Simulating Boolean circuits by finite splicing

Katrin Erk
Programming Systems Lab
Universitat des Saarlandes, Saarbriicken, Germany
erk@ps.uni-sbh.de

Copyright 1999 Institute of Electrical and Electronics Ergrs. Reprinted frorRroc. Congress on Evolutionary Computation (CEC;98)ashington D.C.,

USA, July 6-9, 1999, pp. 1279 — 1285. This material is posta® fvith permission of the IEEE. However, permission toirgfsepublish this material for

advertising or promotional purposes or for creating nedective works for resale or redistribution must be obtaifredh the IEEE by sending a blank email
message to info.pub.permission@ieee.org. By choosingto this document, you agree to all provisions of the coptrigws protecting it.

Abstract- As a computational model to be simulated in use concrete biochemical settings, this paper takes araabst
a DNA computing context, Boolean circuits are especial- model of DNA computation, splicing systems, as a basis.

ly interesting because of their parallelism. Simulation- The field of DNA computing has both practical and the-
s in concrete biochemical computing settings have been oretical aspects. On the "practical side”, algorithms aze d
given by [OR96] and [AD97]. In this paper, we show signed for DNA systems capable of executing some concrete
how to simulate Boolean circuits by finite splicing systems, set of biochemical operations, and laboratory experimenets
an abstract model of enzymatic recombination ([Hea87], conducted to test the feasibility of these algorithms. Taeo
[Gat94], [Pau96a]). We argue that using an abstract mod- ical studies of DNA computing formalize biochemical opera-
el of DNA computation as a basis leads to simulations of tions in abstract models, both as a mathematical foundafion
greater clarity and generality. In our construction, the DNA computation and as novel models of computation that
running time of the simulating system is proportional to are interesting in their own right. If a system of this latter
the depth, and the use of material is proportional to the kind is applied, it is mostly to the simulation of a standard
size of the Boolean circuit simulated. However, the rules model of computation in order to establish the computation-
of the simulating splicing system depend on the size of the al power of the theoretical DNA computing system. There is
Boolean circuit, but not on the connectives used. little exchange between the two areas.

We propose the use of abstract models of DNA computa-
tion as a basis for the formulation of algorithms, for theesak
of greater clarity and generality. Concrete "biochemidal a
) gorithms” are specific to the set of bio—operations used: If
1 Introduction an operation used in an algorithm turns out to be particular-

o ly error—prone and is to be avoided, the algorithm has to be
Boolgan circuits are graphs that can_rep_resent any BOOI_ear'%designed from scratch. But of course, if we use an abstrac-
functlon._ The nodes of a Boolean c_|rCU|t are !abeled Witht model as a basis for an algorithm, it has to be sufficiently
input variables and Boolean connectives. lIts directed Rdgeclose to biochemical reality for the algorithm to be of prac-

describe the information flow. o _tical interest. We think that finite splicing systems meés th
In the context of DNA computing, Boolean circuits are in- requirement.

teresting for several reasons. One is that they are a model of Splicing systems model the sequence—specific cleaving of
parallel computation: The valu_e O_f each node can be COMHNA molecules by certain enzymes and the re—connecting
puted as soon as the values of its input nodes are establishgfl .ot parts: A splicing system initially contains a large

(and somlet!mcre]s §or?ner), SO aIIS|F1uIat|]E)n of Boolean circuitsy e some finite alphabt, modelling the DNA molecules
s can exploit the inherent parallelism of DNA computations.i,isia|iy in the test tube. If two words, w present in the "test

Another pointis their importance and simplicity — relatiye tube”, i.e. the language, contain subsequences specifid in
simple DNA c_omputing systems _suffice fo_r simulating th_em'splicing rule, they are both cut, and the prefix:ofs con-
Boolean circuits have been simulated in @ DNA environ-ca4anated to the suffix af and vice versa. After the splicing
ment by [OR96] and [AD97]. [OR96] use annealing, liga- heration, the language containas as well as the two new
tion, separation by size (gel electrophoresis), seleempli- o ds resulting from the splicing. Splicing systems are par

fication (PCR), and cleaving by restriction enzymes {0 Sim-yg| i the sense that the biochemical operation they model

ulgte AND_and OR gates. T_he¥ get_ne_gation by having, fofig parallel: All the molecules that can be cut by the enzymes
ninputvariablesy, ..., zn, CIrCUI_tS with input gates Iab_eled present in the test tube are cut at the same time. Up to now,
1y, T1y ..o, Tn. [ADI7] simulate NAND gates in @ gyjicing systems have been investigated mainly with respec
less expensive translation which also avoids the ermoReIo 1 formal languages they are capable of generating. Our
PCR operathn. Ir‘ this paper, we describe another Slrrllmlatlofocus is different: We require that our construction exitioé

of Boolean circuits, but whereas [OR96] and [AD97] both parallelism of splicing systems and always compute theevalu

Keywords: DNA computing, splicing, Boolean circuits,
parallelism

of the simulated Boolean circuit as a single splicing wond, i AAGTCGATG AAGTCGCTT

finite time. . o _ TTCAGCTAC TTCAGCGAA
In our construction, we use finite splicing systems to sim- %

ulate Boolean circuits. The number of parallel computation TTGCGCTT TTGCGATG

steps the splicing systems needs is proportional to thendept |AACGC:GAA AACGCTAC

of the Boolean circuit, while the amount of material (theesiz

of the initial language and the number of splicing rules) is Figyre 2: The molecules cut in figure 1 combined crosswise

proportional to the circuit size. But while the number of s-

plicing rules depends on the size of the Boolean circuit, it

is independent of the Boolean connectives used, which takeetween words. Head’s definition was simplified by Gatter-

effect solely in the initial language. dam in [Gat94] and further generalized to encompass infinite
This paper is organized as follows: Section 2 introducegule sets by Paun in [Pau96a]. In this paper, we use thisrlat

splicing systems. In section 3, Boolean circuits are defineddefinition:

In section 4 we describe our splicing simulation of Boolean

circuits. Section 5 concludes. Definition 2.1 Let V' be a finite alphabet not containing the
symbols#, $.

2 Splicing Systems A splicing systemoverV is a constructS = (V, I, R),
where

A single—stranded DNA molecule consists of a sugar- e I C V*istheinitial language and

phosphate backbone on which four different bases, adenine, o p V*HV*$V* £V * is the set of splicing rules.
cytosine, guanine and thymine, abbreviated A, C, G, T, are N _ _ uy | ug
arranged in arbitrary order. Two single strands can combine A rule ui#us$us#uy is often written aﬁ-

to form a double-stranded DNA molecule if their base se- A splicing ruler = wu; #u»$us#u, is applicable to two
quences are complementary: A and T are complementariegords v, w € V* if there are words’,v",w',w" € V*
as well as C and GRestriction enzymesut double-stranded sych thaty — vurusv” andw = w'usuqw”. Applying
DNA into pieces whenever they encounter certain triggeringhe rule produces the two new words= v'u;usw" and

subsequences of DNA, thesites Many of these enzymes 5 — o/y5u50". We also write
leave single-stranded overhangs. Figure 1 shows a scleemati

depiction of two restriction enzymes cutting DNA molecules (v,w) F (7,@).
AAGT b ﬁ(;ATG The language of a splicing sy_stemS, L(S), is the_ s-
Taql: TTCAGC TAC mallest setl. such thatl C L, and ifv,w € L and thereis a
splicing ruler in S such tha{v, w) +, (v,@), thenv,w € L.
We denote the empty word lay
SciNI: TTG] &?CTT A splicing sytem assumes an unlimited supply of each
AASEE A word and cumulatively adds splicing results until it is satu
rated.
Figure 1: Two restriction enzymes cutting two DNA mole- To characterize the computational power of splicing sys-
cules. The shaded areas are the enzymes'’ sites. tems, two points are especially interesting: Splicing esysst

with a finite initial language and a regular rule set already
DNA molecules with single-stranded overhangs can bgenerate all recursively enumerable languages ([Paji96b]
connected if the overhangs are complementary and of th@hereas splicing systems of finite components can only gen-
same orientation (which depends on the molecules that thgrate regular languages ([CH91], [Pix95], [HPP96]).
sugar—phosphate backbones of the overhangs end idigif a
aseis present. For the molecules cleft in figure 1, either theExample 2.2 A biochemical recombination system contain-
two pieces of the same molecule can reconnect, or the piec@sg the enzymes Tagql and SciNI described above could be

can be combined crosswise, as the overhangs match. Figufigodelled using the a|phabe§§’ g g Z;} and the splicing
2 shows this second case. (See e.g. [Str91] for a detailed d@jles '
scription.) . o TCG| A GCG|C TCG | A
These two operations together, the sequence-specific _
cleaving of molecules and the ligating of matching pieces, a weoelr ccele dedle
called recombination This biochemical operation was for-]]]
malized in splicing systems by [Hea87]. In splicing systemsTWO molecu_le pieces can be ligated if they.have .both been
DNA molecules are modelled by words, and recombinatiorfut by Taql, if they have both been cut by SciNI or if one has
is modelled by splicing rules that allow for suffix exchange P€€n cut by Taql and the other by SciNI.

Splicing systems as defined in [Pau96a] abstract fronalso calledgates Each gater € V; is assigned aort s(v),
many facts of recombination. For example, a splicing rulewheres(v) € QU {zy,...,zp}. If s(v) € {z1,..., 20}
specifies both words involved in the suffix exchange, whileor s(v) € {0,1}, v is calledinput of G. In this casev must
an enzyme only describes one of the two molecules conhave indegree 0. If the sort ofis a Boolean function of arity
cerned. Recombination systems are reflexive: Two mod (2),» must have 1 (2) incoming edges.
lecules containing the site of Tagl can always recombine, Let a topological sorting of the nodes Wy, be given as
whereas in splicing systems, it does not follow that the rulevy, ..., vy, WhereN = |Vg|. 2 The nodevy is called the
uy Hus$uq #us is present ifu; #us$us#uy is. The original output of G. (If the circuit computes several Boolean func-
definition of splicing systems in [Hea87] is very close to-bio tions at once, it may possess several output nodes. In this
chemical recombination. There, splicing rules descrils¢ ju case, every node of outdegree 0 is called output.)
one enzyme each, and for a splicing reaction two splicing Thedepth of a nodev € Vi is the number of nodes in
rules with matching sites are required; furthermore, tisgse the longest directed path connecting an inpu&ab v. The
tems are always reflexive. But as shown in [Erk98], splicingdepth of the circuit G is the depth of its output (i€ pos-
systems as defined in [Pau96a] do not possess a greater gasesses more than one output node, its depth is the maximum
erative power than the original definition from [Hea87]. So of its output node depths).
we can choose the more abstract and thus easier to use defi- An assignmentd : V — {0,1} for some sed’ of vari-
nition from [Pau96a] without losing reference to biocheati ables is callecppropriatefor G if it is defined for all vari-

DNA computing systems. ables from{zxy, ...,z }. Given an appropriate assignment

Splicing systems are abstract models of recombination4, thetruth value of a gate v; € Vg, A(v;), is defined by
but that does not mean that a biochemical implementation of aduction on its number in the topological sorting:

splicing algorithm must use solely recombination operetio o If s(v;) € {z1,...,zm}, thenA(v;) = A(s(v;)).
Examples of other biochemical operations suitable for @npl o If s(v;) € {0,1}, thenA(v;) = s(vy).
menting splicing steps are annealing or ligating withoidpr T ' Y)
cleaving. o If s_(vi) = f:{0,1} - {0,1}, there is a unique gate
vj wWith (vj,v;) € Egq, thusj < i. By induction, the
| L truth value ofv; has already been established, and we
3 Boolean circuits setA(v;) = f(A(v;).

A Boolean circuit is a directed graph that represents a * If s(v;) = f: {0,1}* — {0, 1}, there are exactly two
Boolean function. Its nodes stand for input and output \&lue gatesv;, vy, With (v;,v;), (vk, v;) € Eg andj < k <.
and for Boolean connectives, and its directed edges show the ~ We setd(v;) = f(A(v;), A(v)).

flow of information. Figure 3 shows an example of a Boolean ¢ Thetruth value of the Boolean circuit G, A(G), is

circuit; nodes with no incoming edges are input nodes labele A(vn).
with either variables or a constant valuer 0, and the node) o . .
with no outgoing edges is the output node of the circuit. Note that this definition imposes an order on the incoming

edges of a gate, namely the topological sorting of the gates:

X, X, X, If v, with sorts(v,) = f has incoming edges from, and
@ @ vm Wheren < m, thenA(v,) = f(A(vn), A(vm)).
\ /
A@\ }@ 4 A splicing simulation of Boolean circuits
\/@ In this section, we use circuits with a single output for

clarity, although our construction also works for multiple
Figure 3: A Boolean circuit representing the Boolean func-0utput circuits. Letz = (Vi, E¢) be a Boolean circuit with
tion f(x1, 22, 73) = (z1 A @2) V —z5. Nodes contain their [V gates topologically sorted as, ..., vn. We simulates

numbers and are annotated with their sorts. by a splicing systeny’ = (V, I, k), where the description of
G is given in the initial languagé of the splicing system. We

use two kinds of words: gate value words and gate words.

Definition 3.1 A basisis a set() of Boolean functionsf : ~ There are two possible gate value words for gatecarrying
{0,1}* — {0,1},i € {0,1,2}.1 Q is calledcompleteif all @ meaning of either
Boolean functions can be expressed by composition of func- " A(vn) has been established Hs
tions from(?. or
A Boolean circuit with M inputs z1, . . ., 23, of basisQ " A(v,) has been established @'s

is a finite directed acyclic grap = (V, E¢), where each

¢ 2 _ .)
node ofV has an mdegree of 0, 1 or 2. The node¥fare If |[Va| = N, a topological sorting enumerates the nodes/gf as

v1,...vy in such a way that whenever contains an edgév;,v;) for
i,7 € {1,..., N} theni < j. vy is the end of the longest directed path in
G.

1The two constant functions with no inputs are also writtef asd1.

As splicing proceeds, gate value words for an increasingnumand? (F’) for gate words that are triggered if the gate’s input

ber of gates froni/; will be present in the language 6f, is1(0). X,Y,Z are markers. Note that thein the rules

proceeding by the depth of gates, until after a number of parabove only specifies that there is no restriction on the first

allel steps proportional to the depth @f the value ofuy is spliced word after the cutting point; it does not mean that

established. tZT or fZ F'is the end of the word — splicing rules cannot
For gates with two inputs, it sometimes suffices to knowexpress that.

the value of one of its inputs to determine the value of the Gate value words have the form

gate. For example, if in the circuit in figure 8, has been T

assigned the valug then the value of, is also0 independent %igg”g _ (1)% o §2;§

of vy. Butonlyif A(vi) = A(v2) = lisw, assigned the value meeTE

1. In the splicing system, we describe the first case by gatgyr , ¢ {1,...,N}. (We use the symbolic forrh ...] for

words carrying the meaning greater readability.) Each gate word has a prefix
it A(v,) = {}} thenA(v,) = {}}”
for a gatev, that haw,, as its input or as one of its inputs. For XnDZ

le, when simulating the circuit of fi - : :
example, when simulating the circuit of figure 3, fars con forann € {1,..., N} to denote that,, is an input of the

tains a gate word denoting "ifi(v;) = 0 then A(v4) = 0” .) :

(but also "if A(vs) = 0 then A(vs) = 07). If a gate val- gate involved, and that,’s value is as yet unknown. If a gate

ue word meaning A(v;) has been established @is also value word[A(v,) = 1] ([A(vn) = 0]) is present in the
ystem, theD in the gate word can be replaced by the actual

present, then the two words are spliced, resulting in the new .
value ofv,, by the splicing rule

word "A(vs) has been established @5 A gate value word

. . . XnD | Z , XnD | Z
stating thatd (v;) = 1 would not have any effect if combined th B (X?zf B)
with this gate word, it only reacts il (v;) = 0. leading to a gate word prefix &ntZ (XnfZ).

The second case, where the values of both input gates Gate words covering the first case, where only the value
have to be considered, is handled by gate words of the ins¢ one input gate is needed, have the form

tuitive meaning "if A(v,) = {{} then if A(v,,) = {}}

thenA(v,) = {1}". For example, the splicing description [A(vn) =1 A(v,) =1] := XnDZTotX,
of gatew, in figure 3 also needs to contain a gate word de- [A(vn) =1 = A(vo) =0] := XnDZTofX,
noting "if A(v;) = 1 then if A(v;) = 1 thenA(vy) = 1. [A(vn) =0 = A(v,) =1] := XnDZFotX,
When combined with a gate value word meaning#;) has [A(vn) =0 = A(v) =0] := XnDZFofX

been established a3, it is spliced, producing a gate word "if
A(vy) = 1thenA(vys) = 1" — a gate word of the first type,
which can be further handled as described above.

forn,o € {1,...,N}. If the prefix XnD has already been
replaced byXnt or Xn f as described above, andiif’s val-
ue corresponds to the markéror F', then the suffix of the

We now formalize this idea. With the coding we have . : .
just sketched, we can simulate any Boolean functfon gate word can be spliced off using the catalytic word"
' and the rule

{0,1}* — {0,1},i € {0, 1,2}, but we only present the ones tZT | e , fZF | ¢
commonly used. Le€& = (V, Eg) be a Boolean circuit of X |V (X |V)-

M inputs andV gates, witf2 = {0,1, AND, NAND,OR, This reaction produces the new wakihtX = [A(v,) = 1]
NOR, NOT, XOR, EQ, —, +} as its basis® Let a topo- orXofX =[A(v,) =0].

logical sorting of the gates be givenas. .., vy. For gates The second case, where the values of two input nodes are

v € V we setinp(v) = {n € {1,...,N} | (va,v) € Eg}, considered, is handled by gate words of the form
i.e.inp(v) is the set of input gate numbers for We con-

struct, for@, a splicing systens = (V, I, R) where [Awn) ={g} = Alwm) = {4y} = Awo) = {}]:=
e V={1,....N} U {X,Y,Z,D,t,fT,F), XnDZ{?}mDZ{?}o{;iX

e [= {XY}UI, which is described in figure 4.

R ists of the rul for myn,o € {1,...,N} for inputs v,,v,, of gate
¢ frconsists of the rules v,. We do not need any new splicing rules to bring
. XnD| Z ; .)
1: ~na T X forl <n < N,ae{t f}, about the appropriate reactions. Consider the case
CtIT | e of a gate word[A(v1) =1 — A(ve) =1 — A(vs) =1]
22— Tv = X1DZT2DZT4tX. |If [A(v)=1] = X1tX or
3. fZF | ¢ [A(v) =0] = X1fX is present in the language, the first
X |Y D of the gate word is replaced hy’s value. A value for

We useD to denote that the value of a node has not beews cannot yet be entered as the gate word does not contain
established yet, and f as gate value$ and0, respectively, the factorX2DZ. In the case off A(vi) = 1], we now
have X1¢ZT2DZT4tX (with [A(vi) = 0], the resulting

8« (x1,x2) :=— (x2,x1). This function is introduced because of the . . tZT | ¢
order our definition imposes on a gate’s inputs (see secjion 3 word cannot be spllced further)’ which the r X Y

transforms tdf A(v2) =1 — A(vy) = 1] = X2DZT4tX, If inp(v,) = {n,m} and A(v,) = A(vn) = 1, then

a gate word of the first type. XntX, XmtX € L((V,I U IA,R)) by the inductive
Figure 4 lists the gate words thdt contains for each hypothesis. Letz < m. ThenI’ contains the gate word

Boolean connective: Let, € Vi, 1 < o < N, such that XnDZTmDZTotX,andS can compute

s(vy) € {x1,...,xzm}. If v, has indegree one, létp(v,) =

{n}, and ifv, has indegree two, letp(v,) = {n, m} with (XnD|ZTmDZTotX, | (XntZTmDZTotX,

n < m, and letp € {n,m}. The left column in figure 4 Xnt|X) ! XnDX)

gives the value o(v,), while the right column shows the (XntZT|mDZTotX, | (XmDZTotX,

corresponding words df . XY) > XntZTY)
If the initial language contamsagatewc[rﬂ vn) = {4} (XmD|ZTotX, - (XmtZTotX,

— A(vy,) = {0} — A(v,) = {0}]], the symmetrical word X'mt|X) XmDX)

[[A(’Um) — {(1)} —)A(Un) — {é} —)A(UO) — {(1)}]] is not (thZT|OtX,X‘Y) " (XOtX,thZTY)

needed, as this type of gate word establishes the valug of
only if both input values are present anyway.

The splicing systent describes the circuif? indepen-
dently of possible assignments. But if an assignment appror,
priate toG is added taS’s initial languagel as a set of gate not interfere with the computation.

value words,S computes the value aff under this assign-
L XnD Z
ment: Application of a rule TR produces garbage

=" As we have seen in the previous part of the proof, each
pl|cmg operation produces, besides the intended resust,
garbage string”. We have to show that these side effects do

stringsXnD X, which cannot undergo any further reaction.
Rules2 and3 leave wordsXntZTY andXnfZFY. They
can again be spliced by rulesand3 without generating any-
thing new:(XntZT|Y, X|Y) ko (XntZTY, XY') and anal-
ogous for rule 3.

Theorem 4.1 Let G be a Boolean circuit ofV gates and
M inputs withQ = {0,1, AND,NAND, OR, NOR,
NOT,XOR,EQ, —, +} as its basis. Then there is a finite
splicing systen$ = (V, I, R) such that for each assignmen-
t A appropriate toG there exists a finite sdty C V* and If a value[A(v,) = 1] ([A(vn) = 0]) is entered into a

X,t,f € V such that gate word starting wittXnDZF (XnDZT), the result has
XNtX € L((V,IUI4,R)) < A(G)=1and aprefixXntZF (XnfZT). Such a word cannot be spliced
XNfX eL((V,IUI4,R)) < A(G)=0. any further. |

Proof: Let G andS be defined as above, and let, ...z, o .
be the inputs of7. Let A be an assignment appropriate®o Example 4.2 For the boolean circuit in figure 3] contains
andletV] = {v € Vg | s(v) € {x1,...,zn}} be theinputs ~the following gate words:

of G. ThenA is translated into the séty = {XntX | v, € Of V.

N Al =10 (VX I, 8 A A <) [202 e 0] = X1DzEu
"«<" We prove that for each node, € Vg,1 < 0o < N, [A(v1)=1— A(vy) =1 — A(vsg) = 1]
A(vy) = 1(0) = XotX (XofX) e L((V,IUI4,R)). = XIDZF2DZT4tX
We use induction on the depkhof v,,. for
. Us.
k=0: LetA(’Uo) =1 (0) Elthers(vo) S {561, - ,ZBM}, SO [[A(T)g) -1 A(v5) — 0]] — XSDZTSfX
XotX (XofX) € 14, ors(v,) = 1(0), thenXotX [A(vs) =0 A(vs) =1] = X3DZF5tX
(XofX)e I
. . for vg:
k= k+1: inp(v,) # 0. We only consider the cas¢v,) = 6
-~ [A(vs) =1 A(vg) =1] = X4DZT6tX
AN D, for the other cases splicing proceeds analogous[[A(vs) C 15 A(vg) =1] = X5DZT6tX

. [A(vs) =0— A(vs) =0 — A(vg) = 0]

If n € inp(v,) and A(v,) = 0, thenXnfX € = X4DZF5DZF6fX
L/((Vv“_JIth)) by the inductive hypothesis. For, Assume an assignment with A(z;) = 1, A(x3) = 0
I' contains the gate wordnDZFofX. The follow- andA(zs) = 0. Then this assignment is expressedihy=

ing computation is valid irf': ¢ {X1tX, X2fX, X3fX},which is part of the initial splicing
language R comprises 14 rules: 12 to exchanBdor ¢ or f,
(XnD|ZFofX,Xnf|X)F, (XnfZFofX, and 2 for transforming enabled gate words.
XnDX) We only show how the value of, underA is computed,;

(XnfZF|ofX,X|Y) Fs (Xof X, XnfZFY) the rest of the splicing proceeds analogously. Each pgohagra
constitutes one parallel computation step. A gate valuelwor
X4tX for vy is computed in two parallel steps.

4We annotate splicing operations with the rule type used. \&ekrthe
place at which splicing occurs by/a

NOT:

AND:

NAND:

OR:

NOR:

XOR:

EQ:

[A(v,) = 1] = XotX

[A(we) = 0] = XofX

[A(wn) =0 Avg) = 1], [A(va) = 1 A(v,) = 0]
=XnDZTofX,XnDZFotX

[A@,) =0 Av) =01, [A(wa) = 1 = A(vm) = 1 A(v,) = 1]
= XpDZFofX,XnDZTmDZTotX

[A@,) =0 Av) = 11, [A(wa) = 1 = A(vm) = 1 = A(v,) = 0]
= XpDZFotX,XnDZTmDZTofX.

[A@wy) =1 - A(vs) = 1T, [A(va) = 0 = A(vm) = 0 A(v,) = 0]
=XpDZTotX,XnDZFmDZFofX.

[A(wy) =1 - A(vs) = 0T, [A(va) = 0 = A(vm) = 0 A(v,) = 1]
=XpDZTofX,XnDZFmDZFotX.

[A(wn) =1 Alvm) =1 A(v,) =
[A(vn) =0 = A(vn) = 1 = A(v,) =

= XnDZTmDZTofX,XnDZTmDZFotX,XnDZFmDZTotX,XnDZFmDZFofX.

[A(vy) =1—= A(vm) =1— A(v,) =1],[A(vp) =1 = A(vy,) =0 — A(v,) =07,
[A(v,) =0— A(vm) =1— A(v,) =0],[A(vn) =0 = A(vsm) =0— A(v,) =1]

= XnDZTmDZTotX,XnDZTmDZFofX,XnDZFmDZTofX,XnDZFmDZFotX.

[A(wn) =0— A(v,) = 1], [A(vn) =1 = A(vm) =1 = A(v,) = 1],
[A(wn) =1— A(vy) =0— A(v,) =0]

= XnDZFotX,XnDZTmDZTotX, XnDZTmDZFofX

[Am) =0 — A®w,) = 1], [Aws) =1 = A(vm) =1 — A(v,) = 1],
[A(vn) =0 — A(vm) =1 — A(v,) = 0]

= XmDZFotX,XnDZTmDZTotX,XnDZFmDZTofX

Figure 4: Gate words i@’ for v,, depending o (v,) (witho € {1,...,N})

Bibliography

(X1D|ZFAfX, X1t|X) +i (X1tZFAfX,X1DX) [AD97]
(X1D|ZT2DZT4X, | (XUZT2DZT4X,

X1t/ X) ' X1DX)

(X2D|ZFAfX, X2f|X) Fi (X2fZF4fX,X2DX)
(X1tZT|2DZT4tX, X|Y) F» (X2DZT4tX, X1tZTY) [CHO1]
(X2fZF|AfX, X|Y) b3 (X4fX, X2fZFY)

(X2D|ZT4tX, X2f|X) |+ (X2fZT4tX, X2DX) [Erkog]

Splicing systems model recombination, where each reac-
tion takes place as soon as the enzyme and the molecule con-
taining the site are present. Because in a splicing system gGat94]
unlimited supply of each word is given, even several splic-
ing reactions involving the same wowsctan occur in parallel.
So if we assume that all possible splicing operations ogtur i
parallel, the value of a gate at depths computed after at
most4k parallel splicing steps: If, is a gate whose inputs [Hea87]
have already been evaluated, it takes 2 splicing operations
produce a gate value word fog from a gate word of the first
type, and 4 splicing reactions for a gate word of the second

Martyn Amos and Paul E. Dunne. DNA simula-
tion of boolean circuits. Technical Report CTAG-
97009, Department of Computer Science, Univer-
sity of Liverpool, December 1997.

Karel Culik Il and Tero Harju. Splicing semigroup-
s of dominoes and DNADiscrete Applied Mathe-
matics 31:261-277, 1991.

Katrin Erk. Splicing. Master’s thesis, FB 4
(Informatik), Universitat Koblenz—Landau, Abt.
Koblenz, 1998.

R. W. Gatterdam. DNA and twist free splicing sys-
tems. In M. Ito and H. Jurgensen, editoveords,
Languages and Combinatorics pages 170-178.
World Scientific Publ. Singapore, 1994.

Tom Head. Formal language theory and DNA: An
analysis of the generative capacity of specific re-
combinant behavior8ulletin of Mathematical Bi-
ology, 49(6):737-759, 1987.

type. The amount of material needed for the splicing systeanPP%] Thomas Head, Gheorghe Paun, and Dennis Pixton.

is dependent on the size of the Boolean circuit. For a cir-

cuit of N gates, the corresponding splicing system comprises

2N + 2 rules and up totN + 1 initial words. Interesting-

ly, the splicing rules, the resource that is harder to imgetn

in practice, depend only on the size, not on the form of the
Boolean circuit: The Boolean connectives used are expilesse
solely in the splicing system’s initial language. [OR96]

5 Conclusion

In this paper, we have presented a simulation of Boolean cir-

Language theory and molecular genetics: Gener-
ative mechanisms suggested by DNA recombina-
tion. In Grzegorz Rozenberg and Arto Salomaa,
editors,Handbook of Formal LanguageSpringer-
Verlag, 1996.

Mitsunori Ogihara and Animesh Ray. Simulating
boolean circuits on a DNA computer. Technical
Report TR 631, University of Rochester, Computer
Science Department, August 1996.

cuits by finite splicing systems. Splicing systems computdPau96a] Gheorghe Paun. On the splicing operatiDrs-

in a "one-pot” reaction without calling for any outside ac-
tion after the initial "pouring” of rules and initial word©ur
simulation allows, as gate sorts, arbitrary Boolean fumdi
f:{0,1}* - {0,1},i € {0,1,2}. The splicing system com-
putes the value of each gate of the Boolean circuit in time
proportional to the gate’s depth. The amount of both spiicin

rules and initial words needed for the simulation is propor-[Pix95]
tional to the circuit size, but the splicing rules are indegent

of the actual Boolean connectives used, which are described
solely in the initial language.

Acknowledgements

Many thanks to Joachim Niehren and Lutz Priese for their
important comments on an earlier version of this paper. FurlStrol]
thermore, | would like to thank Harro Wimmel for valuable
discussions on splicing systems.

crete Applied Mathemati¢c§0(1):57-79, Septem-
ber 1996.

[Pau96b] Gheorghe Paun. Regular extended H systems are

computationally universal.Journal of Automata,
Languages and Combinatorick.27-36, 1996.

Dennis Pixton. Linear and circular splicing sys-
tems. InProceedings of the First International
Symposium on Intelligence in Neural and Biologi-
cal Systems (Herndon, VA)ages 181-188. IEEE
Computer Society Technical Committee on Pat-
tern Recognition and Machine Intelligence (PA-
MI), IEEE Computer Society Press, May 1995.

Lubert Stryer. Biochemie Spektrum Akademi-
scher Verlag, Heidelberg, Berlin, New York, 1991.

