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Overview

This reader contains material for the ESSLLI ’99 course, “Scope Underspeci-
fication and Processing”. It is intended as a summary of the most important
points of the course and as giving pointers to material for further reading. The
reader and course are aimed at a pretty broad audience; we have tried to only
presuppose a very general idea of natural language processing and of first-order
logic.

Underspecification is a general approach to dealing with ambiguity. In the
course, we'll be particularly concerned with scope underspecification, which deals
with scope ambiguity, a structural ambiguity of the semantics of a sentence. As
scope underspecification is at least partially motivated by computational issues,
we will pay particular attention to processing aspects. We're going to show
how dominance constraints can be used for scope underspecification and how
they can be processed efficiently by using concurrent constraint programming
technology.

The reader contains material on scope underspecification (Lectures 1 and
2), concurrent constraint programming (Lectures 3 and 4), and the usage of
concurrent constraint technology for processing with scope underspecification
(Lecture 5).

In Lecture 1, we give a general introduction to the subjects of the course.
Underspecification is a general approach to coping with ambiguity; the basic idea
is to represent all readings of an ambiguous sentence compactly and to delay the
enumeration of the readings for as long as possible. We explain these notions
and then go into more detail about scope ambiguity. Lecture 1 is concluded
with an overview of the rest of the course.

In Lecture 2, we present some formalisms for scope underspecification. Be-
cause we don’t want to presuppose much prior knowledge, this chapter also
contains an introduction to generalized quantifiers and (a very brief one) about
type theory. We define dominance constraints, which can be used to describe
trees and (encoded) lambda terms, and apply them to scope underspecifica-
tion. Finally, we give an overview over some other scope underspecification
formalisms.

In Lecture 3, we move from representing to processing meaning. We intro-
duce concurrent constraint programming (CCP) in Oz, a rather new program-
ming paradigm and technology mainly used for solving combinatorial problems
such as scheduling and optimization. While having been developed in a totally
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different field, the basic ideas of CCP can be seen as closely related to those of
underspecification.

In Lecture 4, we discuss programming features of Oz needed for Lecture 5.

In Lecture 5, finally, we apply concurrent constraint programming in Oz
to processing with scope underspecification. We show how to solve dominance
constraints based on constraint programming with finite sets. We can thereby
enumerate the readings of a scope ambiguity efficiently.

The course in ESSLLI ’99 will mainly be based on this reader. If time per-
mits, additional material may be presented: a demonstration of the CHORUS-
system (Bodirsky et al. 1999) written in Oz and a discussion of CLLS (Egg et al.
1998). CLLS is a language of tree descriptions based on dominance constraints
which features an underspecified analysis of the interaction of scope ambiguities,
ellipses, and anaphora.

For further reading on concurrent constraint programming in Oz for natural
language processing, we refer to a script of a lecture on the topic (Duchier et al.
1999) which was given from October 1998 to April 1999 at the Universitit des
Saarlandes.

An HTML version of this reader is available on the World Wide Web at
http://www.ps.uni-sb.de/Papers/abstracts/ESSLLI:99.html. If you in-
stall the Mozart programming system http://www.mozart-oz.org at your site
(which is free and pretty easy), you can directly execute the Oz example pro-
grams in the later chapters of the reader.

We hope that you enjoy the course:
Alexander Koller and Joachim Niehren

(http://www.coli.uni-sb.de/ koller and
http://wuw.ps.uni-sb.de/ "niehren)

Acknowledgments. We would like to thank all members of the CHORUS,
NEP, NEGRA, and LISA project in the Collaborative Research Center (Son-
derforschungsbereich) 378 at Universitat des Saarlandes, who have contributed
to the work reflected by this reader.
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Lecture 1

Introduction

In this chapter, we give a general introduction to the subject matter of the
course. First, we discuss ambiguities in general, with a specific focus on scope
ambiguities. Then we introduce the notion of underspecification and describe
informally how to represent scope ambiguities in an underspecified way. Next,
we discuss more global aspects of underspecification, such as the general per-
spective of language processing from an underspecified point of view. Finally,
we give a brief overview of the rest of the reader.

1.1 Ambiguities

1.1.1 Ambiguities

Sooner or later, everyone who is concerned with computational linguistics comes
across the fact that ambiguities occur at all levels of linguistic analysis. The
following is a (not at all exhaustive) list of possible sources of ambiguity.

(1.1)  a. Lexicon:
Mary went to the bank.

b. Syntactic attachment:
John watched the man with a telescope.

c. Coordination:
Birds eat small worms and frogs.

d. Quantifier scope:
Every man loves a woman.

e. Interaction of anaphora and ellipsis:
John likes his mother. Peter does, too.

f. Discourse:
I try to read a novel if I feel bored or I am unhappy.
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The sentence in Example (a) is ambiguous in the meaning of the word bank; it
can either mean a riverbank or a financial institution. In the syntactic analysis of
Example (b), there are two different valid options where the PP with a telescope
can be attached: it can modify either the man, who in this reading is identified
as the man who carries a telescope, or it can modify watched the man, in which
case it is a tool to watch the man. In Example (c), it could be only small frogs
that birds eat, or it could be any kind of frogs; the ambiguity is in choosing what
the conjunction coordinates. Example (d) is ambiguous between expressing that
there is one woman who is loved by all man, or that for each man, there is a
woman he loves, but not everyone has to love the same one. (We will explain
the term “quantifier scope” in a minute.) In Example (e), it is ambiguous who
it is that Peter likes; it can be either his own mother or John’s. Finally, the
discourse in (f) has two different readings: Either the speaker tries to read a
novel under two different conditions, or she is unhappy if she does not read a
novel.

From a computational point of view, ambiguities are an extremely challeng-
ing aspect of language processing. The problem is that many sentences have
more than one ambiguity, and that the numbers of readings of the various ambi-
guities multiply if the ambiguities can be resolved independently. So a sentence
containing five two-way ambiguities can have up to 32 readings. An additional
inconvenience is that ambiguities can interact; for example, the sentence

(1.2) John watched a man with his telescope. Bill did, too.

contains three ambiguities: a PP attachment ambiguity of with his telescope,
an ambiguity of anaphoric reference (does his refer to John or to the man?), and
a strict /sloppy ambiguity. The sentence doesn’t have 8 = 23 readings, however,
only six. On the one hand, the ellipsis enforces that the PP attachment from
the first sentence must be taken over in the second sentence. On the other hand,
we create a “copy” of the anaphor in the first sentence when we understand the
second sentence; if the anaphor referred to John in the first sentence, its copy
can refer either to John or to Bill, and if the anaphor referred to the man, its
copy must refer to the man, as well.

There are simpler examples of ambiguity interaction, which we will look into
later. For now, the really important points are that ambiguities are complex,
and the total number of readings can explode exponentially with growing length
of the sentence.

1.1.2 Scope ambiguities

The type of ambiguity that will be our primary concern in this text are scope
ambiguities, as in (1.1d) above. They are typically treated on the level of se-
mantics (although there are theories that consider them on the level of syntax
or in the syntax/semantics interface, as we shall see tomorrow); that is, we
assume that the difference between the readings is not a syntactic one, but
purely a difference in meaning. Unlike e.g. lexical ambiguities, however, they
are ambiguities of the structure of the semantic representation.
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Let us assume for the time being that our semantic representation language
(what we shall later call the object language) is ordinary first-order predicate
logic. Then the two readings of (1.1d) can be written as

(1.3) Vz.(man(z) — Jy.(woman(y) A love(z,y)))
(1.4) Jy.(woman(y) A Vx.(man(z) — love(z,y)))

Upon closer inspection, it becomes apparent that both formulae are com-
posed of the same “fragments”, Vz.(man(z) — -), Jy.(woman(y) A -), and
love(x,y). The difference is in the way these fragments are put together: In
one reading, the fragment containing the existential quantifier gets scope over
the fragment containing the universal quantifier; in the other one, this scoping
relation is reversed. So the ambiguity is in which of the two quantifiers is in the
scope of the other one — hence the name.

The problem carries over to the standard linguistic analysis of NPs as so-
called generalized quantifiers, as in Montague Grammar (Montague 1974). A
generalized quantifier is a term of higher-order logic representing the meaning
of, say, every man, most people, or Peter. (Generalized quantifiers aren’t really
generalizations of quantifiers in logic like 3z, but it’s the standard name in
formal semantics.) The scope ambiguity above is reflected by the different orders
in which the two generalized quantifiers that are used to compute the meaning of
the sentence (for the two NPs) are applied to the nuclear scope love(z,y). We’ll
come back to generalized quantifiers in more detail tomorrow. By abuse of the
word, we shall frequently just say “quantifier” to mean “generalized quantifier”;
i.e., we shall use the word in its corrupted linguistic sense instead of the logical
one.

More generally, not only quantifiers can participate in scope ambiguities, but
also other scope-bearing objects such as negations and some verbs. For instance,
the sentence (1.5) has two readings that are represented by the formulae (1.6)
and (1.7).

(1.5) Every boy does not go to the movies.
(1.6) Vx.(boy(z) — —gtm(z))
(1.7) —Vz.(boy(z) — gtm(z))

Here, the fragments are Vz.(boy(z) — -), =(-), and gtm(z). We’ll primarily
concentrate on ambiguities of quantifier scope here because all the basic ideas
can be shown that way without having to worry about more than one type of
scope-bearing objects.

To enumerate the readings of a sentence containing a scope ambiguity, one
has to order the scope-bearing objects it contains. If there are n such objects
in a sentence and they can be arranged freely, this means that the sentence has
n! readings from scope ambiguities alone — an exponential growth in the length
of the sentence.
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In Montague Grammar, enumeration of all readings of a scope ambiguous
sentence was done on the level of syntax, where a special syntactic composition
rule called “Quantifying In” was created for exactly that purpose. Realizing
that there seem not to be any independent motivations for considering quanti-
fier scope on the level of syntax, Cooper (1983) moved its treatment into the
syntax/semantics interface by equipping a syntax tree with the so-called Coop-
er Storage, in which meanings of generalized quantifiers could be passed up the
syntax tree and “discharged” whenever convenient. Semantic construction thus
became a nondeterministic process. One problem of Cooper Storage was over-
generation: It would sometimes produce formulae with unbound variables. This
deficiency was later repaired (Keller 1988); another algorithm for enumerating
quantifier scope is (Hobbs and Shieber 1987). Most recently, this kind of anal-
ysis of scope ambiguities has received an interesting twist by employing linear
logic in the syntax/semantics interface (see e.g. Dalrymple et al. 1997). We
will come back to some of these approaches in more detail tomorrow.

As a final aside, one very interesting interaction which scope ambiguities
take part in is with ellipses in so-called Hirschbihler sentences (Hirschbiihler
1982). Consider the following example:

(1.8) Every man loves a woman. Several gorillas do, too.

In processing the ellipsis, the second (“target”) sentence is expanded to
Several gorillas love a woman. This means that both the second and the first
(“source”) sentence contain a scope ambiguity, and if they could be resolved
independently, the pair of sentences would have four different readings. But the
ellipsis enforces a parallelism of the scopes of the quantifiers. So if every man
has wide scope in the first sentence, several gorillas must have wide scope in
the second sentence as well, and vice versa; the pair of sentences only has two
readings. We will consider this class of phenomena on Wednesday.

1.2 Underspecification

1.2.1 Underspecification

More recently, however, there has been increasing interest in not enumerating
the readings of a scope ambiguous sentence at all, but in describing them with
one compact representation and then working with this representation instead
of all the readings. This approach is called underspecification.

There are both computational and cognitive justifications for underspecifi-
cation. Consider the following sentence, which is taken from (Poesio 1994).

(1.9) A politician can fool most voters on most issues most of the time, but no
politician can fool all voters on every single issue all of the time.

Each of the two sentences in this example contains four quantifiers, which
means that each sentence admits 24 = 4! different orderings of the quanti-
fiers. The sentences can be disambiguated independently; so together, they
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Underspecified <§ Readings
sem. representation

Syntax

metalevel object level

Figure 1.1: Underspecified semantics.

have 576 = 4! - 4! readings. Some of these readings may mean the same, but
they will still be distinguished in a traditional analysis of the sentence. On the
other hand, you probably couldn’t say which of these orderings you selected
when you understood the sentence. This means that humans don’t seem to
enumerate readings in understanding an ambiguous sentence.

On the other hand, you probably would be able to draw conclusions from
the sentence — for example, that democracies work reasonably well in controlling
governments, which is what the original quote was intended to mean. A simpler
example is the following inference.

(1.10) Ewvery man loves a woman.
Peter is a man.
Peter loves a woman.

This inference is correct regardless of the exact meaning of the first sentence.
From a computational point of view, we know that inference is an expensive op-
eration; we wouldn’t want to make things worse by having to execute it on
each of an exponential number of readings in turn. If we had a calculus of
direct deduction that would let us draw inferences as in the example without
disambiguating the premises, we could work with just one underspecified rep-
resentation for each sentence, would have to do the work only once, and might
be much more efficient.

The fundamental idea of most modern approaches to underspecification (no
matter on which level of linguistic description) is to add an additional layer of
linguistic representation that describes the objects of the intended level. For
instance, in underspecified semantics, we introduce a level that is between the
traditional syntactic and semantic levels. The objects of this new metalevel are
(not necessarily complete) descriptions of formulae on the traditional semantic
level (the object level) and can be derived from a traditional syntactic analysis
(Fig. 1.1). So if we traditionally derived multiple semantic representations from
one syntactic representation, the underspecified analysis derives one underspec-
ified semantic representation from the syntax, and then it can get back all the
object-level readings if necessary by enumerating them from the underspecified
representation. (But this step is delayed for as long as possible.)

The information on the metalevel describes the range of possible readings;
so you could say it’s disjunctive information about the meaning of the sentence
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b2

— something like “The sentence means R;, or it means R,.” This disjunctive
information doesn’t have to be represented syntactically as a disjunction; in fact,
that’s something we want to avoid because a disjunction is not a very compact
representation.

An even more important distinction, however, is between disjunctive infor-
mation on the metalevel and on the object level. A naive attempt at “opti-
mizing” the representation might be to eliminate the metalevel and represent
ambiguity as object-level disjunction (e.g. of predicate logic). Unfortunately,
this can lead to unwanted interactions between the new disjunctions and the
actual semantic representations, as the following example (involving a lexical
ambiguity) shows.

(1.11) Mary goes to the bank.

(1.12) Mary does not go to the bank.

Generally, we’'d like to assign meaning to these sentences systematically;
if a sentence means ¢, we want the corresponding negated sentence to mean
—p. The naive, object-level disjunctive analysis of the sentence (1.11) would be
something like

go(m,by) V go(m, by),

where b; and by stand for the two different meanings of the word bank. Then
because of the negation rule, we would assign sentence (1.12) the meaning

=(go(m, by1) V go(m, bs)).

However, this is not the same as the disjunction of the real meanings of the
sentence, which would be

—|g0(m, bl) \ —|go(m, b2)

So if we want a closed representation of the meaning of an ambiguous sen-
tence, we need the metalevel because ambiguity is disjunctive information on
the metalevel.

1.2.2 Scope Underspecification: The General Idea

Now let’s take a look at how to apply underspecification to scope ambiguities.

Most recent approaches to scope underspecification (e.g. Underspecified
DRT (Reyle 1993), Hole Semantics (Bos 1996), and CLLS/dominance con-
straints (Egg et al. 1998)) describe the semantics of a sentence by first saying
what material the semantics contains and then imposing constraints on the way
this material can be arranged.

As an example, Fig. 1.2 displays a graphic representation of such a descrip-
tion. It specifies that the semantic representation of a reading of the sentence
should contain the three fragments we identified earlier. Furthermore, it con-
tains dotted lines which stand for the “has scope over” relation (also called the
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Vx

—
man

Figure 1.2: An underspecified representation of the meaning of Example 1.1d.

outscopes relation). Here, we see that both upper fragments must have scope
over the nuclear scope, but there is no line between the two upper fragments,
so their relative scope isn’t specified. However, as the described object must
be a well-formed formula, we know that one of these fragments must always be
within the scope of the other one. This latter condition is enforced by different
formal means in different formalisms; for example, Hole Semantics requires a
one-to-one “plugging” of fragments into “holes” of formulae, whereas CLLS is
really a language of tree descriptions and exploits that trees cannot branch in
the bottom-up direction. More on that tomorrow.

A very interesting commonality of the three formalisms mentioned above is
that each uses graphs that look very much like the one in Fig. 1.2. Each of them
assigns these graphs different formal meaning, but the similarity is not entirely
superficial; for example, one can encode both UDRT and Hole Semantics graphs
in CLLS. Besides these three, there have been several other influential approach-
es to scope underspecification. The oldest of them is Quasi Logical Form (QLF,
Alshawi and Crouch 1992); some others are Muskens’s (1995) underspecified
semantics and Minimal Recursion Semantics (MRS, Copestake et al. 1997).

Scope ambiguities seem to lend themselves very well to underspecification.
It may not be straightforward to represent a referential ambiguity in a compact
way, and it can be argued that a human really decides quickly what’s perceived
as the antecedent for an anaphor. Generally, underspecification may not be
adequate for all classes of ambiguity. But as we have seen above, this doesn’t
seem to happen for scope ambiguities of any complexity, so underspecification
seems to be a very natural way to represent them.

1.2.3 Underspecified View of the World

To conclude the introduction to underspecification in general, we will now
present the view of the world of language processing from a radically under-
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(Underspecified) Underspecified Direct
Syntax semantics deduction

/\\

world knowledge  discourse knowledge

Figure 1.3: Underspecified view of the world.

specified perspective. See Fig. 1.3.

The guiding idea of this view is that language processing has to deal with
incomplete information more often than not. Possible sources of incomplete
information are not just the obvious missing or misunderstood words in spoken
input; other examples are ambiguities (e.g. of scope or anaphoric reference)
or ellipses (where entire VPs are missing). Still, the goal is to determine the
intended meaning of an utterance as far as necessary to extract the information
relevant in the situation.

In this context, syntax and semantics can only contribute to the full deter-
mination of the meaning of a sentence; we also have to take other sources of
information, such as discourse and world knowledge, into account.

In such an architecture, we give underspecified semantics center stage: It is at
this level that we want to collect and process all the information we have about
the meaning of a sentence. Processing of a sentence happens as follows. First,
a syntax component will parse the input sentence as completely as possible. As
the sentence can contain missing words or syntactic ambiguities (e.g. of PP
attachment), we can’t expect to be able to determine the syntax completely;
so we use an underspecified syntax formalism to describe the set of possible
syntactic analyses. Now we transfer the partial syntactic information into an
underspecified semantic description. From now on, we try to integrate more
sources of information to make this description more specific. For example,
discourse and world knowledge can be combined with the semantic information
by direct deduction; this may give us more information about the semantics,
fill in blanks, or exclude readings. Furthermore, reasoning on the semantic level
may give us hints about the actual syntactic structure, so information might
percolate back to the syntactic level from the semantic level.

Because there are actual ambiguities which can’t be resolved further, we
can’t hope to determine the meaning of a sentence completely by this process.
If a rough description of the meaning is good enough for what we want to do with
the it (e.g. some inferences), we can stop; otherwise we’ll have to disambiguate,
i.e. enumerate readings. The key idea is that we want to do as many “cheap”
inferences as we can before doing any “expensive” case-distinction steps. This is
exactly the same idea that is the foundation of Constraint Programming, where
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these classes of operations have the names propagation and distribution. More
on CP will be said on Thursday.

1.3 Overview

In conclusion of this first chapter, let’s have a look at the program for the rest
of the course.

Lecture 2 has the title “Scope and Trees”. We are going to look into scope
ambiguities and some formalisms for scope underspecification in some more
detail. We will give a brief overview of type theory and the theory of generalized
quantifiers; then we’ll discuss Cooper Storage (which is not an underspecification
formalisms, but helps understand the problems), QLF (a historically important
underspecification formalism), and Hole Semantics (the most transparent of an
important class of modern underspecification formalisms).

Another approach to take to the problem of scope underspecification which
we shall speak about in the second lecture is to consider formulae as trees and
then describe these with an appropriate logic. In that respect, we will first review
terms of type theory can be seen as trees. Then we will introduce the language
of dominance constraints, which is a logic whose models are trees; we can take
a dominance constraint to describe the set of terms which are encoded by trees
that satisfy the constraint. In this way, we can use dominance constraints for
scope underspecification, and we will show how this is done. The material in
the first two lectures is derived from (Koller 1999).

The title of Lecture 3 is “CLLS and Parallelism”. As we have seen above,
scope ambiguities interact with ellipses in so-called “Hirschbiihler sentences”;
both ellipses and scope also interact with anaphora. In the third lecture, we will
briefly review the standard analysis of ellipses (Dalrymple et al. 1991). Then we
will bring together mechanisms for describing scope, ellipses, and anaphora in
the logic CLLS (“Constraint Language for Lambda Structures”), an extension
of the dominance constraints of Lecture 2. The material for Lecture 3 in this
reader is a copy of (Egg et al. 1998).

In Lecture 4, “Constraint Programming”, we move towards the “processing”
part of the title of the course. We will discuss Concurrent Constraint Program-
ming (CCP), a programming paradigm for solving combinatorial problems such
as scheduling or optimization. The general problem it considers is to find assign-
ments of values to variables that satisfy a given set of constraints. Traditionally,
this is done by generating such models and then testing if they satisfied the con-
straint (by brute-force search). The basic idea of CCP is that information about
the values of variables can be held in a constraint store, and concurrent pro-
cesses called propagators can watch the store and contribute information to it.
This is a process of adding simple (i.e. computationally cheap) inferences to the
store. Only when propagation can’t contribute anything new does one search
step take place; then propagation starts again. In this way, a search space can
sometimes be reduced dramatically, which is essential for difficult problems.

Finally, we put our new knowledge about CCP to use in Lecture 5, “Pro-
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cessing Dominance Constraints”. We show how dominance constraints, which
we saw in Lecture 2 to be a powerful formalism for scope underspecification, can
be represented, processed, and solved using constraint programming. The im-
plementation encodes a dominance constraint as a constraint on variables over
finite sets of integers. Modulo syntactic variation, these set constraints can be
written down as a program in a programming language like Oz (Smolka 1995;
Oz Development Team 1999).

The material for lectures 4 and 5 in this reader is an adapted version of parts
of an introductory course on Oz for computational linguists by Denys Duchier,
Claire Gardent, and Joachim Niehren at the University of the Saarland (Duchier
et al. 1999). More about that course can be found on the World Wide Web at
http://www.ps.uni-sb.de/“niehren/vorlesung/.

1.4 Summary

o Ambiguities occur on all levels of linguistic analysis. They are a challenge
to automatic language processing because ambiguities in the same sen-
tence multiply, yielding a number of readings exponential in the number
of ambiguities.

e One type of ambiguity is the scope ambiguity. Scope ambiguities are ambi-
guities of the structure of the semantic representation of a sentence. They
occur whenever a sentence contains multiple scope-bearing objects which
can be ordered independently.

e Underspecification is an approach to coping with ambiguity which aims
to represent all ambiguities by a single, compact description of all read-
ings. Then any work is done with the description instead of the readings,
and their enumeration is delayed for as long as possible. There are both
cognitive and computational motivations for doing this.

e Scope underspecification is typically done by specifying the semantic ma-
terial of a sentence and imposing some constraints on how this material
can be composed. Many scope underspecification formalisms use diagrams
as in Fig. 1.2, but each assigns them different meaning.

e Constraint programming is a programming paradigm that was developed
in the context of combinatorial problems. Incomplete information about
a problem is kept in a so-called constraint store and used to guide the
search for complete solutions (“propagate and distribute”, as opposed to
“generate and test”). CP shares a common underlying intuition with
underspecification and can be used for efficient processing of underspeci-
fication.



Lecture 2

Scope and Trees

Today, we are going to discuss the problem of scope underspecification in more
detail. Our key point of this section is to show how to use dominance con-
straints for scope underspecification. The language of dominance constraints is
a logic whose models are trees; the variables of these formulae denote nodes of
a tree. Further, we are going to look into other approaches to scope ambigui-
ty — Cooper Storage, QLF, and Hole Semantics —, the latter two of which are
underspecification formalisms as well.

2.1 Generalized Quantifiers

As we have tried not to presuppose too much prior knowledge about logic or
semantics, we will first give a brief introduction to type theory and the theory
of generalized quantifiers before we delve into the details of this chapter. We
will provide as much material on these issues as necessary to understand the
rest of the chapter, but it’s clear that we can only touch on the surface of these
topics, and we recommend a closer look at both. The standard formal semantics
textbook in this area is (Gamut 1991); Blackburn and Bos (1999) also have a
very readable introduction from the perspective of computational semantics.

2.1.1 The basic problem

In the 60s, semanticists first became interested in a compositional analysis of
meaning. The idea of compositionality is usually attributed to Frege and is
generally taken to mean that “the meaning of an expression is a function of the
meanings of its parts”. For example, if you want to determine the meaning of
a sentence, you’d first determine the meanings of the top NP and VP and then
combine these in a uniform way. Compositionality is nice because it encourages
a clean semantic construction, where all NPs are basically treated in the same
way etc., so you can essentially “read the semantics off the syntax tree”.
Unfortunately, if we use first-order predicate logic to represent meaning, we
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can’t easily construct these representations compositionally. One problem is
that NPs can end up in very different places throughout a formula:

2.1) Peter likes a woman.

Every man likes a woman.

2.2) Jz.woman(z) A like(peter, x)
2.

(
(
(2.3)
(2.4) 3z.woman(z) A Vy.(man(y) —like(y, z))
(2.5) Vy.(man(y) —3z.woman(z) A like(y, z))

In (2.2), the semantic representation of (2.1), the semantics of the underlined
NP has been reduced to a single constant peter. In (2.3), on the other hand,
the underlined NP is represented by much more (and very different) “semantic
material”, which is distributed all over the formula.

At first sight, this makes Peter and every man, which fill exactly the same
role syntactically, so different semantically that it seems impossible to model
semantic construction compositionally. To do it anyway, we will treat both NPs
as generalized quantifiers. But first, we need to lay some formal groundwork.

2.1.2 Type Theory

First-order predicate logic (FOL) is severely restricted in its expressive power
in that it only allows variables (and quantification) denoting individuals, and
only constants denoting individuals and relations between individuals. Type
theory or higher-order logic (HOL) is a generalization of FOL that allows both
variables and constants denoting any kind of function involving individuals and
truth values.

Type theory splits the world into classes by distinguishing objects of different
types. A type a is a term of the following syntax:

a = e
|t
| {a,a)

Every type denotes a distinct subset of the universe. The objects denoted by
type e are individuals; they are just the kind of basic entities that a first-order
variable can denote. Objects of type ¢ are truth values (true and false). The
denotation of a type (a, 8) is the set of functions that take objects of type a as
arguments and output objects of type 3.

The syntactic objects of HOL are terms; every well-formed term can be
assigned exactly one type. Terms are defined as follows:

e All constants and variables of type « are terms of type a.

o If M and M’ are terms of type t, then =M and M A M’ are terms of type
t.
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e If M is a term of type t and z is a variable of arbitrary type a, then Vo.M
is a term of type t.

e If M is a term of type (@, 3) and M' is a term of type «, then M (M') is
a term of type S.

o If M is a term of type 8 and z is a variable of type a, then Az.M is a
term of type {(a, §).

The intuition is that the logical connectives work as in FOL (with the other
familiar connectives definable in the usual way). An application M (M) is really
something like application of a function to an argument. An abstraction Ax.M
is intuitively a function that inserts its argument wherever z appears in M and
then evaluates the result. Clearly, abstraction is most interesting if M contains
free occurrences of z, but that doesn’t have to be the case. You can think of
the z in an abstraction as a formal argument of a procedure in a programming
language. In fact, lambda calculus is the foundation of an entire programming
paradigm, so-called functional programming, including languages like Lisp or
SML. The most fascinating aspect of lambda calculus is that its definition is
extremely simple, but (its untyped variety) is still expressive enough to encode
a Turing machine.

For example, if f and g are constants of type (e,e) and a is a constant of
type e, then f(g(a)) is a term of type e, and A\z€.f(g(z)) is a term of type (e, e).
On the other hand, f(g) is not a term because f expects an argument of type
e, and g is of type (e,e). Finally, if P is a constant of type (e, t) (that is, the
equivalent of a FOL predicate), z is a variable of type e, and F' a constant of
type t, then Vz.P(z) — F' is a well-formed term of type t.

HOL terms can be assigned a semantics that’s compatible with the standard
FOL semantics and the application/abstraction intuition. We won’t do so here
and refer to the textbooks mentioned above.

Asg in first-order logic, it’s interesting to have a syntactic test for checking
whether two expressions have the same denotation. An (incomplete, but essen-
tial) way for doing so is testing for so-calledafn-equivalence. The idea here is
that if it is possible to rewrite the terms using a given set of reduction rules
until they are reduced to the same term, they denote the same function.

These rewrite rules look as follows:

(@) Ax.M — Ay.M[y/z] (y not freein M)
(8) Az.M)(M') — M[M'/z]
(n) Ae.M(zx) — M

In simply typed lambda calculus, afn-equivalence of terms is decidable.
But of course, it doesn’t say anything about the logical connectives, only about
application and abstraction.

2.1.3 Generalized Quantifiers

After this brief excursion, let us return to the problem of compositional analysis
of NP meaning. In this section, we’re going to present a uniform way to rep-
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resent the semantics of an NP which can be used in a compositional semantic
construction. We won’t really talk about semantic construction, though; we’re
still only laying foundations.

In higher-order logic, the meaning of a verb is a function that takes one or
more arguments of type e and then returns a truth value (type t). For example,
an intransitive verb is assigned type (e, t); a transitive verb is assigned type
(e, (e, ).

The first idea of combining the meanings of an intransitive verb (type (e, t))
and of an NP is that the NP denotes an individual (type e); so we can just
apply the verb semantics to the NP semantics. This works for a sentence like

(2.6) Peter sleeps.

The semantics we get is just sleep(peter).

But the examples we have seen earlier make it clear that this analysis doesn’t
carry very far. An additional problem is that most NPs (every man, two girls)
don’t really denote single individuals. A more flexible analysis, then, is to
uniformly analyze the semantics of NPs as terms of type ((e,t),t) — so-called
generalized quantifiers. A term of type ({e,t),t) describes a set of properties;
the intuition behind this type-raised analysis of NPs is that the meaning of an
NP is the set of all properties that apply to all the individuals described by the
NP. Consider, for example,

(2.7) Every man sleeps.

The semantics we give to the NP every man here is

APNz.man(z) — P(z),
where P is a variable of type (e,t), and z is a variable of type e. This term
denotes the set of all properties that every man has. It’s a term of type ((e, t), t),
so we can apply it to sleep; semantically, this means to verify if sleeping is a
property that every man has. Incidentally, we can apply 3-reduction to simplify
the term:

(APNz.man(z) — P(z))(sleep)
—g Vz.man(z) — sleep(z).

In other words, we have obtained the same meaning that we had originally
intended. But note that the application has reversed; we applied the verb
semantics to the NP semantics before, and now we apply the NP semantics to
the verb semantics.

We can take the decomposition of the sentence meaning one step further
if we assign independent meaning to determiners. In the analysis of (2.7), we
could analyze every as

APAQVz.P(z) = Q(x)

and man just as man; then the meaning of every man as used above can be
obtained just by applying the determiner meaning to the noun meaning. This
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works for other determiners as well, even for ones like most, which can’t be
represented in a first-order formula. We call the term the determiner meaning
is first applied to the restriction of the generalized quantifier, and the argument
that the entire generalized quantifier is applied to, its scope. (In the example,
the restriction was man, and the scope was sleep.)

The type-raised analysis of NPs even works for proper names. We just
replace the individual by all of its properties. That is, we analyze Peter not as
peter, but as

AP.P(peter).

Again, P is a variable of type (e, t). So as before, we can apply the meaning
of Peter to the meaning of sleeps (to stay with our earlier example); -reduction
will then simplify the result to our original analysis:

(AP.P(peter))(sleep)
—p5 sleep(peter).

This means that interpreting NPs as sets of properties, which looks strange
at first, gives us a uniform analysis of all kinds of NPs. In the light of the
examples from the beginning of the section, this is a very surprising result.

2.1.4 Generalized Quantifiers and Transitive Verbs

A problem comes up when we try to analyze sentences with transitive verbs.
The problem is that a transitive verb is analyzed as something of type (e, (e, t)),
and we can’t use this as an argument for a generalized quantifier. We’ll present
an analysis using something Blackburn and Bos (1999) call “Montague’s trick”
because it originates in (Montague 1974) and involves a step that looks surpris-
ing at best and like a hack at worst. In Section 2.5, we’ll present an analysis
that doesn’t use Montague’s trick overtly, but produces the same results.

The idea behind Montague’s trick is to apply the transitive verb meaning
to as many variables of type e as necessary to give the result type ¢, and then
to abstract just once over a type e variable each time a quantifier is applied.
Saying the same in some more detail, each NP is assigned a unique index i, and
when the verb gets an NP argument syntactically, the verb is applied to the
variable z;, of type e (and not, as above, the entire NP to the verb). When
all arguments of the verb have been bound, the result will have type ¢. Then
we can apply the NP meanings (of type ((e, t),t)) to this term; but to give the
argument the correct type ({e,t)), we first have to abstract over a variable. Of
course, it has to be the correct variable; so if we’re trying to apply the NP with
index ¢, we first have to abstract over ;. We repeat this for all NPs, in any
order (which is where scope ambiguities come from). Montague’s trick is that
the Az;’s “fall from the sky”, seemingly unmotivated.

Here’s an example to make this clearer. Consider again the earlier example

(2.8) Every man loves a woman.
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Let’s say every man gets index 1, and a woman gets index 2. Now the first
step to constructing the meaning of the sentence is to apply love, the meaning
of the verb, to these two variables:

love(za)(z1)

This is a term of type ¢. In the next step, we want to apply one of the
quantifiers; let’s take a woman for now. Before we can apply the quantifier, we
first have to abstract over x5 to give the argument suitable type. This looks as
follows:

(AP.3y.woman(y) A P(y))(Azz.love(za) (1))
—g  Jy.woman(y) A (Azz.love(zs)(z1))(y)
—5  Jy.woman(y) A love(y)(z1)

Again, we have something of type ¢, and by abstracting over x5 prior to the
application, we have made sure that the variable y introduced by the generalized
quantifier ends up in the correct argument position of love. Now we do the same
for the other quantifier (which was connected to the variable z;):

(AQ.Yx.man(z) — Q(x))(Az1.Jy.woman(y) A love(y)(z1))
—g  Vz.man(z) — (Az1.3y.woman(y) A love(y)(z1))(x)
—g  Vz.man(z) — Jy.woman(y) A love(y)(x)

The end result is a term of type ¢, and it’s just the first-order formula that
we intended to have as one of the two different meanings of the sentence initially.

You'll notice that in constructing this formula, we first applied the quantifier
for a woman to love(zs)(x1), and then we applied the quantifier for every man
to the result. We get the other reading of the sentence by reversing the order
of application:

(AQ.Vz.man(z) = Q(z))(Az.love(zs)(z1))
—g  Vr.man(z) — (Az;.love(za)(x1))(x)
—g  Vz.man(z) — love(zs)(z)

(AP.3y.woman(y) A P(y))(Az2.Vz.man(z) — love(zs)(z))
—g  Jy.woman(y) A (Azz.Vaz.man(z) — love(za)(x))(y)
—g  Jy.woman(y) A Vz.man(z) — love(y)(x)

2.2 Cooper Storage

Historically, Montague’s trick first appears in the “Quantifying In” rule of Mon-
tague Grammar, an approach of seminal importance to quantifier scope and
much else. Montague defined a categorial grammar for a fragment of English.
Using the Quantifying-In syntax rule, the syntax of a scope ambiguous sentence
could be derived in several different ways, each of which gave rise to one of the
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NP VP
/" \ 7\
Det N A% NP
| | | / N\
every man loves Det N
L b

Figure 2.1: Syntax tree for Fvery man loves a woman.

readings because Montague’s trick was applied in different orders to the various
quantifiers. For an in-depth overview of Montague’s work, see also (Partee and
Hendriks 1997).

A major conceptual problem with Montague’s analysis is that it assumes a
syntactic ambiguity for analyzing scope ambiguities which doesn’t seem to be
justifiable in any other way; this ambiguity is really on the level of semantics. An
early attempt to capture scope ambiguity semantically was the Cooper storage
(Cooper 1975; Cooper 1983). In this section, we are going to briefly explain
how it works, and then we will discuss some problems that it has.

Cooper storage takes as its input an (unambiguous) syntactic analysis of
a sentence. Its output is a HOL formula that represents the meaning of the
sentence. It operates nondeterministically so it can produce multiple readings
for a semantically ambiguous sentence. We assume here that the syntax of a
sentence is given as a phrase structure tree (but the basic mechanism would
work with other grammar formalisms, too). The example we’ll work with is
Fig. 2.1, the syntax tree of Every man loves a woman.

The fundamental idea of Cooper Storage is to associate with each node of
the syntax tree two values: the ordinary semantic content of the tree below
that node, and a quantifier store for remembering generalized quantifiers that
still have to be applied. Formally, semantic contents are (higher-order) terms;
quantifier stores are sets of pairs (i, M) of an index ¢ and a term M of type
((e,t),t). These values are computed in a bottom-up fashion; computation
terminates when all nodes have obtained a content and the quantifier store of
the root is empty. You can think of the quantifier store as a record-keeping
device for Montague’s trick; whenever an NP gets a new index i and a verb is
applied to the new variable z;, the real NP meaning is put on the store under
the index .
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The semantic content of a terminal node can be taken from the lexicon; the
quantifier store of terminals is always empty. If an internal node has no NP
children, its semantic content is the semantic content of its children, applied
to each other (in the correct order); its quantifier store is the union of the
children’s quantifier stores. If it does have NP children, we can either determine
its content and store in this way, too, or we can apply the storage rule to queue
the quantifier for later application on the store. Finally, for S nodes, we have
the choice between usual application, NP storage (if there is an NP child), and
retrieval of quantifiers from the store.

Storage works as follows. Let A be any internal node with an NP child B;
let’s call the other child C. Let Mg and M¢c be the contents and Ag and Ag
the quantifier stores of the nodes B and C. Then pick a new index i. The
semantic content of A can be

Me(z:),

and its quantifier store can be
ApUAc U {(Z,MB>}

Conversely, retrieval works as follows. Let A be an S node with content M
and quantifier store A, and let (i, M') € A. Then A can also have the content

M'(Az;. M)

and quantifier store
A= {(i, M)}.

Let’s consider an example for illustration. Fig. 2.2 shows a cooper-storage
analysis of Fvery man loves a woman which is complete except for the values
associated with the root; we’ll discuss those presently. As you can see, all the
preterminal nodes of the tree have the obvious semantic contents, and their
quantifier stores are empty. Now the contents of the two NP nodes are just the
applications of their Det daughters to their N daughters, and their quantifier
stores are still empty. In the third step, we compute the meaning of the VP
node. This node has one NP daughter, so we apply the storage rule (say, with
index 1), which assigns the VP node the content love(z1) and puts the NP
meaning into the quantifier store with index 1.

Now, because it’s an internal node with an NP child, the content and store
of the root (S) node can be obtained by application of the storage rule (say,
with index 2). The result is

love (1) (), {{1, A\Qy.woman(y) A Q(y)), (2. A\Q¥z.man(z) — Q(x))}.

What we need, however, is a value for the root where the quantifier store
is empty. So we have to take the quantifiers out of the store by application of
the retrieval rule; the order in which we take them out will determine the scope
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S
love(z1)(z2), {{1, \QTy.woman(y) A Q(y)), (2, \QVz.man(z) — Q(x))}

e N

NP VP
AQVz.man(z) = Q(z), 0 love(z1), {(1,AQ3y.woman(y) A Q(y))}
Det N N NP
APAQVz.P(z) = Q(x), 0 man, () love, 0 AQ3y.woman(y) A Q(y), §
/ AN
l Det N
every man oves APAQIy.P(y) A Q(y), 0 woman,
a woman

Figure 2.2: Cooper-storage analysis of the running example.

reading. First, let’s start with the woman NP (index 1); then we can assign the
following values to the root:

(AQTy.woman(y) A Q(y))(Ax1.love(z1)(x2)), {(2, \QVz.man(z) — Q(x))}
—g  Jy.woman(y) A (Azy.love(z1)(z2))(y), {(2, \QVz.man(z) — Q(x))}
—s  Jy.woman(y) A love(y)(zz), {(2, A\QVz.man(z) — Q(x))}

Then we have to take the quantifier with index 2 from the store:

(AQVz.man(z) = Q(z))(Az2.Jy.woman(y) A love(y)(x2)), d
—p  Va.man(z) = (Az2.Jy.woman(y) A love(y)(z2))(z), 0
—3  Va.man(z) — Jy.woman(y) A love(y)(z),

This completes the derivation of the first reading: We have found a way to
derive the root a content and an empty store. The other reading is obtained
by first taking the NP with index 2 out of the store and then the one with
index 1; we invite you to verify this. Generally, the retrieval operations can be
done in any order, which means that Cooper storage will always generate n!
readings for a sentence with n quantifiers. So we could say that the semantic
representation we have obtained before retrieving anything is a representation
of all the readings that doesn’t commit to any one of them.
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(APAQVz.P(z) — Q(z))(man)(Az; . -) (APAQ3y.P(y) A Q(y))(woman)(Az,. )

love(zs) (1)

Figure 2.3: Underspecified description of the meaning of FEvery man loves a
woman as a lambda term.

2.3 Towards Underspecification

Unfortunately, Cooper storage can overgenerate. Consider the following famous
example from (Hobbs and Shieber 1987):

(2.9) Every researcher of a company saw most samples.

This sentence contains three quantifiers, but it has only five readings. Cooper
storage will generate six (= 3!) readings, the sixth of which is

Vx.res(z) A of(z3)(x) A Vz.comp(z) — most(sample)(Ay.saw(y)(x)).

This reading is obviously nonsense; it still contains the variable z3, which
should have been bound by the quantifier with index 3 (a¢ company) and is now
free. What has happened here is that the necessary scope relations between the
quantifiers are more complex than Cooper storage can represent; it’s not just
any permutation at the sentence level.

One way out of this problem was proposed by Keller (1988) with his “Nested
Cooper Storage”. The difference to ordinary Cooper storage is that the Stor-
age rule of Nested Cooper Storage doesn’t just place the meanings of the NP
children into the quantifier store, but the entire pair of meaning and term store
associated with the NP; i.e., the store can be nested deeply. Retrieval is ad-
justed accordingly. Nested Cooper Storage generates exactly the five correct
readings in the example. (But now it’s important that we really have a choice
whether we want to store or apply an NP; this wasn’t really necessary for or-
dinary Cooper storage, and we always stored NPs in the example.) Another
algorithm for generating quantifier scope is (Hobbs and Shieber 1987).

A fundamental problem with all of these approaches, however, is that they
can only generate all readings. As we have seen, a scope ambiguous sentence
can have an exponential number of readings, so this can be very expensive. As
we have argued in the introduction, it is more reasonable both from a cognitive
and from a computational point of view to describe the set of readings in a
compact way and then to work with this description instead of with all readings
for as long as possible.
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Cooper Storage does describe readings compactly, but the description is
rather implicit and, as we have seen, not very expressive. What we are really
after is a description roughly as in Fig. 2.3 which says which fragments a formula
contains and allows to specify how they must be arranged — with a notion of
“fragment” as in the introduction, where we split the corresponding first-order
formulae. We have already argued in the introduction that this is what most
modern underspecification formalisms do and will spend the next two sections
to give the diagram a formal meaning. We want to speak about the structure of
a lambda term; we will take this really seriously and speak about trees, which
make this structure explicit.

2.4 Trees and Dominance Constraints

In this section, we will first define what a tree is. Then we will embed trees into
first-order model structures, so-called lambda structures; in addition to specify-
ing a tree, they define some relations between tree nodes, in particular, a binding
relation. Finally, we define the syntax and semantics of dominance constraints;
this is a logic which is interpreted over lambda structures. We shall see in the
next section how to apply dominance constraints for scope underspecification.

In one form or another, dominance constraints have been used very widely
throughout computational linguistics. The first occurrence we’re aware of is in
(Marcus et al. 1983), where they were used for incremental parsing. They’re
important for combining tree-adjoining grammars with unification grammars
(Vijay-Shanker 1992), they’re at the heart of many current scope underspeci-
fication formalisms (as we shall see), and they’re used for the analysis of dis-
course (Gardent and Webber 1998). Their formal properties are rather well-
understood, as well; Backofen et al. (1995) axiomatized them in first-order
predicate logic, and Koller et al. (1998) investigated the complexity of various
logical languages over dominance constraints. Finally, Duchier and Gardent
(1999), Koller et al. (1998), and Duchier and Niehren (1999) have investigated
how to solve dominance constraints (i.e. enumerate their models) efficiently.
We’ll say something about this in Lecture 5.

Before we start, a word on notation. We write N for the set of natural
numbers 1,2,3,... and Ny for NU {0}. If A is a set, we write A* for the word
monoid over A, that is, all words of length > 0 that are built from symbols in
A. As usual, we write the empty word €, and we write concatenation of two
words 7,7 by juxtaposition 7ims.

2.4.1 Trees

Trees are one of the most successful data structures in computational linguistics
and computer science. The standard way of thinking about trees is as directed
graphs that have a unique root such that there is exactly one path from the root
to any other node of the tree. This condition implies some other properties, e.g.
that they are acyclic and that there is no node with two incoming edges. Tree
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Figure 2.4: Tree corresponding to f(g(a), f(b,c)).

nodes are typically decorated with labels (e.g. S or NP in a syntax tree), and
sometimes edges are decorated with so-called features.

Here, we will employ a slightly different definition of a tree. First, we as-
sume a signature ¥ of node labels. Each of the labels (or constructors) in this
signature is assigned an arity by an arity function ar : ¥ — Ny. The only re-
striction we impose on the signature is that it must contain at least two different
constructors, one of which must be nullary; otherwise, there would be no finite
trees.

Now we define a tree domain A to be a nonempty subset of N* such that

1. A is prefized-closed: Whenever for any 71,72 € N*, mymy € A, it must
also hold that m; € A.

2. A is closed under the left-sibling relation: Whenever 7i € A and i > 1, it
must also hold that 7(i — 1) € A.

Finally, we can define a constructor tree to be a pair (A, o) of a tree domain
A and a labeling function
c: A%

such that for any 7 € A, mi € A & 1 < i <ar(o(n)). A finite constructor tree
is a constructor tree whose domain is finite.

This sounds a bit complicated at first, but it is really very simple. First,
consider Fig. 2.4, and let’s see what the pair (A, o) that models this tree
looks like. We have annotated the nodes in the diagram with words over N*.
These words are the paths in the tree domain; so A = {¢, 1,11, 2,21, 22}. Paths
indicate a sequence of steps in the tree starting at the root. For example, the
path 21 means to start at the root, then move to the second child of the root,
and then to move to the first child of that node. This correspondence means that
the elements of the tree domain can be identified with the set of nodes of a tree.
The labeling function ¢ assigns labels to the elements of the tree domain; we
have annotated the tree with these values. So for example, o(¢) = f, (1) = g,
etc.

Finite constructor trees are even more intuitive than that, though: They
correspond uniquely to closed terms over the signature, and vice versa. The
tree in the diagram was built from the signature ¥ = {f2 g',a°,b% c°}, where
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we have indicated arities as superscript numbers. A well-formed term of this
signature is f(g(a), f(b,¢)). (f(a), for instance, would not be well-formed be-
cause f must have two arguments.) Now compare this term to the tree; you
will notice that the two objects have exactly the same structure. It was to en-
force this correspondence between trees and well-formed terms that we required
every node to have exactly as many children as the arity of its label says. The
constructors determine the structure of the tree, hence the name.

From now on, we shall use “tree” as an abbreviation for “finite constructor
tree”.

2.4.2 Lambda Structures

Given a tree (A,o), we can define first-order model structures with domain
A which allow us to speak about interesting relations in trees. In addition to
relations which can be read off the underlying tree easily, a lambda structure
will define a A-binding function, which we will use for modeling lambda terms.

Assume a signature ¥ as above, with special constructors var®, lam*, @2 € %,
A lambda structure L over the tree (A, o) is a triple (A, X\, I), where A : A ~»
A is a partial function mapping nodes 7 with o(7) = var to nodes 7' with
o(r') = lam, and I is an interpretation function which assigns relations to
a fixed set of predicate symbols. The predicate symbols we are interested in
here are the dominance predicate <*, the inequality predicate #, the binding
predicate A\(-) = -, and, for each label f* € ¥, the (n+1)-ary labeling predicate
:f. We shall use the same symbols for the predicates and their interpretations;
there will be no danger of confusion.

Now we define the relations assigned to the predicate symbols by I. If
f™ € X, the labeling relation m:f(m,...,m,) holds iff o(7) = f and for all
1 <i < n, n; = m. The dominance relation 7<*7’ holds iff 7 is a prefix of
7'. The inequality relation © # 7' holds iff 7 and 7’ are different. Finally, the
binding relation \(w) = 7' holds iff the binding function A is defined on 7 and
maps it to .

The interpretation function is completely determined by the underlying tree
and the binding function. For example, the dominance relation induced by the
tree in Fig. 2.4 (together with any binding function) contains 14 pairs of nodes,
including (¢,1), (¢,21), (2,2), etc.; a labeling relation satisfied by that tree is
e.g. 2:f(21,22).

We can use lambda structures to model lambda terms by equipping the
parse tree of a lambda term with a binding relation between variables and
their binders. We obtain such a parse tree if we use the binary constructor
@ we introduced above for modeling application, the unary constructor lam
for signifying abstraction, and the nullary constructor var for variables. As
an example, Fig. 2.5 shows the lambda structure corresponding to the term
Az.(AF.(F(z))(a))(Ay.x). In the diagram, pairs of nodes mapped to each other
by the binding function are connected by a dashed arrow. So lambda structures
correspond to lambda terms up to a-equivalence (i.e. consistent renaming of
variables).
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Figure 2.5: Lambda structure for Azx.(AF.(F'(z))(a))(A\y.z).

On Wednesday, we will extend lambda structures with parallelism and anaphoric

binding relations in order to model ellipses and anaphora.

2.4.3 Dominance Constraints

Now it is straightforward to build a syntax for a logic for talking about lambda
structures. We fix a set of variables X,Y,... (which are supposed to denote
tree nodes) and define a dominance constraint ¢ to be built according to the
following abstract syntax:

An atomic dominance constraint ¢ is satisfied by a lambda structure L =
(A, X\, I) and a variable assignment « into A iff @ maps the participating vari-
ables into the relation to which I maps the respective predicate symbol. An ar-
bitrary dominance constraint is a conjunction of atomic dominance constraints
and satisfied by (L, ) iff (L, a) satisfies every conjunct; we also call L a solution
of the constraint.

For instance, the dominance constraint

X1:Iam(X2) A XQZ@(Xg,X4) A X3<|*X5 A X5ZV3F A )\(X5) = Xl (210)

is satisfied by the lambda structure in Fig. 2.5 together with the variable as-
signment a(X;) =¢,a(X2) = 1,a(X3) = 11, a(Xy) = 12, a(X;) = 11112.
Usually, we are not interested in all solutions of a dominance constraint. An
atomic dominance constraint X <*Y can be satisfied with X and Y having an
arbitrary distance from each other in the tree, which means that most dominance
constraints have an infinite number of solutions. What we’re really after is a
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Figure 2.6: Constraint graph for (2.10).

constructive solution. A solution (L,a) of a dominance constraint ¢ is called
constructive iff every node in the domain of L is the a-image of a variable in ¢.

The abstract syntax we have just defined is perfect for formal purposes;
however, it can easily become unreadable for humans. To this end, we employ
constraint graphs. A constraint graph is a directed graph with node labels and
three kinds of edges: solid edges, dotted edges, and dashed arrows. Nodes of the
graph stand for variables in a constraint; node labels together with solid edges
stand for labeling constraints, dotted lines stand for dominance constraints, and
dashed arrows stand for binding constraints. In addition, a constraint graph
represents an inequality constraint between any two variables corresponding to
labeled graph nodes.

For example, the constraint (2.10) can be drawn as the constraint graph in
Fig. 2.6. (But note that the constraint graph also represents some inequality
constraints, i.e. X1 # X, X» # X5, etc.)

Constraint graphs are rather similar to the lambda structures satisfying them
(compare Fig. 2.6 to Fig. 2.5). In particular, you get a constructive solution
by simply arranging the fragments in the constraint graph in a tree-like fash-
ion and then identifying the ends of any remaining dominance edges. Note,
however, that constraint graphs are objects of the syntactic level of dominance
constraints, whereas trees are objects of the semantic level. The nodes of a
constraint graph represent variables of a constraint, which in turn can denote
nodes in a tree. So it is important to keep them apart.

2.5 Scope Underspecification Using Dominance
Constraints

Now let’s return to scope ambiguities and put the dominance constraints we
have just defined to use for scope underspecification.

The intended semantic representation language for single readings is higher-
order logic. Using our new knowledge of dominance constraints, we can fix a
signature containing all the constants we’re interested in plus the logical con-
nectives —2, =1, etc., and try to interpret Fig. 2.3 as a dominance constraint
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Figure 2.7: Constraint graph for Every man loves a woman.

graph describing the lambda structure corresponding to the lambda term we
want.

The only remaining problem is the modeling of lambda binding, but we can
solve it by introducing binding constraints. The result is the constraint graph
in Fig. 2.7; the constraint it represents has exactly two constructive solutions,
shown in Fig. 2.8. Converted back to lambda terms, they are just the two
readings we wanted. (These are the only diagrams where we’ll ever spell out
the tree structure of a determiner meaning; in the future, we’ll abbreviate them
as little triangles labeled with the determiner.)

Why are these the only two constructive solutions? The constraint graph
specifies the two generalized quantifiers and the nuclear scope of the sentence,
and expresses that the nuclear scope has to be in the scope of both quantifiers. It
doesn’t say anything about the order of the quantifiers. But beause the tree part
of a lambda structure can’t branch in the bottom-up direction, one of the two
quantifiers must dominate the other one; so there are two structurally different
solutions. Because we only want constructive solutions, they could only contain
“material” that had been “mentioned” in the constraint.

So we can give a clean formal meaning to the intuitive scope underspecifica-
tion diagrams we had earlier by using dominance constraints.

It’s interesting to observe how this analysis implements “Montague’s trick”.
Here we know from the start what material the semantic representation is going
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var

Figure 2.8: Constructive solutions of the constraint in Fig. 2.7.

to be built of; there’s no abstraction “falling from the sky”. There’s also no
need to remember NPs in a store because the new A is firmly connected to
the rest of the NP meaning. We can do this because we can treat the A-term
fragments that we used informally in Fig. 2.3 in a formally sound way here —
as fragments of trees. Finally, we don’t have to worry about variable names
because we have binding constraints that tell us from the start what the correct
binders for variables are.

Now let’s see what hepps with (2.11), which was a problem for Cooper
storage.

(2.11) Ewvery researcher of a company saw most samples.

The dominance constraint graph describing this sentence is shown in Fig.
2.9). Tt has two nodes that have two incoming dominance edges (Xg and Xiq),
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e Xy
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Q I var
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Figure 2.9: Constraint graph for Every researcher of a company saw most sam-
ples.

corresponding to two nuclear scopes (for the verb and for the preposition).
Again, we must choose which of the two dominating nodes should dominate the
other in order to disambiguate the constraint. If we choose that X5 dominates
Xg, X3 can go in three places: either above X5, or between X5 and X5, or below
X7. If we choose that Xg dominates X5, Xg can go in two different places: either
above X5, or below X7;. This makes for a total of five constructive solutions,
corresponding to the five readings of the sentence.

So far, we haven’t talked about a syntax/semantics interface generating dom-
inance constraints from a syntactic analysis. It is not difficult to build such an
interface; see the last section of (Koller et al. 1999).

2.6 Other Approaches to Scope Underspecifica-
tion

In conclusion of this chapter, we will now give brief and informal introductions
to two other formalisms for scope underspecification. From the wide variety of
formalisms that we have listed in the first chapter, the two we pick for a closer
look are Quasi Logical Form and Hole Semantics. The former is of seminal
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importance for the field and has a broad coverage of linguistic phenomena.
The latter is representative of a family of underspecification formalisms that is
probably the most influential at this time. The most popular member of this
family is UDRT (Reyle 1993; Schiehlen 1997), but Hole Semantics is much more
accessible, and its basic ideas are essentially the same. (Alshawi et al. 1992)
and (Bos 1996) are warmly recommended for further reading.

2.6.1 Quasi Logical Form

QLF (Alshawi and Crouch 1992) was the first formalism for semantic under-
specification that was implemented and used for real-world applications. It was
continually developed over several years to meet the demands of a growing lin-
guistic coverage. The original syntax looks rather intimidating. Therefore, we
have adopted a heavily simplified version for our exposition here. For the orig-
inal, we refer the reader to (Alshawi et al. 1992), a comprehensive summary of
QLF and its applications.

The underlying idea of the formalism is to provide an underspecified rep-
resentation of quantifier raising. In a QLF representing a sentence, the terms
representing NPs are arguments of the VPs whose syntactic arguments they are.
Each of them is identified by a unique index, and different scope relations can
be represented by specifying an order on indices in special scoping lists. In order
to be able to represent difficult sentences like (2.11), scoping lists can also occur
in nested positions in a term. In an unresolved QLF, these lists are unspecified;
they are represented as uninstantiated variables. To ensure that logical formulae
can be derived from fully resolved QLF's, there is the constraint that for every
index, the term it identifies must appear inside the scoping list that contains
the index. Disambiguation means instantiation of the scoping lists.

By way of example, consider the (simplified) QLF representation of our
running example, repeated here as (2.12).

(2.12) Every man loves a woman.

(2.13) _s:love(term(+m, V, AX.man(X)),
term(+w, 3, \Y.woman(Y")))

In the QLF, we find the two NPs represented as two terms that are argu-
ments of their syntactic mother, the love VP. Each term has a unique index,
given as its first argument; for the NP quantifying over men, it is +m, for the one
quantifying over women, it is +w. The type of quantifier (e.g. universal or ex-
istential) is stored as the second argument; and the restriction of the quantifier
is placed in the third argument.

The love formula is prefixed with a scoping list that is, at this point, un-
specified and represented by the variable _s. Due to the free-variable constraint
we mentioned above, any fully resolved QLF that can be derived from (2.13)
must instantiate _s with a list that contains both +w and +m. This can be done
in either order, yielding the two readings (2.14) and (2.16) below. If you imagine
that a scoping list [+m,+w] means to first retrieve the woman and then the man
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quantifier from a Cooper store, the QLFs correspond to HOL terms which can
be f-reduced to (2.15) and (2.17), respectively.

(2.14) [+m,+w] :love(term(+m, V, AX.man(X)),
term(+w, 3, \Y.woman(}")))

(2.15) VYz.man(z) — Jy.(woman(y) A love(z,y))

(2.16) [+w,+m] :love(term(+m, V, AX.man(X)),
term(+w, 3, \Y.woman(}")))

(2.17) Jy.woman(y) A Vz.(man(z) — love(z,y))

The evolutionary, application-oriented development of QLF has the positive
effect of leading to a very wide coverage of linguistic phenomena. But the
downside of this is that some formal aspects of QLF are patchwork needed to
make things work, instead of consequences of an overall vision. One particular
inconvenience is that unlike most modern approaches to underspecification, QLF
does not provide a clean separation between object and meta level; elements of
both are distributed all over an underspecified representation. This makes the
representation a bit intransparent; in addition, it makes the task of designing a
calculus for direct deduction even more difficult than it inherently is.

2.6.2 Hole Semantics

Hole Semantics was developed by Bos (1996) and is a general framework for
creating an underspecified representation language from a non-underspecified
object language. Bos himself applies it to predicate logic and DRT; his “DRT
unplugged” essentially agrees with UDRT, with which it shares the underlying
perspective on scope ambiguities.

Hole Semantics is based on underspecification pictures such as Figure 2.3,
which we repeat below as Fig. 2.10 in a slightly adjusted format, but gives them
a different technical interpretation than with dominance constraints. Formulae
occurring in the nodes of such an underspecified representation (UR) are taken
from the object language; but any subformula can be replaced by a so-called
hole (hg, h1,hy in the picture). The function of holes is that other formulae
can be plugged into them to obtain a larger formula. The dotted lines in the
graph are drawn from holes to formulae, and they express that the formulae
must be subformulae of the formulae into whose holes they will be plugged. To
take care of problems that can arise when the same formula occurs more than
once in the graph, each fragment is given a unique identity, its label (I1,1s,13 in
the picture). The graph can be represented as an upper semilattice specifying a
partial order on holes and labels, and disambiguation means to make this order
more specific.

The object-language formulae a UR represents can be obtained from so-
called admissible pluggings. A plugging is a bijection between holes and labels,
and it is called admissible if it agrees with the partial order on labels and holes.
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An admissible plugging P induces a object-language formula by starting at the
(unique) top formula of the UR and subsequently replacing holes h by formulae
P(h).

-e.ho
lLivr ¢ !
%
man ..hl woman

I3:1
PSS

Figure 2.10: A scope ambiguity in Hole Semantics.

To see an example for such a plugging, we have equipped Fig. 2.10 with
explicit holes and labels. The example is in “Predicate Logic Unplugged”, the
instantiation of Hole Semantics to first-order logic. The UR presented in this
picture has exactly two admissible pluggings. They are shown as (2.18) and
(2.20), along with the predicate logic formulae they induce.

2.18) {ho =11, hy =lo, hy =I5}

2.19) Vz.man(z) — Jy.(woman(y) A love(z, y))

2.20) {ho =1lo,hy =1, hy =I5}

(
(
(
(2.21

)
)
)
) Jy.woman(y) A Vx.(man(x) — love(z,y))

Hole Semantics and its kin cope easily with sentences like (2.11), using ba-
sically the same pictures as the dominance constraint analysis.

2.7 Summary

o Generalized quantifiers can be used for a compositional semantic construc-
tion (which derives semantic representations from a syntactic analysis). A
generalized quantifier is a A-term of type ({e, t),t); it represents the mean-
ing of an NP in the sentence.

e Cooper storage can be used to enumerate the readings of a scope ambi-
guity without artificially analyzing a sentence as syntactically ambiguous.
Cooper storage has overgeneration problems that are a consequence of its
lack of expressive power.
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e Dominance constraints are a logic whose models are lambda structures.

A dominance constraint can be regarded as a (partial) description of its
constructive solutions. Lambda structures can be used for modeling A-
terms.

This means that dominance constraints can be used for partial (= under-
specified) descriptions of A-terms. A human-readable form of dominance
constraints, constraint graphs, look almost like the intuitive pictures we
used on Monday for describing the readings of a scope ambiguity infor-
mally.

QLF and Hole Semantics are other important formalisms for scope un-
derspecification. QLF is an application-oriented formalism of seminal im-
portance for the field, but lacks the formal elegance and the separation of
object and meta language of modern underspecification formalisms. Hole
Semantics is representative of a very popular class of formalisms. It al-
lows formulae with holes into which other formulae can be plugged and
represents this with diagrams very similar to dominance constraint graphs.



Lecture 3

Concurrent Constraint
Programming in Oz

3.1 Relation to Underspecification

Concurrent, constraint programming is a modern technology which can be used
to solve complex combinatoric problems efficiently. Typical applications of con-
current constraint programming in industry include scheduling and configura-
tion.

Underspecification and constraint programming can be seen as two sides
of the same coin. Underspecification is concerned with ambiguity in natural
language which a constraint programmer would consider more generally as dis-
junctive information in a combinatoric problem. The idea of underspecification
is to delay the enumeration of readings of an ambiguous sentence for as long
as possible. A more general idea underlies concurrent constraint programming,
where combinatoric problems are solved in such a way that case distinctions are
delayed for as long as possible.

3.1.1 Towards processing underspecified semantics

What have we done so far? In the first two lectures we have learned about
underspecification in semantics of natural language. We have discussed sever-
al formalisms in which to represent the meaning of sentence containing scope
ambiguities. We have advocated formulas of higher-order logic (HOL) for rep-
resenting meaning, and partial descriptions of HOL-formulas for representing
meaning in an underspecified manner. As partial descriptions of HOL-formulas,
we have proposed tree descriptions based on dominance constraints. The idea
was to consider a HOL-formula as a tree (the tree of its abstract syntax) and
to describe this tree partially.

Of course, when doing computational linguistics it is not sufficient to rep-
resent the meaning of a sentence in theory. The goal is to provide algorithms

41
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grammar underspecified

deduction consequences

sentence system with semantic . . .
Emm— interface t _— disambiguation _—
mtertace to representation B — reduction

semantics

Figure 3.1: Architecture for natural language processing

and implementations thereof that can derive semantic representations and com-
pute its consequences (see Figure 3.1). As we argued before, the semantics of
a sentence is best represented in an underspecified manner because of scope
ambiguities. So, the question is how to compute underspecified semantic repre-
sentations from a sentence and how to derive its consequences.

In this lecture, we are mainly concerned with semantics rather than with
syntax. Therefore, we assume the existence of some magician who is doing
the syntactical work for us. We can pass a sentence to the magician who then
returns its syntactic structure. From this is it is not difficult to compute an
underspecified semantic representation. We discussed in the previous lectures
how syntax and semantics are related in principle.

In practice, the magician will be some grammar system (LFG, HPSG, de-
pendency grammar), i.e. a parser into which a syntaz-semantics interface is
integrated. Compared to the complexity of parsing, a syntax-semantics inter-
face is usually quite easy to design. We will therefore omit the details in this
course. Instead, we assume that the grammar system provides us with an un-
derspecified semantic representations in form of a dominance constraint (which
describes a HOL-formula that in turn represents the meaning of the input sen-
tence).

3.1.2 Disambiguation is constraint solving

So what remains to be done? We would like to compute the consequences of
an underspecified representation. In fact this question is very difficult and can
not be answered in this lecture. Suppose that we would have a fully specified
meaning representation in first-order logic then we would still need a theorem
prover for computing all its consequences. This is not what we are going to do
in this course.

Instead, we approach a more basic question which concerns underspecifica-
tion independently of how it is approached. The problem is that an underspeci-
fied representation does not explicitly represent the set of all possible meanings.
So the question is how to disambiguate an underspecified representation effi-
ciently, i.e. how to enumerate the set of readings it represents in polynomial
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time depending of the size of this set. One might argue that disambiguation
contradicts the main idea of underspecification which is to delay disambiguation
for as long as possible. But earlier or later during natural language processing,
one can be forced to disambiguate at least partially. In our approach to un-
derspecification based on tree descriptions, disambiguation amounts to solving
dominance constraints.

Hence, our goal is to solve dominance constraints efficiently. The problem of
solving dominance constraints is NP-complete as shown in (Koller et al. 1998).
In other words, solving dominance constraints is a combinatoric problem which
is much harder than one might think at first sight: we cannot expect the ex-
istence of an algorithm which solves dominance constraints in polynomial time
in general. This does not mean however that we cannot built a solver which is
efficient for those dominance constraints representing underspecified semantics.

A good approach to solve combinatorial problems is concurrent constraint
programming (Saraswat et al. 1991; Smolka 1994; Smolka 1995). We will
show how to use concurrent constraint programming with sets in order to solve
dominance constraints (Duchier and Gardent 1999; Duchier and Niehren 1999;
Koller et al. 1998). As an implementation platform, we will employ the Mozart
system of the programming language Oz (Oz Development Team 1999). The
rest of this lecture is devoted to concurrent constraint programming technology.
In the next two lecture, we will present further features of Oz and then the
solver for dominance constraints.

3.2 What is Constraint Programming

Constraint programming is a method for solving combinatoric problems, which
comes with a well-developed technology. Combinatoric problems are tradition-
ally formulated as logical formulas that are called constraints. Solving combi-
natoric problems is inherently difficult because of the disjunctive character of
combinatorics.

3.2.1 Applications

Typical applications of constraint programming include optimization problems
of industrial relevance such as:

e scheduling,
e time tabling,
e configuration.

Recently, many new challenging applications have been investigated at univer-
sities:

e deduction and reasoning

e knowledge representation
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e processing of natural language

3.2.2 The Problem: Combinatoric Explosion

The naive way of solving combinatoric problems can be paraphrased as ‘generate
and test’: In a first step one enumerates all combinations from which one selects
all solutions in the second step. In most cases however, ‘generate and test’
is simply not feasible. This is obvious if the set of combinations is infinite.
But even if it is finite then it is usually very large, i.e. exponentially large in
size of the problem description. In this case, the generation step runs into a
combinatoric explosion (from which it usually returns only several billions of
years later).

The process of generation spawns a search tree. The inner nodes in this tree
correspond to case distinctions performed during generation and the leaves of
the tree to the set of all possible combinations. There are two kinds of leaves:
solution and failure leaves which can be distinguished by a test procedure. The
problem is that a search tree grows exponentially in its depths. For instance,
if we have a combinatoric problem with 15 variables each of which has 4 pos-
sible values then we obtain a search tree of depth 15 which contains 415 =
10.737.410.000.000.000 nodes. The search tree below is rather small but only
since its depth is small too.

3.2.3 The Method: Propagate and Distribute

Suppose that you are now convinced that we can not simply generate the full
search tree in usual combinatoric problems. So what can we do instead? The
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idea is to delay case distinctions for as long as possible. Instead we do simple
inferences first and hope that we can thereby prune the search tree, i.e. avoid
to visit all its nodes. This is the general method of constraint programming
which can be paraphrased as ‘propagate and distribute’. A propagation step
restricts the set of possible solutions by a simple inference. A distribution step
executes a case distinction by which the set of possible solutions is restricted
further. Of course, propagation and distribution steps have to be iterated. In
order to delay case distinctions for as long as possible, a distribution step has
to wait until the propagation process is terminated. This is since distribution
is considered expensive whereas propagation is not.

In concurrent constraint programming, propagation is organized as a con-
current process. The idea is to store simple information in a common constraint
store such that it can be observed by all concurrent propagators. Whenever
a propagator can make an inference then is adds its results to the constraint
store. Thereby another propagator may become triggered and so on. One can
imagine a constraint store with its propagators as follows:

. %- ..

e

Concurrent Constraints

3.2.4 What is Oz and who is Mozart?

A concurrent constraint programming system provides a set of procedures for
defining propagators and all machinery for running propagation and distribu-
tion. The programmer simply models his problem by defining sets of propagators
and a strategy for distribution. The rest is done by the compiler and emulator
of the programming system.

Oz is a concurrent constraint programming system which has been devel-
oped by the Programming Systems Lab in Saarbriicken led by Gert Smolka.
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The most recent Oz version is Mozart 1.0.1! The Mozart system was devel-
oped by the Mozart consortium which integrate the programming systems lab
in Saarbriicken, the programming systems lab at SICS (Swedish Institute of
Computer Science) led by Seif Haridi, and Peter Van Roy’s group at the Uni-
versite catholique de Louvain. The Mozart system is freely available, extensively
documented, and fully operational.

Oz unifies ideas originating from logic programming in Prolog and function-
al programming in Lisp or SML. Oz provides the most innovative technology
compared to other constraint programming languages on the market (ILOG,
CHIP). This makes Oz a good foundation for building innovative applications
in computational linguistics and artificial intelligence.

Beyond concurrent constraint programming, Mozart supports Internet pro-
gramming similar to Java. Mozart is also well-suited for building multi agent
systems and sophisticated graphical user interfaces.

P R R e - ——
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lhttp://www.mozart-oz.org/
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3.3 Solve a Combinatorical Problem in Oz

Our next goal is to build a constraint solver for the following problem which is
given by an equation system with variables denoting integers.

XY, Ze{1,...,7}
X+Y=3+Z
X-Y=2

A solution of this problem is an assignment of variables X, Y, Z to natural
numbers which satisfies the given arithmetic constraints.

3.3.1 Bits of a Constraint Solver

We next show how to solve this problem in Oz. We define the following con-
straint which can be added directely to the constraint store

(XY Z] ::: 1#7
and define the following set of propagator over this constraint store:

X+ Y =: 3%Z
X-Y=:12

Here we make use of Oz-variables whose syntax is given by words with leading
capital letters. The first line states that X, Y, Z are so called finite domain
variable, i.e. variables for an integer in a finite domain (here, between 1 and 7).

Next, we use a predefined distribution strategy which takes the actual re-
strictions on X, Y, Z into account:

{FD.distribute naive [X Y Z]}

We represent a solution as a record (called feature tree in computational lin-
guistics):

solution(x:2 y:1 z:1)

This record is built from integers and Oz-atoms which are words beginning
with a lower case letter. The solution record has the label solution and three
features x, y, z.

3.3.2 Observing Propagation

It might be instructive to observe propagation independently from distribution.
Propagation relies on the concept of a constraint store which is simply a set of
simple constraints on values of variables. New information can be added to the
constraint store by propagation. Propagation is done by propagators. These
are agents observing the constraint store and getting active whenever they are
able to add information. The Oz programmer can observe the constraint store
by using the Oz Browser. For instance, feed the following Oz-code into the
Oz-compiler:
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declare X Y Z in [X Y Z] ::: 1#10
{Browse [X Y Z]}

This declares three new variables X Y Z for integers in the domain 1, ..., 10
and browses whatever the constraint store knows about their values. When new
information is added the browser updates its output. For instance, you may
feed the propagator:

2 xY =:12

This propagator tells the constraint store new information on upper and lower
bounds of Y and Z whenever possible. For example, it adds the information that
Y must be at most 5 and Z must be at least 2 to the constraint store. However,
it cannot tell the constraint store to remove odd numbers from the interior of
the domain of Z. We next might feed a new propagator stating that X is strictly
smaller than Y:

X<:Y

One of the effect of this propagator is that 1 is removed from the lower bound
of Y. This reactivates the observing propagators 2 * Y =: Z which excludes
2 and 3 from the domain of Z.

3.3.3 Composing the Solver

Oz supports encapsulated search. As in Prolog is sufficies to only specify a
problem and let it be solved by the search engine of the programming language.
In contrast to Prolog, search is encapsulated in Oz. This means that a search
problem has always to be encapsulated into a predicate which has to be passed
explicitly to a search engine. As a consequence of encapsulation, Oz permits
standard programming in the usual style (i.e. as SML, Lisp, or Scheme).

In order to use encapsulated search, we have to encasulate the above prop-
agators and distributor into a predicate. The procedure Equations describes
exactly the solutions of the problem considered above.

declare
proc{Equations Sol}
XYZ
in
Sol = solution(x:X y:Y z:Z)
(XY Z] ::: 1#7
X+ Y =: 3xZ
X-Y=:12
{FD.distribute naive [X Y Z]}
end

The definition of Equations in Oz not only specifies a set of objects but also de-
scribes how these objects can be searched by propagation and distribution. For
computing its solutions in Oz, it is sufficient to pass the definition of Equations
to the Oz-Explorer.
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{Explorer.all Equations}
{Explorer.one Equations}

3.3.4 Was this a good Example?
e Yes, because it was so simple.
e No, since there are much better solvers in this case (Gauss elimination

algorithm).

Constraint programming yields good solvers only if no direct algorithm for
solving your problem is available.

3.3.5 Questions

e Why are there three colons in the statement [X Y Z] ::: 1#77
If you want restrict the domain of a single FD variable then you write X
1#7 with two colons. But if you want to restrict the domains of all
variables of some list like [X Y Z], then you need to write three colons.
e Is the name solution in the example program Equations arbitrary?

Yes, you may choose whatever Oz-atom instead.

e What is the difference between the statements X + Y =: 3*ZandX + Y
= 3%Z7
Be careful, this is very different! The first statement X + Y =: 3*Z hides

an application of a procedure which builds a propagator for the equation
X +Y = 3% Z. The second statement X+Y=3*Z is executed by first
evaluating the arithmetic expressions X+Y and 3#Z if the values of X, Y,
and Z are specified and then unifying the results.

e Why does the Explorer come up with a yellow diamond in the following
program instead of searching for a solution?

declare

proc{Equations Sol}
XY Z

in
Sol = solution(x:X y:Y z:Z)
{FD.distribute naive [X Y Z]}

[X Y Z] ::: 1#7
X +Y =: 3%Z
X-Y-=:7Z

end

{Explorer.one Equations}
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The problem is that the distributor {FD.distribute naive [X Y Z]}
blocks the execution of all subsequent statements. The distributor waits
until the variables X, Y, Z have to denote integers in a finite domain.
This will never happen since the execution of the statement [X Y Z]

1#7 is blocked by the distributor itself. So we have a deadlock.

The yellow diamond displayed by the Explorer means that the search
process is blocked forever.

You can resolve the problem putting the distributor into its own thread,
i.e. by replacing it with thread {FD.distribute naive [X Y Z]} end.

I found the following call of the explorer in some document. What’s wrong
with this?

{Explorer one(Equations)}

This is the old syntax of Oz 2.0 which is no longer valid in Mozart 1.0.1.
There the syntax for calling the Explorer is slightly different. You have to
use the more consistent notation {Explorer.one Equations} instead.

3.3.6 Exercise

Write a solver for the equation SEND+MORE=MONEY, where every letter
stands for a distinct digit between 0 and 9 and such that leading digits are
distinct from 0.

3.4 Summary

Underspecification and constraint programming are two sides of the same
coin. The main idea of both is to delay case distinctions for as long as
possible.

Disambiguation of underspecified descriptions can be seen as constraint
solving.

The main problem of constraint solving is the danger of combinatoric
explosion.

The basic method of concurrent constraint programming is ‘propagate and
distribute’, in contrast to ‘generate and test’.

Propagation is an efficient concurrent process. Propagation is typically
incomplete from a logical point of view. Completeness can be obtained by
adding distribution to propagation.



Lecture 4

More on Oz

The purpose of this lecture is to improve our Oz-programming skills. We will
present those programming concepts needed for writing the solver of dominance
constraints in the next lecture. We introduce the data structures provided by
Oz which are similar to those in SML, then turn to first-order unification as
in Prolog, and finally present features for concurrent constraint programming;:
finite domain constraints, finite set constraints, and disjunctive propagators.

4.1 Data Structures

We first introduce the data structures provided by Oz (see The Oz Base En-
vironment). A data-structure allows to store values of some (data) type and
provides the standard procedures for munching these values.

We take the viewpoint of functional programming as in SML which is quite
distinct from the concept of constraint programming. However, functional pro-
gramming provides a good platform on which to base a constraint programming
system. The idea of functional programming is to organize computation purely
in terms of values, types, and functional procedures which compute functions
between values of some types.

4.1.1 Values and Types

Up to now we have seen several values used in Oz: numbers, atoms, records,
and lists. There are more values and types in Oz. A still incomplete list of
values and types is the following:

e A number is either an integer or a float (rational number).
e An atom is a word.
¢ A Boolean value is either true or false.

e The unit is a constant value without particular meaning (a dummy).

o1
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e A record aterm of the form Lab(F1:V1 ... Fn:Vn) where:

— the label Lab is an atom, the unit, or a Boolean.
— the features F1, ... , Fn are pairwise distinct atoms or integers.
— the fields V1, ..., Vn are arbitrary values.

— n >0, ie. a record may be an atom, the unit, or a Boolean.

A tuple is a record with only integer features.

A list is a tuple which is either the atom nil or a tuple |(1:V 2:L) where |
is an atom, V a value, and L a list. The atom | is sometimes called ‘cons’.

A procedure is a value.

4.1.2 Syntax for Values

Oz provides a lot syntactical alternative for describing the same value. We
here present some typical descriptions, each of which determines some value
completely.

e Integers are described as 0, 1, “1, 2, 3 etc and floats by 0.0, 1.0,
“1.1 etc.

e Atoms are described by words starting with lower case letter like thisIsAnAtom
or by a word in backwards quotes like ’ case’, *true’ and *ThisIsAnAtom’.

e The Booleans and the unit are described by the keywords true, false,
unit.

e Typical description for tuples and records are the following;:
plus(5 times(5 ~10))
address(street:’Talstrasse’

name:unit (first:hans
second:kamp))

det (phon:a number:singular)

In the first tuple, we have left out the features; it’s a syntactically sugared
version of plus(1:5 2:times(1:5 2:710)).

The values of a record at some feature can be selected by using the selection
function that is denoted by a dot. For instance, the atom singular is
described by the expression

det (phon:a number:singular) .number

e Typical descriptions of lists are: 1|2|3|nil, [1 2 3], and nil. Note how-
ever that [ ] does not describe the empty list!
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e A description of a procedure computing the square function is:
fun{$ X} X*X end

The symbol $ simply means that this procedure is anonymous, i.e. is
not yet given a name. The syntax for the application of procedures uses
curly brackets. For instance, the number 9 is described by the following
application whose evaluation computes the square of 3:

{fun{$ X} X*X end 3}

4.1.3 Global and Local Variables

A variable in Oz describes a value of an arbitrary type. Variables in Oz are
logic variable whose value cannot cannot be changed.

The Oz programming interface comes with a lot of predefined global variables
such as List and Number. The values of both variables are records containing
the standard functions for lists and numbers. For instance, a procedure for
multiplication Number.’*’ can be selected from the record Number at feature
>x?. The expression X*X in turn is nothing else than syntactic sugar for the
application {Number.’*’ X X}.

Local variables can be introduced in Oz by using expression of the form
local ... in ... end. The following piece of code describes a record which
contains two number, the squares of 3 and 4.

local

Square = fun{$ X} X*X end
in

record(s3:{Square 3} s4:{Square 4})
end

The scope of a local variable is restricted by the local-end-expression in which
its is introduced. For instance, the local variable Square cannot be accessed
any further.

There is also a way for introducing new global variables in the programming
interface by using the keyword declare. For instance we can declare the variable
X and assign the value 2 to X as follows.

declare
X=2

Global variables are local with respect to the Oz-programming interface in which
they were declared. Global variable can be accessed during a complete program-
ming session with the same programming interface.

4.1.4 Browsing Values and Types

The Oz-Browser is a output tool provided by the Oz programming interface.
The Oz-Browser is written in Oz itself and available via the global variable
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Browse. For instance, we can browse the value of the global variable X above
by executing;:

{Browse X}

Evaluating the application {Browse X} simply evokes the side effect of browsing
the value of X. Note that the execution of {Browse X} does not return a value
in contrast to {Square X}. The reason is that Browse denotes a relational
procedure which in contrast to a functional procedure (such as Square) does
not return a output value when applied (see section procedures).

The Browser allows you to observe the values denoted by Oz-variables in its
scope. For instance, feed the following lines to the emulator.

declare

R

address(street:’Talstrasse’
name:unit (first:hans
second:kamp))

L=1[12345]

T = pair(L R F)

F = fun{$ X} XX end
in

{Browse [R L T F1}
{Browse [’Browsing fun{$ X} X*X end yields <P/2>’ F]}

When browsing the value of procedure named F a string is displayed meaning
that F denotes a procedure with 2 arguments, an explicit one for input and an
implicit one for output. The reason is that every functional procedure with n
arguments is treated internally as a relational procedure with n + 1 arguments.

The types of values can be checked in Oz dynamically, as illustrated by the
following examples.

{Browse {IsRecord R}}
{Browse {IsRecord F}}

{Browse {0r {IsRecord ~100}
{IsBool ~100}1}}
{Browse {And {And
{IsNumber ~100}
{IsInt ~100}}
{IsFloat ~100}}}

{Browse {Not {IsRecord false}}}
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{Browse {IsRecord {IsRecord false}}}

{Browse {And
{And
{IsList L}
{IsTuple L}}
{IsRecord L}}}

There also exists a predefined procedure in Oz which computes the type of a
given value. This is the procedure Value.status. When applied, it return not
only the type of its input argument but also its actual status which may be
either determined, kinded, or free.

{Browse [{Value.status R}
{Value.status T}
{Value.status L}
{Value.status F}]}

For functional programming, we’d better deal only with values of status ‘deter-
mined’, in order to avoid suspensions (blocking computations).

4.1.5 Procedures

A functional procedure is a procedure which computes a function from values
to a value, possibly depending on global values. Evaluating an application of
a functional procedure means to pass the input values for its arguments, to
compute the output value in function of the input values and the values of its
global variables, and finally to output the output value (in case of termination).

As an example, we consider a description of the functional procedure called
Squarelist. When applied, this procedure inputs a list of integers and output
the list of squares of these integers.

declare
fun{Squarelist Ints}
case Ints
of I|Is then I*I | {SquareList Is}
elseof nil then nil
end
end

{Browse {SquarelList [1 2 3 4 5]}}
{Browse {SquarelList {Squarelist [1 2 3 4 5]}}}

Here, we use an alternative syntax for giving a name to a functional proce-
dure. The following two forms are equivalent descriptions:
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fun{Squarelist Ints} ... end
SquareList = fun{$ Ints} ...end

Oz supports syntax for functional and relational procedures. Internally how-
ever, there are relational procedures only. A relational procedure behaves like a
functional one except that it does not return an output value. Oz supports the
following syntax for relational procedures (an anonymous and a named variant):

P1 = proc {$ X Y Z} ... end
proc {P2 U V} ... end

Applying a relational procedures usually has a side effect such as browsing a
value. For instance, the following relational procedure browses the value of its
argument twice.

proc {$ X} {Browse X} {Browse X} end

The output behaviour of a functional procedure can be simulated by a relational
procedure which raises a side effect on a logic variable (see section unification).
In fact, Oz supports functional procedure in that it provides functional descrip-
tions of relational procedures. The description of functional procedure with n
arguments is translated into a description of a relational procedure with n + 1
arguments, where the last arguments serves as an output argument. For in-
stance, the descriptions of the functional procedure fun{Square X} X*X end
and its application Y={Square 3} are translated as follows:

fun{Square X} X*X end ==> proc{Square X Out} Out=X#X end
Y={Square 3} ==> {Square 3 Y}

Executing the application {Square 3 Y} has a side effect: the value 9 is assigned
to the previously free variable Y.

4.1.6 Records

Records are the central data structure in Oz. Records are equally important in
computational linguistics, where they are called feature trees. For instance, one
might wish to represent the English word girl and its features as the following
record:

word(cat:noun phon: [girl] subcat:determiner)

The main operation on records is feature selection which allows to access a field
belonging to some feature. Feature selection is denoted by a dot. For instance:

{Browse word(cat:noun phon: [girl] subcat:determiner).phon}
{Browse word(cat:noun phon:[girl] subcat:determiner).phon.1}

Note that feature selection is a very efficient operation in Oz which can be done
in constant time. A record is implemented as a hash table whose keys are the
features of the record.
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The base environment of Oz is provided by a set of records that are also
called modules. Global variables denoting modules Number, Record, List, FD,
and many more. For instance if you want to see the functionality provided for
finite domains or records in Oz then simply browse the modules FD and Record.

{Browse FD}
{Browse Record}

This also explains the syntax of FD.distribute in our introductory example: a
procedure for distribution is selected from the record FD. For further information
on records, we refer to ‘The Oz Base Environment’.

4.1.7 Lists

Lists are another important data structure in Oz similarly to Lisp. Therefore,
much functionality for lists is provided in the Oz-module List. Again, we only
give some examples here and refer to documentation ‘The Oz Standard Modules’
for further information.

Here is an example of a list which might be obtained by reading lexical
information on natural language from some file:

declare

WordReps=[[mary noun nil]
[john noun nil]
[girl noun determiner]
[nice adjective nil]
[pretty adjective nil]
[the determiner nil]
[laughs verb noun]
[meets verb [noun noun]]
[kisses verb [noun noun]]
[embarrasses verb [noun noun]]
[thinks verb [verb noun]]
[is verb [adjective noun]]
[met adjective nil]
[kissed adjective nil]
[embarrassed adjective nil]]

As proposed above, one might wish to represent the features of a word in a
more accessible way by using a record rather than a list. For instance, the
record word(cat:noun phon: [mary] subcat:nil) is more readable than the
list [mary noun nil]. More importantly, it is possible to select a feature of a
word in the record representation in constant time, whereas it takes linear time
in the number of features in the list representation.
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Given the list of list WordReps above, we can compute a list of records
Words by converting all representions in WordReps. This can be done by using
the functional procedure Map:

declare

fun{Convert [P C S]}
word (phon: [P] cat:C subcat:S)
end

Words = {Map WordReps Convert}
in
{Browse Words}

Note that the procedure Map is provided by the module List. Indeed, Map is
identical to List.map, as shown when feeding;:

{Browse Map==List.map}

Here, we apply the predefined functional procedure ==, which compares two
Oz-values for equality and returns its result as a Boolean value.

Next, we might want to filter all verbs out of the lexicon Words. This can
be done by using the procedure Filter also defined in the module List:

declare

Verbs = {Filter Words fun{$ W}
W.cat == verb

end}
{Browse Verbs}

4.1.8 Concurrent Threads

Concurrency is an way to organize computation based on the notion of concur-
rent processes. Concurrency is well-known from operating systems like UNIX
which support multi-tasking in order to administrate multiple windows each of
which runs in its own process. Oz supports concurrent computation on a high
level of abstraction. The presentation of concurrency in this reader stays at the
very surface of the phenomenon.

A process in Oz is called a thread. A thread is created when executing a
sequences of Oz-statement sequentially. A thread may block until more informa-
tion becomes available. At first sight blocking may seem to be a programming
error. For instance, consider:

declare F
X={F 2}
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{Browse ’this thread blocks’}
{Browse variables(x:X f:F number:1)}

When feeding this piece of code at once, nothing is browsed. The problem is
that the value of the variable F is unknown such that the application of {F 2}
has to blocks. All followup statements of the same thread (code sequence) are
also blocked until the free variable F gets assigned a value (i.e. gets bound).

Using the programming interface, you can easily feed another sequence of
statements which then computes concurrently in its own thread.

F=fun{$ Y} Y*Y end

Now, the value of F has become known. Thereby, the first thread become active
again and could executed its remaining two Browse-statements.

You can also create your own threads without using the Oz-Programming-
Interface. This can be done by using the command:

thread ... end

For instance, the above example can be rewritten such that the blocking appli-
cation does not block the subsequent statements.

declare X F

thread
X={F 2}
{Browse ’this thread blocks ...’}
{Browse variables(x:X f:F number:1)}
{Browse ’... but not forever’}

end

{Browse ’this thread does NOT block}
F=fun{$ Y} Y*Y end

This example illustrates the creation of a new thread which first blocks until
the free variable F gets bound by the main thread which runs concurrently to
its newly sporned thread.

Threads in Oz threads communicate over shared logic variables which play
the same role such as channels in CML or PICT. In Oz, you can also consider
a thread as a hand-written propagator which adds information about the value
of variables to a shared constraint store.

4.2 Unification

Oz allows to compute with partial data structures, i.e partial descriptions of
data structures. A partial description contains free variables, i.e. variables
whose value is unspecified. We have already seen the usage of free variables for
communication of concurrent threads. We will next show that a variable in Oz
behaves such as a logic variables in Prolog. A logic variable can be understood
as a place holder for a value which can be filled later on.
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Data structures can be specified by equation systems between terms con-
taining logic variables. Unification is the process of solving equations systems,
i.e. to determine the possible values of its variables. Unification over first-order
data structures such as records or tuples is built into Oz. Unification of records
is known in computational linguistics under the name feature unification.

Suppose, for instance, that you want to unify the terms f (X X) and f(g(Y
Z) Y), where X,Y,Z are logic variables denoting some possibly infinite tree. In
order to do so, it is sufficient to solve the equation £(X X) = £(g(Y Z) Y).
which can be done simply by feeding it into the Oz-emulator.

declare
XY Z

in
(X X) = £(g(Y Z2) Y)
{Browse [X Y Z1}

Equations between terms are basic constraints that can be entered directly into
the constraint store without blocking their thread (the subsequent statements).

In the Browser, you can observe the result of the unification process. The
variable Z is still free; the variables X and Y are bound to a term g(g(gC(. ..
Z) Z) Z) which can be solved by an infinite tree depending on the value of Z.
Note that the equation X.2 = X.1.2 is valid independently of the choice of Z.

Unification in Oz terminates even though the result can be the representation
of an infinite tree. The reason is that a solved form of the equations with cycles
can be stored in the Oz constraint store. This is similar to modern Prolog
implementations, such as Sicstus Prolog.

4.3 Finite Domain Constraints

Oz is specifically designed for concurrent constraint programming. Now we
introduce constraint programming in more detail. We consider a very popular
class of constraints that are called finite domain (FD) constraints.

4.3.1 FD-Membership

Finite domain variables are variables that can denote one member of a finite
set of integers. They can be used to express a simple form of disjunction. This
form of disjunction is important when it comes to distribution.

A finite domain variable is a variable whose value is a natural number.
Furthermore, the value of a finite domain variable can be constrained by some
finite domain of natural numbers. For instance, the FD-membership constraint

X :: 145
is equivalent to X € {1,2,3,4,5} which in turn is equivalent to the disjunction:

X=1VX=2VX=3VX=4VX=5
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An FD-membership constraint such as X :: 1#5 can be represented directely
in the Oz constraint store. It is neither a propagator nor does it raise any case
distinction.

4.3.2 FD-Propagators

Oz features several propagators for finite domain variables. We only present
examples here and refer to the finite domain programming tutorial otherwise.
The most important propagators are those for arithmetics. Propagators can be
distinguished from pure evaluators by the colons like in =: or =<:.

3%X-Y =: 4%Z Y% linear arithmetics
3*X-Y =<: 4%Z Y, inequations

For each FD-variable, a finite domain of possible values is maintained in the
constraint store. What these propagators are doing is to restrict the upper and
lower bounds of the domains of its variables; values from the interior of a finite
domain are not excluded even if they contradict the logical semantics of the
propagator.

Another useful propagator is the all-distinct propagator.

{FD.distinct [UV W X Y Z1}

Whenever the value of one of the variables in the list [U V W X Y Z] gets de-
termined, this value is excluded from the domain of the others. The all-distinct
propagator requires linear space in the number of variables it administrates, in
contrast to a naive implementation which require quadratic space:

U\=:V U\=:W U\=:X TU\=:Y U\=:Z
V\=:W V\=:X V\=:Y V\=:Z

W\=:X W\=:Y W\=:Z

X\=:Y X\=:Z

Y\=:Z

More on FD-propagators can be found in the tutorial on finite domain constraint
programming in Oz.

4.3.3 FD-Distribution

Oz supports distribution for finite domain variables but only within encapsu-
lated search. This is only operation which creates a choice node in a search
tree.

Distributors can be created by applying the procedure FD.distribute to
the name of a distribution strategy and a list of variables. For instance, the a
distributor for the stategy first-fail (ff) picks a variable X of minimal current
domain, splits this domain into two disjoint parts, each of which it considers in
an independent part.

X € D1 UDs — X € Dy V X € D,y
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Given that the domain D; U D5 is split, encapsulated search process both
possiblities X € Dy and X € D, independently.

As said before, the split operation is evoked by the procedure FD.distribute.
For instance, the domains of X and Y are split when in the following example:

(Distribution) =
declare
proc{Problem Sol}
XY
in
Sol = solution(x:X y:Y)
X :: 1#5
Y :: 2#3
{FD.distribute ff [X Y]}
end

{Explore.all Problem}

Distribution in Oz is support during encapsulated search only (but NOT on top-
level). This means that a problem has to encapsulated into a unary procedure
which is then and then passed to the Oz-Explorer. Applying this procedure
directely does not lead to distribution on top-level.

Note also that a distributor such as {FD.distribute £f [X Y]} blocks its
thread (all subsequent statements) until distribution has happend (for ever on
top-level). Therefor, a distributor should always be the last statement of its
thread. This can be archieved either by writing it into the last line of the
problem definition or by using a new thread anyway.

thread {FD.distribute ff [X Y]} end

4.4 Finite Set Constraints

Finite set constraints are also known from constraint programming but much
less popular than finite domain constraints. Nevertheless, it turns out that finite
set constraints are extremely useful for natural language processing.

A finite set (FS) variable denotes a finite set of integers. A finite set con-
straint describes the values of finite set variables based on the usual set oper-
ations. The reader should carefully note the difference between finite domain
(FD) variables and finite set variables. An FD-variable denotes a single integer
which can be desribed by a finite set of possibilities. A FS-variable denotes a
finite set of integers which may be empty or contain more than one element.

There is two forms of basic finite set constraint which can be entered directely
into the Oz-constraint-store. The upper:

X={FS.var.upperBound 1#6}
X={FS.var.lowerBound 2#4}

The former constraint states an upper bound X C {1,2,3,4,5,6} whereas the
latter requires a lower bound {2, 3,4} C X. Beside of basic set constraints there
are the following set propagators:
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{FS.subset X Y}
X={FS.union Y Z}
X={FS.partition [U V W]}
{FS.include X I}

The declarative semantics of these constraints are rather obvious:

Xcy
X=YUZ
X=UWVeW
TeX

Operationally, set propagators increase upper bounds and decrease lower bounds
of set variables in the constraint store. The propagation behaviour can be tested
at the following example:

declare
X={FS.var.upperBound 1#6}
Y={FS.var.upperBound 1#2}
Z={FS.var.upperBound 2#3}
{FS.subset X {FS.union Y Z}}
{FS.subset Y Z}

{FS.include 2 Y}

{Browse [X Y Z]}

There are more important set constraints in Oz that we will not present in this
reader. Note also that we do not need distributors for set constraints.

4.5 Disjunctions as Propagators

There are several ways in Oz to express disjunctive information. The most
convenient way are or-statements and finite domain constraints. As we will see,
both of them can in an interlocked manner.

4.5.1 or-Statements

For instance, the possible gender-case-number information of the German word

‘schonen’ can be is described by the following or-statement which behaves as a

disjunctive propagator.

(Or Statement) =
or [Gen Cas Num]=[masc dat sg] then skip J dem schdnen Mann
[1 [Gen Cas Num]=[masc acc sg] then skip 7% den schénen Mann
[1 [Gen Cas Num]=[masc nom pl] then skip 7 die schénen M7er
[ [Gen Cas Num]=[masc gen pl] then skip 7% der schénen M7er
[ [Gen Cas Num]=[masc dat pl] then skip 7% den schénen M7ern
[1 [Gen Cas Num]=[masc acc pl] then skip 7 die schdnen M7er
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[ [Gen Cas Num]=[fem gen sg] then skip % der schénen Frau
[ [Gen Cas Num]=[fem dat sg] then skip % der schénen Frau
[] [Gen Cas Num]=[fem nom pl] then skip % die schénen Frauen
[1 [Gen Cas Num]=[fem gen pl] then skip 7% der schdnen Frauen
[1 [Gen Cas Num]=[fem dat pl] then skip % den schdnen Frauen
[] [Gen Cas Num]=[fem acc pl] then skip % die schénen Frauen
end

An or-statment consists of a set of clauses each of which has a guard and a body.
For instance, the guard of the second clause above is the constraint [Gen Cas
Num]=[masc acc sg]. The body of all clauses above are skip. The distinct
behaviour of guards and bodies is explained in the next section.

4.5.2 Operational Semantics

An or-statement behaves as a propagator which concurrently investigates all its
alternatives. Each alternative is continually monitored. The statement blocks
until only one of the guards is consistent with the current constraint store; then
it commits the clause according to the following rule:

or GUARD then BODY end ==> Guard Body

An or-statement reduces all its guards in parallel such that the constraints of
the guard remain properly separated from those in the global constraint store.
We say that every guard is executed in its own computation space.

As soon as a guard of a clause becomes inconsistent with the global constraint
store, the clause is deleted from the or-statement. If one single clause remains
then the or-statement reduces according to the rule above.

We can observe the semantics of or-statements by feeding the following pieces
of code:

(Test the or-Statement) =
declare
Gen Cas Num
(Or Statement)
{Browse ’An or-statement blocks its thread until it reduces’}
{Browse [’gender:’ Gen ’case:’ Cas ’number:’ Num]}
/*
Cas=nom Gen=fem

*/

When having feeded theses lines, nothing should happen since the or-statement
blocks its thread. But when feeding the constraint Cas=nom Gen=fem the two
Browse statements following the or-statement should become active. Note in
particular that the variable Num is determined to the value pl.
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4.5.3 Choice Points versus Choice Variables

Unlike in Prolog, an Oz disjunction does not create a choice point,.e. a case
distinction. The only way to commit to one alternative is to cause all the others
to become inconsistent.

(Disjunctive Propagator) =
or {Equal N M} then skip
[1 {DomPlus N M} then skip
[1 {DomPlus M N} then skip
[1 {Side N M}
end

Yet, in order to perform search, we often need to force commitment to one
or the other alternative. The standard trick in constraint programming is to
introduce a choice variable, also known as a control variable.

We control the alternatives by a choice variable C. C is a finite domain
variable with the domain 1#4; simply by equating it with 1, 2, 3 or 4, we can
commit to the corresponding alternative.

(Choice Variables) =
or C=1 {Equal N M} then skip
[1 C=2 {DomPlus N M} then skip
[1 C=3 {DomPlus N M} then skip
[1 C=4 {Side N M} then skip
end

By distributing the values of the finite domain contol variable C we can now
created choice points on need by {FD.distribute naive [C]} .

4.6 Summary

e Oz supports a wide range of values: numbers, atoms, booleans, records,
lists, procedures, etc.

e An important data type is the record; it’s essentially the same as a fea-
ture tree in computational linguistics. A record all of whose features are
numbers is called a tuple. Lists are a particular sort of tuples.

e The variables in Oz are logic variables, which can be understood as place-
holders for a value which can be filled in when needed. Oz supports
unification of terms over the class of infinite trees.

e Oz supports concurrent threads which communicate over logic variables.
The application of a free variable blocks its thread (all subsequent state-
ments) until another thread assigns a value to the variable.

e Finite domain constraints are a very important class of constraints which
is supported by the Oz standard library (see the Oz-reference manual
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on System Modules). They specify relations between variables denoting
members of a finite set of integers. Possible values can be narrowed down
by propagation, and there are standard distribution strategies for distin-
guishing cases if necessary.

Finite set constraints are an important class of constraints which is also
supported by the Oz standard library (see the Oz-reference manual on
System Modules). Finite set constraints provide propagators for the usual
set operations.

A disjunction can be used as a propagator in Oz if it is expressed by an
or statement. An or-statement can be turned into a distributor by using
a finite domain control variables and a finite domain distributor.



Lecture 5

Solving Dominance
Constraints

In this chapter, we show how to solve dominance constraints by constraint pro-
gramming with sets. While we won’t say anything about the details, the tech-
niques used here can be used as a basis to build more underspecified processing
mechanisms for dominance constraints. For instance, the encoding of nodes
presented below lends itself very well to capturing the interaction of scope and
anaphora as in Every man loves a woman. Her name is Mary. In the sentence,
the anaphoric reference excludes one reading of the first sentence; we can make
this inference purely with propagation.

5.1 Dominance Constraints

We will consider the following language of tree descriptions based on dominance

constraints:
p n= PNy
| X=Y
| X#Y
| X<*Y
| X-<*Y
| X:(Yla"'ayn)

This language is a variant of the dominance constraints defined in the second
lecture. The differences are as follows:

e X 'Y expresses that X and Y must denote the same node. It’s an ab-
breviation of X <*Y A Y <* X.

e X—<"Y expresses that X must not dominate Y. This couldn’t be ex-
pressed in the original language.

67
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e The new language doesn’t contain lambda binding constraints. This is for
simplicity of presentation; it’s not difficult to add binding constraints to
the implementation. Note that we can now speak just about trees, instead
of lambda structures, as the models of dominance constraints.

e Labeling constraints have been replaced by ‘daughterhood’ constraints
X:(Y7,...,Yy); the difference is that daughterhood constraints don’t spec-
ify the label of X. This, too, is for simplicity, and labels could be (and
have been) added easily to the implementation.

5.2 Constraint Solving as Configuration

We typically depict a dominance constraint as a (constraint) graph. A node of
such a graph represents all occurrences of a variable at the same time. A graph
then describes all those trees that satisfy the dominance relations required by
the graph.

In the graph metaphor, solving a dominance constraint means to configure
its nodes into a tree such that all required dominance relations hold. Of course,
there is a naive ‘generate and test’ strategy for doing this: First, one can generate
for each two nodes in a graph their relative positions in the tree described. A
node can either be above the other node, below it, or ‘to the side of it’, i.e.
neither above or below. In a second step, we can test which of our guesses
are compatible with the dominance constraints required. This yields a non-
deterministic polynomial time algorithm. In terms of complexity theory, one
says that the problem of solving dominance constraints is in NP. The situation
is worse than one might hope since the problem is in fact NP-complete. Thus
we cannot expect any polynomial algorithm to exist. However, we can hope for
an algorithm that is efficient for the applications to semantic underspecification.

5.3 Partioning Trees

When regarded from a specific node, a tree is divided into 5 regions: (1) the
node itself, (2) the nodes above, (3) the nodes below, (4) the nodes to the left,
and (5) the nodes to the right.
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Up
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Left /T\ Right

Down

In this chapter, we will aggregate the set of nodes to the left and to the right, and
call the result the side set. A similar treatment can trivially be developed that
retains the distinction; such a treatment would support precedence constraints.

Thus, in our treatment, any two nodes N; and Ny of a tree must be in one
of 4 mutually exclusive relationships:

1. N1=N,, they are equal

2. Ny <™ Ny, N strictly dominates No

3. Ny <« Ny, N, strictly dominates N;

4. Ny LNy, Ny is to the side of Ny (i.e. none of the above).

We say that any 2 nodes N; and N, must satisfy the treeness condition
expressed as the following disjunction:

(Al) Ni=N,V N; <t N5 V Ns gt N;V N;{LNs

In fact, we can reflect the 4 mutually exclusive possibilities above and asso-
ciate, with a node N, 4 sets of variables:

1. N.eq, the set of variables of whose interpretation is equal N

2. N.up, the set of variables whose interpretations are strictly above N,

3. N.down, the set of variables whose interpretations are strictly below N,
4. N.side, the set of variables whose interpretations are to the side of N

The whole idea of our approach resides here: for each node, to characterize its
position in a tree model in terms of these four sets of variables. These sets are
disjoints and form a partition of the set V of variables in the input description:

(A2) V = N.eq ¥ N.up W N.down W N.side
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5.4 Dominance Constraints as Set Constraints

In this section, we provide an implementation of the dominance constraint solver
based on finite set constraints in Oz. We collect the functionality provided by
the solver in a record called DC for dominance constraint.

5.4.1 Representation of Dominance Constraints

We encode a dominance constraint as a functional procedure taking as argu-
ment a list [N1 N2 ... Nk] of nodes, one for each variable of the description
formula. This procedure then constrains theses nodes as required by the dom-
inance constraint using procedures for atomic constraints that we are going to
make available. Consider the dominance constraint which is typical for a scope
ambiguity with two quantifiers.

X (XQ) AXo<" X5 A X3 (Xg) A X< X5

We are interested in all solutions of this constraints where no variables are
identified. This refects that quantifiers should not be identified. It is slightly
stronger than saying that nodes with distinct labels should not be identified.

X1#X2AX1#X3AX1# X4AX1# X5A
X2# X3AX2#X4AX2# X5A

X3 # X4AX3# X5A

X4 # X5

Using the DC module, it would be expressed as a record which contains the
number of variables and a procedure which inputs a list of nodes and creates
set constraints for these nodes and the dominance constraint.
(DomConExample) =
local
proc {DomCon [N1 N2 N3 N4 N5]}
{DC.daughters N1 [N2]}
{DC.dominates N2 N5}
{DC.daughters N3 [N4]}
{DC.dominates N4 N5}
{ForAll [N1#N2 N1#N3 N1#N4 N1#N5
N2#N3 N2#N4 N2#Nb
N3#N4 N3#N5
N4#N5]
proc{$ N#M}
{DC.notEqual N M}
end}
end
in
DomConExample = ’unit’ (domCon:DomCon
vars:5)
end
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5.4.2 The Solver as a Module

We proved the dominance constraint solver as a record DC which provides all
functionality required for solving dominance constraints. In a more serious im-
plementation, modules could be defined by functors which can be made available
as applets on the internet.

(DC: dominance constraint solver) =
local
(DC: daughters)
(DC: dominates)
(DC: not equal)
local
(DC: equal)
(DC: strictly dominates)
(DC: side)
(DC: make node)
in
(DC: make predicate)
end
in
DC=dom(makePredicate:MakePredicate
daughters:Daughters
dominates:Dominates
notEqual :NotEqual)
end

In particular, the record DC exports the procedure MakePredicate which turns
a dominance constraint into a predicate appropriate as input to encapsulated
search as provided by e.g. Explorer.all or Search.all. For example, we
could now use the Explorer! to search for all possible (constructive) models of
DomConExample:
(DC.oz) =
declare
(DC: dominance constraint solver)
(DomConExample)
in
{Explorer.all {DC.makePredicate DomConExample}}

Here, the number 4 indicates the number of variables in the domance constraint
DomConExample.

5.4.3 Node Representation

A node is represented by a record. It contains an entry for each of the sets Eq,
Down, Up and Side explained above, plus for the auxiliary sets EqDown (resp.

lhttp://www.mozart-oz.org/documentation/explorer/
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EqUp), which are the unions of Eq and Down (resp. Up). Finally, the record has
a feature daughters which will contain the set of daughter nodes, and a feature
user, which is reserved for application-specific data. In the code below, I is
the integer representing the variable. VDom is [1#N], where N is the number of
variables in the description.

The constraints after the in specify that Eq, Down, Up and Side must form
a partition of the set of variables in the description. Furthermore, the variable
(encoded as integer I) that is interpreted by this node must be in the Eq set of
the node.

(DC: make node) =
fun {MakeNode I VDom}

Eq = {FS.var.upperBound VDom}
Down = {FS.var.upperBound VDom}
Up = {FS.var.upperBound VDom}
Side = {FS.var.upperBound VDom}

{FS.union Eq Down}
{FS.union Eq Up}

EqDown
EqUp

in
{FS.partition [Eq Down Up Side] {FS.value.make VDom}}
{FS.include I Eq}

node (
eq : Eq
down : Down
up : Up
side : Side
eqdown : EqDown
equp : EqUp

daughters : _)
end

5.4.4 Translation to Set Constraints

If N1 dominates N2, then everything that is (weakly) below N2 must be (weakly)
below N1, everything that is (weakly) above N1 must be (weakly) above N2,
and everything that is beside N1 is also beside N2. Note however that there can
be nodes beside N2 that are below N1.
(DC: dominates) =
proc {Dominates N1 N2}
{FS.subset N2.eqdown N1.eqdown}
{FS.subset Nil.equp N2.equp }
{FS.subset N1.side N2.side }
end

The equality constraint is simply implemented by unification:
(DC: equal) =
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proc {Equal N1 N2} N1=N2 end

The disequality constraint states that the Eq sets of N1 and N2 must be disjoint:

(DC: not equal) =
proc {NotEqual N1 N2}
{FS.disjoint N1l.eq N2.eq}
end

N1 strictly dominates N2 iff it dominates N2 and is not equal to N2:

(DC: strictly dominates) =
proc {StrictlyDominates N1 N2}
{Dominates N1 N2}
{NotEqual N1 N2}
end

If N1 is to the side of N2 (and reciprocally), then N1 and everything below it is
to the side of N2 (and resp.):

(DC: side) =
proc {Side N1 N2}
{FS.subset N1.eqdown N2.side}
{FS.subset N2.eqdown N1.side}
end

Finally, here is the constraint that deals with immediate dominance by speci-
fying explicitly the daughters of a node N as a list Nodes of nodes. The set of
nodes that are weakly below each of the daughters form a partition of the set
of nodes that are strictly below the mother. Furthermore, the set of nodes that
are strictly above each daughter is precisely the set of nodes that are weakly
above the mother.

(DC: daughters) =
proc {Daughters N L}
N.daughters = L
{FS.partition {Map L fun {$ D} D.eqdown end} N.down}
{ForAll L proc {$ D} D.up=N.equp end}
end

5.4.5 Solution Predicate

MakePredicate is given the arguments N, the number of variables in the domi-
nance constraint, and P, a procedure which takes a list of nodes corresponding
to these variables and imposes the set constraints for the given dominance con-
straint. MakePredicate returns a unary predicate appropriate as an argument
to e.g. Search.all or Explorer.all.

A search predicate always has the same form: it is a unary predicate whose
argument denotes a solution. First it posts all constraints on the solution, then
it specifies a search/distribution strategy:
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(DC: make predicate) =
fun {MakePredicate ’unit’(domCon:DomCon vars:N)}
proc {$ Nodes}
(DC: create nodes)
(DC: translation to set constraints)
(DC: impose treeness)
in
(DC: distribute)
end
end

The solution Nodes must be a list of N nodes. Each variable is represented by a
distinct integer between 1 and N. Thus sets of variables can be represented by
sets of integers. (We store the specification of the finite domain from 1 to N in
the variable VDom.) For each variable, MakeNode creates a term representing the
node that is the interpretation of this variable.

(DC: create nodes) =
VDom = [1#N]
{List.make N Nodes} % constrains Nodes to a list
% [ ... _] of length N
{List.forAl1Ind Nodes
proc {$ I N} {MakeNode I VDom N} end}

Then we constrain these nodes using the procedure DomCon that implements
the dominance constraint. After this we execute choice skip end whose only
effect is to wait for stability; i.e. until constraint propagation has inferred as
much as it could. Typically the dominance constraint DomCon provides very
strong constraints and it is a good idea to impose them first and wait until they
have achieved full effect before going on with the quadratic number of expensive
treeness constraints.

(DC: translation to set constraints) =
{DomCon Nodes}
% waits for stability
local H in H::1#1 {FD.distribute naive [H]} end

Now we impose the treeness constraint between every pair of nodes Ni and
Nj. For every such pair we impose a choice which is controled by its own choice
variables with domain [1..4]. We collect the quadratic number of choice variables
within the list ChoiceVariables.

(DC: impose treeness) =
ChoiceVariables =
{List.foldRTail Nodes
fun {$ Ni|Ns Cs}
{List.foldR Ns
fun {$ Nj Cs}
(DC: treeness condition between Ni and Nj)
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C|Cs
end Cs}
end nil}

Finally, we specify the distribution strategy: here we use First Fail on the choice
variables. Each choice variable is a finite domain variable in [1..4]. First fail is
a strategy which attempts to minimize the branching factor in the search tree:
it picks a (non-determined) variable with the minimum number of remaining
possible assignments.
(DC: distribute) =

{FD.distribute ff ChoiceVariables}

5.4.6 Treeness Condition

The treeness condition that must hold between Ni and Nj is realized by four
concurrent disjunctions and is controlled by choice variable Cij. The latter is a
finite domain variable taking a value in [1..4].

(DC: treeness condition between Ni and Nj) =

C in C::1#4
thread
or C = 1 {Equal Ni Nj}

[1 ¢ = 2 {StrictlyDominates Ni Nj}
[1 ¢ = 3 {StrictlyDominates Nj Ni}
[1 C = 4 {Side Nj Ni}
end
end
The thread ... end statements in the code fragment cause the computa-

tion to create four new concurrent threads, one for each choice variable. This
is necessary because the or statements within the new threads block until only
one of their guards can be satisfiable, and we don’t want this to block our entire
computation.

5.4.7 Better Propagation

A better implementation of the treeness condition can be obtained when pro-
viding propagators for further relations between nodes. This can be observed at
the example given. The search tree of the more naive solver contains a failure
node and two solution nodes. The smart solver contain no failure node any
more and still the two solution nodes.
If N1 does not strictly dominate N2, then N1 is not strictly above N2 nor is
N2 strictly below N1:
(DC smart: not strictly dominates) =
proc {NotStrictlyDominates N1 N2}
{FS.disjoint Nil.eq N2.up }
{FS.disjoint N2.eq N1.down}
end
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The fact that neither N1 nor N2 is on the side of the other can be expressed by:

(DC smart: not side) =
proc {NotSide N1 N2}
{FS.disjoint Nl.eq N2.side}
{FS.disjoint N2.eq N1l.side}
end

We can now state the treeness condition in a smarter way.

(DC smart: treeness condition between Ni and Nj) =

C in C::1#4

thread or C = 1 { Equal Ni Nj}
[1 C\=:1 {NotEqual Ni Nj}
end

end

thread or C = 2 { StrictlyDominates Ni Nj}
[1 c\=:2 {NotStrictlyDominates Ni Nj}
end

end

thread or C = 3 { StrictlyDominates Nj Ni}
[1 c\=:3 {NotStrictlyDominates Nj Ni}
end

end

thread or C = 4 { Side Ni Nj}
[1 Cc\=:4 {NotSide Ni Nj}
end

end

Note that this code is equivalent to an or of four alternatives as above but
the code shown here leads to fewer better propagation and thus less failure.

Here comes the rest of the code for a smarter dominance constraint solver
which is based on the smarter treeness condition. Apart from the smarter
treeness conndition there is nothing else new here.

(DC smart: impose treeness) =
ChoiceVariables =
{List.foldRTail Nodes
fun {$ Ni|Ns Cs}
{List.foldR Ns
fun {$ Nj Cs}
(DC smart: treeness condition between Ni and Nj)
C|Cs
end Cs}
end nil}

(DC smart: make predicate) =
fun {MakePredicate ’unit’(domCon:DomCon vars:N)}
proc {$ Nodes}
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(DC: create nodes)
(DC: translation to set constraints)
(DC smart: impose treeness)
in
(DC: distribute)
end
end

(DC smart: dominance constraint solver) =
local
(DC: daughters)
(DC: dominates)
(DC: not equal)
local
(DC: equal)
(DC: strictly dominates)
(DC: side)
(DC: make node)
(DC smart: not strictly dominates)
(DC smart: not side)
in
(DC smart: make predicate)
end
in
DC=dom(makePredicate:MakePredicate
daughters:Daughters
dominates:Dominates
notEqual:NotEqual)
end

(DCSmart.oz) =
declare
(DC smart: dominance constraint solver)
(DomConExample)
in
{Explorer.all {DC.makePredicate DomConExample}}

5.5 Full Code of the Dominance Constraint Solver

The code below is available from the file DC. 0z2.

declare
local
proc {Daughters N L}
N.daughters = L

2¢ode/DC. 0z
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{FS.partition {Map L fun {$ D} D.eqdown end} N.down}
{ForAll L proc {$ D} D.up=N.equp end}
end
proc {Dominates N1 N2}
{FS.subset N2.eqdown N1.eqdown}
{FS.subset Nl.equp N2.equp 1
{FS.subset Nl.side N2.side }
end
proc {NotEqual N1 N2}
{FS.disjoint Nl.eq N2.eq}
end
local
proc {Equal N1 N2} N1=N2 end
proc {StrictlyDominates N1 N2}
{Dominates N1 N2}
{NotEqual N1 N2}
end
proc {Side N1 N2}
{FS.subset N1.eqdown N2.side}
{FS.subset N2.eqdown Ni.side}

end

fun {MakeNode I VDom}
Eq = {FS.var.upperBound VDom}
Down = {FS.var.upperBound VDom}
Up = {FS.var.upperBound VDom}
Side = {FS.var.upperBound VDom}
EqDown = {FS.union Eq Down}
Equp = {FS.union Eq Up}

in

{FS.partition [Eq Down Up Side] {FS.value.make VDom}}
{FS.include I Eq}

node (
eq : Eq
down : Down
up : Up
side : Side
eqdown : EqDown
equp : EqUp

daughters : _)

end
in
fun {MakePredicate ’unit’(domCon:DomCon vars:N)}
proc {$ Nodes}
VDom = [1#N]
{List.make N Nodes} J constrains Nodes to a list
% [ ... _] of length N
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{List.forAllInd Nodes
proc {$ I N} {MakeNode I VDom N} end}
{DomCon Nodes}
% waits for stability
local H in H::1#1 {FD.distribute naive [H]} end
ChoiceVariables =
{List.foldRTail Nodes
fun {$ NilNs Cs}
{List.foldR Ns
fun {$ Nj Cs}

C in C::1#4

thread
or C = 1 {Equal Ni Nj}
[1 C = 2 {StrictlyDominates Ni Nj}
[1 C = 3 {StrictlyDominates Nj Ni}
[1 ¢ =4 {Side Nj Ni}
end

end

ClCs

end Cs}

end nil}
in
{FD.distribute ff ChoiceVariables}
end
end
end
in
DC=dom(makePredicate:MakePredicate
daughters:Daughters
dominates:Dominates
notEqual:NotEqual)
end
local
proc {DomCon [N1 N2 N3 N4 N5]}
{DC.daughters N1 [N2]}
{DC.dominates N2 N5}
{DC.daughters N3 [N4]}
{DC.dominates N4 N5}
{ForAll [N1#N2 N1#N3 N1#N4 N1#N5
N2#N3 N2#N4 N2#N5
N3#N4 N3#N5
NA#N5]
proc{$ N#M}
{DC.notEqual N M}
end}
end
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in
DomConExample = ’unit’ (domCon:DomCon
vars:5)
end
in
{Explorer.all {DC.makePredicate DomConExample}}

The code of the smart solver is available from the file DCSmart . o0z>.

declare
local
proc {Daughters N L}
N.daughters = L
{FS.partition {Map L fun {$ D} D.eqdown end} N.down}
{ForAll L proc {$ D} D.up=N.equp end}
end
proc {Dominates N1 N2}
{FS.subset N2.eqdown N1.eqdown}
{FS.subset Nl.equp N2.equp 1}
{FS.subset N1.side N2.side }
end
proc {NotEqual N1 N2}
{FS.disjoint Nl.eq N2.eq}
end
local
proc {Equal N1 N2} N1=N2 end
proc {StrictlyDominates N1 N2}
{Dominates N1 N2}
{NotEqual N1 N2}
end
proc {Side N1 N2}
{FS.subset N1.eqdown N2.side}
{FS.subset N2.eqdown N1.side}

end

fun {MakeNode I VDom}
Eq = {FS.var.upperBound VDom}
Down = {FS.var.upperBound VDom}
Up = {FS.var.upperBound VDom}
Side = {FS.var.upperBound VDom}
EqDown = {FS.union Eq Down}
EqUp = {FS.union Eq Up}

in

{FS.partition [Eq Down Up Side] {FS.value.make VDom}}
{FS.include I Eq}
node (

3code/DC. o0z
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eq : Eq
down : Down
up : Up
side : Side
eqdown : EqDown
equp : EqUp

daughters : _)
end
proc {NotStrictlyDominates N1 N2}
{FS.disjoint Nl.eq N2.up }
{FS.disjoint N2.eq N1.down}
end
proc {NotSide N1 N2}
{FS.disjoint Nl.eq N2.side}
{FS.disjoint N2.eq N1.side}
end
in
fun {MakePredicate ’unit’(domCon:DomCon vars:N)}
proc {$ Nodes}
VDom = [1#N]
{List.make N Nodes} 7 constrains Nodes to a list
% [_ ... _] of length N
{List.forAl1Ind Nodes
proc {$ I N} {MakeNode I VDom N} end}
{DomCon Nodes}
% waits for stability
local H in H::1#1 {FD.distribute naive [H]} end
ChoiceVariables =
{List.foldRTail Nodes
fun {$ Ni|Ns Cs}
{List.foldR Ns
fun {$ Nj Cs}
C in C::1#4
thread or C = 1 { Equal Ni Nj}
[1 c\=:1 {NotEqual Ni Nj}
end
end
thread or C = 2 { StrictlyDominates Ni Nj}
[1 C\=:2 {NotStrictlyDominates Ni Nj}
end
end
thread or C = 3 { StrictlyDominates Nj Ni}
[1 C\=:3 {NotStrictlyDominates Nj Ni}
end
end
thread or C = 4 { Side Ni Nj}
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[1 C\=:4 {NotSide Ni Nj}

end
end
ClCs
end Cs}
end nil}
in
{FD.distribute ff ChoiceVariables}
end
end
end
in

DC=dom(makePredicate:MakePredicate
daughters:Daughters
dominates:Dominates
notEqual:NotEqual)

end
local
proc {DomCon [N1 N2 N3 N4 N5]}
{DC.daughters N1 [N2]}
{DC.dominates N2 N5}
{DC.daughters N3 [N4]}
{DC.dominates N4 N5}
{ForAll [N1#N2 N1#N3 N1#N4 N1#N5
N2#N3 N2#N4 N2#N5
N3#N4 N3#N5
N4#N5]
proc{$ N#M}
{DC.notEqual N M}
end}
end
in
DomConExample = ’unit’ (domCon:DomCon
vars:5)
end
in
{Explorer.all {DC.makePredicate DomConExample}}

5.6 Summary

e Concurrent Constraint Programming allows a very intuitive implementa-
tion of a solver for dominance constraints.

e Every variable is associated with four sets of nodes: the sets of variables
equal, strictly above, strictly below, and to the side of it.
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e Finite set constraints can be used to axiomatize the problem; they can be
taken over in Mozart with only syntactic variations.

e The dominance constraint solver based on finite set constraints has been
integrated into the CHORUS demo system and runs efficiently on domi-
nance constraints from underspecified semantics.
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