
S
ope Underspe
i�
ation and Pro
essingAlexander Koller, Dept. of Computational Linguisti
s, Saarbr�u
kenJoa
him Niehren, Programming Systems Lab, Saarbr�u
ken.August 17, 1999

2

OverviewThis reader
ontains material for the ESSLLI '99
ourse, \S
ope Underspe
i-�
ation and Pro
essing". It is intended as a summary of the most importantpoints of the
ourse and as giving pointers to material for further reading. Thereader and
ourse are aimed at a pretty broad audien
e; we have tried to onlypresuppose a very general idea of natural language pro
essing and of �rst-orderlogi
.Underspe
i�
ation is a general approa
h to dealing with ambiguity. In the
ourse, we'll be parti
ularly
on
erned with s
ope underspe
i�
ation, whi
h dealswith s
ope ambiguity, a stru
tural ambiguity of the semanti
s of a senten
e. Ass
ope underspe
i�
ation is at least partially motivated by
omputational issues,we will pay parti
ular attention to pro
essing aspe
ts. We're going to showhow dominan
e
onstraints
an be used for s
ope underspe
i�
ation and howthey
an be pro
essed eÆ
iently by using
on
urrent
onstraint programmingte
hnology.The reader
ontains material on s
ope underspe
i�
ation (Le
tures 1 and2),
on
urrent
onstraint programming (Le
tures 3 and 4), and the usage of
on
urrent
onstraint te
hnology for pro
essing with s
ope underspe
i�
ation(Le
ture 5).In Le
ture 1, we give a general introdu
tion to the subje
ts of the
ourse.Underspe
i�
ation is a general approa
h to
oping with ambiguity; the basi
 ideais to represent all readings of an ambiguous senten
e
ompa
tly and to delay theenumeration of the readings for as long as possible. We explain these notionsand then go into more detail about s
ope ambiguity. Le
ture 1 is
on
ludedwith an overview of the rest of the
ourse.In Le
ture 2, we present some formalisms for s
ope underspe
i�
ation. Be-
ause we don't want to presuppose mu
h prior knowledge, this
hapter also
ontains an introdu
tion to generalized quanti�ers and (a very brief one) abouttype theory. We de�ne dominan
e
onstraints, whi
h
an be used to des
ribetrees and (en
oded) lambda terms, and apply them to s
ope underspe
i�
a-tion. Finally, we give an overview over some other s
ope underspe
i�
ationformalisms.In Le
ture 3, we move from representing to pro
essing meaning. We intro-du
e
on
urrent
onstraint programming (CCP) in Oz, a rather new program-ming paradigm and te
hnology mainly used for solving
ombinatorial problemssu
h as s
heduling and optimization. While having been developed in a totally3

4di�erent �eld, the basi
 ideas of CCP
an be seen as
losely related to those ofunderspe
i�
ation.In Le
ture 4, we dis
uss programming features of Oz needed for Le
ture 5.In Le
ture 5, �nally, we apply
on
urrent
onstraint programming in Ozto pro
essing with s
ope underspe
i�
ation. We show how to solve dominan
e
onstraints based on
onstraint programming with �nite sets. We
an therebyenumerate the readings of a s
ope ambiguity eÆ
iently.The
ourse in ESSLLI '99 will mainly be based on this reader. If time per-mits, additional material may be presented: a demonstration of the CHORUS-system (Bodirsky et al. 1999) written in Oz and a dis
ussion of CLLS (Egg et al.1998). CLLS is a language of tree des
riptions based on dominan
e
onstraintswhi
h features an underspe
i�ed analysis of the intera
tion of s
ope ambiguities,ellipses, and anaphora.For further reading on
on
urrent
onstraint programming in Oz for naturallanguage pro
essing, we refer to a s
ript of a le
ture on the topi
 (Du
hier et al.1999) whi
h was given from O
tober 1998 to April 1999 at the Universit�at desSaarlandes.An HTML version of this reader is available on the World Wide Web athttp://www.ps.uni-sb.de/Papers/abstra
ts/ESSLLI:99.html. If you in-stall the Mozart programming system http://www.mozart-oz.org at your site(whi
h is free and pretty easy), you
an dire
tly exe
ute the Oz example pro-grams in the later
hapters of the reader.We hope that you enjoy the
ourse:Alexander Koller and Joa
him Niehren(http://www.
oli.uni-sb.de/~koller andhttp://www.ps.uni-sb.de/~niehren)
A
knowledgments. We would like to thank all members of the CHORUS,NEP, NEGRA, and LISA proje
t in the Collaborative Resear
h Center (Son-derfors
hungsberei
h) 378 at Universit�at des Saarlandes, who have
ontributedto the work re
e
ted by this reader.

Contents
1 Introdu
tion 91.1 Ambiguities . 91.1.1 Ambiguities . 91.1.2 S
ope ambiguities . 101.2 Underspe
i�
ation . 121.2.1 Underspe
i�
ation . 121.2.2 S
ope Underspe
i�
ation: The General Idea 141.2.3 Underspe
i�ed View of the World 151.3 Overview . 171.4 Summary . 182 S
ope and Trees 192.1 Generalized Quanti�ers . 192.1.1 The basi
 problem . 192.1.2 Type Theory . 202.1.3 Generalized Quanti�ers 212.1.4 Generalized Quanti�ers and Transitive Verbs 232.2 Cooper Storage . 242.3 Towards Underspe
i�
ation . 282.4 Trees and Dominan
e Constraints 292.4.1 Trees . 292.4.2 Lambda Stru
tures . 312.4.3 Dominan
e Constraints 322.5 S
ope Underspe
i�
ation Using Dominan
e Constraints 332.6 Other Approa
hes to S
ope Underspe
i�
ation 362.6.1 Quasi Logi
al Form . 372.6.2 Hole Semanti
s . 382.7 Summary . 393 Con
urrent Constraint Programming in Oz 413.1 Relation to Underspe
i�
ation . 413.1.1 Towards pro
essing underspe
i�ed semanti
s 413.1.2 Disambiguation is
onstraint solving 423.2 What is Constraint Programming 435

6 CONTENTS3.2.1 Appli
ations . 433.2.2 The Problem: Combinatori
 Explosion 443.2.3 The Method: Propagate and Distribute 443.2.4 What is Oz and who is Mozart? 453.3 Solve a Combinatori
al Problem in Oz 473.3.1 Bits of a Constraint Solver 473.3.2 Observing Propagation . 473.3.3 Composing the Solver . 483.3.4 Was this a good Example? 493.3.5 Questions . 493.3.6 Exer
ise . 503.4 Summary . 504 More on Oz 514.1 Data Stru
tures . 514.1.1 Values and Types . 514.1.2 Syntax for Values . 524.1.3 Global and Lo
al Variables 534.1.4 Browsing Values and Types 534.1.5 Pro
edures . 554.1.6 Re
ords . 564.1.7 Lists . 574.1.8 Con
urrent Threads . 584.2 Uni�
ation . 594.3 Finite Domain Constraints . 604.3.1 FD-Membership . 604.3.2 FD-Propagators . 614.3.3 FD-Distribution . 614.4 Finite Set Constraints . 624.5 Disjun
tions as Propagators . 634.5.1 or-Statements . 634.5.2 Operational Semanti
s . 644.5.3 Choi
e Points versus Choi
e Variables 654.6 Summary . 655 Solving Dominan
e Constraints 675.1 Dominan
e Constraints . 675.2 Constraint Solving as Con�guration 685.3 Partioning Trees . 685.4 Dominan
e Constraints as Set Constraints 705.4.1 Representation of Dominan
e Constraints 705.4.2 The Solver as a Module 715.4.3 Node Representation . 715.4.4 Translation to Set Constraints 725.4.5 Solution Predi
ate . 735.4.6 Treeness Condition . 75

CONTENTS 75.4.7 Better Propagation . 755.5 Full Code of the Dominan
e Constraint Solver 775.6 Summary . 82

8 CONTENTS

Le
ture 1Introdu
tionIn this
hapter, we give a general introdu
tion to the subje
t matter of the
ourse. First, we dis
uss ambiguities in general, with a spe
i�
 fo
us on s
opeambiguities. Then we introdu
e the notion of underspe
i�
ation and des
ribeinformally how to represent s
ope ambiguities in an underspe
i�ed way. Next,we dis
uss more global aspe
ts of underspe
i�
ation, su
h as the general per-spe
tive of language pro
essing from an underspe
i�ed point of view. Finally,we give a brief overview of the rest of the reader.1.1 Ambiguities1.1.1 AmbiguitiesSooner or later, everyone who is
on
erned with
omputational linguisti
s
omesa
ross the fa
t that ambiguities o

ur at all levels of linguisti
 analysis. Thefollowing is a (not at all exhaustive) list of possible sour
es of ambiguity.(1.1) a. Lexi
on:Mary went to the bank.b. Synta
ti
 atta
hment:John wat
hed the man with a teles
ope.
. Coordination:Birds eat small worms and frogs.d. Quanti�er s
ope:Every man loves a woman.e. Intera
tion of anaphora and ellipsis:John likes his mother. Peter does, too.f. Dis
ourse:I try to read a novel if I feel bored or I am unhappy.9

10 LECTURE 1. INTRODUCTIONThe senten
e in Example (a) is ambiguous in the meaning of the word bank; it
an either mean a riverbank or a �nan
ial institution. In the synta
ti
 analysis ofExample (b), there are two di�erent valid options where the PP with a teles
ope
an be atta
hed: it
an modify either the man, who in this reading is identi�edas the man who
arries a teles
ope, or it
an modify wat
hed the man, in whi
h
ase it is a tool to wat
h the man. In Example (
), it
ould be only small frogsthat birds eat, or it
ould be any kind of frogs; the ambiguity is in
hoosing whatthe
onjun
tion
oordinates. Example (d) is ambiguous between expressing thatthere is one woman who is loved by all man, or that for ea
h man, there is awoman he loves, but not everyone has to love the same one. (We will explainthe term \quanti�er s
ope" in a minute.) In Example (e), it is ambiguous whoit is that Peter likes; it
an be either his own mother or John's. Finally, thedis
ourse in (f) has two di�erent readings: Either the speaker tries to read anovel under two di�erent
onditions, or she is unhappy if she does not read anovel.From a
omputational point of view, ambiguities are an extremely
halleng-ing aspe
t of language pro
essing. The problem is that many senten
es havemore than one ambiguity, and that the numbers of readings of the various ambi-guities multiply if the ambiguities
an be resolved independently. So a senten
e
ontaining �ve two-way ambiguities
an have up to 32 readings. An additionalin
onvenien
e is that ambiguities
an intera
t; for example, the senten
e(1.2) John wat
hed a man with his teles
ope. Bill did, too.
ontains three ambiguities: a PP atta
hment ambiguity of with his teles
ope,an ambiguity of anaphori
 referen
e (does his refer to John or to the man?), anda stri
t/sloppy ambiguity. The senten
e doesn't have 8 = 23 readings, however,only six. On the one hand, the ellipsis enfor
es that the PP atta
hment fromthe �rst senten
e must be taken over in the se
ond senten
e. On the other hand,we
reate a \
opy" of the anaphor in the �rst senten
e when we understand these
ond senten
e; if the anaphor referred to John in the �rst senten
e, its
opy
an refer either to John or to Bill, and if the anaphor referred to the man, its
opy must refer to the man, as well.There are simpler examples of ambiguity intera
tion, whi
h we will look intolater. For now, the really important points are that ambiguities are
omplex,and the total number of readings
an explode exponentially with growing lengthof the senten
e.1.1.2 S
ope ambiguitiesThe type of ambiguity that will be our primary
on
ern in this text are s
opeambiguities, as in (1.1d) above. They are typi
ally treated on the level of se-manti
s (although there are theories that
onsider them on the level of syntaxor in the syntax/semanti
s interfa
e, as we shall see tomorrow); that is, weassume that the di�eren
e between the readings is not a synta
ti
 one, butpurely a di�eren
e in meaning. Unlike e.g. lexi
al ambiguities, however, theyare ambiguities of the stru
ture of the semanti
 representation.

1.1. AMBIGUITIES 11Let us assume for the time being that our semanti
 representation language(what we shall later
all the obje
t language) is ordinary �rst-order predi
atelogi
. Then the two readings of (1.1d)
an be written as(1.3) 8x:(man(x)! 9y:(woman(y) ^ love(x; y)))(1.4) 9y:(woman(y) ^ 8x:(man(x)! love(x; y)))Upon
loser inspe
tion, it be
omes apparent that both formulae are
om-posed of the same \fragments", 8x:(man(x) ! �), 9y:(woman(y) ^ �), andlove(x; y). The di�eren
e is in the way these fragments are put together: Inone reading, the fragment
ontaining the existential quanti�er gets s
ope overthe fragment
ontaining the universal quanti�er; in the other one, this s
opingrelation is reversed. So the ambiguity is in whi
h of the two quanti�ers is in thes
ope of the other one { hen
e the name.The problem
arries over to the standard linguisti
 analysis of NPs as so-
alled generalized quanti�ers, as in Montague Grammar (Montague 1974). Ageneralized quanti�er is a term of higher-order logi
 representing the meaningof, say, every man, most people, or Peter. (Generalized quanti�ers aren't reallygeneralizations of quanti�ers in logi
 like 9x, but it's the standard name informal semanti
s.) The s
ope ambiguity above is re
e
ted by the di�erent ordersin whi
h the two generalized quanti�ers that are used to
ompute the meaning ofthe senten
e (for the two NPs) are applied to the nu
lear s
ope love(x; y). We'll
ome ba
k to generalized quanti�ers in more detail tomorrow. By abuse of theword, we shall frequently just say \quanti�er" to mean \generalized quanti�er";i.e., we shall use the word in its
orrupted linguisti
 sense instead of the logi
alone.More generally, not only quanti�ers
an parti
ipate in s
ope ambiguities, butalso other s
ope-bearing obje
ts su
h as negations and some verbs. For instan
e,the senten
e (1.5) has two readings that are represented by the formulae (1.6)and (1.7).(1.5) Every boy does not go to the movies.(1.6) 8x:(boy(x)! :gtm(x))(1.7) :8x:(boy(x)! gtm(x))Here, the fragments are 8x:(boy(x) ! �), :(�), and gtm(x). We'll primarily
on
entrate on ambiguities of quanti�er s
ope here be
ause all the basi
 ideas
an be shown that way without having to worry about more than one type ofs
ope-bearing obje
ts.To enumerate the readings of a senten
e
ontaining a s
ope ambiguity, onehas to order the s
ope-bearing obje
ts it
ontains. If there are n su
h obje
tsin a senten
e and they
an be arranged freely, this means that the senten
e hasn! readings from s
ope ambiguities alone { an exponential growth in the lengthof the senten
e.

12 LECTURE 1. INTRODUCTIONIn Montague Grammar, enumeration of all readings of a s
ope ambiguoussenten
e was done on the level of syntax, where a spe
ial synta
ti

ompositionrule
alled \Quantifying In" was
reated for exa
tly that purpose. Realizingthat there seem not to be any independent motivations for
onsidering quanti-�er s
ope on the level of syntax, Cooper (1983) moved its treatment into thesyntax/semanti
s interfa
e by equipping a syntax tree with the so-
alled Coop-er Storage, in whi
h meanings of generalized quanti�ers
ould be passed up thesyntax tree and \dis
harged" whenever
onvenient. Semanti

onstru
tion thusbe
ame a nondeterministi
 pro
ess. One problem of Cooper Storage was over-generation: It would sometimes produ
e formulae with unbound variables. Thisde�
ien
y was later repaired (Keller 1988); another algorithm for enumeratingquanti�er s
ope is (Hobbs and Shieber 1987). Most re
ently, this kind of anal-ysis of s
ope ambiguities has re
eived an interesting twist by employing linearlogi
 in the syntax/semanti
s interfa
e (see e.g. Dalrymple et al. 1997). Wewill
ome ba
k to some of these approa
hes in more detail tomorrow.As a �nal aside, one very interesting intera
tion whi
h s
ope ambiguitiestake part in is with ellipses in so-
alled Hirs
hb�uhler senten
es (Hirs
hb�uhler1982). Consider the following example:(1.8) Every man loves a woman. Several gorillas do, too.In pro
essing the ellipsis, the se
ond (\target") senten
e is expanded toSeveral gorillas love a woman. This means that both the se
ond and the �rst(\sour
e") senten
e
ontain a s
ope ambiguity, and if they
ould be resolvedindependently, the pair of senten
es would have four di�erent readings. But theellipsis enfor
es a parallelism of the s
opes of the quanti�ers. So if every manhas wide s
ope in the �rst senten
e, several gorillas must have wide s
ope inthe se
ond senten
e as well, and vi
e versa; the pair of senten
es only has tworeadings. We will
onsider this
lass of phenomena on Wednesday.1.2 Underspe
i�
ation1.2.1 Underspe
i�
ationMore re
ently, however, there has been in
reasing interest in not enumeratingthe readings of a s
ope ambiguous senten
e at all, but in des
ribing them withone
ompa
t representation and then working with this representation insteadof all the readings. This approa
h is
alled underspe
i�
ation.There are both
omputational and
ognitive justi�
ations for underspe
i�-
ation. Consider the following senten
e, whi
h is taken from (Poesio 1994).(1.9) A politi
ian
an fool most voters on most issues most of the time, but nopoliti
ian
an fool all voters on every single issue all of the time.Ea
h of the two senten
es in this example
ontains four quanti�ers, whi
hmeans that ea
h senten
e admits 24 = 4! di�erent orderings of the quanti-�ers. The senten
es
an be disambiguated independently; so together, they

1.2. UNDERSPECIFICATION 13Syntax Underspe
i�ed Readingssem. representationmetalevel obje
t levelFigure 1.1: Underspe
i�ed semanti
s.
have 576 = 4! � 4! readings. Some of these readings may mean the same, butthey will still be distinguished in a traditional analysis of the senten
e. On theother hand, you probably
ouldn't say whi
h of these orderings you sele
tedwhen you understood the senten
e. This means that humans don't seem toenumerate readings in understanding an ambiguous senten
e.On the other hand, you probably would be able to draw
on
lusions fromthe senten
e { for example, that demo
ra
ies work reasonably well in
ontrollinggovernments, whi
h is what the original quote was intended to mean. A simplerexample is the following inferen
e.(1.10) Every man loves a woman.Peter is a man.Peter loves a woman.This inferen
e is
orre
t regardless of the exa
t meaning of the �rst senten
e.From a
omputational point of view, we know that inferen
e is an expensive op-eration; we wouldn't want to make things worse by having to exe
ute it onea
h of an exponential number of readings in turn. If we had a
al
ulus ofdire
t dedu
tion that would let us draw inferen
es as in the example withoutdisambiguating the premises, we
ould work with just one underspe
i�ed rep-resentation for ea
h senten
e, would have to do the work only on
e, and mightbe mu
h more eÆ
ient.The fundamental idea of most modern approa
hes to underspe
i�
ation (nomatter on whi
h level of linguisti
 des
ription) is to add an additional layer oflinguisti
 representation that des
ribes the obje
ts of the intended level. Forinstan
e, in underspe
i�ed semanti
s, we introdu
e a level that is between thetraditional synta
ti
 and semanti
 levels. The obje
ts of this new metalevel are(not ne
essarily
omplete) des
riptions of formulae on the traditional semanti
level (the obje
t level) and
an be derived from a traditional synta
ti
 analysis(Fig. 1.1). So if we traditionally derived multiple semanti
 representations fromone synta
ti
 representation, the underspe
i�ed analysis derives one underspe
-i�ed semanti
 representation from the syntax, and then it
an get ba
k all theobje
t-level readings if ne
essary by enumerating them from the underspe
i�edrepresentation. (But this step is delayed for as long as possible.)The information on the metalevel des
ribes the range of possible readings;so you
ould say it's disjun
tive information about the meaning of the senten
e

14 LECTURE 1. INTRODUCTION{ something like \The senten
e means R1, or it means R2." This disjun
tiveinformation doesn't have to be represented synta
ti
ally as a disjun
tion; in fa
t,that's something we want to avoid be
ause a disjun
tion is not a very
ompa
trepresentation.An even more important distin
tion, however, is between disjun
tive infor-mation on the metalevel and on the obje
t level. A naive attempt at \opti-mizing" the representation might be to eliminate the metalevel and representambiguity as obje
t-level disjun
tion (e.g. of predi
ate logi
). Unfortunately,this
an lead to unwanted intera
tions between the new disjun
tions and thea
tual semanti
 representations, as the following example (involving a lexi
alambiguity) shows.(1.11) Mary goes to the bank.(1.12) Mary does not go to the bank.Generally, we'd like to assign meaning to these senten
es systemati
ally;if a senten
e means ', we want the
orresponding negated senten
e to mean:'. The naive, obje
t-level disjun
tive analysis of the senten
e (1.11) would besomething like go(m; b1) _ go(m; b2);where b1 and b2 stand for the two di�erent meanings of the word bank. Thenbe
ause of the negation rule, we would assign senten
e (1.12) the meaning:(go(m; b1) _ go(m; b2)):However, this is not the same as the disjun
tion of the real meanings of thesenten
e, whi
h would be :go(m; b1) _ :go(m; b2):So if we want a
losed representation of the meaning of an ambiguous sen-ten
e, we need the metalevel be
ause ambiguity is disjun
tive information onthe metalevel.1.2.2 S
ope Underspe
i�
ation: The General IdeaNow let's take a look at how to apply underspe
i�
ation to s
ope ambiguities.Most re
ent approa
hes to s
ope underspe
i�
ation (e.g. Underspe
i�edDRT (Reyle 1993), Hole Semanti
s (Bos 1996), and CLLS/dominan
e
on-straints (Egg et al. 1998)) des
ribe the semanti
s of a senten
e by �rst sayingwhat material the semanti
s
ontains and then imposing
onstraints on the waythis material
an be arranged.As an example, Fig. 1.2 displays a graphi
 representation of su
h a des
rip-tion. It spe
i�es that the semanti
 representation of a reading of the senten
eshould
ontain the three fragments we identi�ed earlier. Furthermore, it
on-tains dotted lines whi
h stand for the \has s
ope over" relation (also
alled the

1.2. UNDERSPECIFICATION 158x �! �man �x � � 9y �^ �woman �y �love �x � y �
�

Figure 1.2: An underspe
i�ed representation of the meaning of Example 1.1d.
outs
opes relation). Here, we see that both upper fragments must have s
opeover the nu
lear s
ope, but there is no line between the two upper fragments,so their relative s
ope isn't spe
i�ed. However, as the des
ribed obje
t mustbe a well-formed formula, we know that one of these fragments must always bewithin the s
ope of the other one. This latter
ondition is enfor
ed by di�erentformal means in di�erent formalisms; for example, Hole Semanti
s requires aone-to-one \plugging" of fragments into \holes" of formulae, whereas CLLS isreally a language of tree des
riptions and exploits that trees
annot bran
h inthe bottom-up dire
tion. More on that tomorrow.A very interesting
ommonality of the three formalisms mentioned above isthat ea
h uses graphs that look very mu
h like the one in Fig. 1.2. Ea
h of themassigns these graphs di�erent formal meaning, but the similarity is not entirelysuper�
ial; for example, one
an en
ode both UDRT and Hole Semanti
s graphsin CLLS. Besides these three, there have been several other in
uential approa
h-es to s
ope underspe
i�
ation. The oldest of them is Quasi Logi
al Form (QLF,Alshawi and Crou
h 1992); some others are Muskens's (1995) underspe
i�edsemanti
s and Minimal Re
ursion Semanti
s (MRS, Copestake et al. 1997).S
ope ambiguities seem to lend themselves very well to underspe
i�
ation.It may not be straightforward to represent a referential ambiguity in a
ompa
tway, and it
an be argued that a human really de
ides qui
kly what's per
eivedas the ante
edent for an anaphor. Generally, underspe
i�
ation may not beadequate for all
lasses of ambiguity. But as we have seen above, this doesn'tseem to happen for s
ope ambiguities of any
omplexity, so underspe
i�
ationseems to be a very natural way to represent them.1.2.3 Underspe
i�ed View of the WorldTo
on
lude the introdu
tion to underspe
i�
ation in general, we will nowpresent the view of the world of language pro
essing from a radi
ally under-

16 LECTURE 1. INTRODUCTION(Underspe
i�ed) Underspe
i�ed Dire
tSyntax semanti
s dedu
tionworld knowledge dis
ourse knowledge . . .Figure 1.3: Underspe
i�ed view of the world.
spe
i�ed perspe
tive. See Fig. 1.3.The guiding idea of this view is that language pro
essing has to deal within
omplete information more often than not. Possible sour
es of in
ompleteinformation are not just the obvious missing or misunderstood words in spokeninput; other examples are ambiguities (e.g. of s
ope or anaphori
 referen
e)or ellipses (where entire VPs are missing). Still, the goal is to determine theintended meaning of an utteran
e as far as ne
essary to extra
t the informationrelevant in the situation.In this
ontext, syntax and semanti
s
an only
ontribute to the full deter-mination of the meaning of a senten
e; we also have to take other sour
es ofinformation, su
h as dis
ourse and world knowledge, into a

ount.In su
h an ar
hite
ture, we give underspe
i�ed semanti
s
enter stage: It is atthis level that we want to
olle
t and pro
ess all the information we have aboutthe meaning of a senten
e. Pro
essing of a senten
e happens as follows. First,a syntax
omponent will parse the input senten
e as
ompletely as possible. Asthe senten
e
an
ontain missing words or synta
ti
 ambiguities (e.g. of PPatta
hment), we
an't expe
t to be able to determine the syntax
ompletely;so we use an underspe
i�ed syntax formalism to des
ribe the set of possiblesynta
ti
 analyses. Now we transfer the partial synta
ti
 information into anunderspe
i�ed semanti
 des
ription. From now on, we try to integrate moresour
es of information to make this des
ription more spe
i�
. For example,dis
ourse and world knowledge
an be
ombined with the semanti
 informationby dire
t dedu
tion; this may give us more information about the semanti
s,�ll in blanks, or ex
lude readings. Furthermore, reasoning on the semanti
 levelmay give us hints about the a
tual synta
ti
 stru
ture, so information mightper
olate ba
k to the synta
ti
 level from the semanti
 level.Be
ause there are a
tual ambiguities whi
h
an't be resolved further, we
an't hope to determine the meaning of a senten
e
ompletely by this pro
ess.If a rough des
ription of the meaning is good enough for what we want to do withthe it (e.g. some inferen
es), we
an stop; otherwise we'll have to disambiguate,i.e. enumerate readings. The key idea is that we want to do as many \
heap"inferen
es as we
an before doing any \expensive"
ase-distin
tion steps. This isexa
tly the same idea that is the foundation of Constraint Programming, where

1.3. OVERVIEW 17these
lasses of operations have the names propagation and distribution. Moreon CP will be said on Thursday.1.3 OverviewIn
on
lusion of this �rst
hapter, let's have a look at the program for the restof the
ourse.Le
ture 2 has the title \S
ope and Trees". We are going to look into s
opeambiguities and some formalisms for s
ope underspe
i�
ation in some moredetail. We will give a brief overview of type theory and the theory of generalizedquanti�ers; then we'll dis
uss Cooper Storage (whi
h is not an underspe
i�
ationformalisms, but helps understand the problems), QLF (a histori
ally importantunderspe
i�
ation formalism), and Hole Semanti
s (the most transparent of animportant
lass of modern underspe
i�
ation formalisms).Another approa
h to take to the problem of s
ope underspe
i�
ation whi
hwe shall speak about in the se
ond le
ture is to
onsider formulae as trees andthen des
ribe these with an appropriate logi
. In that respe
t, we will �rst reviewterms of type theory
an be seen as trees. Then we will introdu
e the languageof dominan
e
onstraints, whi
h is a logi
 whose models are trees; we
an takea dominan
e
onstraint to des
ribe the set of terms whi
h are en
oded by treesthat satisfy the
onstraint. In this way, we
an use dominan
e
onstraints fors
ope underspe
i�
ation, and we will show how this is done. The material inthe �rst two le
tures is derived from (Koller 1999).The title of Le
ture 3 is \CLLS and Parallelism". As we have seen above,s
ope ambiguities intera
t with ellipses in so-
alled \Hirs
hb�uhler senten
es";both ellipses and s
ope also intera
t with anaphora. In the third le
ture, we willbrie
y review the standard analysis of ellipses (Dalrymple et al. 1991). Then wewill bring together me
hanisms for des
ribing s
ope, ellipses, and anaphora inthe logi
 CLLS (\Constraint Language for Lambda Stru
tures"), an extensionof the dominan
e
onstraints of Le
ture 2. The material for Le
ture 3 in thisreader is a
opy of (Egg et al. 1998).In Le
ture 4, \Constraint Programming", we move towards the \pro
essing"part of the title of the
ourse. We will dis
uss Con
urrent Constraint Program-ming (CCP), a programming paradigm for solving
ombinatorial problems su
has s
heduling or optimization. The general problem it
onsiders is to �nd assign-ments of values to variables that satisfy a given set of
onstraints. Traditionally,this is done by generating su
h models and then testing if they satis�ed the
on-straint (by brute-for
e sear
h). The basi
 idea of CCP is that information aboutthe values of variables
an be held in a
onstraint store, and
on
urrent pro-
esses
alled propagators
an wat
h the store and
ontribute information to it.This is a pro
ess of adding simple (i.e.
omputationally
heap) inferen
es to thestore. Only when propagation
an't
ontribute anything new does one sear
hstep take pla
e; then propagation starts again. In this way, a sear
h spa
e
ansometimes be redu
ed dramati
ally, whi
h is essential for diÆ
ult problems.Finally, we put our new knowledge about CCP to use in Le
ture 5, \Pro-

18 LECTURE 1. INTRODUCTION
essing Dominan
e Constraints". We show how dominan
e
onstraints, whi
hwe saw in Le
ture 2 to be a powerful formalism for s
ope underspe
i�
ation,
anbe represented, pro
essed, and solved using
onstraint programming. The im-plementation en
odes a dominan
e
onstraint as a
onstraint on variables over�nite sets of integers. Modulo synta
ti
 variation, these set
onstraints
an bewritten down as a program in a programming language like Oz (Smolka 1995;Oz Development Team 1999).The material for le
tures 4 and 5 in this reader is an adapted version of partsof an introdu
tory
ourse on Oz for
omputational linguists by Denys Du
hier,Claire Gardent, and Joa
him Niehren at the University of the Saarland (Du
hieret al. 1999). More about that
ourse
an be found on the World Wide Web athttp://www.ps.uni-sb.de/~niehren/vorlesung/.1.4 Summary� Ambiguities o

ur on all levels of linguisti
 analysis. They are a
hallengeto automati
 language pro
essing be
ause ambiguities in the same sen-ten
e multiply, yielding a number of readings exponential in the numberof ambiguities.� One type of ambiguity is the s
ope ambiguity. S
ope ambiguities are ambi-guities of the stru
ture of the semanti
 representation of a senten
e. Theyo

ur whenever a senten
e
ontains multiple s
ope-bearing obje
ts whi
h
an be ordered independently.� Underspe
i�
ation is an approa
h to
oping with ambiguity whi
h aimsto represent all ambiguities by a single,
ompa
t des
ription of all read-ings. Then any work is done with the des
ription instead of the readings,and their enumeration is delayed for as long as possible. There are both
ognitive and
omputational motivations for doing this.� S
ope underspe
i�
ation is typi
ally done by spe
ifying the semanti
 ma-terial of a senten
e and imposing some
onstraints on how this material
an be
omposed. Many s
ope underspe
i�
ation formalisms use diagramsas in Fig. 1.2, but ea
h assigns them di�erent meaning.� Constraint programming is a programming paradigm that was developedin the
ontext of
ombinatorial problems. In
omplete information abouta problem is kept in a so-
alled
onstraint store and used to guide thesear
h for
omplete solutions (\propagate and distribute", as opposed to\generate and test"). CP shares a
ommon underlying intuition withunderspe
i�
ation and
an be used for eÆ
ient pro
essing of underspe
i-�
ation.

Le
ture 2S
ope and TreesToday, we are going to dis
uss the problem of s
ope underspe
i�
ation in moredetail. Our key point of this se
tion is to show how to use dominan
e
on-straints for s
ope underspe
i�
ation. The language of dominan
e
onstraints isa logi
 whose models are trees; the variables of these formulae denote nodes ofa tree. Further, we are going to look into other approa
hes to s
ope ambigui-ty { Cooper Storage, QLF, and Hole Semanti
s {, the latter two of whi
h areunderspe
i�
ation formalisms as well.2.1 Generalized Quanti�ersAs we have tried not to presuppose too mu
h prior knowledge about logi
 orsemanti
s, we will �rst give a brief introdu
tion to type theory and the theoryof generalized quanti�ers before we delve into the details of this
hapter. Wewill provide as mu
h material on these issues as ne
essary to understand therest of the
hapter, but it's
lear that we
an only tou
h on the surfa
e of thesetopi
s, and we re
ommend a
loser look at both. The standard formal semanti
stextbook in this area is (Gamut 1991); Bla
kburn and Bos (1999) also have avery readable introdu
tion from the perspe
tive of
omputational semanti
s.2.1.1 The basi
 problemIn the 60s, semanti
ists �rst be
ame interested in a
ompositional analysis ofmeaning. The idea of
ompositionality is usually attributed to Frege and isgenerally taken to mean that \the meaning of an expression is a fun
tion of themeanings of its parts". For example, if you want to determine the meaning ofa senten
e, you'd �rst determine the meanings of the top NP and VP and then
ombine these in a uniform way. Compositionality is ni
e be
ause it en
ouragesa
lean semanti

onstru
tion, where all NPs are basi
ally treated in the sameway et
., so you
an essentially \read the semanti
s o� the syntax tree".Unfortunately, if we use �rst-order predi
ate logi
 to represent meaning, we19

20 LECTURE 2. SCOPE AND TREES
an't easily
onstru
t these representations
ompositionally. One problem isthat NPs
an end up in very di�erent pla
es throughout a formula:(2.1) Peter likes a woman.(2.2) 9x:woman(x) ^ like(peter; x)(2.3) Every man likes a woman.(2.4) 9x:woman(x) ^ 8y:(man(y)!like(y; x))(2.5) 8y:(man(y)!9x:woman(x) ^ like(y; x))In (2.2), the semanti
 representation of (2.1), the semanti
s of the underlinedNP has been redu
ed to a single
onstant peter. In (2.3), on the other hand,the underlined NP is represented by mu
h more (and very di�erent) \semanti
material", whi
h is distributed all over the formula.At �rst sight, this makes Peter and every man, whi
h �ll exa
tly the samerole synta
ti
ally, so di�erent semanti
ally that it seems impossible to modelsemanti

onstru
tion
ompositionally. To do it anyway, we will treat both NPsas generalized quanti�ers. But �rst, we need to lay some formal groundwork.2.1.2 Type TheoryFirst-order predi
ate logi
 (FOL) is severely restri
ted in its expressive powerin that it only allows variables (and quanti�
ation) denoting individuals, andonly
onstants denoting individuals and relations between individuals. Typetheory or higher-order logi
 (HOL) is a generalization of FOL that allows bothvariables and
onstants denoting any kind of fun
tion involving individuals andtruth values.Type theory splits the world into
lasses by distinguishing obje
ts of di�erenttypes. A type � is a term of the following syntax:� ::= ej tj h�; �0iEvery type denotes a distin
t subset of the universe. The obje
ts denoted bytype e are individuals; they are just the kind of basi
 entities that a �rst-ordervariable
an denote. Obje
ts of type t are truth values (true and false). Thedenotation of a type h�; �i is the set of fun
tions that take obje
ts of type � asarguments and output obje
ts of type �.The synta
ti
 obje
ts of HOL are terms ; every well-formed term
an beassigned exa
tly one type. Terms are de�ned as follows:� All
onstants and variables of type � are terms of type �.� If M and M 0 are terms of type t, then :M and M ^M 0 are terms of typet.

2.1. GENERALIZED QUANTIFIERS 21� If M is a term of type t and x is a variable of arbitrary type �, then 8x:Mis a term of type t.� If M is a term of type h�; �i and M 0 is a term of type �, then M(M 0) isa term of type �.� If M is a term of type � and x is a variable of type �, then �x:M is aterm of type h�; �i.The intuition is that the logi
al
onne
tives work as in FOL (with the otherfamiliar
onne
tives de�nable in the usual way). An appli
ation M(M 0) is reallysomething like appli
ation of a fun
tion to an argument. An abstra
tion �x:Mis intuitively a fun
tion that inserts its argument wherever x appears in M andthen evaluates the result. Clearly, abstra
tion is most interesting if M
ontainsfree o

urren
es of x, but that doesn't have to be the
ase. You
an think ofthe x in an abstra
tion as a formal argument of a pro
edure in a programminglanguage. In fa
t, lambda
al
ulus is the foundation of an entire programmingparadigm, so-
alled fun
tional programming, in
luding languages like Lisp orSML. The most fas
inating aspe
t of lambda
al
ulus is that its de�nition isextremely simple, but (its untyped variety) is still expressive enough to en
odea Turing ma
hine.For example, if f and g are
onstants of type he; ei and a is a
onstant oftype e, then f(g(a)) is a term of type e, and �xe:f(g(x)) is a term of type he; ei.On the other hand, f(g) is not a term be
ause f expe
ts an argument of typee, and g is of type he; ei. Finally, if P is a
onstant of type he; ti (that is, theequivalent of a FOL predi
ate), x is a variable of type e, and F a
onstant oftype t, then 8x:P (x)! F is a well-formed term of type t.HOL terms
an be assigned a semanti
s that's
ompatible with the standardFOL semanti
s and the appli
ation/abstra
tion intuition. We won't do so hereand refer to the textbooks mentioned above.As in �rst-order logi
, it's interesting to have a synta
ti
 test for
he
kingwhether two expressions have the same denotation. An (in
omplete, but essen-tial) way for doing so is testing for so-
alled���-equivalen
e. The idea here isthat if it is possible to rewrite the terms using a given set of redu
tion rulesuntil they are redu
ed to the same term, they denote the same fun
tion.These rewrite rules look as follows:(�) �x:M ! �y:M [y=x℄ (y not free in M)(�) (�x:M)(M 0) ! M [M 0=x℄(�) �x:M(x) ! MIn simply typed lambda
al
ulus, ���-equivalen
e of terms is de
idable.But of
ourse, it doesn't say anything about the logi
al
onne
tives, only aboutappli
ation and abstra
tion.2.1.3 Generalized Quanti�ersAfter this brief ex
ursion, let us return to the problem of
ompositional analysisof NP meaning. In this se
tion, we're going to present a uniform way to rep-

22 LECTURE 2. SCOPE AND TREESresent the semanti
s of an NP whi
h
an be used in a
ompositional semanti

onstru
tion. We won't really talk about semanti

onstru
tion, though; we'restill only laying foundations.In higher-order logi
, the meaning of a verb is a fun
tion that takes one ormore arguments of type e and then returns a truth value (type t). For example,an intransitive verb is assigned type he; ti; a transitive verb is assigned typehe; he; tii.The �rst idea of
ombining the meanings of an intransitive verb (type he; ti)and of an NP is that the NP denotes an individual (type e); so we
an justapply the verb semanti
s to the NP semanti
s. This works for a senten
e like(2.6) Peter sleeps.The semanti
s we get is just sleep(peter).But the examples we have seen earlier make it
lear that this analysis doesn't
arry very far. An additional problem is that most NPs (every man, two girls)don't really denote single individuals. A more
exible analysis, then, is touniformly analyze the semanti
s of NPs as terms of type hhe; ti; ti { so-
alledgeneralized quanti�ers. A term of type hhe; ti; ti des
ribes a set of properties;the intuition behind this type-raised analysis of NPs is that the meaning of anNP is the set of all properties that apply to all the individuals des
ribed by theNP. Consider, for example,(2.7) Every man sleeps.The semanti
s we give to the NP every man here is�P:8x:man(x)! P (x);where P is a variable of type he; ti, and x is a variable of type e. This termdenotes the set of all properties that every man has. It's a term of type hhe; ti; ti,so we
an apply it to sleep; semanti
ally, this means to verify if sleeping is aproperty that every man has. In
identally, we
an apply �-redu
tion to simplifythe term: (�P:8x:man(x)! P (x))(sleep)!� 8x:man(x)! sleep(x):In other words, we have obtained the same meaning that we had originallyintended. But note that the appli
ation has reversed; we applied the verbsemanti
s to the NP semanti
s before, and now we apply the NP semanti
s tothe verb semanti
s.We
an take the de
omposition of the senten
e meaning one step furtherif we assign independent meaning to determiners. In the analysis of (2.7), we
ould analyze every as �P�Q8x:P (x)! Q(x)and man just as man; then the meaning of every man as used above
an beobtained just by applying the determiner meaning to the noun meaning. This

2.1. GENERALIZED QUANTIFIERS 23works for other determiners as well, even for ones like most, whi
h
an't berepresented in a �rst-order formula. We
all the term the determiner meaningis �rst applied to the restri
tion of the generalized quanti�er, and the argumentthat the entire generalized quanti�er is applied to, its s
ope. (In the example,the restri
tion was man, and the s
ope was sleep.)The type-raised analysis of NPs even works for proper names. We justrepla
e the individual by all of its properties. That is, we analyze Peter not aspeter, but as �P:P (peter):Again, P is a variable of type he; ti. So as before, we
an apply the meaningof Peter to the meaning of sleeps (to stay with our earlier example); �-redu
tionwill then simplify the result to our original analysis:(�P:P (peter))(sleep)!� sleep(peter):This means that interpreting NPs as sets of properties, whi
h looks strangeat �rst, gives us a uniform analysis of all kinds of NPs. In the light of theexamples from the beginning of the se
tion, this is a very surprising result.2.1.4 Generalized Quanti�ers and Transitive VerbsA problem
omes up when we try to analyze senten
es with transitive verbs.The problem is that a transitive verb is analyzed as something of type he; he; tii,and we
an't use this as an argument for a generalized quanti�er. We'll presentan analysis using something Bla
kburn and Bos (1999)
all \Montague's tri
k"be
ause it originates in (Montague 1974) and involves a step that looks surpris-ing at best and like a ha
k at worst. In Se
tion 2.5, we'll present an analysisthat doesn't use Montague's tri
k overtly, but produ
es the same results.The idea behind Montague's tri
k is to apply the transitive verb meaningto as many variables of type e as ne
essary to give the result type t, and thento abstra
t just on
e over a type e variable ea
h time a quanti�er is applied.Saying the same in some more detail, ea
h NP is assigned a unique index i, andwhen the verb gets an NP argument synta
ti
ally, the verb is applied to thevariable xi, of type e (and not, as above, the entire NP to the verb). Whenall arguments of the verb have been bound, the result will have type t. Thenwe
an apply the NP meanings (of type hhe; ti; ti) to this term; but to give theargument the
orre
t type (he; ti), we �rst have to abstra
t over a variable. Of
ourse, it has to be the
orre
t variable; so if we're trying to apply the NP withindex i, we �rst have to abstra
t over xi. We repeat this for all NPs, in anyorder (whi
h is where s
ope ambiguities
ome from). Montague's tri
k is thatthe �xi's \fall from the sky", seemingly unmotivated.Here's an example to make this
learer. Consider again the earlier example(2.8) Every man loves a woman.

24 LECTURE 2. SCOPE AND TREESLet's say every man gets index 1, and a woman gets index 2. Now the �rststep to
onstru
ting the meaning of the senten
e is to apply love, the meaningof the verb, to these two variables:love(x2)(x1)This is a term of type t. In the next step, we want to apply one of thequanti�ers; let's take a woman for now. Before we
an apply the quanti�er, we�rst have to abstra
t over x2 to give the argument suitable type. This looks asfollows: (�P:9y:woman(y) ^ P (y))(�x2:love(x2)(x1))!� 9y:woman(y) ^ (�x2:love(x2)(x1))(y)!� 9y:woman(y) ^ love(y)(x1)Again, we have something of type t, and by abstra
ting over x2 prior to theappli
ation, we have made sure that the variable y introdu
ed by the generalizedquanti�er ends up in the
orre
t argument position of love. Now we do the samefor the other quanti�er (whi
h was
onne
ted to the variable x1):(�Q:8x:man(x)! Q(x))(�x1:9y:woman(y) ^ love(y)(x1))!� 8x:man(x) ! (�x1:9y:woman(y) ^ love(y)(x1))(x)!� 8x:man(x) ! 9y:woman(y) ^ love(y)(x)The end result is a term of type t, and it's just the �rst-order formula thatwe intended to have as one of the two di�erent meanings of the senten
e initially.You'll noti
e that in
onstru
ting this formula, we �rst applied the quanti�erfor a woman to love(x2)(x1), and then we applied the quanti�er for every manto the result. We get the other reading of the senten
e by reversing the orderof appli
ation:(�Q:8x:man(x)! Q(x))(�x1 :love(x2)(x1))!� 8x:man(x)! (�x1:love(x2)(x1))(x)!� 8x:man(x)! love(x2)(x)(�P:9y:woman(y) ^ P (y))(�x2:8x:man(x)! love(x2)(x))!� 9y:woman(y) ^ (�x2:8x:man(x)! love(x2)(x))(y)!� 9y:woman(y) ^ 8x:man(x)! love(y)(x)2.2 Cooper StorageHistori
ally, Montague's tri
k �rst appears in the \Quantifying In" rule of Mon-tague Grammar, an approa
h of seminal importan
e to quanti�er s
ope andmu
h else. Montague de�ned a
ategorial grammar for a fragment of English.Using the Quantifying-In syntax rule, the syntax of a s
ope ambiguous senten
e
ould be derived in several di�erent ways, ea
h of whi
h gave rise to one of the

2.2. COOPER STORAGE 25SNPDetevery Nman VPVloves NPDeta NwomanFigure 2.1: Syntax tree for Every man loves a woman.
readings be
ause Montague's tri
k was applied in di�erent orders to the variousquanti�ers. For an in-depth overview of Montague's work, see also (Partee andHendriks 1997).A major
on
eptual problem with Montague's analysis is that it assumes asynta
ti
 ambiguity for analyzing s
ope ambiguities whi
h doesn't seem to bejusti�able in any other way; this ambiguity is really on the level of semanti
s. Anearly attempt to
apture s
ope ambiguity semanti
ally was the Cooper storage(Cooper 1975; Cooper 1983). In this se
tion, we are going to brie
y explainhow it works, and then we will dis
uss some problems that it has.Cooper storage takes as its input an (unambiguous) synta
ti
 analysis ofa senten
e. Its output is a HOL formula that represents the meaning of thesenten
e. It operates nondeterministi
ally so it
an produ
e multiple readingsfor a semanti
ally ambiguous senten
e. We assume here that the syntax of asenten
e is given as a phrase stru
ture tree (but the basi
 me
hanism wouldwork with other grammar formalisms, too). The example we'll work with isFig. 2.1, the syntax tree of Every man loves a woman.The fundamental idea of Cooper Storage is to asso
iate with ea
h node ofthe syntax tree two values: the ordinary semanti

ontent of the tree belowthat node, and a quanti�er store for remembering generalized quanti�ers thatstill have to be applied. Formally, semanti

ontents are (higher-order) terms;quanti�er stores are sets of pairs hi;Mi of an index i and a term M of typehhe; ti; ti. These values are
omputed in a bottom-up fashion;
omputationterminates when all nodes have obtained a
ontent and the quanti�er store ofthe root is empty. You
an think of the quanti�er store as a re
ord-keepingdevi
e for Montague's tri
k; whenever an NP gets a new index i and a verb isapplied to the new variable xi, the real NP meaning is put on the store underthe index i.

26 LECTURE 2. SCOPE AND TREESThe semanti

ontent of a terminal node
an be taken from the lexi
on; thequanti�er store of terminals is always empty. If an internal node has no NP
hildren, its semanti

ontent is the semanti

ontent of its
hildren, appliedto ea
h other (in the
orre
t order); its quanti�er store is the union of the
hildren's quanti�er stores. If it does have NP
hildren, we
an either determineits
ontent and store in this way, too, or we
an apply the storage rule to queuethe quanti�er for later appli
ation on the store. Finally, for S nodes, we havethe
hoi
e between usual appli
ation, NP storage (if there is an NP
hild), andretrieval of quanti�ers from the store.Storage works as follows. Let A be any internal node with an NP
hild B;let's
all the other
hild C. Let MB and MC be the
ontents and �B and �Cthe quanti�er stores of the nodes B and C. Then pi
k a new index i. Thesemanti

ontent of A
an be MC(xi);and its quanti�er store
an be�B [�C [fhi;MBig:Conversely, retrieval works as follows. Let A be an S node with
ontent Mand quanti�er store �, and let hi;M 0i 2 �. Then A
an also have the
ontentM 0(�xi:M)and quanti�er store �� fhi;Mig:Let's
onsider an example for illustration. Fig. 2.2 shows a
ooper-storageanalysis of Every man loves a woman whi
h is
omplete ex
ept for the valuesasso
iated with the root; we'll dis
uss those presently. As you
an see, all thepreterminal nodes of the tree have the obvious semanti

ontents, and theirquanti�er stores are empty. Now the
ontents of the two NP nodes are just theappli
ations of their Det daughters to their N daughters, and their quanti�erstores are still empty. In the third step, we
ompute the meaning of the VPnode. This node has one NP daughter, so we apply the storage rule (say, withindex 1), whi
h assigns the VP node the
ontent love(x1) and puts the NPmeaning into the quanti�er store with index 1.Now, be
ause it's an internal node with an NP
hild, the
ontent and storeof the root (S) node
an be obtained by appli
ation of the storage rule (say,with index 2). The result islove(x1)(x2); fh1; �Q9y:woman(y) ^Q(y)i; h2; �Q8x:man(x)! Q(x)ig:What we need, however, is a value for the root where the quanti�er storeis empty. So we have to take the quanti�ers out of the store by appli
ation ofthe retrieval rule; the order in whi
h we take them out will determine the s
ope

2.2. COOPER STORAGE 27Slove(x1)(x2); fh1; �Q9y:woman(y) ^Q(y)i; h2; �Q8x:man(x)! Q(x)ig: : :NP�Q8x:man(x) ! Q(x), ;Det�P�Q8x:P (x) ! Q(x), ;every Nman, ;man
VPlove(x1), fh1; �Q9y:woman(y) ^Q(y)igVlove, ;loves NP�Q9y:woman(y) ^Q(y), ;Det�P�Q9y:P (y)^Q(y), ;a Nwoman, ;womanFigure 2.2: Cooper-storage analysis of the running example.

reading. First, let's start with the woman NP (index 1); then we
an assign thefollowing values to the root:(�Q9y:woman(y) ^Q(y))(�x1:love(x1)(x2)); fh2; �Q8x:man(x)! Q(x)ig!� 9y:woman(y) ^ (�x1:love(x1)(x2))(y); fh2; �Q8x:man(x)! Q(x)ig!� 9y:woman(y) ^ love(y)(x2); fh2; �Q8x:man(x)! Q(x)igThen we have to take the quanti�er with index 2 from the store:(�Q8x:man(x)! Q(x))(�x2:9y:woman(y) ^ love(y)(x2)); ;!� 8x:man(x) ! (�x2:9y:woman(y) ^ love(y)(x2))(x); ;!� 8x:man(x) ! 9y:woman(y) ^ love(y)(x); ;This
ompletes the derivation of the �rst reading: We have found a way toderive the root a
ontent and an empty store. The other reading is obtainedby �rst taking the NP with index 2 out of the store and then the one withindex 1; we invite you to verify this. Generally, the retrieval operations
an bedone in any order, whi
h means that Cooper storage will always generate n!readings for a senten
e with n quanti�ers. So we
ould say that the semanti
representation we have obtained before retrieving anything is a representationof all the readings that doesn't
ommit to any one of them.

28 LECTURE 2. SCOPE AND TREES(�P�Q8x:P (x)! Q(x))(man)(�x1: �)love(x2)(x1)(�P�Q9y:P (y) ^Q(y))(woman)(�x2: �)
Figure 2.3: Underspe
i�ed des
ription of the meaning of Every man loves awoman as a lambda term.
2.3 Towards Underspe
i�
ationUnfortunately, Cooper storage
an overgenerate. Consider the following famousexample from (Hobbs and Shieber 1987):(2.9) Every resear
her of a
ompany saw most samples.This senten
e
ontains three quanti�ers, but it has only �ve readings. Cooperstorage will generate six (= 3!) readings, the sixth of whi
h is8x:res(x) ^ of(x3)(x) ^ 8z:
omp(z)! most(sample)(�y:saw(y)(x)):This reading is obviously nonsense; it still
ontains the variable x3, whi
hshould have been bound by the quanti�er with index 3 (a
ompany) and is nowfree. What has happened here is that the ne
essary s
ope relations between thequanti�ers are more
omplex than Cooper storage
an represent; it's not justany permutation at the senten
e level.One way out of this problem was proposed by Keller (1988) with his \NestedCooper Storage". The di�eren
e to ordinary Cooper storage is that the Stor-age rule of Nested Cooper Storage doesn't just pla
e the meanings of the NP
hildren into the quanti�er store, but the entire pair of meaning and term storeasso
iated with the NP; i.e., the store
an be nested deeply. Retrieval is ad-justed a

ordingly. Nested Cooper Storage generates exa
tly the �ve
orre
treadings in the example. (But now it's important that we really have a
hoi
ewhether we want to store or apply an NP; this wasn't really ne
essary for or-dinary Cooper storage, and we always stored NPs in the example.) Anotheralgorithm for generating quanti�er s
ope is (Hobbs and Shieber 1987).A fundamental problem with all of these approa
hes, however, is that they
an only generate all readings. As we have seen, a s
ope ambiguous senten
e
an have an exponential number of readings, so this
an be very expensive. Aswe have argued in the introdu
tion, it is more reasonable both from a
ognitiveand from a
omputational point of view to des
ribe the set of readings in a
ompa
t way and then to work with this des
ription instead of with all readingsfor as long as possible.

2.4. TREES AND DOMINANCE CONSTRAINTS 29Cooper Storage does des
ribe readings
ompa
tly, but the des
ription israther impli
it and, as we have seen, not very expressive. What we are reallyafter is a des
ription roughly as in Fig. 2.3 whi
h says whi
h fragments a formula
ontains and allows to spe
ify how they must be arranged { with a notion of\fragment" as in the introdu
tion, where we split the
orresponding �rst-orderformulae. We have already argued in the introdu
tion that this is what mostmodern underspe
i�
ation formalisms do and will spend the next two se
tionsto give the diagram a formal meaning. We want to speak about the stru
ture ofa lambda term; we will take this really seriously and speak about trees, whi
hmake this stru
ture expli
it.2.4 Trees and Dominan
e ConstraintsIn this se
tion, we will �rst de�ne what a tree is. Then we will embed trees into�rst-order model stru
tures, so-
alled lambda stru
tures ; in addition to spe
ify-ing a tree, they de�ne some relations between tree nodes, in parti
ular, a bindingrelation. Finally, we de�ne the syntax and semanti
s of dominan
e
onstraints ;this is a logi
 whi
h is interpreted over lambda stru
tures. We shall see in thenext se
tion how to apply dominan
e
onstraints for s
ope underspe
i�
ation.In one form or another, dominan
e
onstraints have been used very widelythroughout
omputational linguisti
s. The �rst o

urren
e we're aware of is in(Mar
us et al. 1983), where they were used for in
remental parsing. They'reimportant for
ombining tree-adjoining grammars with uni�
ation grammars(Vijay-Shanker 1992), they're at the heart of many
urrent s
ope underspe
i-�
ation formalisms (as we shall see), and they're used for the analysis of dis-
ourse (Gardent and Webber 1998). Their formal properties are rather well-understood, as well; Ba
kofen et al. (1995) axiomatized them in �rst-orderpredi
ate logi
, and Koller et al. (1998) investigated the
omplexity of variouslogi
al languages over dominan
e
onstraints. Finally, Du
hier and Gardent(1999), Koller et al. (1998), and Du
hier and Niehren (1999) have investigatedhow to solve dominan
e
onstraints (i.e. enumerate their models) eÆ
iently.We'll say something about this in Le
ture 5.Before we start, a word on notation. We write N for the set of naturalnumbers 1; 2; 3; : : : and N0 for N [f0g. If A is a set, we write A� for the wordmonoid over A, that is, all words of length � 0 that are built from symbols inA. As usual, we write the empty word �, and we write
on
atenation of twowords �1; �2 by juxtaposition �1�2.2.4.1 TreesTrees are one of the most su

essful data stru
tures in
omputational linguisti
sand
omputer s
ien
e. The standard way of thinking about trees is as dire
tedgraphs that have a unique root su
h that there is exa
tly one path from the rootto any other node of the tree. This
ondition implies some other properties, e.g.that they are a
y
li
 and that there is no node with two in
oming edges. Tree

30 LECTURE 2. SCOPE AND TREESf � �g � 1a � 11 f � 2b � 21
 � 22Figure 2.4: Tree
orresponding to f(g(a); f(b;
)).
nodes are typi
ally de
orated with labels (e.g. S or NP in a syntax tree), andsometimes edges are de
orated with so-
alled features.Here, we will employ a slightly di�erent de�nition of a tree. First, we as-sume a signature � of node labels. Ea
h of the labels (or
onstru
tors) in thissignature is assigned an arity by an arity fun
tion ar : � ! N0 . The only re-stri
tion we impose on the signature is that it must
ontain at least two di�erent
onstru
tors, one of whi
h must be nullary; otherwise, there would be no �nitetrees.Now we de�ne a tree domain � to be a nonempty subset of N� su
h that1. � is pre�xed-
losed : Whenever for any �1; �2 2 N� , �1�2 2 �, it mustalso hold that �1 2 �.2. � is
losed under the left-sibling relation: Whenever �i 2 � and i > 1, itmust also hold that �(i� 1) 2 �.Finally, we
an de�ne a
onstru
tor tree to be a pair (�; �) of a tree domain� and a labeling fun
tion � : �! �su
h that for any � 2 �, �i 2 � , 1 � i � ar(�(�)). A �nite
onstru
tor treeis a
onstru
tor tree whose domain is �nite.This sounds a bit
ompli
ated at �rst, but it is really very simple. First,
onsider Fig. 2.4, and let's see what the pair (�; �) that models this treelooks like. We have annotated the nodes in the diagram with words over N� .These words are the paths in the tree domain; so � = f�; 1; 11; 2; 21; 22g. Pathsindi
ate a sequen
e of steps in the tree starting at the root. For example, thepath 21 means to start at the root, then move to the se
ond
hild of the root,and then to move to the �rst
hild of that node. This
orresponden
e means thatthe elements of the tree domain
an be identi�ed with the set of nodes of a tree.The labeling fun
tion � assigns labels to the elements of the tree domain; wehave annotated the tree with these values. So for example, �(�) = f , �(1) = g,et
.Finite
onstru
tor trees are even more intuitive than that, though: They
orrespond uniquely to
losed terms over the signature, and vi
e versa. Thetree in the diagram was built from the signature � = ff2; g1; a0; b0;
0g, where

2.4. TREES AND DOMINANCE CONSTRAINTS 31we have indi
ated arities as supers
ript numbers. A well-formed term of thissignature is f(g(a); f(b;
)). (f(a), for instan
e, would not be well-formed be-
ause f must have two arguments.) Now
ompare this term to the tree; youwill noti
e that the two obje
ts have exa
tly the same stru
ture. It was to en-for
e this
orresponden
e between trees and well-formed terms that we requiredevery node to have exa
tly as many
hildren as the arity of its label says. The
onstru
tors determine the stru
ture of the tree, hen
e the name.From now on, we shall use \tree" as an abbreviation for \�nite
onstru
tortree".2.4.2 Lambda Stru
turesGiven a tree (�; �), we
an de�ne �rst-order model stru
tures with domain� whi
h allow us to speak about interesting relations in trees. In addition torelations whi
h
an be read o� the underlying tree easily, a lambda stru
turewill de�ne a �-binding fun
tion, whi
h we will use for modeling lambda terms.Assume a signature � as above, with spe
ial
onstru
tors var0; lam1;�2 2 �.A lambda stru
ture L over the tree (�; �) is a triple (�; �; I), where � : � � is a partial fun
tion mapping nodes � with �(�) = var to nodes �0 with�(�0) = lam, and I is an interpretation fun
tion whi
h assigns relations toa �xed set of predi
ate symbols. The predi
ate symbols we are interested inhere are the dominan
e predi
ate ��, the inequality predi
ate 6=, the bindingpredi
ate �(�) = � , and, for ea
h label fn 2 �, the (n+1)-ary labeling predi
ate:f . We shall use the same symbols for the predi
ates and their interpretations;there will be no danger of
onfusion.Now we de�ne the relations assigned to the predi
ate symbols by I . Iffn 2 �, the labeling relation �:f(�1; : : : ; �n) holds i� �(�) = f and for all1 � i � n, �i = �i. The dominan
e relation ����0 holds i� � is a pre�x of�0. The inequality relation � 6= �0 holds i� � and �0 are di�erent. Finally, thebinding relation �(�) = �0 holds i� the binding fun
tion � is de�ned on � andmaps it to �0.The interpretation fun
tion is
ompletely determined by the underlying treeand the binding fun
tion. For example, the dominan
e relation indu
ed by thetree in Fig. 2.4 (together with any binding fun
tion)
ontains 14 pairs of nodes,in
luding (�; 1), (�; 21), (2; 2), et
.; a labeling relation satis�ed by that tree ise.g. 2:f(21; 22).We
an use lambda stru
tures to model lambda terms by equipping theparse tree of a lambda term with a binding relation between variables andtheir binders. We obtain su
h a parse tree if we use the binary
onstru
tor� we introdu
ed above for modeling appli
ation, the unary
onstru
tor lamfor signifying abstra
tion, and the nullary
onstru
tor var for variables. Asan example, Fig. 2.5 shows the lambda stru
ture
orresponding to the term�x:(�F:(F (x))(a))(�y:x). In the diagram, pairs of nodes mapped to ea
h otherby the binding fun
tion are
onne
ted by a dashed arrow. So lambda stru
tures
orrespond to lambda terms up to �-equivalen
e (i.e.
onsistent renaming ofvariables).

32 LECTURE 2. SCOPE AND TREESlam � �� � 1lam � 11� � 111� � 1111var � 11111 var � 11112a � 1112lam � 12var � 121Figure 2.5: Lambda stru
ture for �x:(�F:(F (x))(a))(�y:x).
OnWednesday, we will extend lambda stru
tures with parallelism and anaphori
binding relations in order to model ellipses and anaphora.2.4.3 Dominan
e ConstraintsNow it is straightforward to build a syntax for a logi
 for talking about lambdastru
tures. We �x a set of variables X;Y; : : : (whi
h are supposed to denotetree nodes) and de�ne a dominan
e
onstraint ' to be built a

ording to thefollowing abstra
t syntax: ' ::= X :f(X1; : : : ; Xn)j X��Yj �(X) = Yj X 6= Yj ' ^ '0:An atomi
 dominan
e
onstraint ' is satis�ed by a lambda stru
ture L =(�; �; I) and a variable assignment � into � i� � maps the parti
ipating vari-ables into the relation to whi
h I maps the respe
tive predi
ate symbol. An ar-bitrary dominan
e
onstraint is a
onjun
tion of atomi
 dominan
e
onstraintsand satis�ed by (L; �) i� (L; �) satis�es every
onjun
t; we also
all L a solutionof the
onstraint.For instan
e, the dominan
e
onstraintX1:lam(X2) ^X2:�(X3; X4) ^X3��X5 ^X5:var ^ �(X5) = X1 (2.10)is satis�ed by the lambda stru
ture in Fig. 2.5 together with the variable as-signment �(X1) = �; �(X2) = 1; �(X3) = 11; �(X4) = 12; �(X5) = 11112.Usually, we are not interested in all solutions of a dominan
e
onstraint. Anatomi
 dominan
e
onstraint X��Y
an be satis�ed with X and Y having anarbitrary distan
e from ea
h other in the tree, whi
h means that most dominan
e
onstraints have an in�nite number of solutions. What we're really after is a

2.5. SCOPEUNDERSPECIFICATIONUSING DOMINANCE CONSTRAINTS33lam � X1� � X2� X3var � X5 � X4Figure 2.6: Constraint graph for (2.10).

onstru
tive solution. A solution (L; �) of a dominan
e
onstraint ' is
alled
onstru
tive i� every node in the domain of L is the �-image of a variable in '.The abstra
t syntax we have just de�ned is perfe
t for formal purposes;however, it
an easily be
ome unreadable for humans. To this end, we employ
onstraint graphs. A
onstraint graph is a dire
ted graph with node labels andthree kinds of edges: solid edges, dotted edges, and dashed arrows. Nodes of thegraph stand for variables in a
onstraint; node labels together with solid edgesstand for labeling
onstraints, dotted lines stand for dominan
e
onstraints, anddashed arrows stand for binding
onstraints. In addition, a
onstraint graphrepresents an inequality
onstraint between any two variables
orresponding tolabeled graph nodes.For example, the
onstraint (2.10)
an be drawn as the
onstraint graph inFig. 2.6. (But note that the
onstraint graph also represents some inequality
onstraints, i.e. X1 6= X2, X2 6= X5, et
.)Constraint graphs are rather similar to the lambda stru
tures satisfying them(
ompare Fig. 2.6 to Fig. 2.5). In parti
ular, you get a
onstru
tive solutionby simply arranging the fragments in the
onstraint graph in a tree-like fash-ion and then identifying the ends of any remaining dominan
e edges. Note,however, that
onstraint graphs are obje
ts of the synta
ti
 level of dominan
e
onstraints, whereas trees are obje
ts of the semanti
 level. The nodes of a
onstraint graph represent variables of a
onstraint, whi
h in turn
an denotenodes in a tree. So it is important to keep them apart.2.5 S
ope Underspe
i�
ation Using Dominan
eConstraintsNow let's return to s
ope ambiguities and put the dominan
e
onstraints wehave just de�ned to use for s
ope underspe
i�
ation.The intended semanti
 representation language for single readings is higher-order logi
. Using our new knowledge of dominan
e
onstraints, we
an �x asignature
ontaining all the
onstants we're interested in plus the logi
al
on-ne
tives !2, :1, et
., and try to interpret Fig. 2.3 as a dominan
e
onstraint

34 LECTURE 2. SCOPE AND TREES� �� �lam �lam �8 �! �� �var � var � � �var � var �
man � lam �� � �� �lam �lam �9 �^ �� �var �� �� �love � var �var �var �

� �var � var �
woman � lam ��

Figure 2.7: Constraint graph for Every man loves a woman.
graph des
ribing the lambda stru
ture
orresponding to the lambda term wewant.The only remaining problem is the modeling of lambda binding, but we
ansolve it by introdu
ing binding
onstraints. The result is the
onstraint graphin Fig. 2.7; the
onstraint it represents has exa
tly two
onstru
tive solutions,shown in Fig. 2.8. Converted ba
k to lambda terms, they are just the tworeadings we wanted. (These are the only diagrams where we'll ever spell outthe tree stru
ture of a determiner meaning; in the future, we'll abbreviate themas little triangles labeled with the determiner.)Why are these the only two
onstru
tive solutions? The
onstraint graphspe
i�es the two generalized quanti�ers and the nu
lear s
ope of the senten
e,and expresses that the nu
lear s
ope has to be in the s
ope of both quanti�ers. Itdoesn't say anything about the order of the quanti�ers. But beause the tree partof a lambda stru
ture
an't bran
h in the bottom-up dire
tion, one of the twoquanti�ers must dominate the other one; so there are two stru
turally di�erentsolutions. Be
ause we only want
onstru
tive solutions, they
ould only
ontain\material" that had been \mentioned" in the
onstraint.So we
an give a
lean formal meaning to the intuitive s
ope underspe
i�
a-tion diagrams we had earlier by using dominan
e
onstraints.It's interesting to observe how this analysis implements \Montague's tri
k".Here we know from the start what material the semanti
 representation is going

2.5. SCOPEUNDERSPECIFICATIONUSING DOMINANCE CONSTRAINTS35� �� �lam �lam �9 �^ �� �var � var � � �var � var �
woman � lam �� �� �lam �lam �8 �! �� �var � var � � �var � var �

man � lam �� �� �love � var �var �
� �� �lam �lam �8 �! �� �var � var � � �var � var �

man � lam �� �� �lam �lam �9 �^ �� �var � var � � �var � var �
woman � lam �� �� �love � var �var �Figure 2.8: Constru
tive solutions of the
onstraint in Fig. 2.7.

to be built of; there's no abstra
tion \falling from the sky". There's also noneed to remember NPs in a store be
ause the new � is �rmly
onne
ted tothe rest of the NP meaning. We
an do this be
ause we
an treat the �-termfragments that we used informally in Fig. 2.3 in a formally sound way here {as fragments of trees. Finally, we don't have to worry about variable namesbe
ause we have binding
onstraints that tell us from the start what the
orre
tbinders for variables are.Now let's see what hepps with (2.11), whi
h was a problem for Cooperstorage.(2.11) Every resear
her of a
ompany saw most samples.The dominan
e
onstraint graph des
ribing this senten
e is shown in Fig.2.9). It has two nodes that have two in
oming dominan
e edges (X9 and X10),

36 LECTURE 2. SCOPE AND TREES� X0� � X1� �a �
omp � lam �� X5 � � X2� �every �
� � X9� �of � var �var �

lam �^ �� X6 � �res � var � � � X10� �see � var �var �
lam �� X7 � � X3� �most � sample � lam �� X8

Figure 2.9: Constraint graph for Every resear
her of a
ompany saw most sam-ples.

orresponding to two nu
lear s
opes (for the verb and for the preposition).Again, we must
hoose whi
h of the two dominating nodes should dominate theother in order to disambiguate the
onstraint. If we
hoose that X5 dominatesX6, X8
an go in three pla
es: either aboveX5, or between X5 and X2, or belowX7. If we
hoose thatX6 dominatesX5, X8
an go in two di�erent pla
es: eitherabove X2, or below X7. This makes for a total of �ve
onstru
tive solutions,
orresponding to the �ve readings of the senten
e.So far, we haven't talked about a syntax/semanti
s interfa
e generating dom-inan
e
onstraints from a synta
ti
 analysis. It is not diÆ
ult to build su
h aninterfa
e; see the last se
tion of (Koller et al. 1999).2.6 Other Approa
hes to S
ope Underspe
i�
a-tionIn
on
lusion of this
hapter, we will now give brief and informal introdu
tionsto two other formalisms for s
ope underspe
i�
ation. From the wide variety offormalisms that we have listed in the �rst
hapter, the two we pi
k for a
loserlook are Quasi Logi
al Form and Hole Semanti
s. The former is of seminal

2.6. OTHER APPROACHES TO SCOPE UNDERSPECIFICATION 37importan
e for the �eld and has a broad
overage of linguisti
 phenomena.The latter is representative of a family of underspe
i�
ation formalisms that isprobably the most in
uential at this time. The most popular member of thisfamily is UDRT (Reyle 1993; S
hiehlen 1997), but Hole Semanti
s is mu
h morea

essible, and its basi
 ideas are essentially the same. (Alshawi et al. 1992)and (Bos 1996) are warmly re
ommended for further reading.2.6.1 Quasi Logi
al FormQLF (Alshawi and Crou
h 1992) was the �rst formalism for semanti
 under-spe
i�
ation that was implemented and used for real-world appli
ations. It was
ontinually developed over several years to meet the demands of a growing lin-guisti

overage. The original syntax looks rather intimidating. Therefore, wehave adopted a heavily simpli�ed version for our exposition here. For the orig-inal, we refer the reader to (Alshawi et al. 1992), a
omprehensive summary ofQLF and its appli
ations.The underlying idea of the formalism is to provide an underspe
i�ed rep-resentation of quanti�er raising. In a QLF representing a senten
e, the termsrepresenting NPs are arguments of the VPs whose synta
ti
 arguments they are.Ea
h of them is identi�ed by a unique index, and di�erent s
ope relations
anbe represented by spe
ifying an order on indi
es in spe
ial s
oping lists. In orderto be able to represent diÆ
ult senten
es like (2.11), s
oping lists
an also o

urin nested positions in a term. In an unresolved QLF, these lists are unspe
i�ed;they are represented as uninstantiated variables. To ensure that logi
al formulae
an be derived from fully resolved QLFs, there is the
onstraint that for everyindex, the term it identi�es must appear inside the s
oping list that
ontainsthe index. Disambiguation means instantiation of the s
oping lists.By way of example,
onsider the (simpli�ed) QLF representation of ourrunning example, repeated here as (2.12).(2.12) Every man loves a woman.(2.13) _s:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))In the QLF, we �nd the two NPs represented as two terms that are argu-ments of their synta
ti
 mother, the love VP. Ea
h term has a unique index,given as its �rst argument; for the NP quantifying over men, it is +m, for the onequantifying over women, it is +w. The type of quanti�er (e.g. universal or ex-istential) is stored as the se
ond argument; and the restri
tion of the quanti�eris pla
ed in the third argument.The love formula is pre�xed with a s
oping list that is, at this point, un-spe
i�ed and represented by the variable _s. Due to the free-variable
onstraintwe mentioned above, any fully resolved QLF that
an be derived from (2.13)must instantiate _s with a list that
ontains both +w and +m. This
an be donein either order, yielding the two readings (2.14) and (2.16) below. If you imaginethat a s
oping list [+m,+w℄ means to �rst retrieve the woman and then the man

38 LECTURE 2. SCOPE AND TREESquanti�er from a Cooper store, the QLFs
orrespond to HOL terms whi
h
anbe �-redu
ed to (2.15) and (2.17), respe
tively.(2.14) [+m,+w℄:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))(2.15) 8x:man(x)! 9y:(woman(y) ^ love(x; y))(2.16) [+w,+m℄:love(term(+m, 8, �X:man(X)),term(+w, 9, �Y:woman(Y)))(2.17) 9y:woman(y) ^ 8x:(man(x)! love(x; y))The evolutionary, appli
ation-oriented development of QLF has the positivee�e
t of leading to a very wide
overage of linguisti
 phenomena. But thedownside of this is that some formal aspe
ts of QLF are pat
hwork needed tomake things work, instead of
onsequen
es of an overall vision. One parti
ularin
onvenien
e is that unlike most modern approa
hes to underspe
i�
ation, QLFdoes not provide a
lean separation between obje
t and meta level; elements ofboth are distributed all over an underspe
i�ed representation. This makes therepresentation a bit intransparent; in addition, it makes the task of designing a
al
ulus for dire
t dedu
tion even more diÆ
ult than it inherently is.2.6.2 Hole Semanti
sHole Semanti
s was developed by Bos (1996) and is a general framework for
reating an underspe
i�ed representation language from a non-underspe
i�edobje
t language. Bos himself applies it to predi
ate logi
 and DRT; his \DRTunplugged" essentially agrees with UDRT, with whi
h it shares the underlyingperspe
tive on s
ope ambiguities.Hole Semanti
s is based on underspe
i�
ation pi
tures su
h as Figure 2.3,whi
h we repeat below as Fig. 2.10 in a slightly adjusted format, but gives thema di�erent te
hni
al interpretation than with dominan
e
onstraints. Formulaeo

urring in the nodes of su
h an underspe
i�ed representation (UR) are takenfrom the obje
t language; but any subformula
an be repla
ed by a so-
alledhole (h0; h1; h2 in the pi
ture). The fun
tion of holes is that other formulae
an be plugged into them to obtain a larger formula. The dotted lines in thegraph are drawn from holes to formulae, and they express that the formulaemust be subformulae of the formulae into whose holes they will be plugged. Totake
are of problems that
an arise when the same formula o

urs more thanon
e in the graph, ea
h fragment is given a unique identity, its label (l1; l2; l3 inthe pi
ture). The graph
an be represented as an upper semilatti
e spe
ifying apartial order on holes and labels, and disambiguation means to make this ordermore spe
i�
.The obje
t-language formulae a UR represents
an be obtained from so-
alled admissible pluggings. A plugging is a bije
tion between holes and labels,and it is
alled admissible if it agrees with the partial order on labels and holes.

2.7. SUMMARY 39An admissible plugging P indu
es a obje
t-language formula by starting at the(unique) top formula of the UR and subsequently repla
ing holes h by formulaeP (h). � h0l1 : 8x �! �man �x � � h1 l2 : 9y �^ �woman �y �l3 : love �x � y �
� h2

Figure 2.10: A s
ope ambiguity in Hole Semanti
s.To see an example for su
h a plugging, we have equipped Fig. 2.10 withexpli
it holes and labels. The example is in \Predi
ate Logi
 Unplugged", theinstantiation of Hole Semanti
s to �rst-order logi
. The UR presented in thispi
ture has exa
tly two admissible pluggings. They are shown as (2.18) and(2.20), along with the predi
ate logi
 formulae they indu
e.(2.18) fh0 = l1; h1 = l2; h2 = l3g(2.19) 8x:man(x)! 9y:(woman(y) ^ love(x; y))(2.20) fh0 = l2; h2 = l1; h1 = l3g(2.21) 9y:woman(y) ^ 8x:(man(x)! love(x; y))Hole Semanti
s and its kin
ope easily with senten
es like (2.11), using ba-si
ally the same pi
tures as the dominan
e
onstraint analysis.2.7 Summary� Generalized quanti�ers
an be used for a
ompositional semanti

onstru
-tion (whi
h derives semanti
 representations from a synta
ti
 analysis). Ageneralized quanti�er is a �-term of type hhe; ti; ti; it represents the mean-ing of an NP in the senten
e.� Cooper storage
an be used to enumerate the readings of a s
ope ambi-guity without arti�
ially analyzing a senten
e as synta
ti
ally ambiguous.Cooper storage has overgeneration problems that are a
onsequen
e of itsla
k of expressive power.

40 LECTURE 2. SCOPE AND TREES� Dominan
e
onstraints are a logi
 whose models are lambda stru
tures.A dominan
e
onstraint
an be regarded as a (partial) des
ription of its
onstru
tive solutions. Lambda stru
tures
an be used for modeling �-terms.� This means that dominan
e
onstraints
an be used for partial (= under-spe
i�ed) des
riptions of �-terms. A human-readable form of dominan
e
onstraints,
onstraint graphs, look almost like the intuitive pi
tures weused on Monday for des
ribing the readings of a s
ope ambiguity infor-mally.� QLF and Hole Semanti
s are other important formalisms for s
ope un-derspe
i�
ation. QLF is an appli
ation-oriented formalism of seminal im-portan
e for the �eld, but la
ks the formal elegan
e and the separation ofobje
t and meta language of modern underspe
i�
ation formalisms. HoleSemanti
s is representative of a very popular
lass of formalisms. It al-lows formulae with holes into whi
h other formulae
an be plugged andrepresents this with diagrams very similar to dominan
e
onstraint graphs.

Le
ture 3Con
urrent ConstraintProgramming in Oz3.1 Relation to Underspe
i�
ationCon
urrent
onstraint programming is a modern te
hnology whi
h
an be usedto solve
omplex
ombinatori
 problems eÆ
iently. Typi
al appli
ations of
on-
urrent
onstraint programming in industry in
lude s
heduling and
on�gura-tion.Underspe
i�
ation and
onstraint programming
an be seen as two sidesof the same
oin. Underspe
i�
ation is
on
erned with ambiguity in naturallanguage whi
h a
onstraint programmer would
onsider more generally as dis-jun
tive information in a
ombinatori
 problem. The idea of underspe
i�
ationis to delay the enumeration of readings of an ambiguous senten
e for as longas possible. A more general idea underlies
on
urrent
onstraint programming,where
ombinatori
 problems are solved in su
h a way that
ase distin
tions aredelayed for as long as possible.3.1.1 Towards pro
essing underspe
i�ed semanti
sWhat have we done so far? In the �rst two le
tures we have learned aboutunderspe
i�
ation in semanti
s of natural language. We have dis
ussed sever-al formalisms in whi
h to represent the meaning of senten
e
ontaining s
opeambiguities. We have advo
ated formulas of higher-order logi
 (HOL) for rep-resenting meaning, and partial des
riptions of HOL-formulas for representingmeaning in an underspe
i�ed manner. As partial des
riptions of HOL-formulas,we have proposed tree des
riptions based on dominan
e
onstraints. The ideawas to
onsider a HOL-formula as a tree (the tree of its abstra
t syntax) andto des
ribe this tree partially.Of
ourse, when doing
omputational linguisti
s it is not suÆ
ient to rep-resent the meaning of a senten
e in theory. The goal is to provide algorithms41

42 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZgrammarsystem withinterfa
e tosemanti
s dedu
tiondisambiguation� � redu
tionsenten
e underspe
i�edsemanti
representation
onsequen
es
Figure 3.1: Ar
hite
ture for natural language pro
essing

and implementations thereof that
an derive semanti
 representations and
om-pute its
onsequen
es (see Figure 3.1). As we argued before, the semanti
s ofa senten
e is best represented in an underspe
i�ed manner be
ause of s
opeambiguities. So, the question is how to
ompute underspe
i�ed semanti
 repre-sentations from a senten
e and how to derive its
onsequen
es.In this le
ture, we are mainly
on
erned with semanti
s rather than withsyntax. Therefore, we assume the existen
e of some magi
ian who is doingthe synta
ti
al work for us. We
an pass a senten
e to the magi
ian who thenreturns its synta
ti
 stru
ture. From this is it is not diÆ
ult to
ompute anunderspe
i�ed semanti
 representation. We dis
ussed in the previous le
tureshow syntax and semanti
s are related in prin
iple.In pra
ti
e, the magi
ian will be some grammar system (LFG, HPSG, de-penden
y grammar), i.e. a parser into whi
h a syntax-semanti
s interfa
e isintegrated. Compared to the
omplexity of parsing, a syntax-semanti
s inter-fa
e is usually quite easy to design. We will therefore omit the details in this
ourse. Instead, we assume that the grammar system provides us with an un-derspe
i�ed semanti
 representations in form of a dominan
e
onstraint (whi
hdes
ribes a HOL-formula that in turn represents the meaning of the input sen-ten
e).3.1.2 Disambiguation is
onstraint solvingSo what remains to be done? We would like to
ompute the
onsequen
es ofan underspe
i�ed representation. In fa
t this question is very diÆ
ult and
annot be answered in this le
ture. Suppose that we would have a fully spe
i�edmeaning representation in �rst-order logi
 then we would still need a theoremprover for
omputing all its
onsequen
es. This is not what we are going to doin this
ourse.Instead, we approa
h a more basi
 question whi
h
on
erns underspe
i�
a-tion independently of how it is approa
hed. The problem is that an underspe
i-�ed representation does not expli
itly represent the set of all possible meanings.So the question is how to disambiguate an underspe
i�ed representation eÆ-
iently, i.e. how to enumerate the set of readings it represents in polynomial

3.2. WHAT IS CONSTRAINT PROGRAMMING 43time depending of the size of this set. One might argue that disambiguation
ontradi
ts the main idea of underspe
i�
ation whi
h is to delay disambiguationfor as long as possible. But earlier or later during natural language pro
essing,one
an be for
ed to disambiguate at least partially. In our approa
h to un-derspe
i�
ation based on tree des
riptions, disambiguation amounts to solvingdominan
e
onstraints.Hen
e, our goal is to solve dominan
e
onstraints eÆ
iently. The problem ofsolving dominan
e
onstraints is NP-
omplete as shown in (Koller et al. 1998).In other words, solving dominan
e
onstraints is a
ombinatori
 problem whi
his mu
h harder than one might think at �rst sight: we
annot expe
t the ex-isten
e of an algorithm whi
h solves dominan
e
onstraints in polynomial timein general. This does not mean however that we
annot built a solver whi
h iseÆ
ient for those dominan
e
onstraints representing underspe
i�ed semanti
s.A good approa
h to solve
ombinatorial problems is
on
urrent
onstraintprogramming (Saraswat et al. 1991; Smolka 1994; Smolka 1995). We willshow how to use
on
urrent
onstraint programming with sets in order to solvedominan
e
onstraints (Du
hier and Gardent 1999; Du
hier and Niehren 1999;Koller et al. 1998). As an implementation platform, we will employ the Mozartsystem of the programming language Oz (Oz Development Team 1999). Therest of this le
ture is devoted to
on
urrent
onstraint programming te
hnology.In the next two le
ture, we will present further features of Oz and then thesolver for dominan
e
onstraints.3.2 What is Constraint ProgrammingConstraint programming is a method for solving
ombinatori
 problems, whi
h
omes with a well-developed te
hnology. Combinatori
 problems are tradition-ally formulated as logi
al formulas that are
alled
onstraints. Solving
ombi-natori
 problems is inherently diÆ
ult be
ause of the disjun
tive
hara
ter of
ombinatori
s.3.2.1 Appli
ationsTypi
al appli
ations of
onstraint programming in
lude optimization problemsof industrial relevan
e su
h as:� s
heduling,� time tabling,�
on�guration.Re
ently, many new
hallenging appli
ations have been investigated at univer-sities:� dedu
tion and reasoning� knowledge representation

44 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZ� pro
essing of natural language3.2.2 The Problem: Combinatori
 ExplosionThe naive way of solving
ombinatori
 problems
an be paraphrased as `generateand test': In a �rst step one enumerates all
ombinations from whi
h one sele
tsall solutions in the se
ond step. In most
ases however, `generate and test'is simply not feasible. This is obvious if the set of
ombinations is in�nite.But even if it is �nite then it is usually very large, i.e. exponentially large insize of the problem des
ription. In this
ase, the generation step runs into a
ombinatori
 explosion (from whi
h it usually returns only several billions ofyears later).The pro
ess of generation spawns a sear
h tree. The inner nodes in this tree
orrespond to
ase distin
tions performed during generation and the leaves ofthe tree to the set of all possible
ombinations. There are two kinds of leaves:solution and failure leaves whi
h
an be distinguished by a test pro
edure. Theproblem is that a sear
h tree grows exponentially in its depths. For instan
e,if we have a
ombinatori
 problem with 15 variables ea
h of whi
h has 4 pos-sible values then we obtain a sear
h tree of depth 15 whi
h
ontains 4^15 =10.737.410.000.000.000 nodes. The sear
h tree below is rather small but onlysin
e its depth is small too.

3.2.3 The Method: Propagate and DistributeSuppose that you are now
onvin
ed that we
an not simply generate the fullsear
h tree in usual
ombinatori
 problems. So what
an we do instead? The

3.2. WHAT IS CONSTRAINT PROGRAMMING 45idea is to delay
ase distin
tions for as long as possible. Instead we do simpleinferen
es �rst and hope that we
an thereby prune the sear
h tree, i.e. avoidto visit all its nodes. This is the general method of
onstraint programmingwhi
h
an be paraphrased as `propagate and distribute'. A propagation steprestri
ts the set of possible solutions by a simple inferen
e. A distribution stepexe
utes a
ase distin
tion by whi
h the set of possible solutions is restri
tedfurther. Of
ourse, propagation and distribution steps have to be iterated. Inorder to delay
ase distin
tions for as long as possible, a distribution step hasto wait until the propagation pro
ess is terminated. This is sin
e distributionis
onsidered expensive whereas propagation is not.In
on
urrent
onstraint programming, propagation is organized as a
on-
urrent pro
ess. The idea is to store simple information in a
ommon
onstraintstore su
h that it
an be observed by all
on
urrent propagators. Whenevera propagator
an make an inferen
e then is adds its results to the
onstraintstore. Thereby another propagator may be
ome triggered and so on. One
animagine a
onstraint store with its propagators as follows:

3.2.4 What is Oz and who is Mozart?A
on
urrent
onstraint programming system provides a set of pro
edures forde�ning propagators and all ma
hinery for running propagation and distribu-tion. The programmer simply models his problem by de�ning sets of propagatorsand a strategy for distribution. The rest is done by the
ompiler and emulatorof the programming system.Oz is a
on
urrent
onstraint programming system whi
h has been devel-oped by the Programming Systems Lab in Saarbr�u
ken led by Gert Smolka.

46 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZThe most re
ent Oz version is Mozart 1.0.11 The Mozart system was devel-oped by the Mozart
onsortium whi
h integrate the programming systems labin Saarbr�u
ken, the programming systems lab at SICS (Swedish Institute ofComputer S
ien
e) led by Seif Haridi, and Peter Van Roy's group at the Uni-versite
atholique de Louvain. The Mozart system is freely available, extensivelydo
umented, and fully operational.Oz uni�es ideas originating from logi
 programming in Prolog and fun
tion-al programming in Lisp or SML. Oz provides the most innovative te
hnology
ompared to other
onstraint programming languages on the market (ILOG,CHIP). This makes Oz a good foundation for building innovative appli
ationsin
omputational linguisti
s and arti�
ial intelligen
e.Beyond
on
urrent
onstraint programming, Mozart supports Internet pro-gramming similar to Java. Mozart is also well-suited for building multi agentsystems and sophisti
ated graphi
al user interfa
es.

1http://www.mozart-oz.org/

3.3. SOLVE A COMBINATORICAL PROBLEM IN OZ 473.3 Solve a Combinatori
al Problem in OzOur next goal is to build a
onstraint solver for the following problem whi
h isgiven by an equation system with variables denoting integers.X;Y; Z 2 f1; : : : ; 7gX + Y = 3 � ZX � Y = ZA solution of this problem is an assignment of variables X, Y, Z to naturalnumbers whi
h satis�es the given arithmeti

onstraints.3.3.1 Bits of a Constraint SolverWe next show how to solve this problem in Oz. We de�ne the following
on-straint whi
h
an be added dire
tely to the
onstraint store[X Y Z℄ ::: 1#7and de�ne the following set of propagator over this
onstraint store:X + Y =: 3*ZX - Y =: ZHere we make use of Oz-variables whose syntax is given by words with leading
apital letters. The �rst line states that X, Y, Z are so
alled �nite domainvariable, i.e. variables for an integer in a �nite domain (here, between 1 and 7).Next, we use a prede�ned distribution strategy whi
h takes the a
tual re-stri
tions on X, Y, Z into a

ount:{FD.distribute naive [X Y Z℄}We represent a solution as a re
ord (
alled feature tree in
omputational lin-guisti
s):solution(x:2 y:1 z:1)This re
ord is built from integers and Oz-atoms whi
h are words beginningwith a lower
ase letter. The solution re
ord has the label solution and threefeatures x, y, z.3.3.2 Observing PropagationIt might be instru
tive to observe propagation independently from distribution.Propagation relies on the
on
ept of a
onstraint store whi
h is simply a set ofsimple
onstraints on values of variables. New information
an be added to the
onstraint store by propagation. Propagation is done by propagators. Theseare agents observing the
onstraint store and getting a
tive whenever they areable to add information. The Oz programmer
an observe the
onstraint storeby using the Oz Browser. For instan
e, feed the following Oz-
ode into theOz-
ompiler:

48 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZde
lare X Y Z in [X Y Z℄ ::: 1#10{Browse [X Y Z℄}This de
lares three new variables X Y Z for integers in the domain 1, ..., 10and browses whatever the
onstraint store knows about their values. When newinformation is added the browser updates its output. For instan
e, you mayfeed the propagator:2 * Y =: ZThis propagator tells the
onstraint store new information on upper and lowerbounds of Y and Z whenever possible. For example, it adds the information thatY must be at most 5 and Z must be at least 2 to the
onstraint store. However,it
annot tell the
onstraint store to remove odd numbers from the interior ofthe domain of Z. We next might feed a new propagator stating that X is stri
tlysmaller than Y:X <: YOne of the e�e
t of this propagator is that 1 is removed from the lower boundof Y. This rea
tivates the observing propagators 2 * Y =: Z whi
h ex
ludes2 and 3 from the domain of Z.3.3.3 Composing the SolverOz supports en
apsulated sear
h. As in Prolog is suÆ
ies to only spe
ify aproblem and let it be solved by the sear
h engine of the programming language.In
ontrast to Prolog, sear
h is en
apsulated in Oz. This means that a sear
hproblem has always to be en
apsulated into a predi
ate whi
h has to be passedexpli
itly to a sear
h engine. As a
onsequen
e of en
apsulation, Oz permitsstandard programming in the usual style (i.e. as SML, Lisp, or S
heme).In order to use en
apsulated sear
h, we have to en
asulate the above prop-agators and distributor into a predi
ate. The pro
edure Equations des
ribesexa
tly the solutions of the problem
onsidered above.de
larepro
{Equations Sol}X Y Zin Sol = solution(x:X y:Y z:Z)[X Y Z℄ ::: 1#7X + Y =: 3*ZX - Y =: Z{FD.distribute naive [X Y Z℄}endThe de�nition of Equations in Oz not only spe
i�es a set of obje
ts but also de-s
ribes how these obje
ts
an be sear
hed by propagation and distribution. For
omputing its solutions in Oz, it is suÆ
ient to pass the de�nition of Equationsto the Oz-Explorer.

3.3. SOLVE A COMBINATORICAL PROBLEM IN OZ 49{Explorer.all Equations}{Explorer.one Equations}3.3.4 Was this a good Example?� Yes, be
ause it was so simple.� No, sin
e there are mu
h better solvers in this
ase (Gauss eliminationalgorithm).Constraint programming yields good solvers only if no dire
t algorithm forsolving your problem is available.3.3.5 Questions� Why are there three
olons in the statement [X Y Z℄ ::: 1#7?If you want restri
t the domain of a single FD variable then you write X:: 1#7 with two
olons. But if you want to restri
t the domains of allvariables of some list like [X Y Z℄, then you need to write three
olons.� Is the name solution in the example program Equations arbitrary?Yes, you may
hoose whatever Oz-atom instead.� What is the di�eren
e between the statements X + Y =: 3*Z and X + Y= 3*Z?Be
areful, this is very di�erent! The �rst statement X + Y =: 3*Z hidesan appli
ation of a pro
edure whi
h builds a propagator for the equationX + Y = 3 � Z. The se
ond statement X+Y=3*Z is exe
uted by �rstevaluating the arithmeti
 expressions X+Y and 3*Z if the values of X, Y,and Z are spe
i�ed and then unifying the results.� Why does the Explorer
ome up with a yellow diamond in the followingprogram instead of sear
hing for a solution?de
larepro
{Equations Sol}X Y Zin Sol = solution(x:X y:Y z:Z){FD.distribute naive [X Y Z℄}[X Y Z℄ ::: 1#7X + Y =: 3*ZX - Y =: Zend{Explorer.one Equations}

50 LECTURE 3. CONCURRENT CONSTRAINT PROGRAMMING IN OZThe problem is that the distributor fFD.distribute naive [X Y Z℄gblo
ks the exe
ution of all subsequent statements. The distributor waitsuntil the variables X, Y, Z have to denote integers in a �nite domain.This will never happen sin
e the exe
ution of the statement [X Y Z℄ :::1#7 is blo
ked by the distributor itself. So we have a deadlo
k.The yellow diamond displayed by the Explorer means that the sear
hpro
ess is blo
ked forever.You
an resolve the problem putting the distributor into its own thread,i.e. by repla
ing it with thread fFD.distribute naive [X Y Z℄g end.� I found the following
all of the explorer in some do
ument. What's wrongwith this?{Explorer one(Equations)}This is the old syntax of Oz 2.0 whi
h is no longer valid in Mozart 1.0.1.There the syntax for
alling the Explorer is slightly di�erent. You have touse the more
onsistent notation fExplorer.one Equationsg instead.3.3.6 Exer
iseWrite a solver for the equation SEND+MORE=MONEY, where every letterstands for a distin
t digit between 0 and 9 and su
h that leading digits aredistin
t from 0.3.4 Summary� Underspe
i�
ation and
onstraint programming are two sides of the same
oin. The main idea of both is to delay
ase distin
tions for as long aspossible.� Disambiguation of underspe
i�ed des
riptions
an be seen as
onstraintsolving.� The main problem of
onstraint solving is the danger of
ombinatori
explosion.� The basi
 method of
on
urrent
onstraint programming is `propagate anddistribute', in
ontrast to `generate and test'.� Propagation is an eÆ
ient
on
urrent pro
ess. Propagation is typi
allyin
omplete from a logi
al point of view. Completeness
an be obtained byadding distribution to propagation.

Le
ture 4More on OzThe purpose of this le
ture is to improve our Oz-programming skills. We willpresent those programming
on
epts needed for writing the solver of dominan
e
onstraints in the next le
ture. We introdu
e the data stru
tures provided byOz whi
h are similar to those in SML, then turn to �rst-order uni�
ation asin Prolog, and �nally present features for
on
urrent
onstraint programming:�nite domain
onstraints, �nite set
onstraints, and disjun
tive propagators.4.1 Data Stru
turesWe �rst introdu
e the data stru
tures provided by Oz (see The Oz Base En-vironment). A data-stru
ture allows to store values of some (data) type andprovides the standard pro
edures for mun
hing these values.We take the viewpoint of fun
tional programming as in SML whi
h is quitedistin
t from the
on
ept of
onstraint programming. However, fun
tional pro-gramming provides a good platform on whi
h to base a
onstraint programmingsystem. The idea of fun
tional programming is to organize
omputation purelyin terms of values, types, and fun
tional pro
edures whi
h
ompute fun
tionsbetween values of some types.4.1.1 Values and TypesUp to now we have seen several values used in Oz: numbers, atoms, re
ords,and lists. There are more values and types in Oz. A still in
omplete list ofvalues and types is the following:� A number is either an integer or a
oat (rational number).� An atom is a word.� A Boolean value is either true or false.� The unit is a
onstant value without parti
ular meaning (a dummy).51

52 LECTURE 4. MORE ON OZ� A re
ord aterm of the form Lab(F1:V1 ... Fn:Vn) where:{ the label Lab is an atom, the unit, or a Boolean.{ the features F1, ... , Fn are pairwise distin
t atoms or integers.{ the �elds V1, ..., Vn are arbitrary values.{ n � 0, ie. a re
ord may be an atom, the unit, or a Boolean.� A tuple is a re
ord with only integer features.� A list is a tuple whi
h is either the atom nil or a tuple j(1:V 2:L) where jis an atom, V a value, and L a list. The atom j is sometimes
alled `
ons'.� A pro
edure is a value.4.1.2 Syntax for ValuesOz provides a lot synta
ti
al alternative for des
ribing the same value. Wehere present some typi
al des
riptions, ea
h of whi
h determines some value
ompletely.� Integers are des
ribed as 0, 1, ~1, 2, 3 et
 and
oats by 0.0, 1.0,~1.1 et
.� Atoms are des
ribed by words starting with lower
ase letter like thisIsAnAtomor by a word in ba
kwards quotes like '
ase', 'true' and 'ThisIsAnAtom'.� The Booleans and the unit are des
ribed by the keywords true, false,unit.� Typi
al des
ription for tuples and re
ords are the following:plus(5 times(5 ~10))address(street:'Talstrasse'name:unit(first:hansse
ond:kamp))det(phon:a number:singular)In the �rst tuple, we have left out the features; it's a synta
ti
ally sugaredversion of plus(1:5 2:times(1:5 2:~10)).The values of a re
ord at some feature
an be sele
ted by using the sele
tionfun
tion that is denoted by a dot. For instan
e, the atom singular isdes
ribed by the expressiondet(phon:a number:singular).number� Typi
al des
riptions of lists are: 1j2j3jnil, [1 2 3℄, and nil. Note how-ever that [℄ does not des
ribe the empty list!

4.1. DATA STRUCTURES 53� A des
ription of a pro
edure
omputing the square fun
tion is:fun{$ X} X*X endThe symbol $ simply means that this pro
edure is anonymous, i.e. isnot yet given a name. The syntax for the appli
ation of pro
edures uses
urly bra
kets. For instan
e, the number 9 is des
ribed by the followingappli
ation whose evaluation
omputes the square of 3:{fun{$ X} X*X end 3}4.1.3 Global and Lo
al VariablesA variable in Oz des
ribes a value of an arbitrary type. Variables in Oz arelogi
 variable whose value
annot
annot be
hanged.The Oz programming interfa
e
omes with a lot of prede�ned global variablessu
h as List and Number. The values of both variables are re
ords
ontainingthe standard fun
tions for lists and numbers. For instan
e, a pro
edure formultipli
ation Number.'*'
an be sele
ted from the re
ord Number at feature'*'. The expression X*X in turn is nothing else than synta
ti
 sugar for theappli
ation fNumber.'*' X Xg.Lo
al variables
an be introdu
ed in Oz by using expression of the formlo
al ... in ... end. The following pie
e of
ode des
ribes a re
ord whi
h
ontains two number, the squares of 3 and 4.lo
alSquare = fun{$ X} X*X endin re
ord(s3:{Square 3} s4:{Square 4})endThe s
ope of a lo
al variable is restri
ted by the lo
al-end-expression in whi
hits is introdu
ed. For instan
e, the lo
al variable Square
annot be a

essedany further.There is also a way for introdu
ing new global variables in the programminginterfa
e by using the keyword de
lare. For instan
e we
an de
lare the variableX and assign the value 2 to X as follows.de
lareX=2Global variables are lo
al with respe
t to the Oz-programming interfa
e in whi
hthey were de
lared. Global variable
an be a

essed during a
omplete program-ming session with the same programming interfa
e.4.1.4 Browsing Values and TypesThe Oz-Browser is a output tool provided by the Oz programming interfa
e.The Oz-Browser is written in Oz itself and available via the global variable

54 LECTURE 4. MORE ON OZBrowse. For instan
e, we
an browse the value of the global variable X aboveby exe
uting:{Browse X}Evaluating the appli
ation fBrowse Xg simply evokes the side e�e
t of browsingthe value of X. Note that the exe
ution of fBrowse Xg does not return a valuein
ontrast to fSquare Xg. The reason is that Browse denotes a relationalpro
edure whi
h in
ontrast to a fun
tional pro
edure (su
h as Square) doesnot return a output value when applied (see se
tion pro
edures).The Browser allows you to observe the values denoted by Oz-variables in itss
ope. For instan
e, feed the following lines to the emulator.de
lareR = address(street:'Talstrasse'name:unit(first:hansse
ond:kamp))L = [1 2 3 4 5℄T = pair(L R F)F = fun{$ X} X*X endin{Browse [R L T F℄}{Browse ['Browsing fun{$ X} X*X end yields <P/2>' F℄}When browsing the value of pro
edure named F a string is displayed meaningthat F denotes a pro
edure with 2 arguments, an expli
it one for input and animpli
it one for output. The reason is that every fun
tional pro
edure with narguments is treated internally as a relational pro
edure with n+1 arguments.The types of values
an be
he
ked in Oz dynami
ally, as illustrated by thefollowing examples.{Browse {IsRe
ord R}}{Browse {IsRe
ord F}}{Browse {Or {IsRe
ord ~100}{IsBool ~100}}}{Browse {And {And{IsNumber ~100}{IsInt ~100}}{IsFloat ~100}}}{Browse {Not {IsRe
ord false}}}

4.1. DATA STRUCTURES 55{Browse {IsRe
ord {IsRe
ord false}}}{Browse {And{And{IsList L}{IsTuple L}}{IsRe
ord L}}}There also exists a prede�ned pro
edure in Oz whi
h
omputes the type of agiven value. This is the pro
edure Value.status. When applied, it return notonly the type of its input argument but also its a
tual status whi
h may beeither determined, kinded, or free.{Browse [{Value.status R}{Value.status T}{Value.status L}{Value.status F}℄}For fun
tional programming, we'd better deal only with values of status `deter-mined', in order to avoid suspensions (blo
king
omputations).4.1.5 Pro
eduresA fun
tional pro
edure is a pro
edure whi
h
omputes a fun
tion from valuesto a value, possibly depending on global values. Evaluating an appli
ation ofa fun
tional pro
edure means to pass the input values for its arguments, to
ompute the output value in fun
tion of the input values and the values of itsglobal variables, and �nally to output the output value (in
ase of termination).As an example, we
onsider a des
ription of the fun
tional pro
edure
alledSquareList. When applied, this pro
edure inputs a list of integers and outputthe list of squares of these integers.de
larefun{SquareList Ints}
ase Intsof I|Is then I*I | {SquareList Is}elseof nil then nilendend{Browse {SquareList [1 2 3 4 5℄}}{Browse {SquareList {SquareList [1 2 3 4 5℄}}}Here, we use an alternative syntax for giving a name to a fun
tional pro
e-dure. The following two forms are equivalent des
riptions:

56 LECTURE 4. MORE ON OZfun{SquareList Ints} ... endSquareList = fun{$ Ints} ...endOz supports syntax for fun
tional and relational pro
edures. Internally how-ever, there are relational pro
edures only. A relational pro
edure behaves like afun
tional one ex
ept that it does not return an output value. Oz supports thefollowing syntax for relational pro
edures (an anonymous and a named variant):P1 = pro
 {$ X Y Z} ... endpro
 {P2 U V} ... endApplying a relational pro
edures usually has a side e�e
t su
h as browsing avalue. For instan
e, the following relational pro
edure browses the value of itsargument twi
e.pro
 {$ X} {Browse X} {Browse X} endThe output behaviour of a fun
tional pro
edure
an be simulated by a relationalpro
edure whi
h raises a side e�e
t on a logi
 variable (see se
tion uni�
ation).In fa
t, Oz supports fun
tional pro
edure in that it provides fun
tional des
rip-tions of relational pro
edures. The des
ription of fun
tional pro
edure with narguments is translated into a des
ription of a relational pro
edure with n + 1arguments, where the last arguments serves as an output argument. For in-stan
e, the des
riptions of the fun
tional pro
edure funfSquare Xg X*X endand its appli
ation Y=fSquare 3g are translated as follows:fun{Square X} X*X end ==> pro
{Square X Out} Out=X*X endY={Square 3} ==> {Square 3 Y}Exe
uting the appli
ation fSquare 3 Yg has a side e�e
t: the value 9 is assignedto the previously free variable Y.4.1.6 Re
ordsRe
ords are the
entral data stru
ture in Oz. Re
ords are equally important in
omputational linguisti
s, where they are
alled feature trees. For instan
e, onemight wish to represent the English word girl and its features as the followingre
ord:word(
at:noun phon:[girl℄ sub
at:determiner)The main operation on re
ords is feature sele
tion whi
h allows to a

ess a �eldbelonging to some feature. Feature sele
tion is denoted by a dot. For instan
e:{Browse word(
at:noun phon:[girl℄ sub
at:determiner).phon}{Browse word(
at:noun phon:[girl℄ sub
at:determiner).phon.1}Note that feature sele
tion is a very eÆ
ient operation in Oz whi
h
an be donein
onstant time. A re
ord is implemented as a hash table whose keys are thefeatures of the re
ord.

4.1. DATA STRUCTURES 57The base environment of Oz is provided by a set of re
ords that are also
alled modules. Global variables denoting modules Number, Re
ord, List, FD,and many more. For instan
e if you want to see the fun
tionality provided for�nite domains or re
ords in Oz then simply browse the modules FD and Re
ord.{Browse FD}{Browse Re
ord}This also explains the syntax of FD.distribute in our introdu
tory example: apro
edure for distribution is sele
ted from the re
ord FD. For further informationon re
ords, we refer to `The Oz Base Environment'.4.1.7 ListsLists are another important data stru
ture in Oz similarly to Lisp. Therefore,mu
h fun
tionality for lists is provided in the Oz-module List. Again, we onlygive some examples here and refer to do
umentation `The Oz Standard Modules'for further information.Here is an example of a list whi
h might be obtained by reading lexi
alinformation on natural language from some �le:de
lareWordReps=[[mary noun nil℄[john noun nil℄[girl noun determiner℄[ni
e adje
tive nil℄[pretty adje
tive nil℄[the determiner nil℄[laughs verb noun℄[meets verb [noun noun℄℄[kisses verb [noun noun℄℄[embarrasses verb [noun noun℄℄[thinks verb [verb noun℄℄[is verb [adje
tive noun℄℄[met adje
tive nil℄[kissed adje
tive nil℄[embarrassed adje
tive nil℄℄As proposed above, one might wish to represent the features of a word in amore a

essible way by using a re
ord rather than a list. For instan
e, there
ord word(
at:noun phon:[mary℄ sub
at:nil) is more readable than thelist [mary noun nil℄. More importantly, it is possible to sele
t a feature of aword in the re
ord representation in
onstant time, whereas it takes linear timein the number of features in the list representation.

58 LECTURE 4. MORE ON OZGiven the list of list WordReps above, we
an
ompute a list of re
ordsWords by
onverting all representions in WordReps. This
an be done by usingthe fun
tional pro
edure Map:de
larefun{Convert [P C S℄}word(phon:[P℄
at:C sub
at:S)endWords = {Map WordReps Convert}in{Browse Words}Note that the pro
edure Map is provided by the module List. Indeed, Map isidenti
al to List.map, as shown when feeding:{Browse Map==List.map}Here, we apply the prede�ned fun
tional pro
edure ==, whi
h
ompares twoOz-values for equality and returns its result as a Boolean value.Next, we might want to �lter all verbs out of the lexi
on Words. This
anbe done by using the pro
edure Filter also de�ned in the module List:de
lareVerbs = {Filter Words fun{$ W}W.
at == verbend}{Browse Verbs}4.1.8 Con
urrent ThreadsCon
urren
y is an way to organize
omputation based on the notion of
on
ur-rent pro
esses. Con
urren
y is well-known from operating systems like UNIXwhi
h support multi-tasking in order to administrate multiple windows ea
h ofwhi
h runs in its own pro
ess. Oz supports
on
urrent
omputation on a highlevel of abstra
tion. The presentation of
on
urren
y in this reader stays at thevery surfa
e of the phenomenon.A pro
ess in Oz is
alled a thread. A thread is
reated when exe
uting asequen
es of Oz-statement sequentially. A thread may blo
k until more informa-tion be
omes available. At �rst sight blo
king may seem to be a programmingerror. For instan
e,
onsider:de
lare FX={F 2}

4.2. UNIFICATION 59{Browse 'this thread blo
ks'}{Browse variables(x:X f:F number:1)}When feeding this pie
e of
ode at on
e, nothing is browsed. The problem isthat the value of the variable F is unknown su
h that the appli
ation of fF 2ghas to blo
ks. All followup statements of the same thread (
ode sequen
e) arealso blo
ked until the free variable F gets assigned a value (i.e. gets bound).Using the programming interfa
e, you
an easily feed another sequen
e ofstatements whi
h then
omputes
on
urrently in its own thread.F=fun{$ Y} Y*Y endNow, the value of F has be
ome known. Thereby, the �rst thread be
ome a
tiveagain and
ould exe
uted its remaining two Browse-statements.You
an also
reate your own threads without using the Oz-Programming-Interfa
e. This
an be done by using the
ommand:thread ... endFor instan
e, the above example
an be rewritten su
h that the blo
king appli-
ation does not blo
k the subsequent statements.de
lare X FthreadX={F 2}{Browse 'this thread blo
ks ...'}{Browse variables(x:X f:F number:1)}{Browse '... but not forever'}end{Browse 'this thread does NOT blo
k}F=fun{$ Y} Y*Y endThis example illustrates the
reation of a new thread whi
h �rst blo
ks untilthe free variable F gets bound by the main thread whi
h runs
on
urrently toits newly sporned thread.Threads in Oz threads
ommuni
ate over shared logi
 variables whi
h playthe same role su
h as
hannels in CML or PICT. In Oz, you
an also
onsidera thread as a hand-written propagator whi
h adds information about the valueof variables to a shared
onstraint store.4.2 Uni�
ationOz allows to
ompute with partial data stru
tures, i.e partial des
riptions ofdata stru
tures. A partial des
ription
ontains free variables, i.e. variableswhose value is unspe
i�ed. We have already seen the usage of free variables for
ommuni
ation of
on
urrent threads. We will next show that a variable in Ozbehaves su
h as a logi
 variables in Prolog. A logi
 variable
an be understoodas a pla
e holder for a value whi
h
an be �lled later on.

60 LECTURE 4. MORE ON OZData stru
tures
an be spe
i�ed by equation systems between terms
on-taining logi
 variables. Uni�
ation is the pro
ess of solving equations systems,i.e. to determine the possible values of its variables. Uni�
ation over �rst-orderdata stru
tures su
h as re
ords or tuples is built into Oz. Uni�
ation of re
ordsis known in
omputational linguisti
s under the name feature uni�
ation.Suppose, for instan
e, that you want to unify the terms f(X X) and f(g(YZ) Y), where X,Y,Z are logi
 variables denoting some possibly in�nite tree. Inorder to do so, it is suÆ
ient to solve the equation f(X X) = f(g(Y Z) Y).whi
h
an be done simply by feeding it into the Oz-emulator.de
lareX Y Zin f(X X) = f(g(Y Z) Y){Browse [X Y Z℄}Equations between terms are basi

onstraints that
an be entered dire
tly intothe
onstraint store without blo
king their thread (the subsequent statements).In the Browser, you
an observe the result of the uni�
ation pro
ess. Thevariable Z is still free; the variables X and Y are bound to a term g(g(g(...Z) Z) Z) whi
h
an be solved by an in�nite tree depending on the value of Z.Note that the equation X.2 = X.1.2 is valid independently of the
hoi
e of Z.Uni�
ation in Oz terminates even though the result
an be the representationof an in�nite tree. The reason is that a solved form of the equations with
y
les
an be stored in the Oz
onstraint store. This is similar to modern Prologimplementations, su
h as Si
stus Prolog.4.3 Finite Domain ConstraintsOz is spe
i�
ally designed for
on
urrent
onstraint programming. Now weintrodu
e
onstraint programming in more detail. We
onsider a very popular
lass of
onstraints that are
alled �nite domain (FD)
onstraints.4.3.1 FD-MembershipFinite domain variables are variables that
an denote one member of a �niteset of integers. They
an be used to express a simple form of disjun
tion. Thisform of disjun
tion is important when it
omes to distribution.A �nite domain variable is a variable whose value is a natural number.Furthermore, the value of a �nite domain variable
an be
onstrained by some�nite domain of natural numbers. For instan
e, the FD-membership
onstraintX :: 1#5is equivalent to X 2 f1; 2; 3; 4; 5g whi
h in turn is equivalent to the disjun
tion:X = 1 _X = 2 _X = 3 _X = 4 _X = 5

4.3. FINITE DOMAIN CONSTRAINTS 61An FD-membership
onstraint su
h as X :: 1#5
an be represented dire
telyin the Oz
onstraint store. It is neither a propagator nor does it raise any
asedistin
tion.4.3.2 FD-PropagatorsOz features several propagators for �nite domain variables. We only presentexamples here and refer to the �nite domain programming tutorial otherwise.The most important propagators are those for arithmeti
s. Propagators
an bedistinguished from pure evaluators by the
olons like in =: or =<:.3*X-Y =: 4*Z % linear arithmeti
s3*X-Y =<: 4*Z % inequationsFor ea
h FD-variable, a �nite domain of possible values is maintained in the
onstraint store. What these propagators are doing is to restri
t the upper andlower bounds of the domains of its variables; values from the interior of a �nitedomain are not ex
luded even if they
ontradi
t the logi
al semanti
s of thepropagator.Another useful propagator is the all-distin
t propagator.{FD.distin
t [U V W X Y Z℄}Whenever the value of one of the variables in the list [U V W X Y Z℄ gets de-termined, this value is ex
luded from the domain of the others. The all-distin
tpropagator requires linear spa
e in the number of variables it administrates, in
ontrast to a naive implementation whi
h require quadrati
 spa
e:U\=:V U\=:W U\=:X U\=:Y U\=:ZV\=:W V\=:X V\=:Y V\=:ZW\=:X W\=:Y W\=:ZX\=:Y X\=:ZY\=:ZMore on FD-propagators
an be found in the tutorial on �nite domain
onstraintprogramming in Oz.4.3.3 FD-DistributionOz supports distribution for �nite domain variables but only within en
apsu-lated sear
h. This is only operation whi
h
reates a
hoi
e node in a sear
htree.Distributors
an be
reated by applying the pro
edure FD.distribute tothe name of a distribution strategy and a list of variables. For instan
e, the adistributor for the stategy �rst-fail (�) pi
ks a variable X of minimal
urrentdomain, splits this domain into two disjoint parts, ea
h of whi
h it
onsiders inan independent part.X 2 D1 [D2 =) X 2 D1 _ X 2 D2

62 LECTURE 4. MORE ON OZGiven that the domain D1 [D2 is split, en
apsulated sear
h pro
ess bothpossiblities X 2 D1 and X 2 D2 independently.As said before, the split operation is evoked by the pro
edure FD.distribute.For instan
e, the domains of X and Y are split when in the following example:hDistributioni �de
larepro
fProblem SolgX YinSol = solution(x:X y:Y)X :: 1#5Y :: 2#3fFD.distribute ff [X Y℄gendfExplore.all ProblemgDistribution in Oz is support during en
apsulated sear
h only (but NOT on top-level). This means that a problem has to en
apsulated into a unary pro
edurewhi
h is then and then passed to the Oz-Explorer. Applying this pro
eduredire
tely does not lead to distribution on top-level.Note also that a distributor su
h as fFD.distribute ff [X Y℄g blo
ks itsthread (all subsequent statements) until distribution has happend (for ever ontop-level). Therefor, a distributor should always be the last statement of itsthread. This
an be ar
hieved either by writing it into the last line of theproblem de�nition or by using a new thread anyway.thread {FD.distribute ff [X Y℄} end4.4 Finite Set ConstraintsFinite set
onstraints are also known from
onstraint programming but mu
hless popular than �nite domain
onstraints. Nevertheless, it turns out that �niteset
onstraints are extremely useful for natural language pro
essing.A �nite set (FS) variable denotes a �nite set of integers. A �nite set
on-straint des
ribes the values of �nite set variables based on the usual set oper-ations. The reader should
arefully note the di�eren
e between �nite domain(FD) variables and �nite set variables. An FD-variable denotes a single integerwhi
h
an be desribed by a �nite set of possibilities. A FS-variable denotes a�nite set of integers whi
h may be empty or
ontain more than one element.There is two forms of basi
 �nite set
onstraint whi
h
an be entered dire
telyinto the Oz-
onstraint-store. The upper:X={FS.var.upperBound 1#6}X={FS.var.lowerBound 2#4}The former
onstraint states an upper bound X � f1; 2; 3; 4; 5; 6g whereas thelatter requires a lower bound f2; 3; 4g � X . Beside of basi
 set
onstraints thereare the following set propagators:

4.5. DISJUNCTIONS AS PROPAGATORS 63{FS.subset X Y}X={FS.union Y Z}X={FS.partition [U V W℄}{FS.in
lude X I}The de
larative semanti
s of these
onstraints are rather obvious:X � YX = Y [ZX = U ℄ V ℄WI 2 XOperationally, set propagators in
rease upper bounds and de
rease lower boundsof set variables in the
onstraint store. The propagation behaviour
an be testedat the following example:de
lareX={FS.var.upperBound 1#6}Y={FS.var.upperBound 1#2}Z={FS.var.upperBound 2#3}{FS.subset X {FS.union Y Z}}{FS.subset Y Z}{FS.in
lude 2 Y}{Browse [X Y Z℄}There are more important set
onstraints in Oz that we will not present in thisreader. Note also that we do not need distributors for set
onstraints.4.5 Disjun
tions as PropagatorsThere are several ways in Oz to express disjun
tive information. The most
onvenient way are or-statements and �nite domain
onstraints. As we will see,both of them
an in an interlo
ked manner.4.5.1 or-StatementsFor instan
e, the possible gender-
ase-number information of the German word`s
h�onen'
an be is des
ribed by the following or-statement whi
h behaves as adisjun
tive propagator.hOr Statementi �or [Gen Cas Num℄=[mas
 dat sg℄ then skip % dem s
h�onen Mann[℄ [Gen Cas Num℄=[mas
 a

 sg℄ then skip % den s
h�onen Mann[℄ [Gen Cas Num℄=[mas
 nom pl℄ then skip % die s
h�onen M?er[℄ [Gen Cas Num℄=[mas
 gen pl℄ then skip % der s
h�onen M?er[℄ [Gen Cas Num℄=[mas
 dat pl℄ then skip % den s
h�onen M?ern[℄ [Gen Cas Num℄=[mas
 a

 pl℄ then skip % die s
h�onen M?er

64 LECTURE 4. MORE ON OZ[℄ [Gen Cas Num℄=[fem gen sg℄ then skip % der s
h�onen Frau[℄ [Gen Cas Num℄=[fem dat sg℄ then skip % der s
h�onen Frau[℄ [Gen Cas Num℄=[fem nom pl℄ then skip % die s
h�onen Frauen[℄ [Gen Cas Num℄=[fem gen pl℄ then skip % der s
h�onen Frauen[℄ [Gen Cas Num℄=[fem dat pl℄ then skip % den s
h�onen Frauen[℄ [Gen Cas Num℄=[fem a

 pl℄ then skip % die s
h�onen FrauenendAn or-statment
onsists of a set of
lauses ea
h of whi
h has a guard and a body.For instan
e, the guard of the se
ond
lause above is the
onstraint [Gen CasNum℄=[mas
 a

 sg℄. The body of all
lauses above are skip. The distin
tbehaviour of guards and bodies is explained in the next se
tion.4.5.2 Operational Semanti
sAn or-statement behaves as a propagator whi
h
on
urrently investigates all itsalternatives. Ea
h alternative is
ontinually monitored. The statement blo
ksuntil only one of the guards is
onsistent with the
urrent
onstraint store; thenit
ommits the
lause a

ording to the following rule:or GUARD then BODY end ==> Guard BodyAn or-statement redu
es all its guards in parallel su
h that the
onstraints ofthe guard remain properly separated from those in the global
onstraint store.We say that every guard is exe
uted in its own
omputation spa
e.As soon as a guard of a
lause be
omes in
onsistent with the global
onstraintstore, the
lause is deleted from the or-statement. If one single
lause remainsthen the or-statement redu
es a

ording to the rule above.We
an observe the semanti
s of or-statements by feeding the following pie
esof
ode:hTest the or-Statementi �de
lareGen Cas NumhOr StatementifBrowse 'An or-statement blo
ks its thread until it redu
es'gfBrowse ['gender:' Gen '
ase:' Cas 'number:' Num℄g/*Cas=nom Gen=fem*/When having feeded theses lines, nothing should happen sin
e the or-statementblo
ks its thread. But when feeding the
onstraint Cas=nom Gen=fem the twoBrowse statements following the or-statement should be
ome a
tive. Note inparti
ular that the variable Num is determined to the value pl.

4.6. SUMMARY 654.5.3 Choi
e Points versus Choi
e VariablesUnlike in Prolog, an Oz disjun
tion does not
reate a
hoi
e point,i.e. a
asedistin
tion. The only way to
ommit to one alternative is to
ause all the othersto be
ome in
onsistent.hDisjun
tive Propagatori �or fEqual N Mg then skip[℄ fDomPlus N Mg then skip[℄ fDomPlus M Ng then skip[℄ fSide N MgendYet, in order to perform sear
h, we often need to for
e
ommitment to oneor the other alternative. The standard tri
k in
onstraint programming is tointrodu
e a
hoi
e variable, also known as a
ontrol variable.We
ontrol the alternatives by a
hoi
e variable C. C is a �nite domainvariable with the domain 1#4; simply by equating it with 1, 2, 3 or 4, we
an
ommit to the
orresponding alternative.hChoi
e Variablesi �or C=1 fEqual N Mg then skip[℄ C=2 fDomPlus N Mg then skip[℄ C=3 fDomPlus N Mg then skip[℄ C=4 fSide N Mg then skipendBy distributing the values of the �nite domain
ontol variable C we
an now
reated
hoi
e points on need by fFD.distribute naive [C℄g .4.6 Summary� Oz supports a wide range of values : numbers, atoms, booleans, re
ords,lists, pro
edures, et
.� An important data type is the re
ord ; it's essentially the same as a fea-ture tree in
omputational linguisti
s. A re
ord all of whose features arenumbers is
alled a tuple. Lists are a parti
ular sort of tuples.� The variables in Oz are logi
 variables, whi
h
an be understood as pla
e-holders for a value whi
h
an be �lled in when needed. Oz supportsuni�
ation of terms over the
lass of in�nite trees.� Oz supports
on
urrent threads whi
h
ommuni
ate over logi
 variables.The appli
ation of a free variable blo
ks its thread (all subsequent state-ments) until another thread assigns a value to the variable.� Finite domain
onstraints are a very important
lass of
onstraints whi
his supported by the Oz standard library (see the Oz-referen
e manual

66 LECTURE 4. MORE ON OZon System Modules). They spe
ify relations between variables denotingmembers of a �nite set of integers. Possible values
an be narrowed downby propagation, and there are standard distribution strategies for distin-guishing
ases if ne
essary.� Finite set
onstraints are an important
lass of
onstraints whi
h is alsosupported by the Oz standard library (see the Oz-referen
e manual onSystem Modules). Finite set
onstraints provide propagators for the usualset operations.� A disjun
tion
an be used as a propagator in Oz if it is expressed by anor statement. An or-statement
an be turned into a distributor by usinga �nite domain
ontrol variables and a �nite domain distributor.

Le
ture 5Solving Dominan
eConstraintsIn this
hapter, we show how to solve dominan
e
onstraints by
onstraint pro-gramming with sets. While we won't say anything about the details, the te
h-niques used here
an be used as a basis to build more underspe
i�ed pro
essingme
hanisms for dominan
e
onstraints. For instan
e, the en
oding of nodespresented below lends itself very well to
apturing the intera
tion of s
ope andanaphora as in Every man loves a woman. Her name is Mary. In the senten
e,the anaphori
 referen
e ex
ludes one reading of the �rst senten
e; we
an makethis inferen
e purely with propagation.5.1 Dominan
e ConstraintsWe will
onsider the following language of tree des
riptions based on dominan
e
onstraints: ' ::= ' ^ '0j X=Yj X 6=Yj X��Yj X:��Yj X :(Y1; : : : ; Yn)This language is a variant of the dominan
e
onstraints de�ned in the se
ondle
ture. The di�eren
es are as follows:� X��Y expresses that X and Y must denote the same node. It's an ab-breviation of X��Y ^ Y��X .� X:��Y expresses that X must not dominate Y . This
ouldn't be ex-pressed in the original language.67

68 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS� The new language doesn't
ontain lambda binding
onstraints. This is forsimpli
ity of presentation; it's not diÆ
ult to add binding
onstraints tothe implementation. Note that we
an now speak just about trees, insteadof lambda stru
tures, as the models of dominan
e
onstraints.� Labeling
onstraints have been repla
ed by `daughterhood'
onstraintsX :(Y1; : : : ; Yn); the di�eren
e is that daughterhood
onstraints don't spe
-ify the label of X . This, too, is for simpli
ity, and labels
ould be (andhave been) added easily to the implementation.5.2 Constraint Solving as Con�gurationWe typi
ally depi
t a dominan
e
onstraint as a (
onstraint) graph. A node ofsu
h a graph represents all o

urren
es of a variable at the same time. A graphthen des
ribes all those trees that satisfy the dominan
e relations required bythe graph.In the graph metaphor, solving a dominan
e
onstraint means to
on�gureits nodes into a tree su
h that all required dominan
e relations hold. Of
ourse,there is a naive `generate and test' strategy for doing this: First, one
an generatefor ea
h two nodes in a graph their relative positions in the tree des
ribed. Anode
an either be above the other node, below it, or `to the side of it', i.e.neither above or below. In a se
ond step, we
an test whi
h of our guessesare
ompatible with the dominan
e
onstraints required. This yields a non-deterministi
 polynomial time algorithm. In terms of
omplexity theory, onesays that the problem of solving dominan
e
onstraints is in NP. The situationis worse than one might hope sin
e the problem is in fa
t NP-
omplete. Thuswe
annot expe
t any polynomial algorithm to exist. However, we
an hope foran algorithm that is eÆ
ient for the appli
ations to semanti
 underspe
i�
ation.5.3 Partioning TreesWhen regarded from a spe
i�
 node, a tree is divided into 5 regions: (1) thenode itself, (2) the nodes above, (3) the nodes below, (4) the nodes to the left,and (5) the nodes to the right.

5.3. PARTIONING TREES 69
EqUp

DownLeft Right
In this
hapter, we will aggregate the set of nodes to the left and to the right, and
all the result the side set. A similar treatment
an trivially be developed thatretains the distin
tion; su
h a treatment would support pre
eden
e
onstraints.Thus, in our treatment, any two nodes N1 and N2 of a tree must be in oneof 4 mutually ex
lusive relationships:1. N1=N2, they are equal2. N1 �+ N2, N1 stri
tly dominates N23. N2 �+ N1, N2 stri
tly dominates N14. N1?N2, N1 is to the side of N2 (i.e. none of the above).We say that any 2 nodes N1 and N2 must satisfy the treeness
onditionexpressed as the following disjun
tion:(A1) N1=N2 _N1 �+ N2 _N2 �+ N1 _N1?N2In fa
t, we
an re
e
t the 4 mutually ex
lusive possibilities above and asso-
iate, with a node N, 4 sets of variables:1. N.eq, the set of variables of whose interpretation is equal N2. N.up, the set of variables whose interpretations are stri
tly above N,3. N.down, the set of variables whose interpretations are stri
tly below N,4. N.side, the set of variables whose interpretations are to the side of NThe whole idea of our approa
h resides here: for ea
h node, to
hara
terize itsposition in a tree model in terms of these four sets of variables. These sets aredisjoints and form a partition of the set V of variables in the input des
ription:(A2) V = N:eq ℄N:up ℄N:down ℄N:side

70 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS5.4 Dominan
e Constraints as Set ConstraintsIn this se
tion, we provide an implementation of the dominan
e
onstraint solverbased on �nite set
onstraints in Oz. We
olle
t the fun
tionality provided bythe solver in a re
ord
alled DC for dominan
e
onstraint.5.4.1 Representation of Dominan
e ConstraintsWe en
ode a dominan
e
onstraint as a fun
tional pro
edure taking as argu-ment a list [N1 N2 ... Nk℄ of nodes, one for ea
h variable of the des
riptionformula. This pro
edure then
onstrains theses nodes as required by the dom-inan
e
onstraint using pro
edures for atomi

onstraints that we are going tomake available. Consider the dominan
e
onstraint whi
h is typi
al for a s
opeambiguity with two quanti�ers.X1 : (X2) ^X2��X5 ^X3 : (X3) ^X4��X5We are interested in all solutions of this
onstraints where no variables areidenti�ed. This refe
ts that quanti�ers should not be identi�ed. It is slightlystronger than saying that nodes with distin
t labels should not be identi�ed.X1 6= X2 ^X1 6= X3 ^X1 6= X4 ^X1 6= X5^X2 6= X3 ^X2 6= X4 ^X2 6= X5^X3 6= X4 ^X3 6= X5^X4 6= X5Using the DC module, it would be expressed as a re
ord whi
h
ontains thenumber of variables and a pro
edure whi
h inputs a list of nodes and
reatesset
onstraints for these nodes and the dominan
e
onstraint.hDomConExamplei �lo
alpro
 fDomCon [N1 N2 N3 N4 N5℄gfDC.daughters N1 [N2℄gfDC.dominates N2 N5gfDC.daughters N3 [N4℄gfDC.dominates N4 N5gfForAll [N1#N2 N1#N3 N1#N4 N1#N5N2#N3 N2#N4 N2#N5N3#N4 N3#N5N4#N5℄pro
f$ N#MgfDC.notEqual N Mgendgendin DomConExample = 'unit'(domCon:DomConvars:5)end

5.4. DOMINANCE CONSTRAINTS AS SET CONSTRAINTS 715.4.2 The Solver as a ModuleWe proved the dominan
e
onstraint solver as a re
ord DC whi
h provides allfun
tionality required for solving dominan
e
onstraints. In a more serious im-plementation, modules
ould be de�ned by fun
tors whi
h
an be made availableas applets on the internet.hDC: dominan
e
onstraint solveri �lo
alhDC: daughtersihDC: dominatesihDC: not equalilo
alhDC: equalihDC: stri
tly dominatesihDC: sideihDC: make nodeiin hDC: make predi
ateiendin DC=dom(makePredi
ate:MakePredi
atedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endIn parti
ular, the re
ord DC exports the pro
edure MakePredi
ate whi
h turnsa dominan
e
onstraint into a predi
ate appropriate as input to en
apsulatedsear
h as provided by e.g. Explorer.all or Sear
h.all. For example, we
ould now use the Explorer1 to sear
h for all possible (
onstru
tive) models ofDomConExample:hDC.ozi �de
larehDC: dominan
e
onstraint solverihDomConExampleiin fExplorer.all fDC.makePredi
ate DomConExampleggHere, the number 4 indi
ates the number of variables in the doman
e
onstraintDomConExample.5.4.3 Node RepresentationA node is represented by a re
ord. It
ontains an entry for ea
h of the sets Eq,Down, Up and Side explained above, plus for the auxiliary sets EqDown (resp.1http://www.mozart-oz.org/do
umentation/explorer/

72 LECTURE 5. SOLVING DOMINANCE CONSTRAINTSEqUp), whi
h are the unions of Eq and Down (resp. Up). Finally, the re
ord hasa feature daughters whi
h will
ontain the set of daughter nodes, and a featureuser, whi
h is reserved for appli
ation-spe
i�
 data. In the
ode below, I isthe integer representing the variable. VDom is [1#N℄, where N is the number ofvariables in the des
ription.The
onstraints after the in spe
ify that Eq, Down, Up and Side must forma partition of the set of variables in the des
ription. Furthermore, the variable(en
oded as integer I) that is interpreted by this node must be in the Eq set ofthe node.hDC: make nodei �fun fMakeNode I VDomgEq = fFS.var.upperBound VDomgDown = fFS.var.upperBound VDomgUp = fFS.var.upperBound VDomgSide = fFS.var.upperBound VDomgEqDown = fFS.union Eq DowngEqUp = fFS.union Eq Upgin fFS.partition [Eq Down Up Side℄ fFS.value.make VDomggfFS.in
lude I Eqgnode(eq : Eqdown : Downup : Upside : Sideeqdown : EqDownequp : EqUpdaughters : _)end5.4.4 Translation to Set ConstraintsIf N1 dominates N2, then everything that is (weakly) below N2 must be (weakly)below N1, everything that is (weakly) above N1 must be (weakly) above N2,and everything that is beside N1 is also beside N2. Note however that there
anbe nodes beside N2 that are below N1.hDC: dominatesi �pro
 fDominates N1 N2gfFS.subset N2.eqdown N1.eqdowngfFS.subset N1.equp N2.equp gfFS.subset N1.side N2.side gendThe equality
onstraint is simply implemented by uni�
ation:hDC: equali �

5.4. DOMINANCE CONSTRAINTS AS SET CONSTRAINTS 73pro
 fEqual N1 N2g N1=N2 endThe disequality
onstraint states that the Eq sets of N1 and N2 must be disjoint:hDC: not equali �pro
 fNotEqual N1 N2gfFS.disjoint N1.eq N2.eqgendN1 stri
tly dominates N2 i� it dominates N2 and is not equal to N2:hDC: stri
tly dominatesi �pro
 fStri
tlyDominates N1 N2gfDominates N1 N2gfNotEqual N1 N2gendIf N1 is to the side of N2 (and re
ipro
ally), then N1 and everything below it isto the side of N2 (and resp.):hDC: sidei �pro
 fSide N1 N2gfFS.subset N1.eqdown N2.sidegfFS.subset N2.eqdown N1.sidegendFinally, here is the
onstraint that deals with immediate dominan
e by spe
i-fying expli
itly the daughters of a node N as a list Nodes of nodes. The set ofnodes that are weakly below ea
h of the daughters form a partition of the setof nodes that are stri
tly below the mother. Furthermore, the set of nodes thatare stri
tly above ea
h daughter is pre
isely the set of nodes that are weaklyabove the mother.hDC: daughtersi �pro
 fDaughters N LgN.daughters = LfFS.partition fMap L fun f$ Dg D.eqdown endg N.downgfForAll L pro
 f$ Dg D.up=N.equp endgend5.4.5 Solution Predi
ateMakePredi
ate is given the arguments N, the number of variables in the domi-nan
e
onstraint, and P, a pro
edure whi
h takes a list of nodes
orrespondingto these variables and imposes the set
onstraints for the given dominan
e
on-straint. MakePredi
ate returns a unary predi
ate appropriate as an argumentto e.g. Sear
h.all or Explorer.all.A sear
h predi
ate always has the same form: it is a unary predi
ate whoseargument denotes a solution. First it posts all
onstraints on the solution, thenit spe
i�es a sear
h/distribution strategy:

74 LECTURE 5. SOLVING DOMINANCE CONSTRAINTShDC: make predi
atei �fun fMakePredi
ate 'unit'(domCon:DomCon vars:N)gpro
 f$ NodesghDC:
reate nodesihDC: translation to set
onstraintsihDC: impose treenessiinhDC: distributeiendendThe solution Nodes must be a list of N nodes. Ea
h variable is represented by adistin
t integer between 1 and N. Thus sets of variables
an be represented bysets of integers. (We store the spe
i�
ation of the �nite domain from 1 to N inthe variable VDom.) For ea
h variable, MakeNode
reates a term representing thenode that is the interpretation of this variable.hDC:
reate nodesi �VDom = [1#N℄fList.make N Nodesg %
onstrains Nodes to a list% [_ ... _℄ of length NfList.forAllInd Nodespro
 f$ I Ng fMakeNode I VDom Ng endgThen we
onstrain these nodes using the pro
edure DomCon that implementsthe dominan
e
onstraint. After this we exe
ute
hoi
e skip end whose onlye�e
t is to wait for stability; i.e. until
onstraint propagation has inferred asmu
h as it
ould. Typi
ally the dominan
e
onstraint DomCon provides verystrong
onstraints and it is a good idea to impose them �rst and wait until theyhave a
hieved full e�e
t before going on with the quadrati
 number of expensivetreeness
onstraints.hDC: translation to set
onstraintsi �fDomCon Nodesg% waits for stabilitylo
al H in H::1#1 fFD.distribute naive [H℄g endNow we impose the treeness
onstraint between every pair of nodes Ni andNj. For every su
h pair we impose a
hoi
e whi
h is
ontroled by its own
hoi
evariables with domain [1..4℄. We
olle
t the quadrati
 number of
hoi
e variableswithin the list Choi
eVariables.hDC: impose treenessi �Choi
eVariables =fList.foldRTail Nodesfun f$ NijNs CsgfList.foldR Nsfun f$ Nj CsghDC: treeness
ondition between Ni and Nji

5.4. DOMINANCE CONSTRAINTS AS SET CONSTRAINTS 75CjCsend Csgend nilgFinally, we spe
ify the distribution strategy: here we use First Fail on the
hoi
evariables. Ea
h
hoi
e variable is a �nite domain variable in [1..4℄. First fail isa strategy whi
h attempts to minimize the bran
hing fa
tor in the sear
h tree:it pi
ks a (non-determined) variable with the minimum number of remainingpossible assignments.hDC: distributei �fFD.distribute ff Choi
eVariablesg5.4.6 Treeness ConditionThe treeness
ondition that must hold between Ni and Nj is realized by four
on
urrent disjun
tions and is
ontrolled by
hoi
e variable Cij. The latter is a�nite domain variable taking a value in [1..4℄.hDC: treeness
ondition between Ni and Nji �C in C::1#4threador C = 1 fEqual Ni Njg[℄ C = 2 fStri
tlyDominates Ni Njg[℄ C = 3 fStri
tlyDominates Nj Nig[℄ C = 4 fSide Nj NigendendThe thread ... end statements in the
ode fragment
ause the
omputa-tion to
reate four new
on
urrent threads, one for ea
h
hoi
e variable. Thisis ne
essary be
ause the or statements within the new threads blo
k until onlyone of their guards
an be satis�able, and we don't want this to blo
k our entire
omputation.5.4.7 Better PropagationA better implementation of the treeness
ondition
an be obtained when pro-viding propagators for further relations between nodes. This
an be observed atthe example given. The sear
h tree of the more naive solver
ontains a failurenode and two solution nodes. The smart solver
ontain no failure node anymore and still the two solution nodes.If N1 does not stri
tly dominate N2, then N1 is not stri
tly above N2 nor isN2 stri
tly below N1:hDC smart: not stri
tly dominatesi �pro
 fNotStri
tlyDominates N1 N2gfFS.disjoint N1.eq N2.up gfFS.disjoint N2.eq N1.downgend

76 LECTURE 5. SOLVING DOMINANCE CONSTRAINTSThe fa
t that neither N1 nor N2 is on the side of the other
an be expressed by:hDC smart: not sidei �pro
 fNotSide N1 N2gfFS.disjoint N1.eq N2.sidegfFS.disjoint N2.eq N1.sidegendWe
an now state the treeness
ondition in a smarter way.hDC smart: treeness
ondition between Ni and Nji �C in C::1#4thread or C = 1 f Equal Ni Njg[℄ Cn=:1 fNotEqual Ni Njgendendthread or C = 2 f Stri
tlyDominates Ni Njg[℄ Cn=:2 fNotStri
tlyDominates Ni Njgendendthread or C = 3 f Stri
tlyDominates Nj Nig[℄ Cn=:3 fNotStri
tlyDominates Nj Nigendendthread or C = 4 f Side Ni Njg[℄ Cn=:4 fNotSide Ni NjgendendNote that this
ode is equivalent to an or of four alternatives as above butthe
ode shown here leads to fewer better propagation and thus less failure.Here
omes the rest of the
ode for a smarter dominan
e
onstraint solverwhi
h is based on the smarter treeness
ondition. Apart from the smartertreeness
onndition there is nothing else new here.hDC smart: impose treenessi �Choi
eVariables =fList.foldRTail Nodesfun f$ NijNs CsgfList.foldR Nsfun f$ Nj CsghDC smart: treeness
ondition between Ni and NjiCjCsend Csgend nilghDC smart: make predi
atei �fun fMakePredi
ate 'unit'(domCon:DomCon vars:N)gpro
 f$ Nodesg

5.5. FULL CODE OF THE DOMINANCE CONSTRAINT SOLVER 77hDC:
reate nodesihDC: translation to set
onstraintsihDC smart: impose treenessiin hDC: distributeiendendhDC smart: dominan
e
onstraint solveri �lo
alhDC: daughtersihDC: dominatesihDC: not equalilo
alhDC: equalihDC: stri
tly dominatesihDC: sideihDC: make nodeihDC smart: not stri
tly dominatesihDC smart: not sideiinhDC smart: make predi
ateiendin DC=dom(makePredi
ate:MakePredi
atedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endhDCSmart.ozi �de
larehDC smart: dominan
e
onstraint solverihDomConExampleiin fExplorer.all fDC.makePredi
ate DomConExamplegg5.5 Full Code of the Dominan
e Constraint SolverThe
ode below is available from the �le DC.oz2.de
larelo
alpro
 {Daughters N L}N.daughters = L2
ode/DC.oz

78 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS{FS.partition {Map L fun {$ D} D.eqdown end} N.down}{ForAll L pro
 {$ D} D.up=N.equp end}endpro
 {Dominates N1 N2}{FS.subset N2.eqdown N1.eqdown}{FS.subset N1.equp N2.equp }{FS.subset N1.side N2.side }endpro
 {NotEqual N1 N2}{FS.disjoint N1.eq N2.eq}endlo
alpro
 {Equal N1 N2} N1=N2 endpro
 {Stri
tlyDominates N1 N2}{Dominates N1 N2}{NotEqual N1 N2}endpro
 {Side N1 N2}{FS.subset N1.eqdown N2.side}{FS.subset N2.eqdown N1.side}endfun {MakeNode I VDom}Eq = {FS.var.upperBound VDom}Down = {FS.var.upperBound VDom}Up = {FS.var.upperBound VDom}Side = {FS.var.upperBound VDom}EqDown = {FS.union Eq Down}EqUp = {FS.union Eq Up}in {FS.partition [Eq Down Up Side℄ {FS.value.make VDom}}{FS.in
lude I Eq}node(eq : Eqdown : Downup : Upside : Sideeqdown : EqDownequp : EqUpdaughters : _)endin fun {MakePredi
ate 'unit'(domCon:DomCon vars:N)}pro
 {$ Nodes}VDom = [1#N℄{List.make N Nodes} %
onstrains Nodes to a list% [_ ... _℄ of length N

5.5. FULL CODE OF THE DOMINANCE CONSTRAINT SOLVER 79{List.forAllInd Nodespro
 {$ I N} {MakeNode I VDom N} end}{DomCon Nodes}% waits for stabilitylo
al H in H::1#1 {FD.distribute naive [H℄} endChoi
eVariables ={List.foldRTail Nodesfun {$ Ni|Ns Cs}{List.foldR Nsfun {$ Nj Cs}C in C::1#4threador C = 1 {Equal Ni Nj}[℄ C = 2 {Stri
tlyDominates Ni Nj}[℄ C = 3 {Stri
tlyDominates Nj Ni}[℄ C = 4 {Side Nj Ni}endendC|Csend Cs}end nil}in{FD.distribute ff Choi
eVariables}endendendin DC=dom(makePredi
ate:MakePredi
atedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endlo
alpro
 {DomCon [N1 N2 N3 N4 N5℄}{DC.daughters N1 [N2℄}{DC.dominates N2 N5}{DC.daughters N3 [N4℄}{DC.dominates N4 N5}{ForAll [N1#N2 N1#N3 N1#N4 N1#N5N2#N3 N2#N4 N2#N5N3#N4 N3#N5N4#N5℄pro
{$ N#M}{DC.notEqual N M}end}end

80 LECTURE 5. SOLVING DOMINANCE CONSTRAINTSin DomConExample = 'unit'(domCon:DomConvars:5)endin {Explorer.all {DC.makePredi
ate DomConExample}}The
ode of the smart solver is available from the �le DCSmart.oz3.de
larelo
alpro
 {Daughters N L}N.daughters = L{FS.partition {Map L fun {$ D} D.eqdown end} N.down}{ForAll L pro
 {$ D} D.up=N.equp end}endpro
 {Dominates N1 N2}{FS.subset N2.eqdown N1.eqdown}{FS.subset N1.equp N2.equp }{FS.subset N1.side N2.side }endpro
 {NotEqual N1 N2}{FS.disjoint N1.eq N2.eq}endlo
alpro
 {Equal N1 N2} N1=N2 endpro
 {Stri
tlyDominates N1 N2}{Dominates N1 N2}{NotEqual N1 N2}endpro
 {Side N1 N2}{FS.subset N1.eqdown N2.side}{FS.subset N2.eqdown N1.side}endfun {MakeNode I VDom}Eq = {FS.var.upperBound VDom}Down = {FS.var.upperBound VDom}Up = {FS.var.upperBound VDom}Side = {FS.var.upperBound VDom}EqDown = {FS.union Eq Down}EqUp = {FS.union Eq Up}in {FS.partition [Eq Down Up Side℄ {FS.value.make VDom}}{FS.in
lude I Eq}node(3
ode/DC.oz

5.5. FULL CODE OF THE DOMINANCE CONSTRAINT SOLVER 81eq : Eqdown : Downup : Upside : Sideeqdown : EqDownequp : EqUpdaughters : _)endpro
 {NotStri
tlyDominates N1 N2}{FS.disjoint N1.eq N2.up }{FS.disjoint N2.eq N1.down}endpro
 {NotSide N1 N2}{FS.disjoint N1.eq N2.side}{FS.disjoint N2.eq N1.side}endinfun {MakePredi
ate 'unit'(domCon:DomCon vars:N)}pro
 {$ Nodes}VDom = [1#N℄{List.make N Nodes} %
onstrains Nodes to a list% [_ ... _℄ of length N{List.forAllInd Nodespro
 {$ I N} {MakeNode I VDom N} end}{DomCon Nodes}% waits for stabilitylo
al H in H::1#1 {FD.distribute naive [H℄} endChoi
eVariables ={List.foldRTail Nodesfun {$ Ni|Ns Cs}{List.foldR Nsfun {$ Nj Cs}C in C::1#4thread or C = 1 { Equal Ni Nj}[℄ C\=:1 {NotEqual Ni Nj}endendthread or C = 2 { Stri
tlyDominates Ni Nj}[℄ C\=:2 {NotStri
tlyDominates Ni Nj}endendthread or C = 3 { Stri
tlyDominates Nj Ni}[℄ C\=:3 {NotStri
tlyDominates Nj Ni}endendthread or C = 4 { Side Ni Nj}

82 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS[℄ C\=:4 {NotSide Ni Nj}endendC|Csend Cs}end nil}in {FD.distribute ff Choi
eVariables}endendendin DC=dom(makePredi
ate:MakePredi
atedaughters:Daughtersdominates:DominatesnotEqual:NotEqual)endlo
alpro
 {DomCon [N1 N2 N3 N4 N5℄}{DC.daughters N1 [N2℄}{DC.dominates N2 N5}{DC.daughters N3 [N4℄}{DC.dominates N4 N5}{ForAll [N1#N2 N1#N3 N1#N4 N1#N5N2#N3 N2#N4 N2#N5N3#N4 N3#N5N4#N5℄pro
{$ N#M}{DC.notEqual N M}end}endin DomConExample = 'unit'(domCon:DomConvars:5)endin {Explorer.all {DC.makePredi
ate DomConExample}}5.6 Summary� Con
urrent Constraint Programming allows a very intuitive implementa-tion of a solver for dominan
e
onstraints.� Every variable is asso
iated with four sets of nodes : the sets of variablesequal, stri
tly above, stri
tly below, and to the side of it.

5.6. SUMMARY 83� Finite set
onstraints
an be used to axiomatize the problem; they
an betaken over in Mozart with only synta
ti
 variations.� The dominan
e
onstraint solver based on �nite set
onstraints has beenintegrated into the CHORUS demo system and runs eÆ
iently on domi-nan
e
onstraints from underspe
i�ed semanti
s.

84 LECTURE 5. SOLVING DOMINANCE CONSTRAINTS

BibliographyAlshawi, H., D. Carter, R. Crou
h, S. Pulman, M. Rayner, and A. Smith(1992). CLARE: A
ontextual reasoning and
ooperative responseframework for the Core Language Engine. Te
hni
al Report CRC-028,SRI International, Cambridge, England. http://www.
am.sri.
om/tr/
r
028/paper.ps.Z.Alshawi, H. and R. Crou
h (1992). Monotoni
 semanti
 interpretation. InPro
eedings of the 30th ACL, Kyoto, 32{39.Ba
kofen, R., J. Rogers, and K. Vijay-Shanker (1995). A �rst-order axiom-atization of the theory of �nite trees. Journal of Logi
, Language, andInformation 4, 5{39.Bla
kburn, P. and J. Bos (1999). Representation and inferen
e for naturallanguage: A �rst
ourse in
omputational semanti
s. Le
ture notes, http://www.
oli.uni-sb.de/~bos/
omsem.Bodirsky, M., M. Egg, A. Koller, J. Niehren, K. Striegnitz, andS. Thater (1999). Chorus demo system. http://www.
oli.uni-sb.de/
l/proje
ts/
horus/software.html.Bos, J. (1996). Predi
ate logi
 unplugged. In Pro
eedings of the 10th Amster-dam Colloquium, 133{143.Cooper, R. (1975). Montague's semanti
 theory and transformational syntax.Ph. D. thesis, University of Massa
husetts, Amherst.Cooper, R. (1983). Quanti�
ation and Synta
ti
 Theory. Dordre
ht: Reidel.Copestake, A., D. Fli
kinger, and I. Sag (1997). Minimal Re
ursion Semanti
s.An Introdu
tion. Manus
ript, available at ftp://
sli-ftp.stanford.edu/linguisti
s/sag/mrs.ps.gz.Dalrymple, M., J. Lamping, F. Pereira, and V. Saraswat (1997). Quanti�ers,anaphora, and intensionality. Journal of Logi
, Language, and Informa-tion 6, 219{273.Dalrymple, M., S. Shieber, and F. Pereira (1991). Ellipsis and higher-orderuni�
ation. Linguisti
s & Philosophy 14, 399{452.Du
hier, D. and C. Gardent (1999). A
onstraint-based treatment of des
rip-tions. In Pro
eedings of IWCS-3, Tilburg.85

86 BIBLIOGRAPHYDu
hier, D., C. Gardent, and J. Niehren (1999). Con
urrent
onstraint pro-gramming in Oz for natural language pro
essing. Le
ture notes, http://www.ps.uni-sb.de/~niehren/oz-natural-language-s
ript.html.Du
hier, D. and J. Niehren (1999). Solving dominan
e
onstraints with �-nite set
onstraint programming. Submitted. http://www.ps.uni-sb.de/Papers/abstra
ts/DomCP99.html.Egg, M., J. Niehren, P. Ruhrberg, and F. Xu (1998). Constraints overLambda-Stru
tures in Semanti
 Underspe
i�
ation. In Pro
eedings COL-ING/ACL'98, Montreal.Gamut, L. T. F. (1991). Logi
, Language, and Meaning. Chi
ago and London:University of Chi
ago Press.Gardent, C. and B. Webber (1998). Des
ribing dis
ourse semanti
s. In Pro-
eedings of the 4th TAG+ Workshop, Philadelphia. University of Pennsyl-vania.Hirs
hb�uhler, P. (1982). VP deletion and a
ross the board quanti�er s
ope.In J. Pustejovsky and P. Sells (eds), NELS 12, Univ. of Massa
husetts.Hobbs, J. and S. Shieber (1987). An algorithm for generating quanti�er s
op-ing. Computational Linguisti
s 13, 47{63.Keller, W. (1988). Nested Cooper storage: The proper treatment of quanti�-
ation in ordinary noun phrases. In U. Reyle and C. Rohrer (eds), NaturalLanguage Parsing and Linguisti
 Theory. Dordre
ht: Reidel.Koller, A. (1999). Constraint languages for semanti
 underspe
i�
ation.Diplom thesis, Universit�at des Saarlandes, Saarbr�u
ken, Germany. http://www.
oli.uni-sb.de/~koller/papers/da.html.Koller, A., J. Niehren, and K. Striegnitz (1999). Relaxing underspe
i�ed se-manti
 representations for reinterpretation. In Pro
eedings of the SixthMeeting on Mathemati
s of Language (MOL6), Orlando, Florida. http://www.
oli.uni-sb.de/~koller/papers/reint.html.Koller, A., J. Niehren, and R. Treinen (1998). Dominan
e
onstraints: Algo-rithms and
omplexity. In Pro
eedings of the Third Conferen
e on Logi
alAspe
ts of Computational Linguisti
s, Grenoble.Mar
us, M. P., D. Hindle, and M. M. Fle
k (1983). D-theory: Talking abouttalking about trees. In Pro
eedings of the 21st ACL, 129{136.Montague, R. (1974). The proper treatment of quanti�
ation in ordinaryEnglish. In R. Thomason (ed.), Formal Philosophy. Sele
ted Papers ofRi
hard Montague. New Haven: Yale University Press.Muskens, R. (1995). Order-Independen
e and Underspe
i�
ation.In J. Groenendijk (ed.), Ellipsis, Underspe
i�
ation, Eventsand More in Dynami
 Semanti
s. DYANA Deliverable R.2.2.C.http//www.ims.uni-stuttgart.de/ftp/pub/papers/DYANA2/95
opy/R2.2.C/Musk%ens.ps.gz.

BIBLIOGRAPHY 87Oz Development Team (1999). The Mozart Programming System web pages.http://www.mozart-oz.org/.Partee, B. H. and H. L. W. Hendriks (1997). Montague grammar. In J. vanBenthem and A. ter Meulen (eds), Handbook of Logi
 and Language, Chap-ter 1, 5{91. Amsterdam: Elsevier.Poesio, M. (1994). Ambiguity, underspe
i�
ation, and dis
ourse interpreta-tion. In Pro
eedings of IWCS-1, Tilburg.Reyle, U. (1993). Dealing with ambiguities by underspe
i�
ation:
onstru
-tion, representation, and dedu
tion. Journal of Semanti
s 10, 123{179.Saraswat, V. A., M. Rinard, and P. Panangaden (1991). Semanti
 foundationsof
on
urrent
onstraint programming. In ACM Symposium on Prin
iplesof Programming Languages, 333{352. ACM Press, New York.S
hiehlen, M. (1997). Disambiguation of underspe
i�ed dis
ourse repesenta-tion stru
tures under anaphori

onstraints. In Pro
eedings of IWCS-2,Tilburg.Smolka, G. (1994). A foundation for
on
urrent
onstraint programming. InConstraints in Computational Logi
s, 50{72. Springer-Verlag, Berlin.Smolka, G. (1995). The Oz Programming Model. In J. van Leeuwen (ed.),Computer S
ien
e Today, 324{343. Springer-Verlag, Berlin.Vijay-Shanker, K. (1992). Using des
riptions of trees in a tree adjoining gram-mar. Computational Linguisti
s 18, 481{518.

