
Sope Underspei�ation and ProessingAlexander Koller, Dept. of Computational Linguistis, Saarbr�ukenJoahim Niehren, Programming Systems Lab, Saarbr�uken.August 17, 1999

2

OverviewThis reader ontains material for the ESSLLI '99 ourse, \Sope Underspei-�ation and Proessing". It is intended as a summary of the most importantpoints of the ourse and as giving pointers to material for further reading. Thereader and ourse are aimed at a pretty broad audiene; we have tried to onlypresuppose a very general idea of natural language proessing and of �rst-orderlogi.Underspei�ation is a general approah to dealing with ambiguity. In theourse, we'll be partiularly onerned with sope underspei�ation, whih dealswith sope ambiguity, a strutural ambiguity of the semantis of a sentene. Assope underspei�ation is at least partially motivated by omputational issues,we will pay partiular attention to proessing aspets. We're going to showhow dominane onstraints an be used for sope underspei�ation and howthey an be proessed eÆiently by using onurrent onstraint programmingtehnology.The reader ontains material on sope underspei�ation (Letures 1 and2), onurrent onstraint programming (Letures 3 and 4), and the usage ofonurrent onstraint tehnology for proessing with sope underspei�ation(Leture 5).In Leture 1, we give a general introdution to the subjets of the ourse.Underspei�ation is a general approah to oping with ambiguity; the basi ideais to represent all readings of an ambiguous sentene ompatly and to delay theenumeration of the readings for as long as possible. We explain these notionsand then go into more detail about sope ambiguity. Leture 1 is onludedwith an overview of the rest of the ourse.In Leture 2, we present some formalisms for sope underspei�ation. Be-ause we don't want to presuppose muh prior knowledge, this hapter alsoontains an introdution to generalized quanti�ers and (a very brief one) abouttype theory. We de�ne dominane onstraints, whih an be used to desribetrees and (enoded) lambda terms, and apply them to sope underspei�a-tion. Finally, we give an overview over some other sope underspei�ationformalisms.In Leture 3, we move from representing to proessing meaning. We intro-due onurrent onstraint programming (CCP) in Oz, a rather new program-ming paradigm and tehnology mainly used for solving ombinatorial problemssuh as sheduling and optimization. While having been developed in a totally3

4di�erent �eld, the basi ideas of CCP an be seen as losely related to those ofunderspei�ation.In Leture 4, we disuss programming features of Oz needed for Leture 5.In Leture 5, �nally, we apply onurrent onstraint programming in Ozto proessing with sope underspei�ation. We show how to solve dominaneonstraints based on onstraint programming with �nite sets. We an therebyenumerate the readings of a sope ambiguity eÆiently.The ourse in ESSLLI '99 will mainly be based on this reader. If time per-mits, additional material may be presented: a demonstration of the CHORUS-system (Bodirsky et al. 1999) written in Oz and a disussion of CLLS (Egg et al.1998). CLLS is a language of tree desriptions based on dominane onstraintswhih features an underspei�ed analysis of the interation of sope ambiguities,ellipses, and anaphora.For further reading on onurrent onstraint programming in Oz for naturallanguage proessing, we refer to a sript of a leture on the topi (Duhier et al.1999) whih was given from Otober 1998 to April 1999 at the Universit�at desSaarlandes.An HTML version of this reader is available on the World Wide Web athttp://www.ps.uni-sb.de/Papers/abstrats/ESSLLI:99.html. If you in-stall the Mozart programming system http://www.mozart-oz.org at your site(whih is free and pretty easy), you an diretly exeute the Oz example pro-grams in the later hapters of the reader.We hope that you enjoy the ourse:Alexander Koller and Joahim Niehren(http://www.oli.uni-sb.de/~koller andhttp://www.ps.uni-sb.de/~niehren)
Aknowledgments. We would like to thank all members of the CHORUS,NEP, NEGRA, and LISA projet in the Collaborative Researh Center (Son-derforshungsbereih) 378 at Universit�at des Saarlandes, who have ontributedto the work reeted by this reader.

Contents
1 Introdution 91.1 Ambiguities . 91.1.1 Ambiguities . 91.1.2 Sope ambiguities . 101.2 Underspei�ation . 121.2.1 Underspei�ation . 121.2.2 Sope Underspei�ation: The General Idea 141.2.3 Underspei�ed View of the World 151.3 Overview . 171.4 Summary . 182 Sope and Trees 192.1 Generalized Quanti�ers . 192.1.1 The basi problem . 192.1.2 Type Theory . 202.1.3 Generalized Quanti�ers 212.1.4 Generalized Quanti�ers and Transitive Verbs 232.2 Cooper Storage . 242.3 Towards Underspei�ation . 282.4 Trees and Dominane Constraints 292.4.1 Trees . 292.4.2 Lambda Strutures . 312.4.3 Dominane Constraints 322.5 Sope Underspei�ation Using Dominane Constraints 332.6 Other Approahes to Sope Underspei�ation 362.6.1 Quasi Logial Form . 372.6.2 Hole Semantis . 382.7 Summary . 393 Conurrent Constraint Programming in Oz 413.1 Relation to Underspei�ation . 413.1.1 Towards proessing underspei�ed semantis 413.1.2 Disambiguation is onstraint solving 423.2 What is Constraint Programming 435

6 CONTENTS3.2.1 Appliations . 433.2.2 The Problem: Combinatori Explosion 443.2.3 The Method: Propagate and Distribute 443.2.4 What is Oz and who is Mozart? 453.3 Solve a Combinatorial Problem in Oz 473.3.1 Bits of a Constraint Solver 473.3.2 Observing Propagation . 473.3.3 Composing the Solver . 483.3.4 Was this a good Example? 493.3.5 Questions . 493.3.6 Exerise . 503.4 Summary . 504 More on Oz 514.1 Data Strutures . 514.1.1 Values and Types . 514.1.2 Syntax for Values . 524.1.3 Global and Loal Variables 534.1.4 Browsing Values and Types 534.1.5 Proedures . 554.1.6 Reords . 564.1.7 Lists . 574.1.8 Conurrent Threads . 584.2 Uni�ation . 594.3 Finite Domain Constraints . 604.3.1 FD-Membership . 604.3.2 FD-Propagators . 614.3.3 FD-Distribution . 614.4 Finite Set Constraints . 624.5 Disjuntions as Propagators . 634.5.1 or-Statements . 634.5.2 Operational Semantis . 644.5.3 Choie Points versus Choie Variables 654.6 Summary . 655 Solving Dominane Constraints 675.1 Dominane Constraints . 675.2 Constraint Solving as Con�guration 685.3 Partioning Trees . 685.4 Dominane Constraints as Set Constraints 705.4.1 Representation of Dominane Constraints 705.4.2 The Solver as a Module 715.4.3 Node Representation . 715.4.4 Translation to Set Constraints 725.4.5 Solution Prediate . 735.4.6 Treeness Condition . 75

CONTENTS 75.4.7 Better Propagation . 755.5 Full Code of the Dominane Constraint Solver 775.6 Summary . 82

8 CONTENTS

Leture 1IntrodutionIn this hapter, we give a general introdution to the subjet matter of theourse. First, we disuss ambiguities in general, with a spei� fous on sopeambiguities. Then we introdue the notion of underspei�ation and desribeinformally how to represent sope ambiguities in an underspei�ed way. Next,we disuss more global aspets of underspei�ation, suh as the general per-spetive of language proessing from an underspei�ed point of view. Finally,we give a brief overview of the rest of the reader.1.1 Ambiguities1.1.1 AmbiguitiesSooner or later, everyone who is onerned with omputational linguistis omesaross the fat that ambiguities our at all levels of linguisti analysis. Thefollowing is a (not at all exhaustive) list of possible soures of ambiguity.(1.1) a. Lexion:Mary went to the bank.b. Syntati attahment:John wathed the man with a telesope.. Coordination:Birds eat small worms and frogs.d. Quanti�er sope:Every man loves a woman.e. Interation of anaphora and ellipsis:John likes his mother. Peter does, too.f. Disourse:I try to read a novel if I feel bored or I am unhappy.9

10 LECTURE 1. INTRODUCTIONThe sentene in Example (a) is ambiguous in the meaning of the word bank; itan either mean a riverbank or a �nanial institution. In the syntati analysis ofExample (b), there are two di�erent valid options where the PP with a telesopean be attahed: it an modify either the man, who in this reading is identi�edas the man who arries a telesope, or it an modify wathed the man, in whihase it is a tool to wath the man. In Example (), it ould be only small frogsthat birds eat, or it ould be any kind of frogs; the ambiguity is in hoosing whatthe onjuntion oordinates. Example (d) is ambiguous between expressing thatthere is one woman who is loved by all man, or that for eah man, there is awoman he loves, but not everyone has to love the same one. (We will explainthe term \quanti�er sope" in a minute.) In Example (e), it is ambiguous whoit is that Peter likes; it an be either his own mother or John's. Finally, thedisourse in (f) has two di�erent readings: Either the speaker tries to read anovel under two di�erent onditions, or she is unhappy if she does not read anovel.From a omputational point of view, ambiguities are an extremely halleng-ing aspet of language proessing. The problem is that many sentenes havemore than one ambiguity, and that the numbers of readings of the various ambi-guities multiply if the ambiguities an be resolved independently. So a senteneontaining �ve two-way ambiguities an have up to 32 readings. An additionalinonveniene is that ambiguities an interat; for example, the sentene(1.2) John wathed a man with his telesope. Bill did, too.ontains three ambiguities: a PP attahment ambiguity of with his telesope,an ambiguity of anaphori referene (does his refer to John or to the man?), anda strit/sloppy ambiguity. The sentene doesn't have 8 = 23 readings, however,only six. On the one hand, the ellipsis enfores that the PP attahment fromthe �rst sentene must be taken over in the seond sentene. On the other hand,we reate a \opy" of the anaphor in the �rst sentene when we understand theseond sentene; if the anaphor referred to John in the �rst sentene, its opyan refer either to John or to Bill, and if the anaphor referred to the man, itsopy must refer to the man, as well.There are simpler examples of ambiguity interation, whih we will look intolater. For now, the really important points are that ambiguities are omplex,and the total number of readings an explode exponentially with growing lengthof the sentene.1.1.2 Sope ambiguitiesThe type of ambiguity that will be our primary onern in this text are sopeambiguities, as in (1.1d) above. They are typially treated on the level of se-mantis (although there are theories that onsider them on the level of syntaxor in the syntax/semantis interfae, as we shall see tomorrow); that is, weassume that the di�erene between the readings is not a syntati one, butpurely a di�erene in meaning. Unlike e.g. lexial ambiguities, however, theyare ambiguities of the struture of the semanti representation.

1.1. AMBIGUITIES 11Let us assume for the time being that our semanti representation language(what we shall later all the objet language) is ordinary �rst-order prediatelogi. Then the two readings of (1.1d) an be written as(1.3) 8x:(man(x)! 9y:(woman(y) ^ love(x; y)))(1.4) 9y:(woman(y) ^ 8x:(man(x)! love(x; y)))Upon loser inspetion, it beomes apparent that both formulae are om-posed of the same \fragments", 8x:(man(x) ! �), 9y:(woman(y) ^ �), andlove(x; y). The di�erene is in the way these fragments are put together: Inone reading, the fragment ontaining the existential quanti�er gets sope overthe fragment ontaining the universal quanti�er; in the other one, this sopingrelation is reversed. So the ambiguity is in whih of the two quanti�ers is in thesope of the other one { hene the name.The problem arries over to the standard linguisti analysis of NPs as so-alled generalized quanti�ers, as in Montague Grammar (Montague 1974). Ageneralized quanti�er is a term of higher-order logi representing the meaningof, say, every man, most people, or Peter. (Generalized quanti�ers aren't reallygeneralizations of quanti�ers in logi like 9x, but it's the standard name informal semantis.) The sope ambiguity above is reeted by the di�erent ordersin whih the two generalized quanti�ers that are used to ompute the meaning ofthe sentene (for the two NPs) are applied to the nulear sope love(x; y). We'llome bak to generalized quanti�ers in more detail tomorrow. By abuse of theword, we shall frequently just say \quanti�er" to mean \generalized quanti�er";i.e., we shall use the word in its orrupted linguisti sense instead of the logialone.More generally, not only quanti�ers an partiipate in sope ambiguities, butalso other sope-bearing objets suh as negations and some verbs. For instane,the sentene (1.5) has two readings that are represented by the formulae (1.6)and (1.7).(1.5) Every boy does not go to the movies.(1.6) 8x:(boy(x)! :gtm(x))(1.7) :8x:(boy(x)! gtm(x))Here, the fragments are 8x:(boy(x) ! �), :(�), and gtm(x). We'll primarilyonentrate on ambiguities of quanti�er sope here beause all the basi ideasan be shown that way without having to worry about more than one type ofsope-bearing objets.To enumerate the readings of a sentene ontaining a sope ambiguity, onehas to order the sope-bearing objets it ontains. If there are n suh objetsin a sentene and they an be arranged freely, this means that the sentene hasn! readings from sope ambiguities alone { an exponential growth in the lengthof the sentene.

12 LECTURE 1. INTRODUCTIONIn Montague Grammar, enumeration of all readings of a sope ambiguoussentene was done on the level of syntax, where a speial syntati ompositionrule alled \Quantifying In" was reated for exatly that purpose. Realizingthat there seem not to be any independent motivations for onsidering quanti-�er sope on the level of syntax, Cooper (1983) moved its treatment into thesyntax/semantis interfae by equipping a syntax tree with the so-alled Coop-er Storage, in whih meanings of generalized quanti�ers ould be passed up thesyntax tree and \disharged" whenever onvenient. Semanti onstrution thusbeame a nondeterministi proess. One problem of Cooper Storage was over-generation: It would sometimes produe formulae with unbound variables. Thisde�ieny was later repaired (Keller 1988); another algorithm for enumeratingquanti�er sope is (Hobbs and Shieber 1987). Most reently, this kind of anal-ysis of sope ambiguities has reeived an interesting twist by employing linearlogi in the syntax/semantis interfae (see e.g. Dalrymple et al. 1997). Wewill ome bak to some of these approahes in more detail tomorrow.As a �nal aside, one very interesting interation whih sope ambiguitiestake part in is with ellipses in so-alled Hirshb�uhler sentenes (Hirshb�uhler1982). Consider the following example:(1.8) Every man loves a woman. Several gorillas do, too.In proessing the ellipsis, the seond (\target") sentene is expanded toSeveral gorillas love a woman. This means that both the seond and the �rst(\soure") sentene ontain a sope ambiguity, and if they ould be resolvedindependently, the pair of sentenes would have four di�erent readings. But theellipsis enfores a parallelism of the sopes of the quanti�ers. So if every manhas wide sope in the �rst sentene, several gorillas must have wide sope inthe seond sentene as well, and vie versa; the pair of sentenes only has tworeadings. We will onsider this lass of phenomena on Wednesday.1.2 Underspei�ation1.2.1 Underspei�ationMore reently, however, there has been inreasing interest in not enumeratingthe readings of a sope ambiguous sentene at all, but in desribing them withone ompat representation and then working with this representation insteadof all the readings. This approah is alled underspei�ation.There are both omputational and ognitive justi�ations for underspei�-ation. Consider the following sentene, whih is taken from (Poesio 1994).(1.9) A politiian an fool most voters on most issues most of the time, but nopolitiian an fool all voters on every single issue all of the time.Eah of the two sentenes in this example ontains four quanti�ers, whihmeans that eah sentene admits 24 = 4! di�erent orderings of the quanti-�ers. The sentenes an be disambiguated independently; so together, they

1.2. UNDERSPECIFICATION 13Syntax Underspei�ed Readingssem. representationmetalevel objet levelFigure 1.1: Underspei�ed semantis.
have 576 = 4! � 4! readings. Some of these readings may mean the same, butthey will still be distinguished in a traditional analysis of the sentene. On theother hand, you probably ouldn't say whih of these orderings you seletedwhen you understood the sentene. This means that humans don't seem toenumerate readings in understanding an ambiguous sentene.On the other hand, you probably would be able to draw onlusions fromthe sentene { for example, that demoraies work reasonably well in ontrollinggovernments, whih is what the original quote was intended to mean. A simplerexample is the following inferene.(1.10) Every man loves a woman.Peter is a man.Peter loves a woman.This inferene is orret regardless of the exat meaning of the �rst sentene.From a omputational point of view, we know that inferene is an expensive op-eration; we wouldn't want to make things worse by having to exeute it oneah of an exponential number of readings in turn. If we had a alulus ofdiret dedution that would let us draw inferenes as in the example withoutdisambiguating the premises, we ould work with just one underspei�ed rep-resentation for eah sentene, would have to do the work only one, and mightbe muh more eÆient.The fundamental idea of most modern approahes to underspei�ation (nomatter on whih level of linguisti desription) is to add an additional layer oflinguisti representation that desribes the objets of the intended level. Forinstane, in underspei�ed semantis, we introdue a level that is between thetraditional syntati and semanti levels. The objets of this new metalevel are(not neessarily omplete) desriptions of formulae on the traditional semantilevel (the objet level) and an be derived from a traditional syntati analysis(Fig. 1.1). So if we traditionally derived multiple semanti representations fromone syntati representation, the underspei�ed analysis derives one underspe-i�ed semanti representation from the syntax, and then it an get bak all theobjet-level readings if neessary by enumerating them from the underspei�edrepresentation. (But this step is delayed for as long as possible.)The information on the metalevel desribes the range of possible readings;so you ould say it's disjuntive information about the meaning of the sentene

14 LECTURE 1. INTRODUCTION{ something like \The sentene means R1, or it means R2." This disjuntiveinformation doesn't have to be represented syntatially as a disjuntion; in fat,that's something we want to avoid beause a disjuntion is not a very ompatrepresentation.An even more important distintion, however, is between disjuntive infor-mation on the metalevel and on the objet level. A naive attempt at \opti-mizing" the representation might be to eliminate the metalevel and representambiguity as objet-level disjuntion (e.g. of prediate logi). Unfortunately,this an lead to unwanted interations between the new disjuntions and theatual semanti representations, as the following example (involving a lexialambiguity) shows.(1.11) Mary goes to the bank.(1.12) Mary does not go to the bank.Generally, we'd like to assign meaning to these sentenes systematially;if a sentene means ', we want the orresponding negated sentene to mean:'. The naive, objet-level disjuntive analysis of the sentene (1.11) would besomething like go(m; b1) _ go(m; b2);where b1 and b2 stand for the two di�erent meanings of the word bank. Thenbeause of the negation rule, we would assign sentene (1.12) the meaning:(go(m; b1) _ go(m; b2)):However, this is not the same as the disjuntion of the real meanings of thesentene, whih would be :go(m; b1) _ :go(m; b2):So if we want a losed representation of the meaning of an ambiguous sen-tene, we need the metalevel beause ambiguity is disjuntive information onthe metalevel.1.2.2 Sope Underspei�ation: The General IdeaNow let's take a look at how to apply underspei�ation to sope ambiguities.Most reent approahes to sope underspei�ation (e.g. Underspei�edDRT (Reyle 1993), Hole Semantis (Bos 1996), and CLLS/dominane on-straints (Egg et al. 1998)) desribe the semantis of a sentene by �rst sayingwhat material the semantis ontains and then imposing onstraints on the waythis material an be arranged.As an example, Fig. 1.2 displays a graphi representation of suh a desrip-tion. It spei�es that the semanti representation of a reading of the senteneshould ontain the three fragments we identi�ed earlier. Furthermore, it on-tains dotted lines whih stand for the \has sope over" relation (also alled the

1.2. UNDERSPECIFICATION 158x �! �man �x � � 9y �^ �woman �y �love �x � y �
�

Figure 1.2: An underspei�ed representation of the meaning of Example 1.1d.
outsopes relation). Here, we see that both upper fragments must have sopeover the nulear sope, but there is no line between the two upper fragments,so their relative sope isn't spei�ed. However, as the desribed objet mustbe a well-formed formula, we know that one of these fragments must always bewithin the sope of the other one. This latter ondition is enfored by di�erentformal means in di�erent formalisms; for example, Hole Semantis requires aone-to-one \plugging" of fragments into \holes" of formulae, whereas CLLS isreally a language of tree desriptions and exploits that trees annot branh inthe bottom-up diretion. More on that tomorrow.A very interesting ommonality of the three formalisms mentioned above isthat eah uses graphs that look very muh like the one in Fig. 1.2. Eah of themassigns these graphs di�erent formal meaning, but the similarity is not entirelysuper�ial; for example, one an enode both UDRT and Hole Semantis graphsin CLLS. Besides these three, there have been several other inuential approah-es to sope underspei�ation. The oldest of them is Quasi Logial Form (QLF,Alshawi and Crouh 1992); some others are Muskens's (1995) underspei�edsemantis and Minimal Reursion Semantis (MRS, Copestake et al. 1997).Sope ambiguities seem to lend themselves very well to underspei�ation.It may not be straightforward to represent a referential ambiguity in a ompatway, and it an be argued that a human really deides quikly what's pereivedas the anteedent for an anaphor. Generally, underspei�ation may not beadequate for all lasses of ambiguity. But as we have seen above, this doesn'tseem to happen for sope ambiguities of any omplexity, so underspei�ationseems to be a very natural way to represent them.1.2.3 Underspei�ed View of the WorldTo onlude the introdution to underspei�ation in general, we will nowpresent the view of the world of language proessing from a radially under-

16 LECTURE 1. INTRODUCTION(Underspei�ed) Underspei�ed DiretSyntax semantis dedutionworld knowledge disourse knowledge . . .Figure 1.3: Underspei�ed view of the world.
spei�ed perspetive. See Fig. 1.3.The guiding idea of this view is that language proessing has to deal withinomplete information more often than not. Possible soures of inompleteinformation are not just the obvious missing or misunderstood words in spokeninput; other examples are ambiguities (e.g. of sope or anaphori referene)or ellipses (where entire VPs are missing). Still, the goal is to determine theintended meaning of an utterane as far as neessary to extrat the informationrelevant in the situation.In this ontext, syntax and semantis an only ontribute to the full deter-mination of the meaning of a sentene; we also have to take other soures ofinformation, suh as disourse and world knowledge, into aount.In suh an arhiteture, we give underspei�ed semantis enter stage: It is atthis level that we want to ollet and proess all the information we have aboutthe meaning of a sentene. Proessing of a sentene happens as follows. First,a syntax omponent will parse the input sentene as ompletely as possible. Asthe sentene an ontain missing words or syntati ambiguities (e.g. of PPattahment), we an't expet to be able to determine the syntax ompletely;so we use an underspei�ed syntax formalism to desribe the set of possiblesyntati analyses. Now we transfer the partial syntati information into anunderspei�ed semanti desription. From now on, we try to integrate moresoures of information to make this desription more spei�. For example,disourse and world knowledge an be ombined with the semanti informationby diret dedution; this may give us more information about the semantis,�ll in blanks, or exlude readings. Furthermore, reasoning on the semanti levelmay give us hints about the atual syntati struture, so information mightperolate bak to the syntati level from the semanti level.Beause there are atual ambiguities whih an't be resolved further, wean't hope to determine the meaning of a sentene ompletely by this proess.If a rough desription of the meaning is good enough for what we want to do withthe it (e.g. some inferenes), we an stop; otherwise we'll have to disambiguate,i.e. enumerate readings. The key idea is that we want to do as many \heap"inferenes as we an before doing any \expensive" ase-distintion steps. This isexatly the same idea that is the foundation of Constraint Programming, where

1.3. OVERVIEW 17these lasses of operations have the names propagation and distribution. Moreon CP will be said on Thursday.1.3 OverviewIn onlusion of this �rst hapter, let's have a look at the program for the restof the ourse.Leture 2 has the title \Sope and Trees". We are going to look into sopeambiguities and some formalisms for sope underspei�ation in some moredetail. We will give a brief overview of type theory and the theory of generalizedquanti�ers; then we'll disuss Cooper Storage (whih is not an underspei�ationformalisms, but helps understand the problems), QLF (a historially importantunderspei�ation formalism), and Hole Semantis (the most transparent of animportant lass of modern underspei�ation formalisms).Another approah to take to the problem of sope underspei�ation whihwe shall speak about in the seond leture is to onsider formulae as trees andthen desribe these with an appropriate logi. In that respet, we will �rst reviewterms of type theory an be seen as trees. Then we will introdue the languageof dominane onstraints, whih is a logi whose models are trees; we an takea dominane onstraint to desribe the set of terms whih are enoded by treesthat satisfy the onstraint. In this way, we an use dominane onstraints forsope underspei�ation, and we will show how this is done. The material inthe �rst two letures is derived from (Koller 1999).The title of Leture 3 is \CLLS and Parallelism". As we have seen above,sope ambiguities interat with ellipses in so-alled \Hirshb�uhler sentenes";both ellipses and sope also interat with anaphora. In the third leture, we willbriey review the standard analysis of ellipses (Dalrymple et al. 1991). Then wewill bring together mehanisms for desribing sope, ellipses, and anaphora inthe logi CLLS (\Constraint Language for Lambda Strutures"), an extensionof the dominane onstraints of Leture 2. The material for Leture 3 in thisreader is a opy of (Egg et al. 1998).In Leture 4, \Constraint Programming", we move towards the \proessing"part of the title of the ourse. We will disuss Conurrent Constraint Program-ming (CCP), a programming paradigm for solving ombinatorial problems suhas sheduling or optimization. The general problem it onsiders is to �nd assign-ments of values to variables that satisfy a given set of onstraints. Traditionally,this is done by generating suh models and then testing if they satis�ed the on-straint (by brute-fore searh). The basi idea of CCP is that information aboutthe values of variables an be held in a onstraint store, and onurrent pro-esses alled propagators an wath the store and ontribute information to it.This is a proess of adding simple (i.e. omputationally heap) inferenes to thestore. Only when propagation an't ontribute anything new does one searhstep take plae; then propagation starts again. In this way, a searh spae ansometimes be redued dramatially, whih is essential for diÆult problems.Finally, we put our new knowledge about CCP to use in Leture 5, \Pro-

18 LECTURE 1. INTRODUCTIONessing Dominane Constraints". We show how dominane onstraints, whihwe saw in Leture 2 to be a powerful formalism for sope underspei�ation, anbe represented, proessed, and solved using onstraint programming. The im-plementation enodes a dominane onstraint as a onstraint on variables over�nite sets of integers. Modulo syntati variation, these set onstraints an bewritten down as a program in a programming language like Oz (Smolka 1995;Oz Development Team 1999).The material for letures 4 and 5 in this reader is an adapted version of partsof an introdutory ourse on Oz for omputational linguists by Denys Duhier,Claire Gardent, and Joahim Niehren at the University of the Saarland (Duhieret al. 1999). More about that ourse an be found on the World Wide Web athttp://www.ps.uni-sb.de/~niehren/vorlesung/.1.4 Summary� Ambiguities our on all levels of linguisti analysis. They are a hallengeto automati language proessing beause ambiguities in the same sen-tene multiply, yielding a number of readings exponential in the numberof ambiguities.� One type of ambiguity is the sope ambiguity. Sope ambiguities are ambi-guities of the struture of the semanti representation of a sentene. Theyour whenever a sentene ontains multiple sope-bearing objets whihan be ordered independently.� Underspei�ation is an approah to oping with ambiguity whih aimsto represent all ambiguities by a single, ompat desription of all read-ings. Then any work is done with the desription instead of the readings,and their enumeration is delayed for as long as possible. There are bothognitive and omputational motivations for doing this.� Sope underspei�ation is typially done by speifying the semanti ma-terial of a sentene and imposing some onstraints on how this materialan be omposed. Many sope underspei�ation formalisms use diagramsas in Fig. 1.2, but eah assigns them di�erent meaning.� Constraint programming is a programming paradigm that was developedin the ontext of ombinatorial problems. Inomplete information abouta problem is kept in a so-alled onstraint store and used to guide thesearh for omplete solutions (\propagate and distribute", as opposed to\generate and test"). CP shares a ommon underlying intuition withunderspei�ation and an be used for eÆient proessing of underspei-�ation.

Leture 2Sope and TreesToday, we are going to disuss the problem of sope underspei�ation in moredetail. Our key point of this setion is to show how to use dominane on-straints for sope underspei�ation. The language of dominane onstraints isa logi whose models are trees; the variables of these formulae denote nodes ofa tree. Further, we are going to look into other approahes to sope ambigui-ty { Cooper Storage, QLF, and Hole Semantis {, the latter two of whih areunderspei�ation formalisms as well.2.1 Generalized Quanti�ersAs we have tried not to presuppose too muh prior knowledge about logi orsemantis, we will �rst give a brief introdution to type theory and the theoryof generalized quanti�ers before we delve into the details of this hapter. Wewill provide as muh material on these issues as neessary to understand therest of the hapter, but it's lear that we an only touh on the surfae of thesetopis, and we reommend a loser look at both. The standard formal semantistextbook in this area is (Gamut 1991); Blakburn and Bos (1999) also have avery readable introdution from the perspetive of omputational semantis.2.1.1 The basi problemIn the 60s, semantiists �rst beame interested in a ompositional analysis ofmeaning. The idea of ompositionality is usually attributed to Frege and isgenerally taken to mean that \the meaning of an expression is a funtion of themeanings of its parts". For example, if you want to determine the meaning ofa sentene, you'd �rst determine the meanings of the top NP and VP and thenombine these in a uniform way. Compositionality is nie beause it enouragesa lean semanti onstrution, where all NPs are basially treated in the sameway et., so you an essentially \read the semantis o� the syntax tree".Unfortunately, if we use �rst-order prediate logi to represent meaning, we19

20 LECTURE 2. SCOPE AND TREESan't easily onstrut these representations ompositionally. One problem isthat NPs an end up in very di�erent plaes throughout a formula:(2.1) Peter likes a woman.(2.2) 9x:woman(x) ^ like(peter; x)(2.3) Every man likes a woman.(2.4) 9x:woman(x) ^ 8y:(man(y)!like(y; x))(2.5) 8y:(man(y)!9x:woman(x) ^ like(y; x))In (2.2), the semanti representation of (2.1), the semantis of the underlinedNP has been redued to a single onstant peter. In (2.3), on the other hand,the underlined NP is represented by muh more (and very di�erent) \semantimaterial", whih is distributed all over the formula.At �rst sight, this makes Peter and every man, whih �ll exatly the samerole syntatially, so di�erent semantially that it seems impossible to modelsemanti onstrution ompositionally. To do it anyway, we will treat both NPsas generalized quanti�ers. But �rst, we need to lay some formal groundwork.2.1.2 Type TheoryFirst-order prediate logi (FOL) is severely restrited in its expressive powerin that it only allows variables (and quanti�ation) denoting individuals, andonly onstants denoting individuals and relations between individuals. Typetheory or higher-order logi (HOL) is a generalization of FOL that allows bothvariables and onstants denoting any kind of funtion involving individuals andtruth values.Type theory splits the world into lasses by distinguishing objets of di�erenttypes. A type � is a term of the following syntax:� ::= ej tj h�; �0iEvery type denotes a distint subset of the universe. The objets denoted bytype e are individuals; they are just the kind of basi entities that a �rst-ordervariable an denote. Objets of type t are truth values (true and false). Thedenotation of a type h�; �i is the set of funtions that take objets of type � asarguments and output objets of type �.The syntati objets of HOL are terms ; every well-formed term an beassigned exatly one type. Terms are de�ned as follows:� All onstants and variables of type � are terms of type �.� If M and M 0 are terms of type t, then :M and M ^M 0 are terms of typet.

2.1. GENERALIZED QUANTIFIERS 21� If M is a term of type t and x is a variable of arbitrary type �, then 8x:Mis a term of type t.� If M is a term of type h�; �i and M 0 is a term of type �, then M(M 0) isa term of type �.� If M is a term of type � and x is a variable of type �, then �x:M is aterm of type h�; �i.The intuition is that the logial onnetives work as in FOL (with the otherfamiliar onnetives de�nable in the usual way). An appliation M(M 0) is reallysomething like appliation of a funtion to an argument. An abstration �x:Mis intuitively a funtion that inserts its argument wherever x appears in M andthen evaluates the result. Clearly, abstration is most interesting if M ontainsfree ourrenes of x, but that doesn't have to be the ase. You an think ofthe x in an abstration as a formal argument of a proedure in a programminglanguage. In fat, lambda alulus is the foundation of an entire programmingparadigm, so-alled funtional programming, inluding languages like Lisp orSML. The most fasinating aspet of lambda alulus is that its de�nition isextremely simple, but (its untyped variety) is still expressive enough to enodea Turing mahine.For example, if f and g are onstants of type he; ei and a is a onstant oftype e, then f(g(a)) is a term of type e, and �xe:f(g(x)) is a term of type he; ei.On the other hand, f(g) is not a term beause f expets an argument of typee, and g is of type he; ei. Finally, if P is a onstant of type he; ti (that is, theequivalent of a FOL prediate), x is a variable of type e, and F a onstant oftype t, then 8x:P (x)! F is a well-formed term of type t.HOL terms an be assigned a semantis that's ompatible with the standardFOL semantis and the appliation/abstration intuition. We won't do so hereand refer to the textbooks mentioned above.As in �rst-order logi, it's interesting to have a syntati test for hekingwhether two expressions have the same denotation. An (inomplete, but essen-tial) way for doing so is testing for so-alled���-equivalene. The idea here isthat if it is possible to rewrite the terms using a given set of redution rulesuntil they are redued to the same term, they denote the same funtion.These rewrite rules look as follows:(�) �x:M ! �y:M [y=x℄ (y not free in M)(�) (�x:M)(M 0) ! M [M 0=x℄(�) �x:M(x) ! MIn simply typed lambda alulus, ���-equivalene of terms is deidable.But of ourse, it doesn't say anything about the logial onnetives, only aboutappliation and abstration.2.1.3 Generalized Quanti�ersAfter this brief exursion, let us return to the problem of ompositional analysisof NP meaning. In this setion, we're going to present a uniform way to rep-

22 LECTURE 2. SCOPE AND TREESresent the semantis of an NP whih an be used in a ompositional semantionstrution. We won't really talk about semanti onstrution, though; we'restill only laying foundations.In higher-order logi, the meaning of a verb is a funtion that takes one ormore arguments of type e and then returns a truth value (type t). For example,an intransitive verb is assigned type he; ti; a transitive verb is assigned typehe; he; tii.The �rst idea of ombining the meanings of an intransitive verb (type he; ti)and of an NP is that the NP denotes an individual (type e); so we an justapply the verb semantis to the NP semantis. This works for a sentene like(2.6) Peter sleeps.The semantis we get is just sleep(peter).But the examples we have seen earlier make it lear that this analysis doesn'tarry very far. An additional problem is that most NPs (every man, two girls)don't really denote single individuals. A more exible analysis, then, is touniformly analyze the semantis of NPs as terms of type hhe; ti; ti { so-alledgeneralized quanti�ers. A term of type hhe; ti; ti desribes a set of properties;the intuition behind this type-raised analysis of NPs is that the meaning of anNP is the set of all properties that apply to all the individuals desribed by theNP. Consider, for example,(2.7) Every man sleeps.The semantis we give to the NP every man here is�P:8x:man(x)! P (x);where P is a variable of type he; ti, and x is a variable of type e. This termdenotes the set of all properties that every man has. It's a term of type hhe; ti; ti,so we an apply it to sleep; semantially, this means to verify if sleeping is aproperty that every man has. Inidentally, we an apply �-redution to simplifythe term: (�P:8x:man(x)! P (x))(sleep)!� 8x:man(x)! sleep(x):In other words, we have obtained the same meaning that we had originallyintended. But note that the appliation has reversed; we applied the verbsemantis to the NP semantis before, and now we apply the NP semantis tothe verb semantis.We an take the deomposition of the sentene meaning one step furtherif we assign independent meaning to determiners. In the analysis of (2.7), weould analyze every as �P�Q8x:P (x)! Q(x)and man just as man; then the meaning of every man as used above an beobtained just by applying the determiner meaning to the noun meaning. This

2.1. GENERALIZED QUANTIFIERS 23works for other determiners as well, even for ones like most, whih an't berepresented in a �rst-order formula. We all the term the determiner meaningis �rst applied to the restrition of the generalized quanti�er, and the argumentthat the entire generalized quanti�er is applied to, its sope. (In the example,the restrition was man, and the sope was sleep.)The type-raised analysis of NPs even works for proper names. We justreplae the individual by all of its properties. That is, we analyze Peter not aspeter, but as �P:P (peter):Again, P is a variable of type he; ti. So as before, we an apply the meaningof Peter to the meaning of sleeps (to stay with our earlier example); �-redutionwill then simplify the result to our original analysis:(�P:P (peter))(sleep)!� sleep(peter):This means that interpreting NPs as sets of properties, whih looks strangeat �rst, gives us a uniform analysis of all kinds of NPs. In the light of theexamples from the beginning of the setion, this is a very surprising result.2.1.4 Generalized Quanti�ers and Transitive VerbsA problem omes up when we try to analyze sentenes with transitive verbs.The problem is that a transitive verb is analyzed as something of type he; he; tii,and we an't use this as an argument for a generalized quanti�er. We'll presentan analysis using something Blakburn and Bos (1999) all \Montague's trik"beause it originates in (Montague 1974) and involves a step that looks surpris-ing at best and like a hak at worst. In Setion 2.5, we'll present an analysisthat doesn't use Montague's trik overtly, but produes the same results.The idea behind Montague's trik is to apply the transitive verb meaningto as many variables of type e as neessary to give the result type t, and thento abstrat just one over a type e variable eah time a quanti�er is applied.Saying the same in some more detail, eah NP is assigned a unique index i, andwhen the verb gets an NP argument syntatially, the verb is applied to thevariable xi, of type e (and not, as above, the entire NP to the verb). Whenall arguments of the verb have been bound, the result will have type t. Thenwe an apply the NP meanings (of type hhe; ti; ti) to this term; but to give theargument the orret type (he; ti), we �rst have to abstrat over a variable. Ofourse, it has to be the orret variable; so if we're trying to apply the NP withindex i, we �rst have to abstrat over xi. We repeat this for all NPs, in anyorder (whih is where sope ambiguities ome from). Montague's trik is thatthe �xi's \fall from the sky", seemingly unmotivated.Here's an example to make this learer. Consider again the earlier example(2.8) Every man loves a woman.

24 LECTURE 2. SCOPE AND TREESLet's say every man gets index 1, and a woman gets index 2. Now the �rststep to onstruting the meaning of the sentene is to apply love, the meaningof the verb, to these two variables:love(x2)(x1)This is a term of type t. In the next step, we want to apply one of thequanti�ers; let's take a woman for now. Before we an apply the quanti�er, we�rst have to abstrat over x2 to give the argument suitable type. This looks asfollows: (�P:9y:woman(y) ^ P (y))(�x2:love(x2)(x1))!� 9y:woman(y) ^ (�x2:love(x2)(x1))(y)!� 9y:woman(y) ^ love(y)(x1)Again, we have something of type t, and by abstrating over x2 prior to theappliation, we have made sure that the variable y introdued by the generalizedquanti�er ends up in the orret argument position of love. Now we do the samefor the other quanti�er (whih was onneted to the variable x1):(�Q:8x:man(x)! Q(x))(�x1:9y:woman(y) ^ love(y)(x1))!� 8x:man(x) ! (�x1:9y:woman(y) ^ love(y)(x1))(x)!� 8x:man(x) ! 9y:woman(y) ^ love(y)(x)The end result is a term of type t, and it's just the �rst-order formula thatwe intended to have as one of the two di�erent meanings of the sentene initially.You'll notie that in onstruting this formula, we �rst applied the quanti�erfor a woman to love(x2)(x1), and then we applied the quanti�er for every manto the result. We get the other reading of the sentene by reversing the orderof appliation:(�Q:8x:man(x)! Q(x))(�x1 :love(x2)(x1))!� 8x:man(x)! (�x1:love(x2)(x1))(x)!� 8x:man(x)! love(x2)(x)(�P:9y:woman(y) ^ P (y))(�x2:8x:man(x)! love(x2)(x))!� 9y:woman(y) ^ (�x2:8x:man(x)! love(x2)(x))(y)!� 9y:woman(y) ^ 8x:man(x)! love(y)(x)2.2 Cooper StorageHistorially, Montague's trik �rst appears in the \Quantifying In" rule of Mon-tague Grammar, an approah of seminal importane to quanti�er sope andmuh else. Montague de�ned a ategorial grammar for a fragment of English.Using the Quantifying-In syntax rule, the syntax of a sope ambiguous senteneould be derived in several di�erent ways, eah of whih gave rise to one of the

2.2. COOPER STORAGE 25SNPDetevery Nman VPVloves NPDeta NwomanFigure 2.1: Syntax tree for Every man loves a woman.
readings beause Montague's trik was applied in di�erent orders to the variousquanti�ers. For an in-depth overview of Montague's work, see also (Partee andHendriks 1997).A major oneptual problem with Montague's analysis is that it assumes asyntati ambiguity for analyzing sope ambiguities whih doesn't seem to bejusti�able in any other way; this ambiguity is really on the level of semantis. Anearly attempt to apture sope ambiguity semantially was the Cooper storage(Cooper 1975; Cooper 1983). In this setion, we are going to briey explainhow it works, and then we will disuss some problems that it has.Cooper storage takes as its input an (unambiguous) syntati analysis ofa sentene. Its output is a HOL formula that represents the meaning of thesentene. It operates nondeterministially so it an produe multiple readingsfor a semantially ambiguous sentene. We assume here that the syntax of asentene is given as a phrase struture tree (but the basi mehanism wouldwork with other grammar formalisms, too). The example we'll work with isFig. 2.1, the syntax tree of Every man loves a woman.The fundamental idea of Cooper Storage is to assoiate with eah node ofthe syntax tree two values: the ordinary semanti ontent of the tree belowthat node, and a quanti�er store for remembering generalized quanti�ers thatstill have to be applied. Formally, semanti ontents are (higher-order) terms;quanti�er stores are sets of pairs hi;Mi of an index i and a term M of typehhe; ti; ti. These values are omputed in a bottom-up fashion; omputationterminates when all nodes have obtained a ontent and the quanti�er store ofthe root is empty. You an think of the quanti�er store as a reord-keepingdevie for Montague's trik; whenever an NP gets a new index i and a verb isapplied to the new variable xi, the real NP meaning is put on the store underthe index i.

26 LECTURE 2. SCOPE AND TREESThe semanti ontent of a terminal node an be taken from the lexion; thequanti�er store of terminals is always empty. If an internal node has no NPhildren, its semanti ontent is the semanti ontent of its hildren, appliedto eah other (in the orret order); its quanti�er store is the union of thehildren's quanti�er stores. If it does have NP hildren, we an either determineits ontent and store in this way, too, or we an apply the storage rule to queuethe quanti�er for later appliation on the store. Finally, for S nodes, we havethe hoie between usual appliation, NP storage (if there is an NP hild), andretrieval of quanti�ers from the store.Storage works as follows. Let A be any internal node with an NP hild B;let's all the other hild C. Let MB and MC be the ontents and �B and �Cthe quanti�er stores of the nodes B and C. Then pik a new index i. Thesemanti ontent of A an be MC(xi);and its quanti�er store an be�B [�C [fhi;MBig:Conversely, retrieval works as follows. Let A be an S node with ontent Mand quanti�er store �, and let hi;M 0i 2 �. Then A an also have the ontentM 0(�xi:M)and quanti�er store �� fhi;Mig:Let's onsider an example for illustration. Fig. 2.2 shows a ooper-storageanalysis of Every man loves a woman whih is omplete exept for the valuesassoiated with the root; we'll disuss those presently. As you an see, all thepreterminal nodes of the tree have the obvious semanti ontents, and theirquanti�er stores are empty. Now the ontents of the two NP nodes are just theappliations of their Det daughters to their N daughters, and their quanti�erstores are still empty. In the third step, we ompute the meaning of the VPnode. This node has one NP daughter, so we apply the storage rule (say, withindex 1), whih assigns the VP node the ontent love(x1) and puts the NPmeaning into the quanti�er store with index 1.Now, beause it's an internal node with an NP hild, the ontent and storeof the root (S) node an be obtained by appliation of the storage rule (say,with index 2). The result islove(x1)(x2); fh1; �Q9y:woman(y) ^Q(y)i; h2; �Q8x:man(x)! Q(x)ig:What we need, however, is a value for the root where the quanti�er storeis empty. So we have to take the quanti�ers out of the store by appliation ofthe retrieval rule; the order in whih we take them out will determine the sope

2.2. COOPER STORAGE 27Slove(x1)(x2); fh1; �Q9y:woman(y) ^Q(y)i; h2; �Q8x:man(x)! Q(x)ig: : :NP�Q8x:man(x) ! Q(x), ;Det�P�Q8x:P (x) ! Q(x), ;every Nman, ;man
VPlove(x1), fh1; �Q9y:woman(y) ^Q(y)igVlove, ;loves NP�Q9y:woman(y) ^Q(y), ;Det�P�Q9y:P (y)^Q(y), ;a Nwoman, ;womanFigure 2.2: Cooper-storage analysis of the running example.

reading. First, let's start with the woman NP (index 1); then we an assign thefollowing values to the root:(�Q9y:woman(y) ^Q(y))(�x1:love(x1)(x2)); fh2; �Q8x:man(x)! Q(x)ig!� 9y:woman(y) ^ (�x1:love(x1)(x2))(y); fh2; �Q8x:man(x)! Q(x)ig!� 9y:woman(y) ^ love(y)(x2); fh2; �Q8x:man(x)! Q(x)igThen we have to take the quanti�er with index 2 from the store:(�Q8x:man(x)! Q(x))(�x2:9y:woman(y) ^ love(y)(x2)); ;!� 8x:man(x) ! (�x2:9y:woman(y) ^ love(y)(x2))(x); ;!� 8x:man(x) ! 9y:woman(y) ^ love(y)(x); ;This ompletes the derivation of the �rst reading: We have found a way toderive the root a ontent and an empty store. The other reading is obtainedby �rst taking the NP with index 2 out of the store and then the one withindex 1; we invite you to verify this. Generally, the retrieval operations an bedone in any order, whih means that Cooper storage will always generate n!readings for a sentene with n quanti�ers. So we ould say that the semantirepresentation we have obtained before retrieving anything is a representationof all the readings that doesn't ommit to any one of them.

28 LECTURE 2. SCOPE AND TREES(�P�Q8x:P (x)! Q(x))(man)(�x1: �)love(x2)(x1)(�P�Q9y:P (y) ^Q(y))(woman)(�x2: �)
Figure 2.3: Underspei�ed desription of the meaning of Every man loves awoman as a lambda term.
2.3 Towards Underspei�ationUnfortunately, Cooper storage an overgenerate. Consider the following famousexample from (Hobbs and Shieber 1987):(2.9) Every researher of a ompany saw most samples.This sentene ontains three quanti�ers, but it has only �ve readings. Cooperstorage will generate six (= 3!) readings, the sixth of whih is8x:res(x) ^ of(x3)(x) ^ 8z:omp(z)! most(sample)(�y:saw(y)(x)):This reading is obviously nonsense; it still ontains the variable x3, whihshould have been bound by the quanti�er with index 3 (a ompany) and is nowfree. What has happened here is that the neessary sope relations between thequanti�ers are more omplex than Cooper storage an represent; it's not justany permutation at the sentene level.One way out of this problem was proposed by Keller (1988) with his \NestedCooper Storage". The di�erene to ordinary Cooper storage is that the Stor-age rule of Nested Cooper Storage doesn't just plae the meanings of the NPhildren into the quanti�er store, but the entire pair of meaning and term storeassoiated with the NP; i.e., the store an be nested deeply. Retrieval is ad-justed aordingly. Nested Cooper Storage generates exatly the �ve orretreadings in the example. (But now it's important that we really have a hoiewhether we want to store or apply an NP; this wasn't really neessary for or-dinary Cooper storage, and we always stored NPs in the example.) Anotheralgorithm for generating quanti�er sope is (Hobbs and Shieber 1987).A fundamental problem with all of these approahes, however, is that theyan only generate all readings. As we have seen, a sope ambiguous sentenean have an exponential number of readings, so this an be very expensive. Aswe have argued in the introdution, it is more reasonable both from a ognitiveand from a omputational point of view to desribe the set of readings in aompat way and then to work with this desription instead of with all readingsfor as long as possible.

2.4. TREES AND DOMINANCE CONSTRAINTS 29Cooper Storage does desribe readings ompatly, but the desription israther impliit and, as we have seen, not very expressive. What we are reallyafter is a desription roughly as in Fig. 2.3 whih says whih fragments a formulaontains and allows to speify how they must be arranged { with a notion of\fragment" as in the introdution, where we split the orresponding �rst-orderformulae. We have already argued in the introdution that this is what mostmodern underspei�ation formalisms do and will spend the next two setionsto give the diagram a formal meaning. We want to speak about the struture ofa lambda term; we will take this really seriously and speak about trees, whihmake this struture expliit.2.4 Trees and Dominane ConstraintsIn this setion, we will �rst de�ne what a tree is. Then we will embed trees into�rst-order model strutures, so-alled lambda strutures ; in addition to speify-ing a tree, they de�ne some relations between tree nodes, in partiular, a bindingrelation. Finally, we de�ne the syntax and semantis of dominane onstraints ;this is a logi whih is interpreted over lambda strutures. We shall see in thenext setion how to apply dominane onstraints for sope underspei�ation.In one form or another, dominane onstraints have been used very widelythroughout omputational linguistis. The �rst ourrene we're aware of is in(Marus et al. 1983), where they were used for inremental parsing. They'reimportant for ombining tree-adjoining grammars with uni�ation grammars(Vijay-Shanker 1992), they're at the heart of many urrent sope underspei-�ation formalisms (as we shall see), and they're used for the analysis of dis-ourse (Gardent and Webber 1998). Their formal properties are rather well-understood, as well; Bakofen et al. (1995) axiomatized them in �rst-orderprediate logi, and Koller et al. (1998) investigated the omplexity of variouslogial languages over dominane onstraints. Finally, Duhier and Gardent(1999), Koller et al. (1998), and Duhier and Niehren (1999) have investigatedhow to solve dominane onstraints (i.e. enumerate their models) eÆiently.We'll say something about this in Leture 5.Before we start, a word on notation. We write N for the set of naturalnumbers 1; 2; 3; : : : and N0 for N [f0g. If A is a set, we write A� for the wordmonoid over A, that is, all words of length � 0 that are built from symbols inA. As usual, we write the empty word �, and we write onatenation of twowords �1; �2 by juxtaposition �1�2.2.4.1 TreesTrees are one of the most suessful data strutures in omputational linguistisand omputer siene. The standard way of thinking about trees is as diretedgraphs that have a unique root suh that there is exatly one path from the rootto any other node of the tree. This ondition implies some other properties, e.g.that they are ayli and that there is no node with two inoming edges. Tree

30 LECTURE 2. SCOPE AND TREESf � �g � 1a � 11 f � 2b � 21 � 22Figure 2.4: Tree orresponding to f(g(a); f(b;)).
nodes are typially deorated with labels (e.g. S or NP in a syntax tree), andsometimes edges are deorated with so-alled features.Here, we will employ a slightly di�erent de�nition of a tree. First, we as-sume a signature � of node labels. Eah of the labels (or onstrutors) in thissignature is assigned an arity by an arity funtion ar : � ! N0 . The only re-strition we impose on the signature is that it must ontain at least two di�erentonstrutors, one of whih must be nullary; otherwise, there would be no �nitetrees.Now we de�ne a tree domain � to be a nonempty subset of N� suh that1. � is pre�xed-losed : Whenever for any �1; �2 2 N� , �1�2 2 �, it mustalso hold that �1 2 �.2. � is losed under the left-sibling relation: Whenever �i 2 � and i > 1, itmust also hold that �(i� 1) 2 �.Finally, we an de�ne a onstrutor tree to be a pair (�; �) of a tree domain� and a labeling funtion � : �! �suh that for any � 2 �, �i 2 � , 1 � i � ar(�(�)). A �nite onstrutor treeis a onstrutor tree whose domain is �nite.This sounds a bit ompliated at �rst, but it is really very simple. First,onsider Fig. 2.4, and let's see what the pair (�; �) that models this treelooks like. We have annotated the nodes in the diagram with words over N� .These words are the paths in the tree domain; so � = f�; 1; 11; 2; 21; 22g. Pathsindiate a sequene of steps in the tree starting at the root. For example, thepath 21 means to start at the root, then move to the seond hild of the root,and then to move to the �rst hild of that node. This orrespondene means thatthe elements of the tree domain an be identi�ed with the set of nodes of a tree.The labeling funtion � assigns labels to the elements of the tree domain; wehave annotated the tree with these values. So for example, �(�) = f , �(1) = g,et.Finite onstrutor trees are even more intuitive than that, though: Theyorrespond uniquely to losed terms over the signature, and vie versa. Thetree in the diagram was built from the signature � = ff2; g1; a0; b0; 0g, where

2.4. TREES AND DOMINANCE CONSTRAINTS 31we have indiated arities as supersript numbers. A well-formed term of thissignature is f(g(a); f(b;)). (f(a), for instane, would not be well-formed be-ause f must have two arguments.) Now ompare this term to the tree; youwill notie that the two objets have exatly the same struture. It was to en-fore this orrespondene between trees and well-formed terms that we requiredevery node to have exatly as many hildren as the arity of its label says. Theonstrutors determine the struture of the tree, hene the name.From now on, we shall use \tree" as an abbreviation for \�nite onstrutortree".2.4.2 Lambda StruturesGiven a tree (�; �), we an de�ne �rst-order model strutures with domain� whih allow us to speak about interesting relations in trees. In addition torelations whih an be read o� the underlying tree easily, a lambda struturewill de�ne a �-binding funtion, whih we will use for modeling lambda terms.Assume a signature � as above, with speial onstrutors var0; lam1;�2 2 �.A lambda struture L over the tree (�; �) is a triple (�; �; I), where � : � � is a partial funtion mapping nodes � with �(�) = var to nodes �0 with�(�0) = lam, and I is an interpretation funtion whih assigns relations toa �xed set of prediate symbols. The prediate symbols we are interested inhere are the dominane prediate ��, the inequality prediate 6=, the bindingprediate �(�) = � , and, for eah label fn 2 �, the (n+1)-ary labeling prediate:f . We shall use the same symbols for the prediates and their interpretations;there will be no danger of onfusion.Now we de�ne the relations assigned to the prediate symbols by I . Iffn 2 �, the labeling relation �:f(�1; : : : ; �n) holds i� �(�) = f and for all1 � i � n, �i = �i. The dominane relation ����0 holds i� � is a pre�x of�0. The inequality relation � 6= �0 holds i� � and �0 are di�erent. Finally, thebinding relation �(�) = �0 holds i� the binding funtion � is de�ned on � andmaps it to �0.The interpretation funtion is ompletely determined by the underlying treeand the binding funtion. For example, the dominane relation indued by thetree in Fig. 2.4 (together with any binding funtion) ontains 14 pairs of nodes,inluding (�; 1), (�; 21), (2; 2), et.; a labeling relation satis�ed by that tree ise.g. 2:f(21; 22).We an use lambda strutures to model lambda terms by equipping theparse tree of a lambda term with a binding relation between variables andtheir binders. We obtain suh a parse tree if we use the binary onstrutor� we introdued above for modeling appliation, the unary onstrutor lamfor signifying abstration, and the nullary onstrutor var for variables. Asan example, Fig. 2.5 shows the lambda struture orresponding to the term�x:(�F:(F (x))(a))(�y:x). In the diagram, pairs of nodes mapped to eah otherby the binding funtion are onneted by a dashed arrow. So lambda struturesorrespond to lambda terms up to �-equivalene (i.e. onsistent renaming ofvariables).

32 LECTURE 2. SCOPE AND TREESlam � �� � 1lam � 11� � 111� � 1111var � 11111 var � 11112a � 1112lam � 12var � 121Figure 2.5: Lambda struture for �x:(�F:(F (x))(a))(�y:x).
OnWednesday, we will extend lambda strutures with parallelism and anaphoribinding relations in order to model ellipses and anaphora.2.4.3 Dominane ConstraintsNow it is straightforward to build a syntax for a logi for talking about lambdastrutures. We �x a set of variables X;Y; : : : (whih are supposed to denotetree nodes) and de�ne a dominane onstraint ' to be built aording to thefollowing abstrat syntax: ' ::= X :f(X1; : : : ; Xn)j X��Yj �(X) = Yj X 6= Yj ' ^ '0:An atomi dominane onstraint ' is satis�ed by a lambda struture L =(�; �; I) and a variable assignment � into � i� � maps the partiipating vari-ables into the relation to whih I maps the respetive prediate symbol. An ar-bitrary dominane onstraint is a onjuntion of atomi dominane onstraintsand satis�ed by (L; �) i� (L; �) satis�es every onjunt; we also all L a solutionof the onstraint.For instane, the dominane onstraintX1:lam(X2) ^X2:�(X3; X4) ^X3��X5 ^X5:var ^ �(X5) = X1 (2.10)is satis�ed by the lambda struture in Fig. 2.5 together with the variable as-signment �(X1) = �; �(X2) = 1; �(X3) = 11; �(X4) = 12; �(X5) = 11112.Usually, we are not interested in all solutions of a dominane onstraint. Anatomi dominane onstraint X��Y an be satis�ed with X and Y having anarbitrary distane from eah other in the tree, whih means that most dominaneonstraints have an in�nite number of solutions. What we're really after is a

2.5. SCOPEUNDERSPECIFICATIONUSING DOMINANCE CONSTRAINTS33lam � X1� � X2� X3var � X5 � X4Figure 2.6: Constraint graph for (2.10).
onstrutive solution. A solution (L; �) of a dominane onstraint ' is alledonstrutive i� every node in the domain of L is the �-image of a variable in '.The abstrat syntax we have just de�ned is perfet for formal purposes;however, it an easily beome unreadable for humans. To this end, we employonstraint graphs. A onstraint graph is a direted graph with node labels andthree kinds of edges: solid edges, dotted edges, and dashed arrows. Nodes of thegraph stand for variables in a onstraint; node labels together with solid edgesstand for labeling onstraints, dotted lines stand for dominane onstraints, anddashed arrows stand for binding onstraints. In addition, a onstraint graphrepresents an inequality onstraint between any two variables orresponding tolabeled graph nodes.For example, the onstraint (2.10) an be drawn as the onstraint graph inFig. 2.6. (But note that the onstraint graph also represents some inequalityonstraints, i.e. X1 6= X2, X2 6= X5, et.)Constraint graphs are rather similar to the lambda strutures satisfying them(ompare Fig. 2.6 to Fig. 2.5). In partiular, you get a onstrutive solutionby simply arranging the fragments in the onstraint graph in a tree-like fash-ion and then identifying the ends of any remaining dominane edges. Note,however, that onstraint graphs are objets of the syntati level of dominaneonstraints, whereas trees are objets of the semanti level. The nodes of aonstraint graph represent variables of a onstraint, whih in turn an denotenodes in a tree. So it is important to keep them apart.2.5 Sope Underspei�ation Using DominaneConstraintsNow let's return to sope ambiguities and put the dominane onstraints wehave just de�ned to use for sope underspei�ation.The intended semanti representation language for single readings is higher-order logi. Using our new knowledge of dominane onstraints, we an �x asignature ontaining all the onstants we're interested in plus the logial on-netives !2, :1, et., and try to interpret Fig. 2.3 as a dominane onstraint

34 LECTURE 2. SCOPE AND TREES� �� �lam �lam �8 �! �� �var � var � � �var � var �
man � lam �� � �� �lam �lam �9 �^ �� �var �� �� �love � var �var �var �

� �var � var �
woman � lam ��

Figure 2.7: Constraint graph for Every man loves a woman.
graph desribing the lambda struture orresponding to the lambda term wewant.The only remaining problem is the modeling of lambda binding, but we ansolve it by introduing binding onstraints. The result is the onstraint graphin Fig. 2.7; the onstraint it represents has exatly two onstrutive solutions,shown in Fig. 2.8. Converted bak to lambda terms, they are just the tworeadings we wanted. (These are the only diagrams where we'll ever spell outthe tree struture of a determiner meaning; in the future, we'll abbreviate themas little triangles labeled with the determiner.)Why are these the only two onstrutive solutions? The onstraint graphspei�es the two generalized quanti�ers and the nulear sope of the sentene,and expresses that the nulear sope has to be in the sope of both quanti�ers. Itdoesn't say anything about the order of the quanti�ers. But beause the tree partof a lambda struture an't branh in the bottom-up diretion, one of the twoquanti�ers must dominate the other one; so there are two struturally di�erentsolutions. Beause we only want onstrutive solutions, they ould only ontain\material" that had been \mentioned" in the onstraint.So we an give a lean formal meaning to the intuitive sope underspei�a-tion diagrams we had earlier by using dominane onstraints.It's interesting to observe how this analysis implements \Montague's trik".Here we know from the start what material the semanti representation is going

2.5. SCOPEUNDERSPECIFICATIONUSING DOMINANCE CONSTRAINTS35� �� �lam �lam �9 �^ �� �var � var � � �var � var �
woman � lam �� �� �lam �lam �8 �! �� �var � var � � �var � var �

man � lam �� �� �love � var �var �
� �� �lam �lam �8 �! �� �var � var � � �var � var �

man � lam �� �� �lam �lam �9 �^ �� �var � var � � �var � var �
woman � lam �� �� �love � var �var �Figure 2.8: Construtive solutions of the onstraint in Fig. 2.7.

to be built of; there's no abstration \falling from the sky". There's also noneed to remember NPs in a store beause the new � is �rmly onneted tothe rest of the NP meaning. We an do this beause we an treat the �-termfragments that we used informally in Fig. 2.3 in a formally sound way here {as fragments of trees. Finally, we don't have to worry about variable namesbeause we have binding onstraints that tell us from the start what the orretbinders for variables are.Now let's see what hepps with (2.11), whih was a problem for Cooperstorage.(2.11) Every researher of a ompany saw most samples.The dominane onstraint graph desribing this sentene is shown in Fig.2.9). It has two nodes that have two inoming dominane edges (X9 and X10),

36 LECTURE 2. SCOPE AND TREES� X0� � X1� �a � omp � lam �� X5 � � X2� �every �
� � X9� �of � var �var �

lam �^ �� X6 � �res � var � � � X10� �see � var �var �
lam �� X7 � � X3� �most � sample � lam �� X8

Figure 2.9: Constraint graph for Every researher of a ompany saw most sam-ples.
orresponding to two nulear sopes (for the verb and for the preposition).Again, we must hoose whih of the two dominating nodes should dominate theother in order to disambiguate the onstraint. If we hoose that X5 dominatesX6, X8 an go in three plaes: either aboveX5, or between X5 and X2, or belowX7. If we hoose thatX6 dominatesX5, X8 an go in two di�erent plaes: eitherabove X2, or below X7. This makes for a total of �ve onstrutive solutions,orresponding to the �ve readings of the sentene.So far, we haven't talked about a syntax/semantis interfae generating dom-inane onstraints from a syntati analysis. It is not diÆult to build suh aninterfae; see the last setion of (Koller et al. 1999).2.6 Other Approahes to Sope Underspei�a-tionIn onlusion of this hapter, we will now give brief and informal introdutionsto two other formalisms for sope underspei�ation. From the wide variety offormalisms that we have listed in the �rst hapter, the two we pik for a loserlook are Quasi Logial Form and Hole Semantis. The former is of seminal

2.6. OTHER APPROACHES TO SCOPE UNDERSPECIFICATION 37importane for the �eld and has a broad overage of linguisti phenomena.The latter is representative of a family of underspei�ation formalisms that isprobably the most inuential at this time. The most popular member of thisfamily is UDRT (Reyle 1993; Shiehlen 1997), but Hole Semantis is muh moreaessible, and its basi ideas are essentially the same. (Alshawi et al. 1992)and (Bos 1996) are warmly reommended for further reading.2.6.1 Quasi Logial FormQLF (Alshawi and Crouh 1992) was the �rst formalism for semanti under-spei�ation that was implemented and used for real-world appliations. It wasontinually developed over several years to meet the demands of a growing lin-guisti overage. The original syntax looks rather intimidating. Therefore, wehave adopted a heavily simpli�ed version for our exposition here. For the orig-inal, we refer the reader to (Alshawi et al. 1992), a omprehensive summary ofQLF and its appliations.The underlying idea of the formalism is to provide an underspei�ed rep-resentation of quanti�er raising. In a QLF representing a sentene, the termsrepresenting NPs are arguments of the VPs whose syntati arguments they are.Eah of them is identi�ed by a unique index, and di�erent sope relations anbe represented by speifying an order on indies in speial soping lists. In orderto be able to represent diÆult sentenes like (2.11), soping lists an also ourin nested positions in a term. In an unresolved QLF, these lists are unspei�ed;they are represented as uninstantiated variables. To ensure that logial formulaean be derived from fully resolved QLFs, there is the onstraint that for everyindex, the term it identi�es must appear inside the soping list that ontainsthe index. Disambiguation means instantiation of the soping lists.By way of example, onsider the (simpli�ed) QLF representation of ourrunning example, repeated here as (2.12).(2.12) Every man loves a woman.(2.13) _s:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))In the QLF, we �nd the two NPs represented as two terms that are argu-ments of their syntati mother, the love VP. Eah term has a unique index,given as its �rst argument; for the NP quantifying over men, it is +m, for the onequantifying over women, it is +w. The type of quanti�er (e.g. universal or ex-istential) is stored as the seond argument; and the restrition of the quanti�eris plaed in the third argument.The love formula is pre�xed with a soping list that is, at this point, un-spei�ed and represented by the variable _s. Due to the free-variable onstraintwe mentioned above, any fully resolved QLF that an be derived from (2.13)must instantiate _s with a list that ontains both +w and +m. This an be donein either order, yielding the two readings (2.14) and (2.16) below. If you imaginethat a soping list [+m,+w℄ means to �rst retrieve the woman and then the man

38 LECTURE 2. SCOPE AND TREESquanti�er from a Cooper store, the QLFs orrespond to HOL terms whih anbe �-redued to (2.15) and (2.17), respetively.(2.14) [+m,+w℄:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))(2.15) 8x:man(x)! 9y:(woman(y) ^ love(x; y))(2.16) [+w,+m℄:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))(2.17) 9y:woman(y) ^ 8x:(man(x)! love(x; y))The evolutionary, appliation-oriented development of QLF has the positivee�et of leading to a very wide overage of linguisti phenomena. But thedownside of this is that some formal aspets of QLF are pathwork needed tomake things work, instead of onsequenes of an overall vision. One partiularinonveniene is that unlike most modern approahes to underspei�ation, QLFdoes not provide a lean separation between objet and meta level; elements ofboth are distributed all over an underspei�ed representation. This makes therepresentation a bit intransparent; in addition, it makes the task of designing aalulus for diret dedution even more diÆult than it inherently is.2.6.2 Hole SemantisHole Semantis was developed by Bos (1996) and is a general framework forreating an underspei�ed representation language from a non-underspei�edobjet language. Bos himself applies it to prediate logi and DRT; his \DRTunplugged" essentially agrees with UDRT, with whih it shares the underlyingperspetive on sope ambiguities.Hole Semantis is based on underspei�ation pitures suh as Figure 2.3,whih we repeat below as Fig. 2.10 in a slightly adjusted format, but gives thema di�erent tehnial interpretation than with dominane onstraints. Formulaeourring in the nodes of suh an underspei�ed representation (UR) are takenfrom the objet language; but any subformula an be replaed by a so-alledhole (h0; h1; h2 in the piture). The funtion of holes is that other formulaean be plugged into them to obtain a larger formula. The dotted lines in thegraph are drawn from holes to formulae, and they express that the formulaemust be subformulae of the formulae into whose holes they will be plugged. Totake are of problems that an arise when the same formula ours more thanone in the graph, eah fragment is given a unique identity, its label (l1; l2; l3 inthe piture). The graph an be represented as an upper semilattie speifying apartial order on holes and labels, and disambiguation means to make this ordermore spei�.The objet-language formulae a UR represents an be obtained from so-alled admissible pluggings. A plugging is a bijetion between holes and labels,and it is alled admissible if it agrees with the partial order on labels and holes.

2.7. SUMMARY 39An admissible plugging P indues a objet-language formula by starting at the(unique) top formula of the UR and subsequently replaing holes h by formulaeP (h). � h0l1 : 8x �! �man �x � � h1 l2 : 9y �^ �woman �y �l3 : love �x � y �
� h2

Figure 2.10: A sope ambiguity in Hole Semantis.To see an example for suh a plugging, we have equipped Fig. 2.10 withexpliit holes and labels. The example is in \Prediate Logi Unplugged", theinstantiation of Hole Semantis to �rst-order logi. The UR presented in thispiture has exatly two admissible pluggings. They are shown as (2.18) and(2.20), along with the prediate logi formulae they indue.(2.18) fh0 = l1; h1 = l2; h2 = l3g(2.19) 8x:man(x)! 9y:(woman(y) ^ love(x; y))(2.20) fh0 = l2; h2 = l1; h1 = l3g(2.21) 9y:woman(y) ^ 8x:(man(x)! love(x; y))Hole Semantis and its kin ope easily with sentenes like (2.11), using ba-sially the same pitures as the dominane onstraint analysis.2.7 Summary� Generalized quanti�ers an be used for a ompositional semanti onstru-tion (whih derives semanti representations from a syntati analysis). Ageneralized quanti�er is a �-term of type hhe; ti; ti; it represents the mean-ing of an NP in the sentene.� Cooper storage an be used to enumerate the readings of a sope ambi-guity without arti�ially analyzing a sentene as syntatially ambiguous.Cooper storage has overgeneration problems that are a onsequene of itslak of expressive power.

40 LECTURE 2. SCOPE AND TREES� Dominane onstraints are a logi whose models are lambda strutures.A dominane onstraint an be regarded as a (partial) desription of itsonstrutive solutions. Lambda strutures an be used for modeling �-terms.� This means that dominane onstraints an be used for partial (= under-spei�ed) desriptions of �-terms. A human-readable form of dominaneonstraints, onstraint graphs, look almost like the intuitive pitures weused on Monday for desribing the readings of a sope ambiguity infor-mally.� QLF and Hole Semantis are other important formalisms for sope un-derspei�ation. QLF is an appliation-oriented formalism of seminal im-portane for the �eld, but laks the formal elegane and the separation ofobjet and meta language of modern underspei�ation formalisms. HoleSemantis is representative of a very popular lass of formalisms. It al-lows formulae with holes into whih other formulae an be plugged andrepresents this with diagrams very similar to dominane onstraint graphs.

Leture 3Conurrent ConstraintProgramming in Oz3.1 Relation to Underspei�ationConurrent onstraint programming is a modern tehnology whih an be usedto solve omplex ombinatori problems eÆiently. Typial appliations of on-urrent onstraint programming in industry inlude sheduling and on�gura-tion.Underspei�ation and onstraint programming an be seen as two sidesof the same oin. Underspei�ation is onerned with ambiguity in naturallanguage whih a onstraint programmer would onsider more generally as dis-juntive information in a ombinatori problem. The idea of underspei�ationis to delay the enumeration of readings of an ambiguous sentene for as longas possible. A more general idea underlies onurrent onstraint programming,where ombinatori problems are solved in suh a way that ase distintions aredelayed for as long as possible.3.1.1 Towards proessing underspei�ed semantisWhat have we done so far? In the �rst two letures we have learned aboutunderspei�ation in semantis of natural language. We have disussed sever-al formalisms in whih to represent the meaning of sentene ontaining sopeambiguities. We have advoated formulas of higher-order logi (HOL) for rep-resenting meaning, and partial desriptions of HOL-formulas for representingmeaning in an underspei�ed manner. As partial desriptions of HOL-formulas,we have proposed tree desriptions based on dominane onstraints. The ideawas to onsider a HOL-formula as a tree (the tree of its abstrat syntax) andto desribe this tree partially.Of ourse, when doing omputational linguistis it is not suÆient to rep-resent the meaning of a sentene in theory. The goal is to provide algorithms41

42 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZgrammarsystem withinterfae tosemantis dedutiondisambiguation� � redutionsentene underspei�edsemantirepresentation onsequenes
Figure 3.1: Arhiteture for natural language proessing

and implementations thereof that an derive semanti representations and om-pute its onsequenes (see Figure 3.1). As we argued before, the semantis ofa sentene is best represented in an underspei�ed manner beause of sopeambiguities. So, the question is how to ompute underspei�ed semanti repre-sentations from a sentene and how to derive its onsequenes.In this leture, we are mainly onerned with semantis rather than withsyntax. Therefore, we assume the existene of some magiian who is doingthe syntatial work for us. We an pass a sentene to the magiian who thenreturns its syntati struture. From this is it is not diÆult to ompute anunderspei�ed semanti representation. We disussed in the previous letureshow syntax and semantis are related in priniple.In pratie, the magiian will be some grammar system (LFG, HPSG, de-pendeny grammar), i.e. a parser into whih a syntax-semantis interfae isintegrated. Compared to the omplexity of parsing, a syntax-semantis inter-fae is usually quite easy to design. We will therefore omit the details in thisourse. Instead, we assume that the grammar system provides us with an un-derspei�ed semanti representations in form of a dominane onstraint (whihdesribes a HOL-formula that in turn represents the meaning of the input sen-tene).3.1.2 Disambiguation is onstraint solvingSo what remains to be done? We would like to ompute the onsequenes ofan underspei�ed representation. In fat this question is very diÆult and annot be answered in this leture. Suppose that we would have a fully spei�edmeaning representation in �rst-order logi then we would still need a theoremprover for omputing all its onsequenes. This is not what we are going to doin this ourse.Instead, we approah a more basi question whih onerns underspei�a-tion independently of how it is approahed. The problem is that an underspei-�ed representation does not expliitly represent the set of all possible meanings.So the question is how to disambiguate an underspei�ed representation eÆ-iently, i.e. how to enumerate the set of readings it represents in polynomial

3.2. WHAT IS CONSTRAINT PROGRAMMING 43time depending of the size of this set. One might argue that disambiguationontradits the main idea of underspei�ation whih is to delay disambiguationfor as long as possible. But earlier or later during natural language proessing,one an be fored to disambiguate at least partially. In our approah to un-derspei�ation based on tree desriptions, disambiguation amounts to solvingdominane onstraints.Hene, our goal is to solve dominane onstraints eÆiently. The problem ofsolving dominane onstraints is NP-omplete as shown in (Koller et al. 1998).In other words, solving dominane onstraints is a ombinatori problem whihis muh harder than one might think at �rst sight: we annot expet the ex-istene of an algorithm whih solves dominane onstraints in polynomial timein general. This does not mean however that we annot built a solver whih iseÆient for those dominane onstraints representing underspei�ed semantis.A good approah to solve ombinatorial problems is onurrent onstraintprogramming (Saraswat et al. 1991; Smolka 1994; Smolka 1995). We willshow how to use onurrent onstraint programming with sets in order to solvedominane onstraints (Duhier and Gardent 1999; Duhier and Niehren 1999;Koller et al. 1998). As an implementation platform, we will employ the Mozartsystem of the programming language Oz (Oz Development Team 1999). Therest of this leture is devoted to onurrent onstraint programming tehnology.In the next two leture, we will present further features of Oz and then thesolver for dominane onstraints.3.2 What is Constraint ProgrammingConstraint programming is a method for solving ombinatori problems, whihomes with a well-developed tehnology. Combinatori problems are tradition-ally formulated as logial formulas that are alled onstraints. Solving ombi-natori problems is inherently diÆult beause of the disjuntive harater ofombinatoris.3.2.1 AppliationsTypial appliations of onstraint programming inlude optimization problemsof industrial relevane suh as:� sheduling,� time tabling,� on�guration.Reently, many new hallenging appliations have been investigated at univer-sities:� dedution and reasoning� knowledge representation

44 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZ� proessing of natural language3.2.2 The Problem: Combinatori ExplosionThe naive way of solving ombinatori problems an be paraphrased as `generateand test': In a �rst step one enumerates all ombinations from whih one seletsall solutions in the seond step. In most ases however, `generate and test'is simply not feasible. This is obvious if the set of ombinations is in�nite.But even if it is �nite then it is usually very large, i.e. exponentially large insize of the problem desription. In this ase, the generation step runs into aombinatori explosion (from whih it usually returns only several billions ofyears later).The proess of generation spawns a searh tree. The inner nodes in this treeorrespond to ase distintions performed during generation and the leaves ofthe tree to the set of all possible ombinations. There are two kinds of leaves:solution and failure leaves whih an be distinguished by a test proedure. Theproblem is that a searh tree grows exponentially in its depths. For instane,if we have a ombinatori problem with 15 variables eah of whih has 4 pos-sible values then we obtain a searh tree of depth 15 whih ontains 4^15 =10.737.410.000.000.000 nodes. The searh tree below is rather small but onlysine its depth is small too.

3.2.3 The Method: Propagate and DistributeSuppose that you are now onvined that we an not simply generate the fullsearh tree in usual ombinatori problems. So what an we do instead? The

3.2. WHAT IS CONSTRAINT PROGRAMMING 45idea is to delay ase distintions for as long as possible. Instead we do simpleinferenes �rst and hope that we an thereby prune the searh tree, i.e. avoidto visit all its nodes. This is the general method of onstraint programmingwhih an be paraphrased as `propagate and distribute'. A propagation steprestrits the set of possible solutions by a simple inferene. A distribution stepexeutes a ase distintion by whih the set of possible solutions is restritedfurther. Of ourse, propagation and distribution steps have to be iterated. Inorder to delay ase distintions for as long as possible, a distribution step hasto wait until the propagation proess is terminated. This is sine distributionis onsidered expensive whereas propagation is not.In onurrent onstraint programming, propagation is organized as a on-urrent proess. The idea is to store simple information in a ommon onstraintstore suh that it an be observed by all onurrent propagators. Whenevera propagator an make an inferene then is adds its results to the onstraintstore. Thereby another propagator may beome triggered and so on. One animagine a onstraint store with its propagators as follows:

3.2.4 What is Oz and who is Mozart?A onurrent onstraint programming system provides a set of proedures forde�ning propagators and all mahinery for running propagation and distribu-tion. The programmer simply models his problem by de�ning sets of propagatorsand a strategy for distribution. The rest is done by the ompiler and emulatorof the programming system.Oz is a onurrent onstraint programming system whih has been devel-oped by the Programming Systems Lab in Saarbr�uken led by Gert Smolka.

46 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZThe most reent Oz version is Mozart 1.0.11 The Mozart system was devel-oped by the Mozart onsortium whih integrate the programming systems labin Saarbr�uken, the programming systems lab at SICS (Swedish Institute ofComputer Siene) led by Seif Haridi, and Peter Van Roy's group at the Uni-versite atholique de Louvain. The Mozart system is freely available, extensivelydoumented, and fully operational.Oz uni�es ideas originating from logi programming in Prolog and funtion-al programming in Lisp or SML. Oz provides the most innovative tehnologyompared to other onstraint programming languages on the market (ILOG,CHIP). This makes Oz a good foundation for building innovative appliationsin omputational linguistis and arti�ial intelligene.Beyond onurrent onstraint programming, Mozart supports Internet pro-gramming similar to Java. Mozart is also well-suited for building multi agentsystems and sophistiated graphial user interfaes.

1http://www.mozart-oz.org/

3.3. SOLVE A COMBINATORICAL PROBLEM IN OZ 473.3 Solve a Combinatorial Problem in OzOur next goal is to build a onstraint solver for the following problem whih isgiven by an equation system with variables denoting integers.X;Y; Z 2 f1; : : : ; 7gX + Y = 3 � ZX � Y = ZA solution of this problem is an assignment of variables X, Y, Z to naturalnumbers whih satis�es the given arithmeti onstraints.3.3.1 Bits of a Constraint SolverWe next show how to solve this problem in Oz. We de�ne the following on-straint whih an be added diretely to the onstraint store[X Y Z℄ ::: 1#7and de�ne the following set of propagator over this onstraint store:X + Y =: 3*ZX - Y =: ZHere we make use of Oz-variables whose syntax is given by words with leadingapital letters. The �rst line states that X, Y, Z are so alled �nite domainvariable, i.e. variables for an integer in a �nite domain (here, between 1 and 7).Next, we use a prede�ned distribution strategy whih takes the atual re-stritions on X, Y, Z into aount:{FD.distribute naive [X Y Z℄}We represent a solution as a reord (alled feature tree in omputational lin-guistis):solution(x:2 y:1 z:1)This reord is built from integers and Oz-atoms whih are words beginningwith a lower ase letter. The solution reord has the label solution and threefeatures x, y, z.3.3.2 Observing PropagationIt might be instrutive to observe propagation independently from distribution.Propagation relies on the onept of a onstraint store whih is simply a set ofsimple onstraints on values of variables. New information an be added to theonstraint store by propagation. Propagation is done by propagators. Theseare agents observing the onstraint store and getting ative whenever they areable to add information. The Oz programmer an observe the onstraint storeby using the Oz Browser. For instane, feed the following Oz-ode into theOz-ompiler:

48 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZdelare X Y Z in [X Y Z℄ ::: 1#10{Browse [X Y Z℄}This delares three new variables X Y Z for integers in the domain 1, ..., 10and browses whatever the onstraint store knows about their values. When newinformation is added the browser updates its output. For instane, you mayfeed the propagator:2 * Y =: ZThis propagator tells the onstraint store new information on upper and lowerbounds of Y and Z whenever possible. For example, it adds the information thatY must be at most 5 and Z must be at least 2 to the onstraint store. However,it annot tell the onstraint store to remove odd numbers from the interior ofthe domain of Z. We next might feed a new propagator stating that X is stritlysmaller than Y:X <: YOne of the e�et of this propagator is that 1 is removed from the lower boundof Y. This reativates the observing propagators 2 * Y =: Z whih exludes2 and 3 from the domain of Z.3.3.3 Composing the SolverOz supports enapsulated searh. As in Prolog is suÆies to only speify aproblem and let it be solved by the searh engine of the programming language.In ontrast to Prolog, searh is enapsulated in Oz. This means that a searhproblem has always to be enapsulated into a prediate whih has to be passedexpliitly to a searh engine. As a onsequene of enapsulation, Oz permitsstandard programming in the usual style (i.e. as SML, Lisp, or Sheme).In order to use enapsulated searh, we have to enasulate the above prop-agators and distributor into a prediate. The proedure Equations desribesexatly the solutions of the problem onsidered above.delarepro{Equations Sol}X Y Zin Sol = solution(x:X y:Y z:Z)[X Y Z℄ ::: 1#7X + Y =: 3*ZX - Y =: Z{FD.distribute naive [X Y Z℄}endThe de�nition of Equations in Oz not only spei�es a set of objets but also de-sribes how these objets an be searhed by propagation and distribution. Foromputing its solutions in Oz, it is suÆient to pass the de�nition of Equationsto the Oz-Explorer.

3.3. SOLVE A COMBINATORICAL PROBLEM IN OZ 49{Explorer.all Equations}{Explorer.one Equations}3.3.4 Was this a good Example?� Yes, beause it was so simple.� No, sine there are muh better solvers in this ase (Gauss eliminationalgorithm).Constraint programming yields good solvers only if no diret algorithm forsolving your problem is available.3.3.5 Questions� Why are there three olons in the statement [X Y Z℄ ::: 1#7?If you want restrit the domain of a single FD variable then you write X:: 1#7 with two olons. But if you want to restrit the domains of allvariables of some list like [X Y Z℄, then you need to write three olons.� Is the name solution in the example program Equations arbitrary?Yes, you may hoose whatever Oz-atom instead.� What is the di�erene between the statements X + Y =: 3*Z and X + Y= 3*Z?Be areful, this is very di�erent! The �rst statement X + Y =: 3*Z hidesan appliation of a proedure whih builds a propagator for the equationX + Y = 3 � Z. The seond statement X+Y=3*Z is exeuted by �rstevaluating the arithmeti expressions X+Y and 3*Z if the values of X, Y,and Z are spei�ed and then unifying the results.� Why does the Explorer ome up with a yellow diamond in the followingprogram instead of searhing for a solution?delarepro{Equations Sol}X Y Zin Sol = solution(x:X y:Y z:Z){FD.distribute naive [X Y Z℄}[X Y Z℄ ::: 1#7X + Y =: 3*ZX - Y =: Zend{Explorer.one Equations}

50 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZThe problem is that the distributor fFD.distribute naive [X Y Z℄gbloks the exeution of all subsequent statements. The distributor waitsuntil the variables X, Y, Z have to denote integers in a �nite domain.This will never happen sine the exeution of the statement [X Y Z℄ :::1#7 is bloked by the distributor itself. So we have a deadlok.The yellow diamond displayed by the Explorer means that the searhproess is bloked forever.You an resolve the problem putting the distributor into its own thread,i.e. by replaing it with thread fFD.distribute naive [X Y Z℄g end.� I found the following all of the explorer in some doument. What's wrongwith this?{Explorer one(Equations)}This is the old syntax of Oz 2.0 whih is no longer valid in Mozart 1.0.1.There the syntax for alling the Explorer is slightly di�erent. You have touse the more onsistent notation fExplorer.one Equationsg instead.3.3.6 ExeriseWrite a solver for the equation SEND+MORE=MONEY, where every letterstands for a distint digit between 0 and 9 and suh that leading digits aredistint from 0.3.4 Summary� Underspei�ation and onstraint programming are two sides of the sameoin. The main idea of both is to delay ase distintions for as long aspossible.� Disambiguation of underspei�ed desriptions an be seen as onstraintsolving.� The main problem of onstraint solving is the danger of ombinatoriexplosion.� The basi method of onurrent onstraint programming is `propagate anddistribute', in ontrast to `generate and test'.� Propagation is an eÆient onurrent proess. Propagation is typiallyinomplete from a logial point of view. Completeness an be obtained byadding distribution to propagation.

Leture 4More on OzThe purpose of this leture is to improve our Oz-programming skills. We willpresent those programming onepts needed for writing the solver of dominaneonstraints in the next leture. We introdue the data strutures provided byOz whih are similar to those in SML, then turn to �rst-order uni�ation asin Prolog, and �nally present features for onurrent onstraint programming:�nite domain onstraints, �nite set onstraints, and disjuntive propagators.4.1 Data StruturesWe �rst introdue the data strutures provided by Oz (see The Oz Base En-vironment). A data-struture allows to store values of some (data) type andprovides the standard proedures for munhing these values.We take the viewpoint of funtional programming as in SML whih is quitedistint from the onept of onstraint programming. However, funtional pro-gramming provides a good platform on whih to base a onstraint programmingsystem. The idea of funtional programming is to organize omputation purelyin terms of values, types, and funtional proedures whih ompute funtionsbetween values of some types.4.1.1 Values and TypesUp to now we have seen several values used in Oz: numbers, atoms, reords,and lists. There are more values and types in Oz. A still inomplete list ofvalues and types is the following:� A number is either an integer or a oat (rational number).� An atom is a word.� A Boolean value is either true or false.� The unit is a onstant value without partiular meaning (a dummy).51

52 LECTURE 4. MORE ON OZ� A reord aterm of the form Lab(F1:V1 ... Fn:Vn) where:{ the label Lab is an atom, the unit, or a Boolean.{ the features F1, ... , Fn are pairwise distint atoms or integers.{ the �elds V1, ..., Vn are arbitrary values.{ n � 0, ie. a reord may be an atom, the unit, or a Boolean.� A tuple is a reord with only integer features.� A list is a tuple whih is either the atom nil or a tuple j(1:V 2:L) where jis an atom, V a value, and L a list. The atom j is sometimes alled `ons'.� A proedure is a value.4.1.2 Syntax for ValuesOz provides a lot syntatial alternative for desribing the same value. Wehere present some typial desriptions, eah of whih determines some valueompletely.� Integers are desribed as 0, 1, ~1, 2, 3 et and oats by 0.0, 1.0,~1.1 et.� Atoms are desribed by words starting with lower ase letter like thisIsAnAtomor by a word in bakwards quotes like 'ase', 'true' and 'ThisIsAnAtom'.� The Booleans and the unit are desribed by the keywords true, false,unit.� Typial desription for tuples and reords are the following:plus(5 times(5 ~10))address(street:'Talstrasse'name:unit(first:hansseond:kamp))det(phon:a number:singular)In the �rst tuple, we have left out the features; it's a syntatially sugaredversion of plus(1:5 2:times(1:5 2:~10)).The values of a reord at some feature an be seleted by using the seletionfuntion that is denoted by a dot. For instane, the atom singular isdesribed by the expressiondet(phon:a number:singular).number� Typial desriptions of lists are: 1j2j3jnil, [1 2 3℄, and nil. Note how-ever that [℄ does not desribe the empty list!

4.1. DATA STRUCTURES 53� A desription of a proedure omputing the square funtion is:fun{$ X} X*X endThe symbol $ simply means that this proedure is anonymous, i.e. isnot yet given a name. The syntax for the appliation of proedures usesurly brakets. For instane, the number 9 is desribed by the followingappliation whose evaluation omputes the square of 3:{fun{$ X} X*X end 3}4.1.3 Global and Loal VariablesA variable in Oz desribes a value of an arbitrary type. Variables in Oz arelogi variable whose value annot annot be hanged.The Oz programming interfae omes with a lot of prede�ned global variablessuh as List and Number. The values of both variables are reords ontainingthe standard funtions for lists and numbers. For instane, a proedure formultipliation Number.'*' an be seleted from the reord Number at feature'*'. The expression X*X in turn is nothing else than syntati sugar for theappliation fNumber.'*' X Xg.Loal variables an be introdued in Oz by using expression of the formloal ... in ... end. The following piee of ode desribes a reord whihontains two number, the squares of 3 and 4.loalSquare = fun{$ X} X*X endin reord(s3:{Square 3} s4:{Square 4})endThe sope of a loal variable is restrited by the loal-end-expression in whihits is introdued. For instane, the loal variable Square annot be aessedany further.There is also a way for introduing new global variables in the programminginterfae by using the keyword delare. For instane we an delare the variableX and assign the value 2 to X as follows.delareX=2Global variables are loal with respet to the Oz-programming interfae in whihthey were delared. Global variable an be aessed during a omplete program-ming session with the same programming interfae.4.1.4 Browsing Values and TypesThe Oz-Browser is a output tool provided by the Oz programming interfae.The Oz-Browser is written in Oz itself and available via the global variable

54 LECTURE 4. MORE ON OZBrowse. For instane, we an browse the value of the global variable X aboveby exeuting:{Browse X}Evaluating the appliation fBrowse Xg simply evokes the side e�et of browsingthe value of X. Note that the exeution of fBrowse Xg does not return a valuein ontrast to fSquare Xg. The reason is that Browse denotes a relationalproedure whih in ontrast to a funtional proedure (suh as Square) doesnot return a output value when applied (see setion proedures).The Browser allows you to observe the values denoted by Oz-variables in itssope. For instane, feed the following lines to the emulator.delareR = address(street:'Talstrasse'name:unit(first:hansseond:kamp))L = [1 2 3 4 5℄T = pair(L R F)F = fun{$ X} X*X endin{Browse [R L T F℄}{Browse ['Browsing fun{$ X} X*X end yields <P/2>' F℄}When browsing the value of proedure named F a string is displayed meaningthat F denotes a proedure with 2 arguments, an expliit one for input and animpliit one for output. The reason is that every funtional proedure with narguments is treated internally as a relational proedure with n+1 arguments.The types of values an be heked in Oz dynamially, as illustrated by thefollowing examples.{Browse {IsReord R}}{Browse {IsReord F}}{Browse {Or {IsReord ~100}{IsBool ~100}}}{Browse {And {And{IsNumber ~100}{IsInt ~100}}{IsFloat ~100}}}{Browse {Not {IsReord false}}}

4.1. DATA STRUCTURES 55{Browse {IsReord {IsReord false}}}{Browse {And{And{IsList L}{IsTuple L}}{IsReord L}}}There also exists a prede�ned proedure in Oz whih omputes the type of agiven value. This is the proedure Value.status. When applied, it return notonly the type of its input argument but also its atual status whih may beeither determined, kinded, or free.{Browse [{Value.status R}{Value.status T}{Value.status L}{Value.status F}℄}For funtional programming, we'd better deal only with values of status `deter-mined', in order to avoid suspensions (bloking omputations).4.1.5 ProeduresA funtional proedure is a proedure whih omputes a funtion from valuesto a value, possibly depending on global values. Evaluating an appliation ofa funtional proedure means to pass the input values for its arguments, toompute the output value in funtion of the input values and the values of itsglobal variables, and �nally to output the output value (in ase of termination).As an example, we onsider a desription of the funtional proedure alledSquareList. When applied, this proedure inputs a list of integers and outputthe list of squares of these integers.delarefun{SquareList Ints}ase Intsof I|Is then I*I | {SquareList Is}elseof nil then nilendend{Browse {SquareList [1 2 3 4 5℄}}{Browse {SquareList {SquareList [1 2 3 4 5℄}}}Here, we use an alternative syntax for giving a name to a funtional proe-dure. The following two forms are equivalent desriptions:

56 LECTURE 4. MORE ON OZfun{SquareList Ints} ... endSquareList = fun{$ Ints} ...endOz supports syntax for funtional and relational proedures. Internally how-ever, there are relational proedures only. A relational proedure behaves like afuntional one exept that it does not return an output value. Oz supports thefollowing syntax for relational proedures (an anonymous and a named variant):P1 = pro {$ X Y Z} ... endpro {P2 U V} ... endApplying a relational proedures usually has a side e�et suh as browsing avalue. For instane, the following relational proedure browses the value of itsargument twie.pro {$ X} {Browse X} {Browse X} endThe output behaviour of a funtional proedure an be simulated by a relationalproedure whih raises a side e�et on a logi variable (see setion uni�ation).In fat, Oz supports funtional proedure in that it provides funtional desrip-tions of relational proedures. The desription of funtional proedure with narguments is translated into a desription of a relational proedure with n + 1arguments, where the last arguments serves as an output argument. For in-stane, the desriptions of the funtional proedure funfSquare Xg X*X endand its appliation Y=fSquare 3g are translated as follows:fun{Square X} X*X end ==> pro{Square X Out} Out=X*X endY={Square 3} ==> {Square 3 Y}Exeuting the appliation fSquare 3 Yg has a side e�et: the value 9 is assignedto the previously free variable Y.4.1.6 ReordsReords are the entral data struture in Oz. Reords are equally important inomputational linguistis, where they are alled feature trees. For instane, onemight wish to represent the English word girl and its features as the followingreord:word(at:noun phon:[girl℄ subat:determiner)The main operation on reords is feature seletion whih allows to aess a �eldbelonging to some feature. Feature seletion is denoted by a dot. For instane:{Browse word(at:noun phon:[girl℄ subat:determiner).phon}{Browse word(at:noun phon:[girl℄ subat:determiner).phon.1}Note that feature seletion is a very eÆient operation in Oz whih an be donein onstant time. A reord is implemented as a hash table whose keys are thefeatures of the reord.

4.1. DATA STRUCTURES 57The base environment of Oz is provided by a set of reords that are alsoalled modules. Global variables denoting modules Number, Reord, List, FD,and many more. For instane if you want to see the funtionality provided for�nite domains or reords in Oz then simply browse the modules FD and Reord.{Browse FD}{Browse Reord}This also explains the syntax of FD.distribute in our introdutory example: aproedure for distribution is seleted from the reord FD. For further informationon reords, we refer to `The Oz Base Environment'.4.1.7 ListsLists are another important data struture in Oz similarly to Lisp. Therefore,muh funtionality for lists is provided in the Oz-module List. Again, we onlygive some examples here and refer to doumentation `The Oz Standard Modules'for further information.Here is an example of a list whih might be obtained by reading lexialinformation on natural language from some �le:delareWordReps=[[mary noun nil℄[john noun nil℄[girl noun determiner℄[nie adjetive nil℄[pretty adjetive nil℄[the determiner nil℄[laughs verb noun℄[meets verb [noun noun℄℄[kisses verb [noun noun℄℄[embarrasses verb [noun noun℄℄[thinks verb [verb noun℄℄[is verb [adjetive noun℄℄[met adjetive nil℄[kissed adjetive nil℄[embarrassed adjetive nil℄℄As proposed above, one might wish to represent the features of a word in amore aessible way by using a reord rather than a list. For instane, thereord word(at:noun phon:[mary℄ subat:nil) is more readable than thelist [mary noun nil℄. More importantly, it is possible to selet a feature of aword in the reord representation in onstant time, whereas it takes linear timein the number of features in the list representation.

58 LECTURE 4. MORE ON OZGiven the list of list WordReps above, we an ompute a list of reordsWords by onverting all representions in WordReps. This an be done by usingthe funtional proedure Map:delarefun{Convert [P C S℄}word(phon:[P℄ at:C subat:S)endWords = {Map WordReps Convert}in{Browse Words}Note that the proedure Map is provided by the module List. Indeed, Map isidential to List.map, as shown when feeding:{Browse Map==List.map}Here, we apply the prede�ned funtional proedure ==, whih ompares twoOz-values for equality and returns its result as a Boolean value.Next, we might want to �lter all verbs out of the lexion Words. This anbe done by using the proedure Filter also de�ned in the module List:delareVerbs = {Filter Words fun{$ W}W.at == verbend}{Browse Verbs}4.1.8 Conurrent ThreadsConurreny is an way to organize omputation based on the notion of onur-rent proesses. Conurreny is well-known from operating systems like UNIXwhih support multi-tasking in order to administrate multiple windows eah ofwhih runs in its own proess. Oz supports onurrent omputation on a highlevel of abstration. The presentation of onurreny in this reader stays at thevery surfae of the phenomenon.A proess in Oz is alled a thread. A thread is reated when exeuting asequenes of Oz-statement sequentially. A thread may blok until more informa-tion beomes available. At �rst sight bloking may seem to be a programmingerror. For instane, onsider:delare FX={F 2}

4.2. UNIFICATION 59{Browse 'this thread bloks'}{Browse variables(x:X f:F number:1)}When feeding this piee of ode at one, nothing is browsed. The problem isthat the value of the variable F is unknown suh that the appliation of fF 2ghas to bloks. All followup statements of the same thread (ode sequene) arealso bloked until the free variable F gets assigned a value (i.e. gets bound).Using the programming interfae, you an easily feed another sequene ofstatements whih then omputes onurrently in its own thread.F=fun{$ Y} Y*Y endNow, the value of F has beome known. Thereby, the �rst thread beome ativeagain and ould exeuted its remaining two Browse-statements.You an also reate your own threads without using the Oz-Programming-Interfae. This an be done by using the ommand:thread ... endFor instane, the above example an be rewritten suh that the bloking appli-ation does not blok the subsequent statements.delare X FthreadX={F 2}{Browse 'this thread bloks ...'}{Browse variables(x:X f:F number:1)}{Browse '... but not forever'}end{Browse 'this thread does NOT blok}F=fun{$ Y} Y*Y endThis example illustrates the reation of a new thread whih �rst bloks untilthe free variable F gets bound by the main thread whih runs onurrently toits newly sporned thread.Threads in Oz threads ommuniate over shared logi variables whih playthe same role suh as hannels in CML or PICT. In Oz, you an also onsidera thread as a hand-written propagator whih adds information about the valueof variables to a shared onstraint store.4.2 Uni�ationOz allows to ompute with partial data strutures, i.e partial desriptions ofdata strutures. A partial desription ontains free variables, i.e. variableswhose value is unspei�ed. We have already seen the usage of free variables forommuniation of onurrent threads. We will next show that a variable in Ozbehaves suh as a logi variables in Prolog. A logi variable an be understoodas a plae holder for a value whih an be �lled later on.

60 LECTURE 4. MORE ON OZData strutures an be spei�ed by equation systems between terms on-taining logi variables. Uni�ation is the proess of solving equations systems,i.e. to determine the possible values of its variables. Uni�ation over �rst-orderdata strutures suh as reords or tuples is built into Oz. Uni�ation of reordsis known in omputational linguistis under the name feature uni�ation.Suppose, for instane, that you want to unify the terms f(X X) and f(g(YZ) Y), where X,Y,Z are logi variables denoting some possibly in�nite tree. Inorder to do so, it is suÆient to solve the equation f(X X) = f(g(Y Z) Y).whih an be done simply by feeding it into the Oz-emulator.delareX Y Zin f(X X) = f(g(Y Z) Y){Browse [X Y Z℄}Equations between terms are basi onstraints that an be entered diretly intothe onstraint store without bloking their thread (the subsequent statements).In the Browser, you an observe the result of the uni�ation proess. Thevariable Z is still free; the variables X and Y are bound to a term g(g(g(...Z) Z) Z) whih an be solved by an in�nite tree depending on the value of Z.Note that the equation X.2 = X.1.2 is valid independently of the hoie of Z.Uni�ation in Oz terminates even though the result an be the representationof an in�nite tree. The reason is that a solved form of the equations with ylesan be stored in the Oz onstraint store. This is similar to modern Prologimplementations, suh as Sistus Prolog.4.3 Finite Domain ConstraintsOz is spei�ally designed for onurrent onstraint programming. Now weintrodue onstraint programming in more detail. We onsider a very popularlass of onstraints that are alled �nite domain (FD) onstraints.4.3.1 FD-MembershipFinite domain variables are variables that an denote one member of a �niteset of integers. They an be used to express a simple form of disjuntion. Thisform of disjuntion is important when it omes to distribution.A �nite domain variable is a variable whose value is a natural number.Furthermore, the value of a �nite domain variable an be onstrained by some�nite domain of natural numbers. For instane, the FD-membership onstraintX :: 1#5is equivalent to X 2 f1; 2; 3; 4; 5g whih in turn is equivalent to the disjuntion:X = 1 _X = 2 _X = 3 _X = 4 _X = 5

4.3. FINITE DOMAIN CONSTRAINTS 61An FD-membership onstraint suh as X :: 1#5 an be represented diretelyin the Oz onstraint store. It is neither a propagator nor does it raise any asedistintion.4.3.2 FD-PropagatorsOz features several propagators for �nite domain variables. We only presentexamples here and refer to the �nite domain programming tutorial otherwise.The most important propagators are those for arithmetis. Propagators an bedistinguished from pure evaluators by the olons like in =: or =<:.3*X-Y =: 4*Z % linear arithmetis3*X-Y =<: 4*Z % inequationsFor eah FD-variable, a �nite domain of possible values is maintained in theonstraint store. What these propagators are doing is to restrit the upper andlower bounds of the domains of its variables; values from the interior of a �nitedomain are not exluded even if they ontradit the logial semantis of thepropagator.Another useful propagator is the all-distint propagator.{FD.distint [U V W X Y Z℄}Whenever the value of one of the variables in the list [U V W X Y Z℄ gets de-termined, this value is exluded from the domain of the others. The all-distintpropagator requires linear spae in the number of variables it administrates, inontrast to a naive implementation whih require quadrati spae:U\=:V U\=:W U\=:X U\=:Y U\=:ZV\=:W V\=:X V\=:Y V\=:ZW\=:X W\=:Y W\=:ZX\=:Y X\=:ZY\=:ZMore on FD-propagators an be found in the tutorial on �nite domain onstraintprogramming in Oz.4.3.3 FD-DistributionOz supports distribution for �nite domain variables but only within enapsu-lated searh. This is only operation whih reates a hoie node in a searhtree.Distributors an be reated by applying the proedure FD.distribute tothe name of a distribution strategy and a list of variables. For instane, the adistributor for the stategy �rst-fail (�) piks a variable X of minimal urrentdomain, splits this domain into two disjoint parts, eah of whih it onsiders inan independent part.X 2 D1 [D2 =) X 2 D1 _ X 2 D2

62 LECTURE 4. MORE ON OZGiven that the domain D1 [D2 is split, enapsulated searh proess bothpossiblities X 2 D1 and X 2 D2 independently.As said before, the split operation is evoked by the proedure FD.distribute.For instane, the domains of X and Y are split when in the following example:hDistributioni �delareprofProblem SolgX YinSol = solution(x:X y:Y)X :: 1#5Y :: 2#3fFD.distribute ff [X Y℄gendfExplore.all ProblemgDistribution in Oz is support during enapsulated searh only (but NOT on top-level). This means that a problem has to enapsulated into a unary proedurewhih is then and then passed to the Oz-Explorer. Applying this proedurediretely does not lead to distribution on top-level.Note also that a distributor suh as fFD.distribute ff [X Y℄g bloks itsthread (all subsequent statements) until distribution has happend (for ever ontop-level). Therefor, a distributor should always be the last statement of itsthread. This an be arhieved either by writing it into the last line of theproblem de�nition or by using a new thread anyway.thread {FD.distribute ff [X Y℄} end4.4 Finite Set ConstraintsFinite set onstraints are also known from onstraint programming but muhless popular than �nite domain onstraints. Nevertheless, it turns out that �niteset onstraints are extremely useful for natural language proessing.A �nite set (FS) variable denotes a �nite set of integers. A �nite set on-straint desribes the values of �nite set variables based on the usual set oper-ations. The reader should arefully note the di�erene between �nite domain(FD) variables and �nite set variables. An FD-variable denotes a single integerwhih an be desribed by a �nite set of possibilities. A FS-variable denotes a�nite set of integers whih may be empty or ontain more than one element.There is two forms of basi �nite set onstraint whih an be entered diretelyinto the Oz-onstraint-store. The upper:X={FS.var.upperBound 1#6}X={FS.var.lowerBound 2#4}The former onstraint states an upper bound X � f1; 2; 3; 4; 5; 6g whereas thelatter requires a lower bound f2; 3; 4g � X . Beside of basi set onstraints thereare the following set propagators:

4.5. DISJUNCTIONS AS PROPAGATORS 63{FS.subset X Y}X={FS.union Y Z}X={FS.partition [U V W℄}{FS.inlude X I}The delarative semantis of these onstraints are rather obvious:X � YX = Y [ZX = U ℄ V ℄WI 2 XOperationally, set propagators inrease upper bounds and derease lower boundsof set variables in the onstraint store. The propagation behaviour an be testedat the following example:delareX={FS.var.upperBound 1#6}Y={FS.var.upperBound 1#2}Z={FS.var.upperBound 2#3}{FS.subset X {FS.union Y Z}}{FS.subset Y Z}{FS.inlude 2 Y}{Browse [X Y Z℄}There are more important set onstraints in Oz that we will not present in thisreader. Note also that we do not need distributors for set onstraints.4.5 Disjuntions as PropagatorsThere are several ways in Oz to express disjuntive information. The mostonvenient way are or-statements and �nite domain onstraints. As we will see,both of them an in an interloked manner.4.5.1 or-StatementsFor instane, the possible gender-ase-number information of the German word`sh�onen' an be is desribed by the following or-statement whih behaves as adisjuntive propagator.hOr Statementi �or [Gen Cas Num℄=[mas dat sg℄ then skip % dem sh�onen Mann[℄ [Gen Cas Num℄=[mas a sg℄ then skip % den sh�onen Mann[℄ [Gen Cas Num℄=[mas nom pl℄ then skip % die sh�onen M?er[℄ [Gen Cas Num℄=[mas gen pl℄ then skip % der sh�onen M?er[℄ [Gen Cas Num℄=[mas dat pl℄ then skip % den sh�onen M?ern[℄ [Gen Cas Num℄=[mas a pl℄ then skip % die sh�onen M?er

64 LECTURE 4. MORE ON OZ[℄ [Gen Cas Num℄=[fem gen sg℄ then skip % der sh�onen Frau[℄ [Gen Cas Num℄=[fem dat sg℄ then skip % der sh�onen Frau[℄ [Gen Cas Num℄=[fem nom pl℄ then skip % die sh�onen Frauen[℄ [Gen Cas Num℄=[fem gen pl℄ then skip % der sh�onen Frauen[℄ [Gen Cas Num℄=[fem dat pl℄ then skip % den sh�onen Frauen[℄ [Gen Cas Num℄=[fem a pl℄ then skip % die sh�onen FrauenendAn or-statment onsists of a set of lauses eah of whih has a guard and a body.For instane, the guard of the seond lause above is the onstraint [Gen CasNum℄=[mas a sg℄. The body of all lauses above are skip. The distintbehaviour of guards and bodies is explained in the next setion.4.5.2 Operational SemantisAn or-statement behaves as a propagator whih onurrently investigates all itsalternatives. Eah alternative is ontinually monitored. The statement bloksuntil only one of the guards is onsistent with the urrent onstraint store; thenit ommits the lause aording to the following rule:or GUARD then BODY end ==> Guard BodyAn or-statement redues all its guards in parallel suh that the onstraints ofthe guard remain properly separated from those in the global onstraint store.We say that every guard is exeuted in its own omputation spae.As soon as a guard of a lause beomes inonsistent with the global onstraintstore, the lause is deleted from the or-statement. If one single lause remainsthen the or-statement redues aording to the rule above.We an observe the semantis of or-statements by feeding the following pieesof ode:hTest the or-Statementi �delareGen Cas NumhOr StatementifBrowse 'An or-statement bloks its thread until it redues'gfBrowse ['gender:' Gen 'ase:' Cas 'number:' Num℄g/*Cas=nom Gen=fem*/When having feeded theses lines, nothing should happen sine the or-statementbloks its thread. But when feeding the onstraint Cas=nom Gen=fem the twoBrowse statements following the or-statement should beome ative. Note inpartiular that the variable Num is determined to the value pl.

4.6. SUMMARY 654.5.3 Choie Points versus Choie VariablesUnlike in Prolog, an Oz disjuntion does not reate a hoie point,i.e. a asedistintion. The only way to ommit to one alternative is to ause all the othersto beome inonsistent.hDisjuntive Propagatori �or fEqual N Mg then skip[℄ fDomPlus N Mg then skip[℄ fDomPlus M Ng then skip[℄ fSide N MgendYet, in order to perform searh, we often need to fore ommitment to oneor the other alternative. The standard trik in onstraint programming is tointrodue a hoie variable, also known as a ontrol variable.We ontrol the alternatives by a hoie variable C. C is a �nite domainvariable with the domain 1#4; simply by equating it with 1, 2, 3 or 4, we anommit to the orresponding alternative.hChoie Variablesi �or C=1 fEqual N Mg then skip[℄ C=2 fDomPlus N Mg then skip[℄ C=3 fDomPlus N Mg then skip[℄ C=4 fSide N Mg then skipendBy distributing the values of the �nite domain ontol variable C we an nowreated hoie points on need by fFD.distribute naive [C℄g .4.6 Summary� Oz supports a wide range of values : numbers, atoms, booleans, reords,lists, proedures, et.� An important data type is the reord ; it's essentially the same as a fea-ture tree in omputational linguistis. A reord all of whose features arenumbers is alled a tuple. Lists are a partiular sort of tuples.� The variables in Oz are logi variables, whih an be understood as plae-holders for a value whih an be �lled in when needed. Oz supportsuni�ation of terms over the lass of in�nite trees.� Oz supports onurrent threads whih ommuniate over logi variables.The appliation of a free variable bloks its thread (all subsequent state-ments) until another thread assigns a value to the variable.� Finite domain onstraints are a very important lass of onstraints whihis supported by the Oz standard library (see the Oz-referene manual

66 LECTURE 4. MORE ON OZon System Modules). They speify relations between variables denotingmembers of a �nite set of integers. Possible values an be narrowed downby propagation, and there are standard distribution strategies for distin-guishing ases if neessary.� Finite set onstraints are an important lass of onstraints whih is alsosupported by the Oz standard library (see the Oz-referene manual onSystem Modules). Finite set onstraints provide propagators for the usualset operations.� A disjuntion an be used as a propagator in Oz if it is expressed by anor statement. An or-statement an be turned into a distributor by usinga �nite domain ontrol variables and a �nite domain distributor.

Leture 5Solving DominaneConstraintsIn this hapter, we show how to solve dominane onstraints by onstraint pro-gramming with sets. While we won't say anything about the details, the teh-niques used here an be used as a basis to build more underspei�ed proessingmehanisms for dominane onstraints. For instane, the enoding of nodespresented below lends itself very well to apturing the interation of sope andanaphora as in Every man loves a woman. Her name is Mary. In the sentene,the anaphori referene exludes one reading of the �rst sentene; we an makethis inferene purely with propagation.5.1 Dominane ConstraintsWe will onsider the following language of tree desriptions based on dominaneonstraints: ' ::= ' ^ '0j X=Yj X 6=Yj X��Yj X:��Yj X :(Y1; : : : ; Yn)This language is a variant of the dominane onstraints de�ned in the seondleture. The di�erenes are as follows:� X��Y expresses that X and Y must denote the same node. It's an ab-breviation of X��Y ^ Y��X .� X:��Y expresses that X must not dominate Y . This ouldn't be ex-pressed in the original language.67

68 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS� The new language doesn't ontain lambda binding onstraints. This is forsimpliity of presentation; it's not diÆult to add binding onstraints tothe implementation. Note that we an now speak just about trees, insteadof lambda strutures, as the models of dominane onstraints.� Labeling onstraints have been replaed by `daughterhood' onstraintsX :(Y1; : : : ; Yn); the di�erene is that daughterhood onstraints don't spe-ify the label of X . This, too, is for simpliity, and labels ould be (andhave been) added easily to the implementation.5.2 Constraint Solving as Con�gurationWe typially depit a dominane onstraint as a (onstraint) graph. A node ofsuh a graph represents all ourrenes of a variable at the same time. A graphthen desribes all those trees that satisfy the dominane relations required bythe graph.In the graph metaphor, solving a dominane onstraint means to on�gureits nodes into a tree suh that all required dominane relations hold. Of ourse,there is a naive `generate and test' strategy for doing this: First, one an generatefor eah two nodes in a graph their relative positions in the tree desribed. Anode an either be above the other node, below it, or `to the side of it', i.e.neither above or below. In a seond step, we an test whih of our guessesare ompatible with the dominane onstraints required. This yields a non-deterministi polynomial time algorithm. In terms of omplexity theory, onesays that the problem of solving dominane onstraints is in NP. The situationis worse than one might hope sine the problem is in fat NP-omplete. Thuswe annot expet any polynomial algorithm to exist. However, we an hope foran algorithm that is eÆient for the appliations to semanti underspei�ation.5.3 Partioning TreesWhen regarded from a spei� node, a tree is divided into 5 regions: (1) thenode itself, (2) the nodes above, (3) the nodes below, (4) the nodes to the left,and (5) the nodes to the right.

5.3. PARTIONING TREES 69
EqUp

DownLeft Right
In this hapter, we will aggregate the set of nodes to the left and to the right, andall the result the side set. A similar treatment an trivially be developed thatretains the distintion; suh a treatment would support preedene onstraints.Thus, in our treatment, any two nodes N1 and N2 of a tree must be in oneof 4 mutually exlusive relationships:1. N1=N2, they are equal2. N1 �+ N2, N1 stritly dominates N23. N2 �+ N1, N2 stritly dominates N14. N1?N2, N1 is to the side of N2 (i.e. none of the above).We say that any 2 nodes N1 and N2 must satisfy the treeness onditionexpressed as the following disjuntion:(A1) N1=N2 _N1 �+ N2 _N2 �+ N1 _N1?N2In fat, we an reet the 4 mutually exlusive possibilities above and asso-iate, with a node N, 4 sets of variables:1. N.eq, the set of variables of whose interpretation is equal N2. N.up, the set of variables whose interpretations are stritly above N,3. N.down, the set of variables whose interpretations are stritly below N,4. N.side, the set of variables whose interpretations are to the side of NThe whole idea of our approah resides here: for eah node, to haraterize itsposition in a tree model in terms of these four sets of variables. These sets aredisjoints and form a partition of the set V of variables in the input desription:(A2) V = N:eq ℄N:up ℄N:down ℄N:side

70 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS5.4 Dominane Constraints as Set ConstraintsIn this setion, we provide an implementation of the dominane onstraint solverbased on �nite set onstraints in Oz. We ollet the funtionality provided bythe solver in a reord alled DC for dominane onstraint.5.4.1 Representation of Dominane ConstraintsWe enode a dominane onstraint as a funtional proedure taking as argu-ment a list [N1 N2 ... Nk℄ of nodes, one for eah variable of the desriptionformula. This proedure then onstrains theses nodes as required by the dom-inane onstraint using proedures for atomi onstraints that we are going tomake available. Consider the dominane onstraint whih is typial for a sopeambiguity with two quanti�ers.X1 : (X2) ^X2��X5 ^X3 : (X3) ^X4��X5We are interested in all solutions of this onstraints where no variables areidenti�ed. This refets that quanti�ers should not be identi�ed. It is slightlystronger than saying that nodes with distint labels should not be identi�ed.X1 6= X2 ^X1 6= X3 ^X1 6= X4 ^X1 6= X5^X2 6= X3 ^X2 6= X4 ^X2 6= X5^X3 6= X4 ^X3 6= X5^X4 6= X5Using the DC module, it would be expressed as a reord whih ontains thenumber of variables and a proedure whih inputs a list of nodes and reatesset onstraints for these nodes and the dominane onstraint.hDomConExamplei �loalpro fDomCon [N1 N2 N3 N4 N5℄gfDC.daughters N1 [N2℄gfDC.dominates N2 N5gfDC.daughters N3 [N4℄gfDC.dominates N4 N5gfForAll [N1#N2 N1#N3 N1#N4 N1#N5N2#N3 N2#N4 N2#N5N3#N4 N3#N5N4#N5℄prof$ N#MgfDC.notEqual N Mgendgendin DomConExample = 'unit'(domCon:DomConvars:5)end

5.4. DOMINANCE CONSTRAINTS AS SET CONSTRAINTS 715.4.2 The Solver as a ModuleWe proved the dominane onstraint solver as a reord DC whih provides allfuntionality required for solving dominane onstraints. In a more serious im-plementation, modules ould be de�ned by funtors whih an be made availableas applets on the internet.hDC: dominane onstraint solveri �loalhDC: daughtersihDC: dominatesihDC: not equaliloalhDC: equalihDC: stritly dominatesihDC: sideihDC: make nodeiin hDC: make prediateiendin DC=dom(makePrediate:MakePrediatedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endIn partiular, the reord DC exports the proedure MakePrediate whih turnsa dominane onstraint into a prediate appropriate as input to enapsulatedsearh as provided by e.g. Explorer.all or Searh.all. For example, weould now use the Explorer1 to searh for all possible (onstrutive) models ofDomConExample:hDC.ozi �delarehDC: dominane onstraint solverihDomConExampleiin fExplorer.all fDC.makePrediate DomConExampleggHere, the number 4 indiates the number of variables in the domane onstraintDomConExample.5.4.3 Node RepresentationA node is represented by a reord. It ontains an entry for eah of the sets Eq,Down, Up and Side explained above, plus for the auxiliary sets EqDown (resp.1http://www.mozart-oz.org/doumentation/explorer/

72 LECTURE 5. SOLVING DOMINANCE CONSTRAINTSEqUp), whih are the unions of Eq and Down (resp. Up). Finally, the reord hasa feature daughters whih will ontain the set of daughter nodes, and a featureuser, whih is reserved for appliation-spei� data. In the ode below, I isthe integer representing the variable. VDom is [1#N℄, where N is the number ofvariables in the desription.The onstraints after the in speify that Eq, Down, Up and Side must forma partition of the set of variables in the desription. Furthermore, the variable(enoded as integer I) that is interpreted by this node must be in the Eq set ofthe node.hDC: make nodei �fun fMakeNode I VDomgEq = fFS.var.upperBound VDomgDown = fFS.var.upperBound VDomgUp = fFS.var.upperBound VDomgSide = fFS.var.upperBound VDomgEqDown = fFS.union Eq DowngEqUp = fFS.union Eq Upgin fFS.partition [Eq Down Up Side℄ fFS.value.make VDomggfFS.inlude I Eqgnode(eq : Eqdown : Downup : Upside : Sideeqdown : EqDownequp : EqUpdaughters : _)end5.4.4 Translation to Set ConstraintsIf N1 dominates N2, then everything that is (weakly) below N2 must be (weakly)below N1, everything that is (weakly) above N1 must be (weakly) above N2,and everything that is beside N1 is also beside N2. Note however that there anbe nodes beside N2 that are below N1.hDC: dominatesi �pro fDominates N1 N2gfFS.subset N2.eqdown N1.eqdowngfFS.subset N1.equp N2.equp gfFS.subset N1.side N2.side gendThe equality onstraint is simply implemented by uni�ation:hDC: equali �

5.4. DOMINANCE CONSTRAINTS AS SET CONSTRAINTS 73pro fEqual N1 N2g N1=N2 endThe disequality onstraint states that the Eq sets of N1 and N2 must be disjoint:hDC: not equali �pro fNotEqual N1 N2gfFS.disjoint N1.eq N2.eqgendN1 stritly dominates N2 i� it dominates N2 and is not equal to N2:hDC: stritly dominatesi �pro fStritlyDominates N1 N2gfDominates N1 N2gfNotEqual N1 N2gendIf N1 is to the side of N2 (and reiproally), then N1 and everything below it isto the side of N2 (and resp.):hDC: sidei �pro fSide N1 N2gfFS.subset N1.eqdown N2.sidegfFS.subset N2.eqdown N1.sidegendFinally, here is the onstraint that deals with immediate dominane by spei-fying expliitly the daughters of a node N as a list Nodes of nodes. The set ofnodes that are weakly below eah of the daughters form a partition of the setof nodes that are stritly below the mother. Furthermore, the set of nodes thatare stritly above eah daughter is preisely the set of nodes that are weaklyabove the mother.hDC: daughtersi �pro fDaughters N LgN.daughters = LfFS.partition fMap L fun f$ Dg D.eqdown endg N.downgfForAll L pro f$ Dg D.up=N.equp endgend5.4.5 Solution PrediateMakePrediate is given the arguments N, the number of variables in the domi-nane onstraint, and P, a proedure whih takes a list of nodes orrespondingto these variables and imposes the set onstraints for the given dominane on-straint. MakePrediate returns a unary prediate appropriate as an argumentto e.g. Searh.all or Explorer.all.A searh prediate always has the same form: it is a unary prediate whoseargument denotes a solution. First it posts all onstraints on the solution, thenit spei�es a searh/distribution strategy:

74 LECTURE 5. SOLVING DOMINANCE CONSTRAINTShDC: make prediatei �fun fMakePrediate 'unit'(domCon:DomCon vars:N)gpro f$ NodesghDC: reate nodesihDC: translation to set onstraintsihDC: impose treenessiinhDC: distributeiendendThe solution Nodes must be a list of N nodes. Eah variable is represented by adistint integer between 1 and N. Thus sets of variables an be represented bysets of integers. (We store the spei�ation of the �nite domain from 1 to N inthe variable VDom.) For eah variable, MakeNode reates a term representing thenode that is the interpretation of this variable.hDC: reate nodesi �VDom = [1#N℄fList.make N Nodesg % onstrains Nodes to a list% [_ ... _℄ of length NfList.forAllInd Nodespro f$ I Ng fMakeNode I VDom Ng endgThen we onstrain these nodes using the proedure DomCon that implementsthe dominane onstraint. After this we exeute hoie skip end whose onlye�et is to wait for stability; i.e. until onstraint propagation has inferred asmuh as it ould. Typially the dominane onstraint DomCon provides verystrong onstraints and it is a good idea to impose them �rst and wait until theyhave ahieved full e�et before going on with the quadrati number of expensivetreeness onstraints.hDC: translation to set onstraintsi �fDomCon Nodesg% waits for stabilityloal H in H::1#1 fFD.distribute naive [H℄g endNow we impose the treeness onstraint between every pair of nodes Ni andNj. For every suh pair we impose a hoie whih is ontroled by its own hoievariables with domain [1..4℄. We ollet the quadrati number of hoie variableswithin the list ChoieVariables.hDC: impose treenessi �ChoieVariables =fList.foldRTail Nodesfun f$ NijNs CsgfList.foldR Nsfun f$ Nj CsghDC: treeness ondition between Ni and Nji

5.4. DOMINANCE CONSTRAINTS AS SET CONSTRAINTS 75CjCsend Csgend nilgFinally, we speify the distribution strategy: here we use First Fail on the hoievariables. Eah hoie variable is a �nite domain variable in [1..4℄. First fail isa strategy whih attempts to minimize the branhing fator in the searh tree:it piks a (non-determined) variable with the minimum number of remainingpossible assignments.hDC: distributei �fFD.distribute ff ChoieVariablesg5.4.6 Treeness ConditionThe treeness ondition that must hold between Ni and Nj is realized by fouronurrent disjuntions and is ontrolled by hoie variable Cij. The latter is a�nite domain variable taking a value in [1..4℄.hDC: treeness ondition between Ni and Nji �C in C::1#4threador C = 1 fEqual Ni Njg[℄ C = 2 fStritlyDominates Ni Njg[℄ C = 3 fStritlyDominates Nj Nig[℄ C = 4 fSide Nj NigendendThe thread ... end statements in the ode fragment ause the omputa-tion to reate four new onurrent threads, one for eah hoie variable. Thisis neessary beause the or statements within the new threads blok until onlyone of their guards an be satis�able, and we don't want this to blok our entireomputation.5.4.7 Better PropagationA better implementation of the treeness ondition an be obtained when pro-viding propagators for further relations between nodes. This an be observed atthe example given. The searh tree of the more naive solver ontains a failurenode and two solution nodes. The smart solver ontain no failure node anymore and still the two solution nodes.If N1 does not stritly dominate N2, then N1 is not stritly above N2 nor isN2 stritly below N1:hDC smart: not stritly dominatesi �pro fNotStritlyDominates N1 N2gfFS.disjoint N1.eq N2.up gfFS.disjoint N2.eq N1.downgend

76 LECTURE 5. SOLVING DOMINANCE CONSTRAINTSThe fat that neither N1 nor N2 is on the side of the other an be expressed by:hDC smart: not sidei �pro fNotSide N1 N2gfFS.disjoint N1.eq N2.sidegfFS.disjoint N2.eq N1.sidegendWe an now state the treeness ondition in a smarter way.hDC smart: treeness ondition between Ni and Nji �C in C::1#4thread or C = 1 f Equal Ni Njg[℄ Cn=:1 fNotEqual Ni Njgendendthread or C = 2 f StritlyDominates Ni Njg[℄ Cn=:2 fNotStritlyDominates Ni Njgendendthread or C = 3 f StritlyDominates Nj Nig[℄ Cn=:3 fNotStritlyDominates Nj Nigendendthread or C = 4 f Side Ni Njg[℄ Cn=:4 fNotSide Ni NjgendendNote that this ode is equivalent to an or of four alternatives as above butthe ode shown here leads to fewer better propagation and thus less failure.Here omes the rest of the ode for a smarter dominane onstraint solverwhih is based on the smarter treeness ondition. Apart from the smartertreeness onndition there is nothing else new here.hDC smart: impose treenessi �ChoieVariables =fList.foldRTail Nodesfun f$ NijNs CsgfList.foldR Nsfun f$ Nj CsghDC smart: treeness ondition between Ni and NjiCjCsend Csgend nilghDC smart: make prediatei �fun fMakePrediate 'unit'(domCon:DomCon vars:N)gpro f$ Nodesg

5.5. FULL CODE OF THE DOMINANCE CONSTRAINT SOLVER 77hDC: reate nodesihDC: translation to set onstraintsihDC smart: impose treenessiin hDC: distributeiendendhDC smart: dominane onstraint solveri �loalhDC: daughtersihDC: dominatesihDC: not equaliloalhDC: equalihDC: stritly dominatesihDC: sideihDC: make nodeihDC smart: not stritly dominatesihDC smart: not sideiinhDC smart: make prediateiendin DC=dom(makePrediate:MakePrediatedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endhDCSmart.ozi �delarehDC smart: dominane onstraint solverihDomConExampleiin fExplorer.all fDC.makePrediate DomConExamplegg5.5 Full Code of the Dominane Constraint SolverThe ode below is available from the �le DC.oz2.delareloalpro {Daughters N L}N.daughters = L2ode/DC.oz

78 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS{FS.partition {Map L fun {$ D} D.eqdown end} N.down}{ForAll L pro {$ D} D.up=N.equp end}endpro {Dominates N1 N2}{FS.subset N2.eqdown N1.eqdown}{FS.subset N1.equp N2.equp }{FS.subset N1.side N2.side }endpro {NotEqual N1 N2}{FS.disjoint N1.eq N2.eq}endloalpro {Equal N1 N2} N1=N2 endpro {StritlyDominates N1 N2}{Dominates N1 N2}{NotEqual N1 N2}endpro {Side N1 N2}{FS.subset N1.eqdown N2.side}{FS.subset N2.eqdown N1.side}endfun {MakeNode I VDom}Eq = {FS.var.upperBound VDom}Down = {FS.var.upperBound VDom}Up = {FS.var.upperBound VDom}Side = {FS.var.upperBound VDom}EqDown = {FS.union Eq Down}EqUp = {FS.union Eq Up}in {FS.partition [Eq Down Up Side℄ {FS.value.make VDom}}{FS.inlude I Eq}node(eq : Eqdown : Downup : Upside : Sideeqdown : EqDownequp : EqUpdaughters : _)endin fun {MakePrediate 'unit'(domCon:DomCon vars:N)}pro {$ Nodes}VDom = [1#N℄{List.make N Nodes} % onstrains Nodes to a list% [_ ... _℄ of length N

5.5. FULL CODE OF THE DOMINANCE CONSTRAINT SOLVER 79{List.forAllInd Nodespro {$ I N} {MakeNode I VDom N} end}{DomCon Nodes}% waits for stabilityloal H in H::1#1 {FD.distribute naive [H℄} endChoieVariables ={List.foldRTail Nodesfun {$ Ni|Ns Cs}{List.foldR Nsfun {$ Nj Cs}C in C::1#4threador C = 1 {Equal Ni Nj}[℄ C = 2 {StritlyDominates Ni Nj}[℄ C = 3 {StritlyDominates Nj Ni}[℄ C = 4 {Side Nj Ni}endendC|Csend Cs}end nil}in{FD.distribute ff ChoieVariables}endendendin DC=dom(makePrediate:MakePrediatedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endloalpro {DomCon [N1 N2 N3 N4 N5℄}{DC.daughters N1 [N2℄}{DC.dominates N2 N5}{DC.daughters N3 [N4℄}{DC.dominates N4 N5}{ForAll [N1#N2 N1#N3 N1#N4 N1#N5N2#N3 N2#N4 N2#N5N3#N4 N3#N5N4#N5℄pro{$ N#M}{DC.notEqual N M}end}end

80 LECTURE 5. SOLVING DOMINANCE CONSTRAINTSin DomConExample = 'unit'(domCon:DomConvars:5)endin {Explorer.all {DC.makePrediate DomConExample}}The ode of the smart solver is available from the �le DCSmart.oz3.delareloalpro {Daughters N L}N.daughters = L{FS.partition {Map L fun {$ D} D.eqdown end} N.down}{ForAll L pro {$ D} D.up=N.equp end}endpro {Dominates N1 N2}{FS.subset N2.eqdown N1.eqdown}{FS.subset N1.equp N2.equp }{FS.subset N1.side N2.side }endpro {NotEqual N1 N2}{FS.disjoint N1.eq N2.eq}endloalpro {Equal N1 N2} N1=N2 endpro {StritlyDominates N1 N2}{Dominates N1 N2}{NotEqual N1 N2}endpro {Side N1 N2}{FS.subset N1.eqdown N2.side}{FS.subset N2.eqdown N1.side}endfun {MakeNode I VDom}Eq = {FS.var.upperBound VDom}Down = {FS.var.upperBound VDom}Up = {FS.var.upperBound VDom}Side = {FS.var.upperBound VDom}EqDown = {FS.union Eq Down}EqUp = {FS.union Eq Up}in {FS.partition [Eq Down Up Side℄ {FS.value.make VDom}}{FS.inlude I Eq}node(3ode/DC.oz

5.5. FULL CODE OF THE DOMINANCE CONSTRAINT SOLVER 81eq : Eqdown : Downup : Upside : Sideeqdown : EqDownequp : EqUpdaughters : _)endpro {NotStritlyDominates N1 N2}{FS.disjoint N1.eq N2.up }{FS.disjoint N2.eq N1.down}endpro {NotSide N1 N2}{FS.disjoint N1.eq N2.side}{FS.disjoint N2.eq N1.side}endinfun {MakePrediate 'unit'(domCon:DomCon vars:N)}pro {$ Nodes}VDom = [1#N℄{List.make N Nodes} % onstrains Nodes to a list% [_ ... _℄ of length N{List.forAllInd Nodespro {$ I N} {MakeNode I VDom N} end}{DomCon Nodes}% waits for stabilityloal H in H::1#1 {FD.distribute naive [H℄} endChoieVariables ={List.foldRTail Nodesfun {$ Ni|Ns Cs}{List.foldR Nsfun {$ Nj Cs}C in C::1#4thread or C = 1 { Equal Ni Nj}[℄ C\=:1 {NotEqual Ni Nj}endendthread or C = 2 { StritlyDominates Ni Nj}[℄ C\=:2 {NotStritlyDominates Ni Nj}endendthread or C = 3 { StritlyDominates Nj Ni}[℄ C\=:3 {NotStritlyDominates Nj Ni}endendthread or C = 4 { Side Ni Nj}

82 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS[℄ C\=:4 {NotSide Ni Nj}endendC|Csend Cs}end nil}in {FD.distribute ff ChoieVariables}endendendin DC=dom(makePrediate:MakePrediatedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endloalpro {DomCon [N1 N2 N3 N4 N5℄}{DC.daughters N1 [N2℄}{DC.dominates N2 N5}{DC.daughters N3 [N4℄}{DC.dominates N4 N5}{ForAll [N1#N2 N1#N3 N1#N4 N1#N5N2#N3 N2#N4 N2#N5N3#N4 N3#N5N4#N5℄pro{$ N#M}{DC.notEqual N M}end}endin DomConExample = 'unit'(domCon:DomConvars:5)endin {Explorer.all {DC.makePrediate DomConExample}}5.6 Summary� Conurrent Constraint Programming allows a very intuitive implementa-tion of a solver for dominane onstraints.� Every variable is assoiated with four sets of nodes : the sets of variablesequal, stritly above, stritly below, and to the side of it.

5.6. SUMMARY 83� Finite set onstraints an be used to axiomatize the problem; they an betaken over in Mozart with only syntati variations.� The dominane onstraint solver based on �nite set onstraints has beenintegrated into the CHORUS demo system and runs eÆiently on domi-nane onstraints from underspei�ed semantis.

84 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS

BibliographyAlshawi, H., D. Carter, R. Crouh, S. Pulman, M. Rayner, and A. Smith(1992). CLARE: A ontextual reasoning and ooperative responseframework for the Core Language Engine. Tehnial Report CRC-028,SRI International, Cambridge, England. http://www.am.sri.om/tr/r028/paper.ps.Z.Alshawi, H. and R. Crouh (1992). Monotoni semanti interpretation. InProeedings of the 30th ACL, Kyoto, 32{39.Bakofen, R., J. Rogers, and K. Vijay-Shanker (1995). A �rst-order axiom-atization of the theory of �nite trees. Journal of Logi, Language, andInformation 4, 5{39.Blakburn, P. and J. Bos (1999). Representation and inferene for naturallanguage: A �rst ourse in omputational semantis. Leture notes, http://www.oli.uni-sb.de/~bos/omsem.Bodirsky, M., M. Egg, A. Koller, J. Niehren, K. Striegnitz, andS. Thater (1999). Chorus demo system. http://www.oli.uni-sb.de/l/projets/horus/software.html.Bos, J. (1996). Prediate logi unplugged. In Proeedings of the 10th Amster-dam Colloquium, 133{143.Cooper, R. (1975). Montague's semanti theory and transformational syntax.Ph. D. thesis, University of Massahusetts, Amherst.Cooper, R. (1983). Quanti�ation and Syntati Theory. Dordreht: Reidel.Copestake, A., D. Flikinger, and I. Sag (1997). Minimal Reursion Semantis.An Introdution. Manusript, available at ftp://sli-ftp.stanford.edu/linguistis/sag/mrs.ps.gz.Dalrymple, M., J. Lamping, F. Pereira, and V. Saraswat (1997). Quanti�ers,anaphora, and intensionality. Journal of Logi, Language, and Informa-tion 6, 219{273.Dalrymple, M., S. Shieber, and F. Pereira (1991). Ellipsis and higher-orderuni�ation. Linguistis & Philosophy 14, 399{452.Duhier, D. and C. Gardent (1999). A onstraint-based treatment of desrip-tions. In Proeedings of IWCS-3, Tilburg.85

86 BIBLIOGRAPHYDuhier, D., C. Gardent, and J. Niehren (1999). Conurrent onstraint pro-gramming in Oz for natural language proessing. Leture notes, http://www.ps.uni-sb.de/~niehren/oz-natural-language-sript.html.Duhier, D. and J. Niehren (1999). Solving dominane onstraints with �-nite set onstraint programming. Submitted. http://www.ps.uni-sb.de/Papers/abstrats/DomCP99.html.Egg, M., J. Niehren, P. Ruhrberg, and F. Xu (1998). Constraints overLambda-Strutures in Semanti Underspei�ation. In Proeedings COL-ING/ACL'98, Montreal.Gamut, L. T. F. (1991). Logi, Language, and Meaning. Chiago and London:University of Chiago Press.Gardent, C. and B. Webber (1998). Desribing disourse semantis. In Pro-eedings of the 4th TAG+ Workshop, Philadelphia. University of Pennsyl-vania.Hirshb�uhler, P. (1982). VP deletion and aross the board quanti�er sope.In J. Pustejovsky and P. Sells (eds), NELS 12, Univ. of Massahusetts.Hobbs, J. and S. Shieber (1987). An algorithm for generating quanti�er sop-ing. Computational Linguistis 13, 47{63.Keller, W. (1988). Nested Cooper storage: The proper treatment of quanti�-ation in ordinary noun phrases. In U. Reyle and C. Rohrer (eds), NaturalLanguage Parsing and Linguisti Theory. Dordreht: Reidel.Koller, A. (1999). Constraint languages for semanti underspei�ation.Diplom thesis, Universit�at des Saarlandes, Saarbr�uken, Germany. http://www.oli.uni-sb.de/~koller/papers/da.html.Koller, A., J. Niehren, and K. Striegnitz (1999). Relaxing underspei�ed se-manti representations for reinterpretation. In Proeedings of the SixthMeeting on Mathematis of Language (MOL6), Orlando, Florida. http://www.oli.uni-sb.de/~koller/papers/reint.html.Koller, A., J. Niehren, and R. Treinen (1998). Dominane onstraints: Algo-rithms and omplexity. In Proeedings of the Third Conferene on LogialAspets of Computational Linguistis, Grenoble.Marus, M. P., D. Hindle, and M. M. Flek (1983). D-theory: Talking abouttalking about trees. In Proeedings of the 21st ACL, 129{136.Montague, R. (1974). The proper treatment of quanti�ation in ordinaryEnglish. In R. Thomason (ed.), Formal Philosophy. Seleted Papers ofRihard Montague. New Haven: Yale University Press.Muskens, R. (1995). Order-Independene and Underspei�ation.In J. Groenendijk (ed.), Ellipsis, Underspei�ation, Eventsand More in Dynami Semantis. DYANA Deliverable R.2.2.C.http//www.ims.uni-stuttgart.de/ftp/pub/papers/DYANA2/95opy/R2.2.C/Musk%ens.ps.gz.

BIBLIOGRAPHY 87Oz Development Team (1999). The Mozart Programming System web pages.http://www.mozart-oz.org/.Partee, B. H. and H. L. W. Hendriks (1997). Montague grammar. In J. vanBenthem and A. ter Meulen (eds), Handbook of Logi and Language, Chap-ter 1, 5{91. Amsterdam: Elsevier.Poesio, M. (1994). Ambiguity, underspei�ation, and disourse interpreta-tion. In Proeedings of IWCS-1, Tilburg.Reyle, U. (1993). Dealing with ambiguities by underspei�ation: onstru-tion, representation, and dedution. Journal of Semantis 10, 123{179.Saraswat, V. A., M. Rinard, and P. Panangaden (1991). Semanti foundationsof onurrent onstraint programming. In ACM Symposium on Priniplesof Programming Languages, 333{352. ACM Press, New York.Shiehlen, M. (1997). Disambiguation of underspei�ed disourse repesenta-tion strutures under anaphori onstraints. In Proeedings of IWCS-2,Tilburg.Smolka, G. (1994). A foundation for onurrent onstraint programming. InConstraints in Computational Logis, 50{72. Springer-Verlag, Berlin.Smolka, G. (1995). The Oz Programming Model. In J. van Leeuwen (ed.),Computer Siene Today, 324{343. Springer-Verlag, Berlin.Vijay-Shanker, K. (1992). Using desriptions of trees in a tree adjoining gram-mar. Computational Linguistis 18, 481{518.

