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Abstract- As a computational model to be simulated in
a DNA computing context, Boolean circuits are especial-
ly interesting because of their parallelism. Simulation-
s in concrete biochemical computing settings have been
given by [OR96] and [AD97]. In this paper, we show
how to simulate Boolean circuits by finite splicing systems,
an abstract model of enzymatic recombination ([Hea87],
[Gat94], [Pǎu96a]). We argue that using an abstract mod-
el of DNA computation as a basis leads to simulations of
greater clarity and generality. In our construction, the
running time of the simulating system is proportional to
the depth, and the use of material is proportional to the
size of the Boolean circuit simulated. However, the rules
of the simulating splicing system depend on the size of the
Boolean circuit, but not on the connectives used.

Keywords: DNA computing, splicing, Boolean circuits,
parallelism

1 Introduction

Boolean circuits are graphs that can represent any Boolean
function. The nodes of a Boolean circuit are labeled with
input variables and Boolean connectives. Its directed edges
describe the information flow.

In the context of DNA computing, Boolean circuits are in-
teresting for several reasons. One is that they are a model of
parallel computation: The value of each node can be com-
puted as soon as the values of its input nodes are established
(and sometimes sooner), so a simulation of Boolean circuit-
s can exploit the inherent parallelism of DNA computations.
Another point is their importance and simplicity — relatively
simple DNA computing systems suffice for simulating them.

Boolean circuits have been simulated in a DNA environ-
ment by [OR96] and [AD97]. [OR96] use annealing, liga-
tion, separation by size (gel electrophoresis), selectiveampli-
fication (PCR), and cleaving by restriction enzymes to sim-
ulate AND and OR gates. They get negation by having, forn input variablesx1; : : : ; xn, circuits with input gates labeledx1; : : : ; xn; x1; : : : ; xn. [AD97] simulate NAND gates in a
less expensive translation which also avoids the error–prone
PCR operation. In this paper, we describe another simulation
of Boolean circuits, but whereas [OR96] and [AD97] both

use concrete biochemical settings, this paper takes an abstract
model of DNA computation, splicing systems, as a basis.

The field of DNA computing has both practical and the-
oretical aspects. On the ”practical side”, algorithms are de-
signed for DNA systems capable of executing some concrete
set of biochemical operations, and laboratory experimentsare
conducted to test the feasibility of these algorithms. Theoret-
ical studies of DNA computing formalize biochemical opera-
tions in abstract models, both as a mathematical foundationof
DNA computation and as novel models of computation that
are interesting in their own right. If a system of this latter
kind is applied, it is mostly to the simulation of a standard
model of computation in order to establish the computation-
al power of the theoretical DNA computing system. There is
little exchange between the two areas.

We propose the use of abstract models of DNA computa-
tion as a basis for the formulation of algorithms, for the sake
of greater clarity and generality. Concrete ”biochemical al-
gorithms” are specific to the set of bio–operations used: If
an operation used in an algorithm turns out to be particular-
ly error–prone and is to be avoided, the algorithm has to be
redesigned from scratch. But of course, if we use an abstrac-
t model as a basis for an algorithm, it has to be sufficiently
close to biochemical reality for the algorithm to be of prac-
tical interest. We think that finite splicing systems meet this
requirement.

Splicing systems model the sequence–specific cleaving of
DNA molecules by certain enzymes and the re–connecting
of cleft parts: A splicing system initially contains a language
over some finite alphabetV , modelling the DNA molecules
initially in the test tube. If two wordsv; w present in the ”test
tube”, i.e. the language, contain subsequences specified ina
splicing rule, they are both cut, and the prefix ofv is con-
catenated to the suffix ofw and vice versa. After the splicing
operation, the language containsv; w as well as the two new
words resulting from the splicing. Splicing systems are par-
allel in the sense that the biochemical operation they model
is parallel: All the molecules that can be cut by the enzymes
present in the test tube are cut at the same time. Up to now,
splicing systems have been investigated mainly with respect
to the formal languages they are capable of generating. Our
focus is different: We require that our construction exploit the
parallelism of splicing systems and always compute the value



of the simulated Boolean circuit as a single splicing word, in
finite time.

In our construction, we use finite splicing systems to sim-
ulate Boolean circuits. The number of parallel computation
steps the splicing systems needs is proportional to the depth
of the Boolean circuit, while the amount of material (the size
of the initial language and the number of splicing rules) is
proportional to the circuit size. But while the number of s-
plicing rules depends on the size of the Boolean circuit, it
is independent of the Boolean connectives used, which take
effect solely in the initial language.

This paper is organized as follows: Section 2 introduces
splicing systems. In section 3, Boolean circuits are defined.
In section 4 we describe our splicing simulation of Boolean
circuits. Section 5 concludes.

2 Splicing Systems

A single–stranded DNA molecule consists of a sugar–
phosphate backbone on which four different bases, adenine,
cytosine, guanine and thymine, abbreviated A, C, G, T, are
arranged in arbitrary order. Two single strands can combine
to form a double–stranded DNA molecule if their base se-
quences are complementary: A and T are complementaries,
as well as C and G.Restriction enzymescut double-stranded
DNA into pieces whenever they encounter certain triggering
subsequences of DNA, theirsites. Many of these enzymes
leave single-stranded overhangs. Figure 1 shows a schematic
depiction of two restriction enzymes cutting DNA molecules.
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Figure 1: Two restriction enzymes cutting two DNA mole-
cules. The shaded areas are the enzymes’ sites.

DNA molecules with single–stranded overhangs can be
connected if the overhangs are complementary and of the
same orientation (which depends on the molecules that the
sugar–phosphate backbones of the overhangs end in), if alig-
aseis present. For the molecules cleft in figure 1, either the
two pieces of the same molecule can reconnect, or the pieces
can be combined crosswise, as the overhangs match. Figure
2 shows this second case. (See e.g. [Str91] for a detailed de-
scription.)

These two operations together, the sequence–specific
cleaving of molecules and the ligating of matching pieces, are
called recombination. This biochemical operation was for-
malized in splicing systems by [Hea87]. In splicing systems,
DNA molecules are modelled by words, and recombination
is modelled by splicing rules that allow for suffix exchange
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Figure 2: The molecules cut in figure 1 combined crosswise

between words. Head’s definition was simplified by Gatter-
dam in [Gat94] and further generalized to encompass infinite
rule sets by Pǎun in [Pǎu96a]. In this paper, we use this latter
definition:

Definition 2.1 Let V be a finite alphabet not containing the
symbols#; $.

A splicing systemoverV is a constructS = (V; I; R),
where� I � V � is the initial language and� R � V �#V �$V �#V � is the set of splicing rules.

A rule u1#u2$u3#u4 is often written as
u1 u2u3 u4 .

A splicing ruler = u1#u2$u3#u4 is applicable to two
words v; w 2 V � if there are wordsv0; v00; w0; w00 2 V �
such thatv = v0u1u2v00 andw = w0u3u4w00. Applying
the rule produces the two new wordsv = v0u1u4w00 andw = w0u3u2v00. We also write(v; w) ` (v; w):

The language of a splicing systemS, L(S), is the s-
mallest setL such thatI � L, and ifv; w 2 L and there is a
splicing ruler in S such that(v; w) `r (v; w), thenv; w 2 L.

We denote the empty word by".
A splicing sytem assumes an unlimited supply of each

word and cumulatively adds splicing results until it is satu-
rated.

To characterize the computational power of splicing sys-
tems, two points are especially interesting: Splicing systems
with a finite initial language and a regular rule set already
generate all recursively enumerable languages ([Pǎu96b]),
whereas splicing systems of finite components can only gen-
erate regular languages ([CH91], [Pix95], [HPP96]).

Example 2.2 A biochemical recombination system contain-
ing the enzymes TaqI and SciNI described above could be
modelled using the alphabetfAT ; CG ; GC ; TAg and the splicing
rules TA CG GC ATTA CG GC AT ; GC CG GC CGGC CG GC CG ; TA CG GC ATGC CG GC CG
Two molecule pieces can be ligated if they have both been
cut by TaqI, if they have both been cut by SciNI or if one has
been cut by TaqI and the other by SciNI.



Splicing systems as defined in [Pǎu96a] abstract from
many facts of recombination. For example, a splicing rule
specifies both words involved in the suffix exchange, while
an enzyme only describes one of the two molecules con-
cerned. Recombination systems are reflexive: Two mo-
lecules containing the site of TaqI can always recombine,
whereas in splicing systems, it does not follow that the ruleu1#u2$u1#u2 is present ifu1#u2$u3#u4 is. The original
definition of splicing systems in [Hea87] is very close to bio-
chemical recombination. There, splicing rules describe just
one enzyme each, and for a splicing reaction two splicing
rules with matching sites are required; furthermore, thesesys-
tems are always reflexive. But as shown in [Erk98], splicing
systems as defined in [Pǎu96a] do not possess a greater gen-
erative power than the original definition from [Hea87]. So
we can choose the more abstract and thus easier to use defi-
nition from [Pǎu96a] without losing reference to biochemical
DNA computing systems.

Splicing systems are abstract models of recombination;
but that does not mean that a biochemical implementation of a
splicing algorithm must use solely recombination operations.
Examples of other biochemical operations suitable for imple-
menting splicing steps are annealing or ligating without prior
cleaving.

3 Boolean circuits

A Boolean circuit is a directed graph that represents a
Boolean function. Its nodes stand for input and output values
and for Boolean connectives, and its directed edges show the
flow of information. Figure 3 shows an example of a Boolean
circuit; nodes with no incoming edges are input nodes labeled
with either variables or a constant value1 or 0, and the node
with no outgoing edges is the output node of the circuit.
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Figure 3: A Boolean circuit representing the Boolean func-
tionf(x1; x2; x3) = (x1 ^ x2) _ :x3. Nodes contain their
numbers and are annotated with their sorts.

Definition 3.1 A basis is a set
 of Boolean functionsf :f0; 1gi ! f0; 1g, i 2 f0; 1; 2g.1 
 is calledcompleteif all
Boolean functions can be expressed by composition of func-
tions from
.

A Boolean circuit with M inputs x1; : : : ; xM of basis

is a finite directed acyclic graphG = (VG; EG), where each
node ofVG has an indegree of 0, 1 or 2. The nodes ofVG are

1The two constant functions with no inputs are also written as0 and1.

also calledgates. Each gatev 2 VG is assigned asort s(v),
wheres(v) 2 
 [ fx1; : : : ; xMg. If s(v) 2 fx1; : : : ; xMg
or s(v) 2 f0; 1g, v is calledinput of G. In this casev must
have indegree 0. If the sort ofv is a Boolean function of arity
1 (2),v must have 1 (2) incoming edges.

Let a topological sorting of the nodes inVG be given asv1; : : : ; vN , whereN = jVGj. 2 The nodevN is called the
output of G. (If the circuit computes several Boolean func-
tions at once, it may possess several output nodes. In this
case, every node of outdegree 0 is called output.)

The depth of a nodev 2 VG is the number of nodes in
the longest directed path connecting an input ofG to v. The
depth of the circuit G is the depth of its output (ifG pos-
sesses more than one output node, its depth is the maximum
of its output node depths).

An assignmentA : V ! f0; 1g for some setV of vari-
ables is calledappropriatefor G if it is defined for all vari-
ables fromfx1; : : : ; xMg. Given an appropriate assignmentA, thetruth value of a gatevi 2 VG;A(vi), is defined by
induction on its number in the topological sorting:� If s(vi) 2 fx1; : : : ; xMg, thenA(vi) = A(s(vi)).� If s(vi) 2 f0; 1g, thenA(vi) = s(vi).� If s(vi) = f : f0; 1g ! f0; 1g, there is a unique gatevj with (vj ; vi) 2 EG, thusj < i. By induction, the

truth value ofvj has already been established, and we
setA(vi) = f(A(vj)).� If s(vj) = f : f0; 1g2 ! f0; 1g, there are exactly two
gatesvj ; vk with (vj ; vi); (vk ; vi) 2 EG andj � k < i.
We setA(vi) = f(A(vj); A(vk)).� The truth value of the Boolean circuitG,A(G), isA(vN ).

Note that this definition imposes an order on the incoming
edges of a gate, namely the topological sorting of the gates:
If vo with sort s(vo) = f has incoming edges fromvn andvm wheren � m, thenA(vo) = f(A(vn); A(vm)).
4 A splicing simulation of Boolean circuits

In this section, we use circuits with a single outputvN for
clarity, although our construction also works for multiple–
output circuits. LetG = (VG; EG) be a Boolean circuit withN gates topologically sorted asv1; : : : ; vN . We simulateG
by a splicing systemS = (V; I; R), where the description ofG is given in the initial languageI of the splicing system. We
use two kinds of words: gate value words and gate words.
There are two possible gate value words for gatevn, carrying
a meaning of either

”A(vn) has been established as1”
or

”A(vn) has been established as0”.

2If jVGj = N , a topological sorting enumerates the nodes ofVG asv1; : : : vN in such a way that wheneverG contains an edge(vi; vj) fori; j 2 f1; : : : ; Ng theni < j. vN is the end of the longest directed path inG.



As splicing proceeds, gate value words for an increasing num-
ber of gates fromVG will be present in the language ofS,
proceeding by the depth of gates, until after a number of par-
allel steps proportional to the depth ofG, the value ofvN is
established.

For gates with two inputs, it sometimes suffices to know
the value of one of its inputs to determine the value of the
gate. For example, if in the circuit in figure 3,v1 has been
assigned the value0, then the value ofv4 is also0 independent
of v2. But only ifA(v1) = A(v2) = 1 is v4 assigned the value1. In the splicing system, we describe the first case by gate
words carrying the meaning

”if A(vn) = � 10	 thenA(vo) = � 10	”
for a gatevo that hasvn as its input or as one of its inputs. For
example, when simulating the circuit of figure 3, forv4 S con-
tains a gate word denoting ”ifA(v1) = 0 thenA(v4) = 0”
(but also ”if A(v2) = 0 thenA(v4) = 0”). If a gate val-
ue word meaning ”A(v1) has been established as0” is also
present, then the two words are spliced, resulting in the new
word ”A(v4) has been established as0”. A gate value word
stating thatA(v1) = 1 would not have any effect if combined
with this gate word, it only reacts ifA(v1) = 0.

The second case, where the values of both input gates
have to be considered, is handled by gate words of the in-
tuitive meaning ”ifA(vn) = � 10	 then if A(vm) = � 10	
thenA(vo) = � 10	”. For example, the splicing description
of gatev4 in figure 3 also needs to contain a gate word de-
noting ”if A(v1) = 1 then ifA(v2) = 1 thenA(v4) = 1”.
When combined with a gate value word meaning ”A(v1) has
been established as1”, it is spliced, producing a gate word ”ifA(v2) = 1 thenA(v4) = 1” — a gate word of the first type,
which can be further handled as described above.

We now formalize this idea. With the coding we have
just sketched, we can simulate any Boolean functionf :f0; 1gi ! f0; 1g; i 2 f0; 1; 2g, but we only present the ones
commonly used. LetG = (VG; EG) be a Boolean circuit ofM inputs andN gates, with
 = f0; 1; AND;NAND; OR;NOR; NOT; XOR; EQ;!; g as its basis.3 Let a topo-
logical sorting of the gates be given asv1; : : : ; vN . For gatesv 2 V we setinp(v) = fn 2 f1; : : : ; Ng j (vn; v) 2 EGg,
i.e. inp(v) is the set of input gate numbers forv. We con-
struct, forG, a splicing systemS = (V; I; R) where� V = f1; : : : ; Ng [ fX;Y; Z;D; t; f; T; Fg,� I = fXY g [ I 0, which is described in figure 4.� R consists of the rules

1:
XnD ZXna X for 1 � n � N; a 2 ft; fg,

2:
tZT "X Y

3:
fZF "X Y

We useD to denote that the value of a node has not been
established yet,t andf as gate values1 and0, respectively,

3 (x1; x2) :=! (x2; x1). This function is introduced because of the
order our definition imposes on a gate’s inputs (see section 3).

andT (F ) for gate words that are triggered if the gate’s input
is 1 (0). X;Y; Z are markers. Note that the" in the rules
above only specifies that there is no restriction on the first
spliced word after the cutting point; it does not mean thattZT or fZF is the end of the word — splicing rules cannot
express that.

Gate value words have the form[[A(vn) = 1 ℄℄ := XntX;[[A(vn) = 0 ℄℄ := XnfX
for n 2 f1; : : : ; Ng. (We use the symbolic form[[ : : : ℄℄ for
greater readability.) Each gate word has a prefixXnDZ
for ann 2 f1; : : : ; Ng to denote thatvn is an input of the
gate involved, and thatvn’s value is as yet unknown. If a gate
value word[[ A(vn) = 1 ℄℄ ([[A(vn) = 0 ℄℄) is present in the
system, theD in the gate word can be replaced by the actual
value ofvn by the splicing ruleXnD ZXnt X (

XnD ZXnf X ),

leading to a gate word prefix ofXntZ (XnfZ).
Gate words covering the first case, where only the value

of one input gate is needed, have the form[[ A(vn) = 1! A(vo) = 1 ℄℄ := XnDZTotX;[[ A(vn) = 1! A(vo) = 0 ℄℄ := XnDZTofX;[[ A(vn) = 0! A(vo) = 1 ℄℄ := XnDZFotX;[[ A(vn) = 0! A(vo) = 0 ℄℄ := XnDZFofX
for n; o 2 f1; : : : ; Ng. If the prefixXnD has already been
replaced byXnt orXnf as described above, and ifvn’s val-
ue corresponds to the markerT or F , then the suffix of the
gate word can be spliced off using the catalytic wordXY
and the rule tZT "X Y (

fZF "X Y ).

This reaction produces the new wordXotX = [[ A(vo) = 1 ℄℄
orXofX = [[ A(vo) = 0 ℄℄.

The second case, where the values of two input nodes are
considered, is handled by gate words of the form[[ A(vn) = � 10	! A(vm) = � 10	! A(vo) = � 10	 ℄℄ :=XnDZ n TF omDZ n TF o on tf oX
for m;n; o 2 f1; : : : ; Ng for inputs vn; vm of gatevo. We do not need any new splicing rules to bring
about the appropriate reactions. Consider the case
of a gate word[[A(v1) = 1! A(v2) = 1! A(v4) = 1 ℄℄= X1DZT2DZT4tX . If [[A(v1) = 1 ℄℄ = X1tX or[[ A(v1) = 0 ℄℄ = X1fX is present in the language, the firstD of the gate word is replaced byv1’s value. A value forv2 cannot yet be entered as the gate word does not contain
the factorX2DZ. In the case of[[A(v1) = 1 ℄℄, we now
haveX1tZT2DZT4tX (with [[A(v1) = 0 ℄℄, the resulting

word cannot be spliced further), which the rule
tZT "X Y



transforms to[[A(v2) = 1! A(v4) = 1 ℄℄ = X2DZT4tX ,
a gate word of the first type.

Figure 4 lists the gate words thatI 0 contains for each
Boolean connective: Letvo 2 VG; 1 � o � N; such thats(vo) 62 fx1; : : : ; xMg. If vo has indegree one, letinp(vo) =fng, and if vo has indegree two, letinp(vo) = fn;mg withn � m, and letp 2 fn;mg. The left column in figure 4
gives the value ofs(vo), while the right column shows the
corresponding words ofI 0.

If the initial language contains a gate word[[A(vn) = � 10	! A(vm) = � 10	! A(vo) = � 10	 ℄℄, the symmetrical word[[ A(vm) = � 10	! A(vn) = � 10	! A(vo) = � 10	 ℄℄ is not
needed, as this type of gate word establishes the value ofvo
only if both input values are present anyway.

The splicing systemS describes the circuitG indepen-
dently of possible assignments. But if an assignment appro-
priate toG is added toS’s initial languageI as a set of gate
value words,S computes the value ofG under this assign-
ment:

Theorem 4.1 Let G be a Boolean circuit ofN gates andM inputs with 
 = f0; 1; AND;NAND; OR;NOR;NOT;XOR;EQ;!; g as its basis. Then there is a finite
splicing systemS = (V; I; R) such that for each assignmen-
t A appropriate toG there exists a finite setIA � V � andX; t; f 2 V such thatXNtX 2 L�(V; I [ IA; R)� () A(G) = 1 andXNfX 2 L�(V; I [ IA; R)� () A(G) = 0:
Proof: Let G andS be defined as above, and letx1; : : : xM
be the inputs ofG. LetA be an assignment appropriate toG,
and letV IG = �v 2 VG j s(v) 2 fx1; : : : ; xMg	 be the inputs
of G. ThenA is translated into the setIA = fXntX j vn 2V IG ^ A(vn) = 1g [ fXnfX j vn 2 V IG ^ A(vn) = 0g.
”(” We prove that for each nodevo 2 VG; 1 � o � N ,A(vo) = 1 (0) =) XotX (XofX) 2 L�(V; I [ IA; R)�.
We use induction on the depthk of vo.k = 0: LetA(vo) = 1 (0). Eithers(vo) 2 fx1; : : : ; xMg, soXotX (XofX) 2 IA, or s(vo) = 1 (0), thenXotX

(XofX) 2 I 0.k ) k + 1: inp(vo) 6= ;. We only consider the cases(vo) =AND, for the other cases splicing proceeds analogous-
ly.

If n 2 inp(vo) and A(vn) = 0, thenXnfX 2L�(V; I [ IA; R)� by the inductive hypothesis. Forvo,I 0 contains the gate wordXnDZFofX . The follow-
ing computation is valid inS: 4(XnDjZFofX;Xnf jX) `1 (XnfZFofX;XnDX)(XnfZF jofX;X jY ) `3 (XofX;XnfZFY )

4We annotate splicing operations with the rule type used. We mark the
place at which splicing occurs by aj.

If inp(vo) = fn;mg andA(vn) = A(vm) = 1, thenXntX;XmtX 2 L�(V; I [ IA; R)� by the inductive
hypothesis. Letn � m. ThenI 0 contains the gate wordXnDZTmDZTotX , andS can compute(XnDjZTmDZTotX;XntjX) `1 (XntZTmDZTotX;XnDX)(XntZT jmDZTotX;X jY ) `2 (XmDZTotX;XntZTY )(XmDjZTotX;XmtjX) `1 (XmtZTotX;XmDX)(XmtZT jotX;X jY ) `2 (XotX;XmtZTY )

”)” As we have seen in the previous part of the proof, each
splicing operation produces, besides the intended result,one
”garbage string”. We have to show that these side effects do
not interfere with the computation.

Application of a rule
XnD ZXna X produces garbage

stringsXnDX , which cannot undergo any further reaction.
Rules2 and3 leave wordsXntZTY andXnfZFY . They
can again be spliced by rules2 and3 without generating any-
thing new:(XntZT jY;X jY ) `2 (XntZTY;XY ) and anal-
ogous for rule 3.

If a value[[ A(vn) = 1 ℄℄ ([[ A(vn) = 0 ℄℄) is entered into a
gate word starting withXnDZF (XnDZT ), the result has
a prefixXntZF (XnfZT ). Such a word cannot be spliced
any further.

Example 4.2 For the boolean circuit in figure 3,I 0 contains
the following gate words:
for v4:[[ A(v1) = 0! A(v4) = 0 ℄℄ = X1DZF4fX[[ A(v2) = 0! A(v4) = 0 ℄℄ = X2DZF4fX[[ A(v1) = 1! A(v2) = 1! A(v4) = 1 ℄℄= X1DZF2DZT4tX
for v5:[[ A(v3) = 1! A(v5) = 0 ℄℄ = X3DZT5fX[[ A(v3) = 0! A(v5) = 1 ℄℄ = X3DZF5tX
for v6:[[ A(v4) = 1! A(v6) = 1 ℄℄ = X4DZT6tX[[ A(v5) = 1! A(v6) = 1 ℄℄ = X5DZT6tX[[ A(v4) = 0! A(v5) = 0! A(v6) = 0 ℄℄= X4DZF5DZF6fX

Assume an assignmentA with A(x1) = 1; A(x2) = 0
andA(x3) = 0. Then this assignment is expressed byIA =fX1tX;X2fX;X3fXg, which is part of the initial splicing
language.R comprises 14 rules: 12 to exchangeD for t or f ,
and 2 for transforming enabled gate words.

We only show how the value ofv4 underA is computed;
the rest of the splicing proceeds analogously. Each paragraph
constitutes one parallel computation step. A gate value wordX4tX for v4 is computed in two parallel steps.



1: [[A(vo) = 1 ℄℄ = XotX
0: [[A(vo) = 0 ℄℄ = XofX
NOT: [[A(vn) = 0! A(vo) = 1 ℄℄, [[ A(vn) = 1! A(vo) = 0 ℄℄= XnDZTofX ,XnDZFotX
AND: [[A(vp) = 0! A(vo) = 0 ℄℄, [[A(vn) = 1! A(vm) = 1! A(vo) = 1 ℄℄= XpDZFofX ,XnDZTmDZTotX
NAND: [[A(vp) = 0! A(vo) = 1 ℄℄, [[A(vn) = 1! A(vm) = 1! A(vo) = 0 ℄℄= XpDZFotX ,XnDZTmDZTofX .

OR: [[A(vp) = 1! A(vo) = 1 ℄℄, [[A(vn) = 0! A(vm) = 0! A(vo) = 0 ℄℄= XpDZTotX ,XnDZFmDZFofX .

NOR: [[A(vp) = 1! A(vo) = 0 ℄℄, [[A(vn) = 0! A(vm) = 0! A(vo) = 1 ℄℄= XpDZTofX ,XnDZFmDZFotX .

XOR: [[A(vn) = 1! A(vm) = 1! A(vo) = 0 ℄℄, [[ A(vn) = 1! A(vm) = 0! A(vo) = 1 ℄℄,[[A(vn) = 0! A(vm) = 1! A(vo) = 1 ℄℄, [[ A(vn) = 0! A(vm) = 0! A(vo) = 0 ℄℄= XnDZTmDZTofX;XnDZTmDZFotX;XnDZFmDZTotX;XnDZFmDZFofX .

EQ: [[A(vn) = 1! A(vm) = 1! A(vo) = 1 ℄℄, [[ A(vn) = 1! A(vm) = 0! A(vo) = 0 ℄℄,[[A(vn) = 0! A(vm) = 1! A(vo) = 0 ℄℄, [[ A(vn) = 0! A(vm) = 0! A(vo) = 1 ℄℄= XnDZTmDZTotX;XnDZTmDZFofX;XnDZFmDZTofX;XnDZFmDZFotX .!: [[A(vn) = 0! A(vo) = 1 ℄℄, [[ A(vn) = 1! A(vm) = 1! A(vo) = 1 ℄℄,[[A(vn) = 1! A(vm) = 0! A(vo) = 0 ℄℄= XnDZFotX;XnDZTmDZTotX;XnDZTmDZFofX : [[A(vm) = 0! A(vo) = 1 ℄℄, [[ A(vn) = 1! A(vm) = 1! A(vo) = 1 ℄℄,[[A(vn) = 0! A(vm) = 1! A(vo) = 0 ℄℄= XmDZFotX;XnDZTmDZTotX;XnDZFmDZTofX
Figure 4: Gate words inI 0 for vo, depending ons(vo) (with o 2 f1; : : : ; Ng)



(X1DjZF4fX;X1tjX) `1 (X1tZF4fX;X1DX)(X1DjZT2DZT4tX;X1tjX) `1 (X1tZT2DZT4tX;X1DX)(X2DjZF4fX;X2f jX) `1 (X2fZF4fX;X2DX)(X1tZT j2DZT4tX;X jY ) `2 (X2DZT4tX;X1tZTY )(X2fZF j4fX;X jY ) `3 (X4fX;X2fZFY )(X2DjZT4tX;X2f jX) `1 (X2fZT4tX;X2DX)
Splicing systems model recombination, where each reac-

tion takes place as soon as the enzyme and the molecule con-
taining the site are present. Because in a splicing system an
unlimited supply of each word is given, even several splic-
ing reactions involving the same wordv can occur in parallel.
So if we assume that all possible splicing operations occur in
parallel, the value of a gate at depthk is computed after at
most4k parallel splicing steps: Ifvo is a gate whose inputs
have already been evaluated, it takes 2 splicing operationsto
produce a gate value word forvo from a gate word of the first
type, and 4 splicing reactions for a gate word of the second
type. The amount of material needed for the splicing system
is dependent on the size of the Boolean circuit. For a cir-
cuit ofN gates, the corresponding splicing system comprises2N + 2 rules and up to4N + 1 initial words. Interesting-
ly, the splicing rules, the resource that is harder to implement
in practice, depend only on the size, not on the form of the
Boolean circuit: The Boolean connectives used are expressed
solely in the splicing system’s initial language.

5 Conclusion

In this paper, we have presented a simulation of Boolean cir-
cuits by finite splicing systems. Splicing systems compute
in a ”one-pot” reaction without calling for any outside ac-
tion after the initial ”pouring” of rules and initial words.Our
simulation allows, as gate sorts, arbitrary Boolean functionsf : f0; 1gi ! f0; 1g; i 2 f0; 1; 2g. The splicing system com-
putes the value of each gate of the Boolean circuit in time
proportional to the gate’s depth. The amount of both splicing
rules and initial words needed for the simulation is propor-
tional to the circuit size, but the splicing rules are independent
of the actual Boolean connectives used, which are described
solely in the initial language.
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