’s original argument is constructive and is sufficient for our technical
result. However, for mechanization we rely on existing work by Forster et al. [16], which is part
of the Coq Library of Undecidability Proofs [17]. This approach many-one reduces Turing
machine halting via the Post correspondence problem [35, 13] and Conway’s FRACTRAN
halting [7, 29] to two-counter machine halting.

Commonly, two-counter machines are easily simulated by other machine models and
therefore serve a key role in undecidability proofs for machine immortality problems [20, 24].
However, they have one drawback with respect to uniform boundedness. That is, there
is no natural increasing measure on configurations along the step relation, as it allows for
non-trivial cycles (Example 6).

▶ Example 6. Consider M = [inc0, dec0 0]. For any counter values a, b ∈ N the configu-
ration (0, (a, b)) is non-terminating in M because of the non-trivial cycle (0, (a, b)) −→M
(1, (a+ 1, b)) −→M (0, (a, b)).

One could eliminate non-trivial cycles by introducing a third counter, which increases at
every step. While this induces a natural increasing measure (value of the third counter), it
incurs additional bookkeeping. A simulation of such a three-counter machine by an acyclic
two-counter machine is possible [24], however, it again obscures the underlying measure.

We address this drawback of two-counter machines with respect to uniform boundedness
in the following Section 3, building upon Minsky’s notion of machines with one register.

3 One-counter Machines

As Minsky observed [33, Section 14.2], with multiplication and division by constants the
halting problem is undecidable for one-counter machines. Specifically, increase (resp. de-
crease) operations for two values a and b can be simulated by multiplication (resp. division)
by 2 and 3 for one value 2a3b.

In this section, we further develop Minsky’s construction (similarly to [40]) of universal
machines with one counter in pursuit of two goals. First, machine runs should be easy to
simulate in the stack machine model (Remark 16). Second, we need a measure on machine
configurations that increases along the step relation, directly connecting non-termination
and unboundedness (Lemma 10).

A program instruction of a one-counter machine (Definition 7), besides modifying the
program index, conditionally multiplies the current counter value with either 2

1 ,
3
2 ,

4
3 , or 5

4 .
Notably, such a multiplication by d+1

d for d ∈ {1, 2, 3, 4} is both easy to simulate uniformly,
and strictly increases a (positive) counter value.

A. Dudenhefner 18:5

▶ Definition 7 (One-counter Machine (P)). A one-counter machine P is a list of instructions
of shape (j, d), where j ∈ N is a program index and d ∈ {1, 2, 3, 4} is a counter modifier.

A configuration of P is a pair (i, c), where i ∈ N is the current program index and c ∈ N
such that c > 0 is the current counter value.

The step relation of P on configurations, written (−→P), is given by
if |P| ≤ i, then (i, c) −→P (i, c) and we say (i, c) halts
if (j, d) is the i-th instruction of P and d divides c, then (i, c) −→P (j, c · d+1

d)
if (j, d) is the i-th instruction of P and d does not divide c, then (i, c) −→P (i+ 1, c)

The reachability relation of P on configurations, written (−→∗
P), is the reflexive, transitive

closure of (−→P).
A configuration (i, c) is terminating in P, if we have (i, c) −→∗

P (i′, c′) for some halting
configuration (i′, c′).

▶ Example 8. Consider P = [(1, 1), (0, 2)]. The configuration (0, 1) is not terminating in P
because of the infinite configuration chain

(0, 1) −→P (1, 1 · 2
1) −→P (0, 2 · 3

2) −→P (1, 3 · 2
1) −→P (0, 6 · 3

2) −→P (1, 9 · 2
1) −→P · · ·

The step relation for one-counter machines is total (Lemma 9.1), functional (Lemma 9.2),
and forms increasing chains (Lemma 9.3 and Lemma 9.4) up to a halting configuration.

▶ Lemma 9 (One-counter Machine Step Relation Properties).
1. Totality:

For all configurations (i, c) there is a configuration (i′, c′) such that (i, c) −→P (i′, c′).
2. Functionality:

If (i, c) −→P (i′, c′) and (i, c) −→P (i′′, c′′), then (i′, c′) = (i′′, c′′).
3. Increasing Measure:

If (i, c) −→P (i′, c′) and (i, c) is not halting, then |P| · c+ i < |P| · c′ + i′.
4. Monotone Counter:

a. If (i, c) −→P (i′, c′), then c ≤ c′.
b. If (i, c) −→|P|+1

P (i′, c′) and (i′, c′) is not halting, then c < c′.

Proof. Routine case analysis. ◀

The above Lemma 9.3 gives an increasing along (−→P) measure |P| · c+ i on non-halting
configurations (i, c). Therefore, any configuration cycle is trivial, i.e. the corresponding
configuration is halting. Additionally, by Lemma 9.4, the counter value is guaranteed to
increase after |P| + 1 steps, unless a halting configuration is reached. This results in a
characterization of termination via boundedness of reachable counter values (Lemma 10).

▶ Lemma 10. Let P be a one-counter machine. A configuration (i, c) is terminating in P iff
there is a k ∈ N such that for all configurations (i′, c′) with (i, c) −→∗

P (i′, c′) we have c′ < k.

Proof. If from (i, c) the machine P halts after n steps, then k = 1+c·2n bounds the reachable
from (i, c) counter values. Conversely, if k bounds the reachable from (i, c) counter values,
then after at most k · (|P| + 1) steps (i, c) reaches a halting configuration by Lemma 9.4. ◀

The halting problem for one-counter machines (Problem 11) starting from the configura-
tion (0, 1) is undecidable by reduction from the halting problem for two-counter machines
(Lemma 12).

▶ Problem 11 (One-counter Machine 1-Halting). Given a one-counter machine P, is the
configuration (0, 1) terminating in P?

CSL 2022

18:6 From Halting to Semi-unification

▶ Lemma 12. Two-counter machine halting (Problem 2) many-one reduces to one-counter
machine 1-halting (Problem 11).

Proof. Let M be a two-counter machine and let a0, b0 ∈ N be two values. We represent a
pair (a, b) of counter values of M by the family of counter values 2a3b5m where m ∈ N.

We simulate instructions of M on two counters (a, b) by instructions of P on one counter
c = 2a3b5m as follows. Increase a is simulated by 2a3b5m · 2

1 = 2a+13b5m. Increase b is
simulated by 2a3b5m · 2

1 · 3
2 = 2a3b+15m. Decrease a is simulated by 2a+13b5m · 3

2 · 4
3 · 5

4 =
2a3b5m+1. Decrease b is simulated by 2a3b+15m · 4

3 · 5
4 = 2a3b5m+1. Failed decrease instructions

may rely on a simulation of an unconditional jump instruction via 2a3b5m · 2
1 · 2

1 · 5
4 = 2a3b5m+1.

Initialization of counter values (a0, b0) is simulated via 203050 · (2
1)a0+b0 · (3

2)b0 = 2a03b050.
Overall, the configuration (0, (a0, b0)) is terminating in the two-counter machine M iff the
configuration (0, 1) is terminating in the one-counter machine P. ◀

▶ Corollary 13. One-counter machine 1-halting (Problem 11) is undecidable.

The following Example 14 illustrates the construction in the proof of Lemma 12, simulating
a looping two-counter machine from Example 6.

▶ Example 14. Consider M = [inc0, dec0 0] from Example 6 with the initial counter values
(a0, b0) = (1, 1). Following the proof of Lemma 12, we construct the one-counter machine

P = [(1, 1), (2, 1), (3, 2), (4, 1), (5, 2), (6, 3), (3, 4)]

Starting from the configuration (0, 1) = (0, 203050) a run of P starts with the initialization

(0, 203050) (1,1)−→P (1, 213050) (2,1)−→P (2, 223050) (3,2)−→P (3, 213150) = (3, 2a03b050)

Next, the infinite loop of M is simulated, returning to the program index 3

(3, 213150) (4,1)−→P (4, 223150) (5,2)−→P (5, 213250) (6,3)−→P (6, 233150) (3,4)−→P (3, 213151)

Overall, the configuration (0, 1) = (0, 203050) is non-terminating in P, simulating non-
termination of the configuration (0, (a0, b0)) in M as follows

(0, 203050) −→3
P (3, 213150) −→4

P (3, 213151) −→4
P (3, 213152) −→4

P (3, 213153) −→4
P . . .

Indeed, there is no upper bound on the counter value (cf. Lemma 10).

▶ Remark 15. One-counter machines can be understood as a variant of Conway’s FRAC-
TRAN language [7] with a relaxed program index transition rule, and restricted to the
instruction set (2

1 ,
3
2 ,

4
3 ,

5
4).

▶ Remark 16. The deliberate choice of counter multiplication by d+1
d for d ∈ {1, 2, 3, 4}

has several benefits. First, instructions are of uniform shape. Therefore, simulation of and
reasoning about such instructions requires less case analysis, also impacting the underlying
mechanization. Second, counter modification is non-decreasing by definition. Third, for a
counter value c = k · d multiplication by d+1

d results in c · d+1
d = c+ k. Therefore, it can be

simulated by rewriting a binary word 0c10k to 0c+k1. This can be performed iteratively (and
uniformly) by shifting the symbol 1 to the right for every consecutive occurrence of 0d in 0c

(cf. proof of Lemma 26).

A. Dudenhefner 18:7

4 Two-stack Machines

In this section, our goal is the simulation of one-counter machines in a stack machine model of
computation without unbounded symbol search. Specifically, given a one-counter machine P ,
we construct a two-stack machine S such that the configuration (0, 1) is terminating in P
iff there is a uniform bound on the number of configurations reachable in S from any
configuration.

The main difficulty, similarly to the undecidability proof for Turing machine immortal-
ity [20], is to simulate symbol search (traverse data, searching for a particular symbol) using
a uniformly bounded machine. Most problematic are unsuccessful searches that may traverse
an arbitrary, i.e. not uniformly bounded, amount of data. The key idea [20, Part IV] (see
also [24, 22]) is to implement unbounded symbol search by nested bounded symbol search.

In the present work, we supplement a high level explanation of the construction (cf. proof
sketch of Lemma 26) with a comprehensive case analysis as a mechanized proof (in the Coq
proof assistant). This approach, arguably worth striving for in general, has three advantages
over existing work. First, the proof idea is not cluttered with mundane technical details,
while the mechanized proof is highly precise. Second, a mechanized proof leaves little doubt
regarding proof correctness and is open to scrutiny, as there is nothing left to imagination.
Third, the Coq proof assistant tracks any non-constructive assumptions which may hide
beneath technical details.

Let us specify the two-stack machine (Definition 17) model of computation, which we use
to simulate one-counter machines. An instruction of such a machine may modify the current
machine state, pop from, and push onto two stacks of binary symbols.

▶ Definition 17 (Two-stack Machine (S)). A two-stack machine S is a list of instructions of
shape ApppB → A′pqpB′, where A,B,A′, B′ ∈ {0, 1}∗ are binary words and p, q ∈ S are states,
where S is countably infinite.

A configuration of S is of shape ApppB where p ∈ S is the current state, A ∈ {0, 1}∗ is
the content of the left stack and B ∈ {0, 1}∗ is the content of the right stack.

The step relation of S on configurations, written (−→S), is given by
if (ApppB → A′pqpB′) ∈ S, then for C,D ∈ {0, 1}∗ we have CApppBD −→S CA′pqpB′D

The reachability relation of S on configurations, written (−→∗
S), is the reflexive, transitive

closure of (−→S).

▶ Remark 18. A two-stack machine can be understood as a restricted semi-Thue system
on the alphabet {0, 1} ∪ S in which each word contains exactly one symbol from S. Such
rewriting systems are employed in the setting of synchronous distributivity [1].
▶ Remark 19. To accommodate for arbitrary large machines, the state space S is not finite.
However, the effective state space of any two-stack machine S is bounded by the finitely
many states occurring in the instructions of S.

The key undecidable property of two-stack machines, used in [10], is whether the number of
distinct, reachable configurations from any configuration is uniformly bounded (Definition 20).

▶ Definition 20 (Uniformly Bounded). A two-stack machine S is uniformly bounded if there
exists an n ∈ N such that for any configuration ApppB we have

|{A′pp′pB′ | ApppB −→∗
S A′pp′pB′}| ≤ n

Notably, uniform boundedness and uniform termination [32] (is every configuration chain
finite?) are orthogonal notions, illustrated by the following Examples 21–22.

CSL 2022

18:8 From Halting to Semi-unification

▶ Example 21. Consider S = [0pppϵ → ϵppp1]. From the configuration 0mpppϵ, where m ∈ N,
reachable in S configurations are exactly 0m−ippp1i for i = 0 . . .m. Therefore, there is no
uniform bound on the number of reachable configurations. However, the length of every
configuration chain in S is finite (bounded by one plus the length of the left stack). Overall,
S is uniformly terminating but not uniformly bounded.

▶ Example 22. Consider S = [(0pppϵ → ϵpqp1), (ϵpqp1 → 0pppϵ)]. The number of distinct,
reachable in S configurations from any configuration is uniformly bounded by n = 2. However,
there is an infinite configuration chain 0pppϵ −→S ϵpqp1 −→S 0pppϵ −→S ϵpqp1 −→S . . . Overall,
S is uniformly bounded, but not uniformly terminating.

In literature [20, 24], counter machine termination is simulated using uniformly bounded
Turing machines directly rather than by two-stack machines. This is reasonable when
omitting technical details regarding the exact Turing machine construction. However,
for verification in full detail, Turing machines are quite unwieldy, compared to two-stack
machines. Unfortunately, we cannot rely on existing mechanized Turing machine programming
techniques [15], as they establish functional properties, but are incapable to establish uniform
boundedness.

4.1 Deterministic, Length-preserving Two-stack Machines
There are several properties of two-stack machines that are of importance in our construction
in order to reuse existing work [10].

For length-preserving two-stack machines (Definition 23) the sum of lengths of the two
stacks is invariant wrt. reachability. For each configuration, length-preservation bounds (al-
beit, not uniformly) the number of distinct, reachable configurations. Therefore, reachability
is decidable for length-preserving two-stack machines.

▶ Definition 23 (Length-preserving). A two-stack machine S is length-preserving if for all
instructions (ApppB → A′pqpB′) ∈ S we have 0 < |A| + |B| = |A′| + |B′|.

▶ Definition 24 (Deterministic). A two-stack machine S is deterministic if for all configura-
tions ApppB, A′pp′pB′, and A′′pp′′pB′′ such that ApppB −→S A′pp′pB′ and ApppB −→S A′′pp′′pB′′

we have A′pp′pB′ = A′′pp′′pB′′.

For example, two-stack machines in Examples 21–22 are deterministic and length-
preserving.

The key undecidable problem, that in our argument assumes the role of Turing machine
immortality of previous approaches [27, 10], is uniform boundedness of deterministic, length-
preserving two-stack machines (Problem 25). A central insight of the present work is that
using this problem as an intermediate step we neither require Turing reductions, König’s
lemma (cf. [27]), nor the fan theorem (cf. [10]). Additionally, this problem strikes a balance
between ease to reduce to (from counter machine halting) and ease to reduce from (to
semi-unification). This balance is essential for a mechanization of manageable size.

▶ Problem 25 (Deterministic, Length-preserving Two-stack Machine Uniform Boundedness).
Given a deterministic, length-preserving two-stack machine S, is S uniformly bounded?

The original undecidability proof of semi-unification contains a hint [27, Proof of Corol-
lary 6] that Turing machine immortality may be avoided in a comprehensive reduction.
Accordingly, the following Lemma 26 captures the decisive step that avoids Turing machine
immortality.

A. Dudenhefner 18:9

▶ Lemma 26. One-counter machine 1-halting (Problem 11) many-one reduces to determin-
istic, length-preserving two-stack machine uniform boundedness (Problem 25).

Proof Sketch. Let P be a one-counter machine. Similarly to [24, Theorem 7], we adapt
Hooper’s argument [20] for symbol search.

A naive simulation of P by a deterministic, length-preserving two-stack machine S is easy.
A P-configuration (i, c) is represented by the S-configuration 1pip0c10m for m ∈ N, where
0m is a large enough supply of zeroes. A P-instruction (j, d) is simulated as follows. First,
the S-instruction ϵpi?p0d −→S 0dpi?pϵ tests for divisibility by d, moving consecutive blocks
of d zeroes from the right to the left stack. The divisibility test fails if the S-instruction
ϵpi?p0k1 −→S ϵpi#p0k1 where 0 < k < d can be applied. In this case, we move the zeroes back
to the right stack, and via the S-instruction 1pi#pϵ −→S 1pi+ 1pϵ we reach the S-configuration
1pi+ 1p0c10m, representing the P-configuration (i+ 1, c). The divisibility test succeeds if the
S-instruction ϵpi?p1 −→S ϵpi!p1 can be applied. In this case, multiplication by d+1

d is simulated
by shifting to the right the symbol 1 on the right stack for each block of consecutive d zeroes
on the left stack (Remark 16). Finally, via the S-instruction 1pi!pϵ −→S 1pjpϵ, we arrive at
the S-configuration 1pjp0

c(d+1)
d 10m− c

d , representing the P-configuration (j, c · d+1
d).

Inductively, we obtain (i, c) −→∗
P (i′, c′) iff A1pip0c10c′−cB −→∗

S A1pi′p0c′1B for all A,B ∈
{0, 1}∗. Therefore, the configuration (0, 1) is terminating in P iff configurations A1p0p01B
are uniformly bounded in S (the uniform bound is derived from the halting counter value).

Unfortunately, the naive construction fails in general. For example, termination of (0, 1)
in P does not necessarily uniformly bound the configurations 1p0p0m where m ∈ N is arbitrary
large. At fault is a failed symbol search (for the symbol 1 on the right stack) that needs to
traverse an arbitrary amount of data. Observe that in the naive construction any search
for the symbol 1 is expected to succeed. The ingenious idea by Hooper [20, Part IV] is to
uniformly bound symbol search via nested simulation in a sufficiently large uniformly bounded
configuration space (in our case, the space of configurations A1p0p01B for A,B ∈ {0, 1}∗).
That is, to search for the symbol 1 on the right stack, start a nested simulation from the
P-configuration (0, 1) inside the space of consecutive zeros on the right stack. Specifically, use
Appp0k+3B −→S AC1p0p01B to reset the program index p to 0 and retain the binary encoding
of p in C of fixed length k. Let c be the counter value (arbitrarily large by Lemma 9.4) of the
halting configuration in P from the P-configuration (0, 1). For the configuration AC1p0p01B
which represents the P-configuration (0, 1), there are three cases.

First, in case B = 0m1D, where m < c − 1 and D ∈ {0, 1}∗, the number m of zeroes
on the right stack is too small to accommodate for c. Eventually, the nested simulation is
unable to simulate counter increase. In this situation, the initial search for the symbol 1
succeeds, and control is returned to the previous level.

Second, in case B = 0m, where m < c − 1, the size of the right stack is too small to
accommodate for c. Eventually, the nested simulation is unable to apply any instruction,
and halts. In this situation, the initial search for the symbol 1 fails, respecting the uniform
bound derived from c.

Third, in case B = 0c−1D, where D ∈ {0, 1}∗, there is enough space for the nested
simulation to reach a halting state in P from the initial configuration (0, 1), respecting the
uniform bound derived from c. This renders the initial search for the symbol 1 immaterial,
because the simulation already achieved its ultimate purpose.

In each case (using Lemma 9), a uniform bound on the number of configurations for the
nested simulation can be derived from c. Each case may require further nested computation.
However, the nesting depth is at most c because each nesting level uses space inside the
consecutive zeroes that represent the counter value (bounded by c) on the previous level. ◀

CSL 2022

18:10 From Halting to Semi-unification

▶ Corollary 27. Deterministic, length-preserving two-stack machine uniform boundedness
(Problem 25) is undecidable.

▶ Remark 28. The exact analysis of the nested simulation in the proof of Lemma 26 requires
a tremendous inductive proof with many corner cases. Arguably, it is unreasonable for a
human without mechanical assistance to write it down in full detail (cf. Hooper’s remark in
Section 1). Additionally, it would require a comparable amount of effort for others to verify
such a massive construction. This is why, in order to guarantee its correctness, a mechanized
proof of Lemma 26 is adequate (cf. Section 6) to establish the result.

4.2 Confluent, Simple Two-stack Machines
In order to build upon existing work [10], we consider two-stack machines with instructions
of simple (Definition 29, cf. [10, Definition 16]) shape. To further streamline the construction,
we relax determinism of two-stack machines to confluence (Definition 32). Overall, confluent,
simple two-stack machine uniform boundedness (Problem 34) is well-suited for reduction to
a fragment of semi-unification (cf. Section 5.1).

▶ Definition 29 (Simple). A two-stack machine S is simple if for all instructions
(ApppB → A′pqpB′) ∈ S we have 1 = |A| + |B| = |A′| + |B′| = |A| + |A′| = |B| + |B′|.

▶ Remark 30. A deterministic, simple two-stack machine is just another way to present a
deterministic Turing machine. The left and right stacks contain the respective tape content
to the left and to the right from the current head. Reading and writing at the head while
moving the head position is easily presented as simple instructions (cf. [10, Remark 19]).
▶ Remark 31. Turing machine immortality is reducible to uniform boundedness of determin-
istic, simple two-stack machines by a bounded Turing reduction [10, Theorem 2]. However,
the argument uses the fan theorem, therefore, it is crucial for the present argument not to
rely on this particular reduction.

▶ Definition 32 (Confluent). A two-stack machine S is confluent if for all configurations
ApppB, A′pp′pB′, and A′′pp′′pB′′ such that ApppB −→∗

S A′pp′pB′ and ApppB −→∗
S A′′pp′′pB′′ there

exists a configuration C pqpD such that A′pp′pB′ −→∗
S C pqpD and A′′pp′′pB′′ −→∗

S C pqpD.

Clearly, any deterministic two-stack machine is confluent (but not necessarily vice versa).

▶ Lemma 33. If a two-stack machine S is deterministic, then S is confluent.

Compared to deterministic machines, confluent machines are quite practical. For example,
a confluent machine may (without additional bookkeeping) “try out” different configuration
chains before choosing the preferable one (cf. proof sketch of Lemma 35).

▶ Problem 34 (Confluent, Simple Two-stack Machine Uniform Boundedness). Given a confluent,
simple two-stack machine S, is S uniformly bounded?

By Lemma 33, the above Problem 34 subsumes deterministic, simple two-stack machine
uniform boundedness [10, Problem 26]. This, in combination with the following Lemma 35,
allows for adaptation of previous work1 in Section 5.1.

1 It is possible to carry out the construction in the original, deterministic scenario without adaptation.
However, this is technically more challenging and provides no tangible benefit.

A. Dudenhefner 18:11

▶ Lemma 35. Deterministic, length-preserving two-stack machine uniform boundedness
(Problem 25) many-one reduces to confluent, simple two-stack machine uniform boundedness
(Problem 34).

Proof Sketch. Our objective is to shorten length-preserving instructions, while maintaining
confluence. This is routine, storing local stack information in additional fresh states. For
example, an instruction 00pppϵ −→ 11pqpϵ can be replaced by the simple instructions 0pppϵ −→
ϵpp1p0, 0pp1pϵ −→ ϵpp2p0, ϵpp2p0 −→ 1pp3pϵ, and ϵpp3p0 −→ 1pqpϵ, where p1, p2, p3 are fresh states.
This results in the configuration chain 00pppϵ −→ 0pp1p0 −→ ϵpp2p00 −→ 1pp3p0 −→ 11pqpϵ
which simulates the instruction 00pppϵ −→ 11pqpϵ.

Notably, in the exemplified transformation it is difficult to maintain determinism. However,
in order to maintain confluence it suffices to add reverse instructions from fresh states, i.e.
ϵpp1p0 −→ 0pppϵ, ϵpp2p0 −→ 0pp1pϵ, and 1pp3pϵ −→ ϵpp2p0. Therefore, any failed attempt to read
local stack information is reversible and computation is confluent. ◀

5 Semi-unification

Semi-unification (Problem 38) can be understood as combination of first-order unification
(cf. valuation φ) and first-order matching (cf. valuations ψ). For the undecidability of
semi-unification [26, Theorem 12], it suffices to restrict the syntax of the underlying terms
(Definition 36) to variables together with a binary constructor (→).

In this section, we recapitulate necessary definitions and properties of semi-unification
from existing work [27, 10], in order to complete a constructive many-one reduction from
Turing machine halting to semi-unification (Theorem 53).

▶ Definition 36 (Terms (T)). Let α, β, γ range over a countably infinite set V of variables.
The set of terms T, ranged over by σ, τ , is given by the grammar σ, τ ∈ T ::= α | σ → τ .

▶ Definition 37 (Valuation (φ), (ψ)). A valuation φ : V → T assigns terms to variables, and
is tacitly lifted to terms.

▶ Problem 38 (Semi-unification [27, SUP], [10, Problem 3]).
Given a set I = {σ1 ≤ τ1, . . . , σn ≤ τn} of inequalities, is there a valuation φ such that for
each inequality (σ ≤ τ) ∈ I there exists a valuation ψ : V → T such that ψ(φ(σ)) = φ(τ)?

▶ Remark 39. As given by Definition 37, the set of valuations is not countable. However, in
any semi-unification instance I the number of inequalities (consisting of first-order terms)
is finite. Therefore, restricting valuations to be finite maps (from the relevant variables)
does not change the expressive power of semi-unification. As a result, semi-unification is
recursively enumerable.

The following Examples 40 (resp. Example 41) illustrates a positive (resp. negative)
instance of semi-unification.

▶ Example 40. Consider I = {α ≤ α → α, α ≤ α → α → α}. The semi-unification in-
stance I is solved by the valuation φ such that φ(α) = α.
For the inequality α ≤ α → α there exists a valuation ψ such that ψ(α) = α → α, and
therefore ψ(φ(α)) = φ(α → α). For the inequality α ≤ α → α → α there exists a valuation ψ
such that ψ(α) = α → α → α, and therefore ψ(φ(α)) = φ(α → α → α).

▶ Example 41. Consider I = {α → α ≤ α}. The semi-unification instance I is not solvable.
Assume that there exist valuations φ and ψ such that ψ(φ(α → α)) = φ(α). Therefore,
the size of the syntax tree of φ(α) is twice the size of the syntax tree ψ(φ(α)) which is not
possible for (non-empty, finite) terms.

CSL 2022

18:12 From Halting to Semi-unification

Unfortunately, semi-unification does not admit a decision procedure based on an occurs-
check, which is a common approach to both first-order unification and first-order matching [3]
(see also the redex contraction procedure [27, Section 2]). However, it is challenging to
construct an unsolvable example of manageable size, for which the occurs-check fails.

Originally [27, Theorem 12], semi-unification is proven undecidable by Turing reduction
from Turing machine immortality [20]. As intermediate problems, the argument relies on
symmetric intercell Turing machine boundedness, path equation derivability, and termination
of a redex contraction procedure that is custom-tailored for semi-unification. Additionally, the
argument uses König’s lemma and it is not obvious whether it can be presented constructively.

A modern approach [10, Theorem 4] simplifies the traditional argument. It still relies on
a Turing reduction from Turing machine immortality, but uses only deterministic, simple two-
stack machine uniform boundedness to show undecidability of a fragment of semi-unification.
Additionally, it relies on the fan theorem, which is strictly weaker than König’s lemma and
is valid in Brouwer’s intuitionism. The argument is partially mechanized (treating Turing
machine immortality axiomatically) in Coq.

In the remainder of this section we briefly recapitulate and reuse the modern approach [10]
in the more general case of confluent, simple two-stack machines. This allows us to avoid
Turing machine immortality, Turing reductions, and the fan theorem in the overall argument.

5.1 Simple Semi-unification
In this section, we recapitulate the intermediate problem of simple semi-unification (Prob-
lem 44) [10, Problem 15], which connects stack machine computation and semi-unification.
Intuitively, term variables represent machine states, simple constraints (Definition 42) repre-
sent local stack transformations, and the model relation (Definition 43) captures machine
reachability via valuations.

▶ Definition 42 (Simple Constraint [10, Definition 6]). A simple constraint has the shape
apαpϵ .= ϵpβpb, where a, b ∈ {0, 1} are symbols and α, β ∈ V are variables.

▶ Definition 43 (Model Relation [10, Definition 9]). A valuation triple (φ,ψ0, ψ1) models
a simple constraint apαpϵ .= ϵpβpb, written (φ,ψ0, ψ1) |= apαpϵ .= ϵpβpb, if one of the following
conditions holds

b = 0 and ψa(φ(α)) → τ = φ(β) for some term τ ∈ T
b = 1 and σ → ψa(φ(α)) = φ(β) for some term σ ∈ T

▶ Problem 44 (Simple Semi-unification [10, Problem 15]). Given a finite set C of simple
constraints, do there exist valuations φ,ψ0, ψ1 : V → T such that for each simple constraint
(apαpϵ .= ϵpβpb) ∈ C we have (φ,ψ0, ψ1) |= apαpϵ .= ϵpβpb?

The following Example 45 illustrates a model of a set of simple constraints, i.e. a solvable
instance of simple semi-unification.

▶ Example 45. Consider C = {0pαpϵ .= ϵpβp1, 1pαpϵ .= ϵpβp0}. A possible valuation triple
(φ,ψ0, ψ1) which models each simple constraint in C is such that φ(α) = α, φ(β) = β1 → β2,
ψ0(α) = β2, ψ1(α) = β1. Indeed, we have β1 → ψ0(φ(α)) = β1 → β2 = φ(β) and
ψ1(φ(α)) → β2 = β1 → β2 = φ(β).

The pivotal step in previous work [10] is a many-one reduction from deterministic, simple
two-stack machine uniform boundedness to simple semi-unification. This result readily
generalizes to the confluent case (Lemma 46).

A. Dudenhefner 18:13

▶ Lemma 46. Confluent, simple two-stack machine uniform boundedness (Problem 34)
many-one reduces to simple semi-unification (Problem 44).

Proof Sketch. We follow exactly the argument structure of [10, Section 4]. Tacitly inject
machine states into variables, i.e. let S ⊆ V. Given a confluent, simple two-stack machine S,
construct the set of simple constraints

C = {apppϵ .= ϵpqpb | (apppϵ → ϵpqpb) ∈ S or (ϵpqpb → apppϵ) ∈ S}

If S is uniformly bounded, then the exact construction of (φ,ψ0, ψ1) [10, Definition 42]
yields a model of each simple constraint in C.

Conversely, if (φ,ψ0, ψ1) models each constraint in C, then by the exact argument of [10,
Lemma 48] the maximal depth of the syntax trees in the range of φ induces a uniform bound
on the number of configurations reachable from any configuration in S. ◀

▶ Remark 47. Although the original construction [10, Lemma 45 and Lemma 48] requires
determinism, only confluence is used in the actual proofs [10, Lemma 30, Lemma 39]. While
tedious to verify by hand, the available mechanization allows for simple replacement of
determinism by confluence, while the proof assistant guarantees correctness of any related
details. This highlights the effectiveness of proof assistants to accommodate for changes in a
complex argument, reevaluating its overall correctness.

5.2 Right-uniform, Two-inequality Semi-unification
In this section, we consider a restriction of semi-unification to only two inequalities with
identical right-hand sides (Problem 48). Such a restriction is a convenient byproduct of the
reduction from simple semi-unification, and may simplify existing undecidability proofs that
rely on the undecidability of semi-unification.

▶ Problem 48 (Right-uniform, Two-inequality Semi-unification). Given two inequalities σ0 ≤ τ

and σ1 ≤ τ with identical right-hand sides, do there exist valuations φ,ψ0, ψ1 such that
ψ0(φ(σ0)) = φ(τ) and ψ1(φ(σ1)) = φ(τ)?

▶ Remark 49. Simply put, the above Problem 48 can be stated as follows: Given three terms
σ0, σ1, τ , are there valuations φ,ψ0, ψ1 such that ψ0(φ(σ0)) = φ(τ) = ψ1(φ(σ1))?

It is an easy exercise to reduce simple semi-unification to (non right-uniform) two-
inequality semi-unification [10, Theorem 1]. We slightly adjust the existing construction to
produce right-uniform inequalities.

▶ Lemma 50. Simple semi-unification (Problem 44) many-one reduces to right-uniform,
two-inequality semi-unification (Problem 48).

Proof. Given constraints C = {aipαipϵ
.= ϵpβipbi | i = 1 . . . n}, define τ = β1 → · · · → βn. Let

γi be fresh variables for i = 1 . . . n and define σj = σj
1 → · · · → σj

n for j ∈ {0, 1} where

σj
i = αi → γi if ai = j and bi = 0 σj

i = γi → αi if ai = j and bi = 1 σj
i = γi else

We show that C is solvable iff the right-uniform inequalities σ0 ≤ τ and σ1 ≤ τ are solvable.
First, assume that the valuation triple (φ,ψ0, ψ1) models each simple constraint in

C. Wlog. φ(γi) = ψ0(γi) = ψ1(γi) = γi for i = 1 . . . n. By routine case analysis, we
may adjust ψ0(γi) and ψ1(γi) for i = 1 . . . n to obtain valuations ψ′

0 and ψ′
1 such that

ψ′
0(φ(σ0)) = φ(τ) = ψ′

1(φ(σ1)).
Second, any solution φ,ψ0, ψ1 of σ0 ≤ τ and σ1 ≤ τ also models each constraint in C. ◀

CSL 2022

18:14 From Halting to Semi-unification

▶ Corollary 51. Simple semi-unification (Problem 44) many-one reduces to semi-unification
(Problem 38).

The following Example 52 illustrates the proof of Lemma 50 on the basis of Example 45.

▶ Example 52. Consider C = {0pαpϵ .= ϵpβp1, 1pαpϵ .= ϵpβp0} from Example 45. Define the terms
σ0 = (γ1 → α) → γ2, σ1 = γ1 → (α → γ2), and τ = β → β. The valuation triple (φ,ψ0, ψ1)
from Example 45 is extended to γ1, γ2 to obtain a solution φ,ψ′

0, ψ
′
1 of the right-uniform

inequalities σ0 ≤ τ and σ1 ≤ τ as follows: ψ′
0(γ1) = β1, ψ′

0(γ2) = β1 → β2, ψ′
1(γ1) = β1 → β2,

and ψ′
1(γ2) = β2. We have (β1 → β2) → (β1 → β2) = φ(τ) = ψ′

0(φ(σ0)) = (ψ′
1(φ(σ1)).

5.3 Main Result
Finally, we compose the previously described reductions into a comprehensive, constructive
many-one reduction from Turing machine halting to semi-unification (Theorem 53). This
constitutes the main result of the present work.

▶ Theorem 53. Turing machine halting constructively many-one reduces to semi-unification
(Problem 38).

Proof. By composition of Lemmas 3, 12, 26, 35, 46, and Corollary 51. Constructivity of the
argument is witnessed by an axiom-free mechanization (cf. Section 6) using the Coq proof
assistant. ◀

Since semi-unification is recursively enumerable (Remark 39), it is many-one complete
(in the sense of [38, Chapter 7.2]).

▶ Corollary 54. Semi-unification (Problem 38) is many-one complete.

6 Mechanization

This section provides an overview over the constructive mechanization, using the Coq proof
assistant [8], of the many-one reduction from Turing machine halting to semi-unification. The
mechanization relies on, and is integrated into the growing Coq Library of Undecidability
Proofs [17]. The reduction is axiom-free and spans approximately 20000 lines of code, of
which 3500 is contributed by the present work.

At the core of the library is the following mechanized notion of many-one reducibility2

Definition reduction {X Y} (f: X -> Y) (P: X -> Prop) (Q: Y -> Prop) :=
forall x, P x <-> Q (f x).

Definition reduces {X Y} (P: X -> Prop) (Q: Y -> Prop) :=
exists f: X -> Y, reduction f P Q.

Notation "P ⪯ Q" := (reduces P Q).

In the above, a predicate P over the domain X many-one reduces to a predicate Q over
the domain Y, denoted P ⪯ Q, if there exists a function f: X -> Y such that for all x in
the domain X we have P x iff Q (f x). In axiom-free Coq any such function f: X -> Y is
computable, a necessity oftentimes handled with less rigor in traditional (non-mechanized)
proofs. Additionally, in axiom-free Coq, a proof of P x <-> Q (f x) cannot rely on principles
such as functional extensionality, the fan theorem, or the law of excluded middle. Notably,
our main Theorem 53 is mechanized in this setting.

2 cf. theories/Synthetic/Definitions.v

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/Synthetic/Definitions.v

A. Dudenhefner 18:15

The key contribution of the present work is consolidated as part of the following conjunc-
tion of many-one reductions3

Theorem HaltTM_1_chain_SemiU :
HaltTM 1 ⪯ iPCPb /\
iPCPb ⪯ BSM_HALTING /\
BSM_HALTING ⪯ MM2_HALTING /\
MM2_HALTING ⪯ CM1_HALT /\
CM1_HALT ⪯ SMNdl_UB /\
SMNdl_UB ⪯ CSSM_UB /\
CSSM_UB ⪯ SSemiU /\
SSemiU ⪯ RU2SemiU /\
RU2SemiU ⪯ SemiU.

The individual problems in the above chain of many-one reductions are as follows.
HaltTM 1 is one-tape Turing machine halting, and native to the library as the initial
undecidable problem, building upon prior work [15, 2] in computability theory
iPCPb is indexed, binary Post correspondence problem, mechanized in [13]
BSM_HALTING is binary stack machine halting, mechanized in [16]
MM2_HALTING is two-counter machine halting (Problem 2), mechanized in [16]
CM1_HALT is one-counter machine 1-halting (Problem 11)
SMNdl_UB is uniform boundedness of deterministic, length-preserving two-stack machines
(Problem 25)
CSSM_UB is uniform boundedness of confluent, simple stack machines (Problem 34)
SSemiU is simple semi-unification (Problem 44), mechanized in [10]
RU2SemiU is right-uniform, two-inequality semi-unification (Problem 48)
SemiU is semi-unification (Problem 38), mechanized in [10]

Correctness of the argument is witnessed by the verification of Theorem HaltTM_1_chain_SemiU in
axiom-free Coq, for which constructivity is certified using the Print Assumptions command [9].

By transitivity of many-one reducibility we obtain Theorem reduction : HaltTM 1 ⪯ SemiU4.
As a result, the statement HaltTM 1 ⪯ SemiU faithfully mechanizes our overall formal

goal of a constructive many-one reduction from Turing machine halting to semi-unification.
In fact, the particular many-one reduction function could be extracted from the proof of
HaltTM 1 ⪯ SemiU as a λ-term (in the call-by-value λ-calculus model of computation) using
existing techniques [14].

The mechanization of CM1_HALT, SMNdl_UB, and CSSM_UB together with corresponding many-
one reductions are contributed to the library as part of the present work. The proof of
CSSM_UB ⪯ SSemiU is an almost verbatim copy of the corresponding DSSM_UB ⪯ SSemiU previous
result [10, Section 5], in which determinism is replaced by confluence.

Notably, CM1_HALT ⪯ SMNdl_UB relies on a variant of Hooper’s argument [20]. The particular
mechanization details span approximately 3500 lines of code, two thirds of which verify
the construction in the proof of Lemma 26. Since the proof structure for uniform bound
verification is mostly by extensive case analysis and basic arithmetic, the mechanization
benefits greatly from proof automation, i.e. Coq’s lia, nia, and eauto tactics [9]. To the best
of the author’s knowledge, the provided mechanization is the first that implements (a variant
of) Hooper’s argument.

3 cf. theories/SemiUnification/Reductions/HaltTM_1_chain_SemiU.v
4 cf. theories/SemiUnification/Reductions/HaltTM_1_to_SemiU.v

CSL 2022

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/SemiUnification/Reductions/HaltTM_1_chain_SemiU.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.12/theories/SemiUnification/Reductions/HaltTM_1_to_SemiU.v

18:16 From Halting to Semi-unification

7 Conclusion

This work gives a constructive many-one reduction from Turing machine halting to semi-
unification (Theorem 53). It improves upon existing work [27, 10] in the following aspects.

First, previous approaches use Turing reductions to establish undecidability. Therefore,
such arguments are unable to establish many-one completeness of semi-unification shown in
the present work (Corollary 54).

Second, previous work relies on the undecidability of Turing machine immortality, which
is not recursively enumerable, and obscures the overall picture. In the present work, we avoid
Turing machine immortality by adapting Hooper’s ingenious construction [20] (also adapted
in [24]) to uniform boundedness (Lemma 26). Notably, Hooper’s construction is such that
the resulting machine is either both mortal and uniformly bounded, or neither [27, Proof of
Corollary 6].

Third, correctness of the reduction function is proven constructively (in the sense of
axiom-free Coq), whereas previous work uses the principle of excluded middle, König’s
lemma [27], or the fan theorem [10]. As a result, anti-classical theories, such as synthetic
computability theory [5], may accommodate the presented results.

Fourth, computability of the many-one reduction function from Turing machines to
semi-unification instances is established rigorously by its mechanization in the Coq proof
assistant. Traditionally, this aspect is treated less formally.

Fifth, the reduction is mechanized as part of the Coq Library of Undecidability Proofs [17],
building upon existing infrastructure. Arguably, a comprehensive mechanization is the only
feasible approach to verify a reduction from Turing machine halting to semi-unification with
high confidence in full detail. The provided mechanization integrates existing work [10] into
the Coq Library of Undecidability Proofs, and contributes a (first of its kind) mechanized
variant of Hooper’s construction to avoid symbol search.

While this document provides a high-level overview over the overall argument, sur-
veyability (both local and global in the sense of [4]) is established mechanically. Local
surveyability is supported by the modular nature of the Coq Library of Undecidability
Proofs. That is, the mechanization of each reduction step can be understood and verified
independently. Global surveyability is supported by Theorem HaltTM_1_chain_SemiU and the
statement HaltTM 1 ⪯ SemiU (cf. Section 6). That is, the individually mechanized reduction
steps do compose transitively.

As ultimate proof of feasibility, the provided mechanization shows the maturity of the
Coq proof assistant for mechanical verification of technically challenging proofs. Admittedly,
neither Hooper’s exact immortality construction [20] nor the exact semi-unification construc-
tion by Kfoury, Tiuryn, and Urzyczyn [27] was mechanized. Rather, the overall argument
was revised to be mechanization-friendly. For example, the simplicity and uniformity of
one-counter machines as an intermediate model of computation serves exactly this purpose.

Already, building upon the present work, there is a novel mechanization showing the
undecidability of System F typability and type checking [11]. In addition, we envision
further mechanized results. For one, the undecidability of synchronous distributivity [1]
relies on uniform boundedness of semi-Thue systems that can be described as the presented
(and mechanized) two-stack machines. Further, since the underlying construction is already
implemented, it is reasonable to mechanize a many-one reduction from Turing machine
halting to Turing machine immortality. This would pave the way for further mechanized
results. For example, the undecidability of the finite variant property [6, Section 7] as well
as several tiling problems [23] rely on (variants of) Turing machine immortality.

A. Dudenhefner 18:17

References
1 Siva Anantharaman, Serdar Erbatur, Christopher Lynch, Paliath Narendran, and Michaël

Rusinowitch. Unification modulo synchronous distributivity. In Bernhard Gramlich, Dale
Miller, and Uli Sattler, editors, Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes
in Computer Science, pages 14–29. Springer, 2012. doi:10.1007/978-3-642-31365-3_4.

2 Andrea Asperti and Wilmer Ricciotti. A formalization of multi-tape Turing machines. Theor.
Comput. Sci., 603:23–42, 2015. doi:10.1016/j.tcs.2015.07.013.

3 Franz Baader, Wayne Snyder, Paliath Narendran, Manfred Schmidt-Schauß, and Klaus U.
Schulz. Unification theory. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning (in 2 volumes), pages 445–532. Elsevier and MIT Press, 2001. doi:
10.1016/b978-044450813-3/50010-2.

4 O. Bradley Bassler. The surveyability of mathematical proof: A historical perspective. Synth.,
148(1):99–133, 2006. doi:10.1007/s11229-004-6221-7.

5 Andrej Bauer. First steps in synthetic computability theory. In Martín Hötzel Escardó,
Achim Jung, and Michael W. Mislove, editors, Proceedings of the 21st Annual Conference on
Mathematical Foundations of Programming Semantics, MFPS 2005, Birmingham, UK, May
18-21, 2005, volume 155 of Electronic Notes in Theoretical Computer Science, pages 5–31.
Elsevier, 2005. doi:10.1016/j.entcs.2005.11.049.

6 Christopher Bouchard, Kimberly A. Gero, Christopher Lynch, and Paliath Narendran. On
forward closure and the finite variant property. In Pascal Fontaine, Christophe Ringeissen, and
Renate A. Schmidt, editors, Frontiers of Combining Systems - 9th International Symposium,
FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes
in Computer Science, pages 327–342. Springer, 2013. doi:10.1007/978-3-642-40885-4_23.

7 John H. Conway. Fractran: A simple universal programming language for arithmetic. In Open
Problems in Communication and Computation, pages 4–26. Springer, 1987.

8 The Coq Proof Assistant. https://coq.inria.fr/. Accessed: 2020-10-08.
9 The Coq Proof Assistant Reference Manual. https://coq.inria.fr/distrib/current/

refman/. Accessed: 2020-07-30.
10 Andrej Dudenhefner. Undecidability of semi-unification on a napkin. In Zena M. Ariola, editor,

5th International Conference on Formal Structures for Computation and Deduction, FSCD
2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages
9:1–9:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
FSCD.2020.9.

11 Andrej Dudenhefner. The undecidability of system F typability and type checking for reduction-
ists. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,
Italy, June 29 - July 2, 2021, pages 1–10. IEEE, 2021. doi:10.1109/LICS52264.2021.9470520.

12 Manuel Fähndrich, Jakob Rehof, and Manuvir Das. Scalable context-sensitive flow anal-
ysis using instantiation constraints. In Monica S. Lam, editor, Proceedings of the 2000
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
Vancouver, Britith Columbia, Canada, June 18-21, 2000, pages 253–263. ACM, 2000.
doi:10.1145/349299.349332.

13 Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-related computational
reductions in Coq. In Jeremy Avigad and Assia Mahboubi, editors, Interactive Theorem Proving
- 9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes in
Computer Science, pages 253–269. Springer, 2018. doi:10.1007/978-3-319-94821-8_15.

14 Yannick Forster and Fabian Kunze. A certifying extraction with time bounds from Coq
to call-by-value lambda calculus. In John Harrison, John O’Leary, and Andrew Tolmach,
editors, 10th International Conference on Interactive Theorem Proving, ITP 2019, September
9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, pages 17:1–17:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITP.2019.17.

CSL 2022

https://doi.org/10.1007/978-3-642-31365-3_4
https://doi.org/10.1016/j.tcs.2015.07.013
https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.1016/b978-044450813-3/50010-2
https://doi.org/10.1007/s11229-004-6221-7
https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1007/978-3-642-40885-4_23
https://coq.inria.fr/
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.4230/LIPIcs.FSCD.2020.9
https://doi.org/10.4230/LIPIcs.FSCD.2020.9
https://doi.org/10.1109/LICS52264.2021.9470520
https://doi.org/10.1145/349299.349332
https://doi.org/10.1007/978-3-319-94821-8_15
https://doi.org/10.4230/LIPIcs.ITP.2019.17

18:18 From Halting to Semi-unification

15 Yannick Forster, Fabian Kunze, and Maximilian Wuttke. Verified programming of Turing
machines in Coq. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020, pages 114–128. ACM, 2020. doi:10.1145/3372885.3373816.

16 Yannick Forster and Dominique Larchey-Wendling. Certified undecidability of intuitionistic
linear logic via binary stack machines and Minsky machines. In Assia Mahboubi and Magnus O.
Myreen, editors, Proceedings of the 8th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 104–117.
ACM, 2019. doi:10.1145/3293880.3294096.

17 Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik
Kirst, Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr, and Maximilian Wut-
tke. A Coq library of undecidable problems. In The Sixth International Workshop on
Coq for Programming Languages (CoqPL 2020), 2020. URL: https://github.com/uds-psl/
coq-library-undecidability.

18 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Thèse d’État, Éditeur inconnu, 1972.

19 Fritz Henglein. Type inference with polymorphic recursion. ACM Trans. Program. Lang. Syst.,
15(2):253–289, 1993. doi:10.1145/169701.169692.

20 Philip K. Hooper. The undecidability of the Turing machine immortality problem. J. Symb.
Log., 31(2):219–234, 1966. doi:10.2307/2269811.

21 Said Jahama and Assaf J. Kfoury. A general theory of semi-unification. Technical report,
Boston University Computer Science Department, 1993.

22 Emmanuel Jeandel. On immortal configurations in Turing machines. In S. Barry Cooper, Anuj
Dawar, and Benedikt Löwe, editors, How the World Computes - Turing Centenary Conference
and 8th Conference on Computability in Europe, CiE 2012, Cambridge, UK, June 18-23, 2012.
Proceedings, volume 7318 of Lecture Notes in Computer Science, pages 334–343. Springer,
2012. doi:10.1007/978-3-642-30870-3_34.

23 Jarkko Kari. The tiling problem revisited (extended abstract). In Jérôme Olivier Durand-
Lose and Maurice Margenstern, editors, Machines, Computations, and Universality, 5th
International Conference, MCU 2007, Orléans, France, September 10-13, 2007, Proceedings,
volume 4664 of Lecture Notes in Computer Science, pages 72–79. Springer, 2007. doi:
10.1007/978-3-540-74593-8_6.

24 Jarkko Kari and Nicolas Ollinger. Periodicity and immortality in reversible computing. In
Edward Ochmanski and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer
Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008,
Proceedings, volume 5162 of Lecture Notes in Computer Science, pages 419–430. Springer,
2008. doi:10.1007/978-3-540-85238-4_34.

25 Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. The undecidability of the semi-unification
problem (preliminary report). In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages
468–476. ACM, 1990. doi:10.1145/100216.100279.

26 Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. Type reconstruction in the presence
of polymorphic recursion. ACM Trans. Program. Lang. Syst., 15(2):290–311, 1993. doi:
10.1145/169701.169687.

27 Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. The undecidability of the semi-unification
problem. Inf. Comput., 102(1):83–101, 1993. doi:10.1006/inco.1993.1003.

28 Assaf J. Kfoury, Jerzy Tiuryn, and Paweł Urzyczyn. An analysis of ML typability. J. ACM,
41(2):368–398, 1994. doi:10.1145/174652.174659.

29 Dominique Larchey-Wendling and Yannick Forster. Hilbert’s tenth problem in Coq. In Herman
Geuvers, editor, 4th International Conference on Formal Structures for Computation and
Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages

https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1145/3293880.3294096
https://github.com/uds-psl/coq-library-undecidability
https://github.com/uds-psl/coq-library-undecidability
https://doi.org/10.1145/169701.169692
https://doi.org/10.2307/2269811
https://doi.org/10.1007/978-3-642-30870-3_34
https://doi.org/10.1007/978-3-540-74593-8_6
https://doi.org/10.1007/978-3-540-74593-8_6
https://doi.org/10.1007/978-3-540-85238-4_34
https://doi.org/10.1145/100216.100279
https://doi.org/10.1145/169701.169687
https://doi.org/10.1145/169701.169687
https://doi.org/10.1006/inco.1993.1003
https://doi.org/10.1145/174652.174659

A. Dudenhefner 18:19

27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
FSCD.2019.27.

30 Hans Leiß. Polymorphic recursion and semi-unification. In Egon Börger, Hans Kleine
Büning, and Michael M. Richter, editors, CSL ’89, 3rd Workshop on Computer Science Logic,
Kaiserslautern, Germany, October 2-6, 1989, Proceedings, volume 440 of Lecture Notes in
Computer Science, pages 211–224. Springer, 1989. doi:10.1007/3-540-52753-2_41.

31 Hans Leiß and Fritz Henglein. A decidable case of the semi-unification problem. In Andrzej
Tarlecki, editor, Mathematical Foundations of Computer Science 1991, 16th International
Symposium, MFCS’91, Kazimierz Dolny, Poland, September 9-13, 1991, Proceedings, volume
520 of Lecture Notes in Computer Science, pages 318–327. Springer, 1991. doi:10.1007/
3-540-54345-7_75.

32 Yuri V. Matiyasevich and Géraud Sénizergues. Decision problems for semi-Thue systems with
a few rules. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science,
New Brunswick, New Jersey, USA, July 27-30, 1996, pages 523–531. IEEE Computer Society,
1996. doi:10.1109/LICS.1996.561469.

33 M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
34 Alan Mycroft. Polymorphic type schemes and recursive definitions. In Manfred Paul and

Bernard Robinet, editors, International Symposium on Programming, 6th Colloquium, Toulouse,
France, April 17-19, 1984, Proceedings, volume 167 of Lecture Notes in Computer Science,
pages 217–228. Springer, 1984. doi:10.1007/3-540-12925-1_41.

35 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52(4):264–268, 1946.

36 Paul Walton Purdom. Detecting looping simplifications. In Pierre Lescanne, editor, Rewriting
Techniques and Applications, 2nd International Conference, RTA-87, Bordeaux, France, May
25-27, 1987, Proceedings, volume 256 of Lecture Notes in Computer Science, pages 54–61.
Springer, 1987. doi:10.1007/3-540-17220-3_5.

37 John C. Reynolds. Towards a theory of type structure. In Bernard Robinet, editor, Programming
Symposium, Proceedings Colloque sur la Programmation, Paris, France, April 9-11, 1974,
volume 19 of Lecture Notes in Computer Science, pages 408–423. Springer, 1974. doi:
10.1007/3-540-06859-7_148.

38 Hartley Rogers. Theory of Recursive Functions and Effective Computability (Reprint from
1967). MIT Press, 1987.

39 Joe B. Wells. Typability and type checking in system F are equivalent and undecidable. Ann.
Pure Appl. Log., 98(1-3):111–156, 1999. doi:10.1016/S0168-0072(98)00047-5.

40 Arkadiusz Wojna. Counter machines. Inf. Process. Lett., 71(5-6):193–197, 1999. doi:10.1016/
S0020-0190(99)00116-7.

CSL 2022

https://doi.org/10.4230/LIPIcs.FSCD.2019.27
https://doi.org/10.4230/LIPIcs.FSCD.2019.27
https://doi.org/10.1007/3-540-52753-2_41
https://doi.org/10.1007/3-540-54345-7_75
https://doi.org/10.1007/3-540-54345-7_75
https://doi.org/10.1109/LICS.1996.561469
https://doi.org/10.1007/3-540-12925-1_41
https://doi.org/10.1007/3-540-17220-3_5
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1016/S0020-0190(99)00116-7
https://doi.org/10.1016/S0020-0190(99)00116-7

	1 Introduction
	2 Two-counter Machines
	3 One-counter Machines
	4 Two-stack Machines
	4.1 Deterministic, Length-preserving Two-stack Machines
	4.2 Confluent, Simple Two-stack Machines

	5 Semi-unification
	5.1 Simple Semi-unification
	5.2 Right-uniform, Two-inequality Semi-unification
	5.3 Main Result

	6 Mechanization
	7 Conclusion

