
Oz Explorer: A Visual ConstraintProgramming ToolChristian SchulteProgramming Systems Lab, German Research Center for AI (DFKI)Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germanyschulte@dfki.uni-sb.deAbstractThis paper describes the Oz Explorer and its implementation. The Exploreris a visual constraint programming tool intended to support the developmentof constraint programs. It uses the search tree of a constraint problem as itscentral metaphor. Exploration and visualization of the search tree are user-driven and interactive. The constraints of any node in the tree are available�rst-class: prede�ned or user-de�ned procedures can be used to display oranalyze them. The Explorer is a fast and memory e�cient tool intended forthe development of real-world constraint programs.The Explorer is implemented in Oz using �rst-class computation spaces.There is no �xed search strategy in Oz. Instead, �rst-class computationspaces allow to program search engines. The Explorer is one particularexample of a user-guided search engine. The use of recomputation to tradespace for time makes it possible to solve large real-world problems, whichwould use too much memory otherwise.1 IntroductionIn the last decade constraint programming, especially with �nite domain con-straints, has become popular in many application areas. To a large extent,the growing interest is caused by both the expressive power and the availabil-ity of e�cient implementations like CHIP [5], ECLiPSe [1], ILOG Solver [8],clp(FD) [3], just to name a few.Development of applications based on constraint programming proceedsin two steps. The �rst step is to design a principally working solution.This is followed by the much harder task to make this solution work forproblems of real-world size. The latter task usually involves a high amount ofexperimentation to gain additional insights into the structure of the problem.Meier reports in [12] that a large part of the development process is spent onperformance debugging. Therefore it is surprising that existing systems o�erlittle support for the development of constraint programming applications(with the recent exception of [12]).Appears in: Lee Naish, editor, Proceedings of the Fourteenth International Conferenceon Logic Programming, Leuven, Belgium, pages 286{300. The MIT Press, July 1997.1



This paper describes the visual constraint programming tool Oz Explorerfor the language Oz. Oz is a concurrent constraint language providing forfunctional, object-oriented, and constraint programming [18, 7]. It has asimple yet powerful computation model [17] which extends the concurrentconstraint model [15] by �rst-class procedures, concurrent state, and encap-sulated search.The Explorer uses the searchtree as its central metaphor. Theuser can interactively explore thesearch tree which is visualizedas it is explored. Visible nodescarry information on the corre-sponding constraints that can beaccessed interactively by prede-�ned or user-de�ned procedures.The Explorer can be used withany search problem, no annotations or modi�cations are required. In par-ticular, the Explorer does not rely on a �xed constraint system.First insights into the structure of the problem can be gained from thevisualization of the search tree. How are solutions distributed? How manysolutions do exist? How large are the parts of the tree explored before �ndinga solution? The insights can be deepened by displaying the constraints ofnodes in the search tree. Is constraint propagation su�cient? Does theheuristic suggest the right choices? Interactive exploration allows followingpromising paths in the search tree without exploring irrelevant parts of it.This supports the design of heuristics and search engines.Complex real world problems require a tool to be practical with respectto both e�ciency and display economy. The amount of information displayedby the Explorer is variable: the search tree can be scaled and subtrees canbe hidden. In particular, all subtrees that do not contain solutions can behidden automatically.One reason that there are only so few tools for the development of con-straint programs is that controlling search is hard in existing systems. Sys-tems like those mentioned earlier provide for a small set of search strategies.In contrast to that, search engines like single, all, and best solution searchare not built-in into Oz, but are programmed using �rst-class computationspaces. To deal with problems which would use too much memory otherwise,recomputation trading space for time can be programmed with �rst-classcomputation spaces.The Explorer is one particular example of a user-guided interactive searchengine that would not have been possible without �rst-class computationspaces. The paper shows how the Explorer is implemented on a high levelin Oz using �rst-class computation spaces and how recomputation is used inits implementation. Figures are presented that support the practicality ofthe implementation as it comes to e�ciency and memory usage.2



Plan of the paper. Section 2 introduces some basic ideas of constraintprogramming in Oz, followed by an example of a constraint program wherethe Explorer is used in its development. First-class computation spaces areintroduced in Section 4. The most important features of the Explorer aregiven in Section 5. Section 6 gives an overview of the Explorer's implemen-tation, followed by a discussion of the implementation's core and recompu-tation in Sections 7 and 8. The practicality of the Explorer is discussed inSection 9 and the last section gives some related work.2 Constraints, Propagators, and SearchCentral to constraint programming in Ozis the notion of a computation space. A com-putation space consists of propagators con- propagator � � � propagatorconstraint storenected to a constraint store.The constraint store stores information about values of variables expressedby a conjunction of basic constraints. Basic constraints are logic formulaeinterpreted in a �xed �rst-order structure. In the following we restrict our-selves to �nite domain constraints. A basic �nite domain constraint has theform x 2 D where D is a �nite subset of the positive integers. Other basicconstraints which make sense here are x = y and x = n, where y is a variableand n a positive integer.To keep operations on basic constraints e�cient, more expressive con-straints, called nonbasic, e.g., x + y = z, are not written to the constraintstore. A nonbasic constraint is imposed by a propagator. A propagator is aconcurrent computational agent that tries to amplify the store by constraintpropagation: Suppose a constraint store hosting the constraint C and a prop-agator imposing the constraint P . The propagator can tell a basic constraintB to the store, if C^P entails B and B adds new and consistent informationto C. Telling a basic constraint B updates the store to host C ^B.A propagator imposing P disappears as soon as it detects that P isentailed by the store's constraint. A propagator imposing P becomes failedif it detects that P is inconsistent with the constraint hosted by the store.A space S is stable, if no further constraint propagation in S is possible. Astable space that contains a failed propagator is failed . A stable space notcontaining a propagator is solved .Usually, constraint propagation alone does not su�ce to solve a con-straint problem: A space may become stable but neither solved nor failed.Hence, we need distribution. Distributing a space S with respect to a con-straint D yields two spaces: One is obtained by adding D to S and the otheris obtained by adding :D to S. The constraint D will be chosen such thatadding of D (:D) enables further constraint propagation.To solve a constraint problem, a space containing basic constraints andpropagators of the problem is created. Then constraint propagation takes3



place until the space becomes stable. If the space is failed or solved, weare done. Otherwise, we select a constraint D with which we distribute thespace. A possible distribution strategy for �nite domain constraint problemsis: Select a variable x which has more than one possible value left and aninteger n from these values and then distribute the space with x = n.Iterating constraint propagation and distribution as sketched above leadsto a tree of computation spaces (\search tree") where leaves are failed orsolved spaces. To these nodes of the search tree we refer to as solved orfailed nodes, to the remaining as choice nodes. A problem solver in Ozis factored into two orthogonal components: the problem and the searchengine exploring the problem's search tree. One particular example of ahand-guided search engine is the Explorer.3 Example: Aligning for a PhotoThis section introduces the Oz Explorer by means of an example. Fivepeople want to make a group photo. Each person can give preferences nextto whom he or she wants to be placed on the photo. The problem to besolved is to �nd a placement that satis�es as many preferences as possible.Figure 1 shows an Oz program that solves this problem. The problemis stated as unary procedure Photo, where its argument Sol is constrainedto the problem's solution. The record Pos maps the person's name to aposition, that is, an integer between 1 and 5. All �elds of Pos are enforced tobe distinct by the propagator FD.distinct. The list of preferences is mappedto a list Ful of �nite domain variables between 0 and 1, such that each ofits elements is either 1 in case the preference can be ful�lled or 0 otherwise.The overall satisfaction Sat is given by the sum of all elements of Ful. Thepositions Pos are distributed (by {FD.distribute naive Pos}) following thestrategy sketched in the previous section, where variables are selected inalphabetical order of their respective �elds, and where the smallest value isselected �rst.So-called rei�ed propagators are used to map preferences to �nite domainvariables. A rei�ed propagator employs a boolean control variable b. If thepropagator is entailed (disentailed), then b is constrained to 1 (0). If b is 1 (0),the constraint of the rei�ed propagator is enforced (its negation is enforced).The rei�ed propagator Pos.A+1=:Pos.B (Pos.A-1=:Pos.B) expresses that Ais placed to the left (right) of B. Thus, the control variable of the rei�edpropagator stating that the sum of both is 1, yields 1 if A and B are placednext to each other, and 0 otherwise.We use the Explorer to search for an optimal solution to the Photo prob-lem. The optimality criterium is described by a binary procedure statingthat the satisfaction must increase with the solutions found:{Explorer solver(Photo proc {$ Old New} Old.sat <: New.sat end)}4



Names = [alice bert chris deb evan]Prefs = [alice#chris bert#evan chris#deb chris#evandeb#alice deb#evan evan#alice evan#bert]proc {Photo Sol}Pos = {FD.record pos Names 1#{Length Names}}Ful = {Map Prefsfun {$ A#B} (Pos.A+1=:Pos.B)+(Pos.A-1=:Pos.B)=:1 end}Sat = {FD.int 0#{Length Prefs}}in {FD.distinct Pos} {FD.sum Ful �=:� Sat}Sol = sol(pos:Pos ful:Ful sat:Sat){FD.distribute naive Pos}end Figure 1: Oz program to solve the photo alignment problem.The Explorer shows a single choice node (drawn as a circle). Prompt-ing for the next solution explores and draws the search tree up to the �rstsolution as shown to the right. The solution node is diamond-shaped.Exploring and drawing the search tree can be stopped at any time andresumed later at any node in the tree. This is important for problems whichhave large or even in�nite subtrees in its search tree.Double-clicking the solved node displays the constraints of the succeededcomputation space using the Oz Browser (a concurrent tool to visualize basicconstraints). The �rst solution is as follows:sol(pos: pos(alice:1 bert:2 chris:3 deb:4 evan:5)ful: [0 0 1 0 0 1 0 0]sat: 2)Understanding textual outputcan be di�cult. Therefore, the alice
−1

bert
−1

chris
−1

deb
−1

evan
−2Explorer can employ user-de�ned display procedures. Suppose a procedureDrawPhoto that displays constraints graphically. The Explorer is con�guredsuch that double-clicking a node applies DrawPhoto to the node's constraintsby {Explorer add(information DrawPhoto)}. The �gure above shows a par-ticular instance of graphical output for the previously found solution. Anarrow between names shows a ful�lled preference, whereas the circled numberabove a name yields the number of non-ful�lled preferences of that person.Invoking search for all solu-tions yields the search tree shownto the right. The optimal solu-tion is the rightmost solved node.Squares represent failed nodes.

5



Although we are solving a simple problem, it is hardto �nd solutions and paths leading to them. The Ex-plorer provides support to hide all subtrees which con-tain only failed leaves by drawing these subtrees as tri-angles. After applying this functionality, the search treelooks as shown on the right.By double-clicking the right-most solution (the Explorer as- alice bertchris
−1

deb
−1

evan
−1sists in �nding certain nodes by providing functionality to move a cursor toit) we get the optimal solution as shown above.The Explorer reports in its status bar that the entire search tree has 72choice, 3 solution, and 70 failed nodes. The tree indicates by the length ofpaths leading to failed leaves that the choices do not result in much constraintpropagation. A better distribution heuristic should lead to more constraintpropagation. The amount of constraint propagation depends on how manypropagators are triggered to amplify the constraint store. So it would bebetter to assign a value to a variable on which many propagators depend.This is done by replacing the distribution strategy in the program shownin Figure 1 by a strategy implementing our idea from above:{FD.distribute generic(order:nbSusps) Pos}Oz provides prede�ned distribution strategies to express some common heuris-tics, but any distribution strategy can be programmed (see Section 4).The Explorer is applied tothe modi�ed problem to studythe impact of our new heuristicon the search tree. The result-ing tree is shown on the right.The Explorer's status bar dis-plays that the tree now has 54choice nodes, 3 solution nodes,and 52 failed nodes, that is, the number of nodes has decreased by about25%. From the displayed search tree we can conclude that it is much harderto prove optimality of the last solution than to actually �nd it.If we use the Explorer to access con-straints of nodes in the right part of the tree,we �nd that search is aiming at solutionssymmetrical (i.e., with people placed in re-verse order) to those in the tree's left part.The search tree can be reduced in size byremoving these symmetries. Some of themcan be removed by placing two persons, say the �rst and the second in thelist of persons, in a �xed order. Hence, we add the following constraint toour program: Pos.{Nth Names 1} >: Pos.{Nth Names 2}6



Applying the Explorer to the new problem andsearching for all solutions draws the search tree as shownabove. The tree now has only 27 choice nodes, 2 solu-tion nodes, and 26 failure nodes. Thus, removing justthese symmetries reduces the number of nodes by 50%.On the right the tree after hiding all failed subtrees is displayed.4 First-Class Computation SpacesSection 2 shows that computation spaces are central to constraint program-ming in Oz. This is reected by the fact that computation spaces are �rst-class entities, and that search engines are built from operations on them.They can be passed as arguments of procedures, can be tested for equalityand the like. They are abstract values, similar to procedures and cells in Oz(more information on this can be found in [18]). They can be created, theirstatus can be asked for, they can be copied, merged with other computationspaces and additional constraints can be injected into them.Besides of the constraint store and propagators, a computation spacealso hosts threads. Like propagators, threads are concurrent computationalentities. A thread is a stack of statements. It runs by reducing its topmoststatement, possibly replacing the reduced statement with new statements.Threads synchronize on their topmost statement: if the topmost statementcannot be reduced, the entire thread cannot be reduced; we say it suspends.Statements include procedure application, procedure de�nition, variable dec-laration, sequential composition of statements, tell statements, conditionalstatements, thread creation statements, propagator creation, and so-calledchoices. A choice is either unary (choice S end) or binary (choice S1 []S2 end) where S, S1, and S2 are statements called alternatives. A threadthat contains a choice as its topmost statement suspends.Computation in Oz usually is carried out in the so-called toplevel com-putation space. Computations involving constraint propagation and distri-bution are speculative. They are encapsulated in a �rst-class computationspace. First-class computation spaces lead to a tree of computation spaces.Telling a basic constraint amounts to telling the constraint also in all spacesbelow. By this, the tree of computation spaces maintains the invariant thatall constraints in a parent space are visible in the spaces below.Reduction of the statement S={NewSpace P} creates a new computationspace, where P is a unary procedure and S yields a reference to the newlycreated space. The newly created space inherits its constraint store from itsparent space. It features a single fresh variable, the so-called root variable.In S a thread is created that contains as single statement the applicationof P to the root variable. Typically, the procedure P is the problem to besolved, and its single argument gives access to the solution of the problem(see the procedure Photo in Section 3). Running the newly created thread7



proc {DS Xs}choicecase {SelectVar Xs} of nil then skip[] [X] then N={SelectVal X} inchoice X=N {DS Xs} [] X\=:N {DS Xs} endendendend Figure 2: Programming a distribution strategy with choices.might create variables, constraints, propagators, and further threads.A computation space S is stable if no thread and no propagator in S canreduce, and cannot become reducible by basic constraints told in a spaceabove. A computation space S is failed if it contains a failed propagator.When a computation space becomes stable and contains a thread with aunary choice as its topmost statement, the unary choice is replaced by itsalternative. This means that the alternative of a unary choice synchronizeson stability. A stable computation space not containing threads with unarychoices but with binary choices as their �rst statements is called distributable.When a space becomes distributable one thread containing a binary choiceas its topmost statement is selected. A stable space is succeeded , if it doesnot contain threads which suspend on choices.A computation space S can be asked by A={Ask S} for its status. Assoon as S becomes stable, the variable A gets bound. If S is failed then A isbound to the atom failed. If S is distributable, A is bound to alternatives.Otherwise, A is bound to succeeded.How to program a distribution strategy like that mentioned in Section 2from choices is shown in Figure 2. The procedure DS takes a list of �nitedomain variables. After synchronizing with the unary choice on stability,SelectVar selects a variable if possible and then creates a binary choice.A distributable space S allows to commit to one of the alternatives ofthe selected choice. By {Commit S I} the space S commits to the I-th al-ternative of the selected choice. That means that the choice is replaced byits I-th alternative. To explore both alternatives of a selected choice, stablecomputation spaces can be cloned. Reduction of C={Clone S} creates a newcomputation space C which is a copy of the space S.The constraints of a local computation space S can be accessed by theprocedure Merge. Reduction of X={Merge S} merges a stable computationspace S with the current computation space and binds the variable X to theroot variable of S.A procedure DF which takes a space as argument and tries to solve itfollowing a depth-�rst strategy is shown in Figure 3. If no solution is found,but search terminates, the empty list nil is returned. Otherwise the proce-dure returns the singleton list [T] where T is a succeeded computation space.For example, solving the Photo problem from Section 3 and displaying its8



fun {DF S}case {Ask S}of failed then nil[] succeeded then [S][] alternatives then C={Clone S} in{Commit S 1}case {DF S} of nil then {Commit C 2} {DF C}[] [T] then [T]endendend Figure 3: Depth-�rst exploration.solution can be done by:case {DF {NewSpace Photo}}of nil then {Browse �No solution�}[] [S] then Root={Merge S} in {Browse Root}endFor implementing branch-and-bound search to �nd a best solution a fur-ther primitive is needed. After having found a solution, the constraints in allremaining computation spaces need to be strengthened such that they canonly yield a better solution. For this the operation {Inject S P} is provided,it applies the unary procedure P to the root variable of the space S.The presentation here has been simpli�ed in that we only consider binarychoices. Oz in fact provides also for non-binary choices, this requires theoperations Ask and Commit to be enhanced in a straightforward manner.Previously we developed the so-called search combinator [16]. It spawns alocal computation space and resolves remaining choices by returning them asprocedures. First-class computation spaces are more expressive, the searchcombinator can be expressed by combining the operations Ask, Clone, andCommit. Having only a combination of these operations available turned outto be too limited for some inference engines. The Explorer is one particularexample where the expressiveness of the search combinator turned out tobe inadequate: Section 8 shows how the Explorer employs recomputationwhich would not have been possible with the search combinator.5 The ExplorerDirect use and manipulation. The Explorer is provided as an object inOz. It can be invoked by applying the object to a message containing theproblem to be solved. Its usage does not require any modi�cation of theproblem. To search for a best solution, an order implemented as a binaryprocedure must be provided as an additional argument. After having appliedthe Explorer to the problem, all actions can be invoked by mouse-clicking,menu-selection, or keyboard accelerators. Since the Explorer is provided as9



an object, creating new instances of the Explorer is possible by creating newobject instances.Interactive and incremental exploration. Search can be used inan interactive fashion: the user can explore any part of the search tree ina step-by-step manner. Thus, promising paths in the search tree can befollowed without being forced to follow a prede�ned strategy. Furthermore,depth-�rst exploration of the search tree for one solution or for all solutionsis supported. The Explorer is fully incremental: exploration of the searchtree can be stopped at any time and can be resumed at any node.Ergonomic visualization. After creation of the search tree, the Ex-plorer computes a layout for the newly created part of the search tree andupdates the drawing of the tree. The drawn tree can be scaled by directmanipulation of a scale bar. Any subtree of the search tree can be hiddenby replacing it with a small triangle. Special support is provided to hidesubtrees which contain only failed leaves. By visualizing the search tree onecan gain insights into the search process. How are the solutions distributed?Is a �rst solution found without too many failed nodes? Is it hard to proveoptimality of the last solution found? The possibility of hiding failed partsof the search tree assists �nding relevant paths leading to solutions.User-de�ned access to constraints. All but the failed nodes carry asinformation their computation spaces. Each node's space can be displayedwith user-de�ned or prede�ned display procedures. It is also possible to com-pare the spaces attached to any two nodes, which assists in understandingwhat is the di�erence in the constraints between two nodes.Statistics support. Besides brief statistical information the Explorerprovides in a status bar, it is possible to display statistical information foreach subtree. User-de�ned procedures can be used to process and displaythe statistical information. For instance, a bar chart showing how manyfailures occur between solutions can help to understand how hard it is toprove optimality in best solution search.6 Implementing the ExplorerThe implementation of the Explorer is divided into three parts:1. The search engine that constructs and maintains the search tree.2. Laying out and drawing the tree. That includes support for scalingthe tree, as well as support for hiding and unhiding of subtrees.3. The user interface which provides for menus, cursor control, graphicaldialogs for options and the status bar.The user interface controls the invocation of operations on the searchtree. The search engine manipulates a search tree that is implemented as atree of objects. Each node is an object which stores a �rst-class computation10



fun {CreateNode S}case {Ask S}of failed then {New FailedNode init}[] succeeded then {New SolvedNode init(S)}[] alternatives then {New ChoiceNode init(S)}endendclass FailedNodemeth initskipendendclass SolvedNodeattr spacemeth init(S)space <- Sendend
class ChoiceNodeattr space kidsmeth init(S)space <- Sendmeth stepLC={Clone @space} RC={Clone @space}in {Commit LC 1} {Commit RC 2}kids <- [{CreateNode LC} {CreateNode RC}]endendFigure 4: Search tree creation.space in its state. The class the object is created from depends on the spaceto be stored, i.e., whether the space is failed, succeeded, or distributable.Each of these classes is created by multiple inheritance from classes whichprovide for the di�erent kinds of methods needed. Invoking an operation atthe user interface sends a message to the object and leads to execution ofthe corresponding method.The methods for computing the layout use an incremental version of thealgorithm presented in [10]. The graphical part of the user interface and thedrawing of the tree uses the object-oriented graphics interface to Tcl/Tk [13]available in Oz [11]. We �rst considered using existing tools for computingand drawing layouts for graphs (e.g., VCG [14], daVinci [6]). Unfortunately,it is hard to design a powerful user interface since the tools have a userinterface on their own which can be customized in a limited fashion only.More severe, they fail to support e�cient incremental updates of the drawntree.7 Creation of the Search TreeThe search tree is represented as a tree of objects where objects representingsolved or choice nodes carry their computation space as part of their state.Construction of the search tree is started with creating the root node. If theExplorer is given the unary procedure P as the problem to be solved, theroot node is created by: 11



meth recompute(S)case {IsInt @space} then{@parent recompute(S)} {Commit S @space}else S={Clone @space}endend Figure 5: Recomputing spaces in the search tree.RootNode={CreateNode {NewSpace P}}The procedure CreateNode (as shown in Figure 4) takes a space S as inputand returns an object that is an instance of a class corresponding to thestatus of S. The procedure New creates a new object of the given class andinitializes the object by applying it to the initialization message supplied.Figure 4 shows the classes from which CreateNode creates the search tree'sobjects. The method step of the class ChoiceNode explores the children of agiven node which are stored under the attribute kids. They are created asgiven by the computation spaces obtained by committing to the respectivealternatives. Having the nodes of the search tree represented by objectswith attributes referring to parents and children makes it straightforward toimplement operations such as depth-�rst search for a next solution.8 Using RecomputationThe implementation shown so far is not suited for large problems. Theproblem is that every node carries a computation space. Computation spacesmay contain a large number of variables, constraints and propagators, thusthe Explorer might use too much memory.We trade space for time by using re-computation: Only few spaces are stored,the non-stored spaces are recomputed whenneeded. The Explorer uses as con�gurableparameter the so-called recomputation dis-tance. A recomputation distance of n means that only at every n-th layer inthe tree computation spaces are stored. The �gure above shows nodes withspaces stored as �lled for n = 2.To implement recomputation, the attribute space of an object eitherholds the space itself or an integer. The integer value is i if the node cor-responds to the i-th alternative of the parent's computation space. Thenrecomputation of the space can be implemented by the method shown inFigure 5. Sending a node the message recompute(S) binds S to the corre-sponding computation space. If the object stores a space, a copy of thatspace is returned in S. Otherwise, the computation space of the node's par-ent is recomputed recursively and this space is committed to the alternativecorresponding to the node. 12



9 Some Performance FiguresThis section gives some rough performance and memory usage �gures in-tended to show the Explorer's practicality. To give an idea, �nite domainprogramming in Oz is competitive in speed with other CLP systems (per-formance �gures for some scheduling problems can be found in [19]). All�gures have been taken with DFKI Oz 2.0.3 on a PC with a Pentium 133MHz Processor running Linux 2.0.27 where the heap memory was �xed to 8Megabytes. Drawing times are given as wall time, which includes the timespent in the window manager.The overhead incurred by the Explorer compared to a non-visual searchengine depends on how much runtime is spent on constraint propagation.The harder the problem, the less relative overhead the Explorer incurs. Here,we choose the bridge example [4], a medium-sized scheduling problem. Itssearch tree consists of 743 nodes (371 choice, 3 solved, and 369 failed). TheExplorer takes 2:09 seconds to search for the best solution compared to1:75 seconds for a non-visual Oz search engine (a relative overhead of 19%).Drawing takes another 1:73 seconds for the entire tree. If failed subtrees arehidden away (see Section 5) drawing takes 0:77 seconds.Even large search trees can be handled. Searching for all solutions of the11-Queens problem (there are 2680 solutions) creates a tree of 48897 nodes.Creation time is 35:6 seconds (compared to 15:0 seconds for a non-visualsearch engine), drawing time is 40:1 seconds, if failed subtrees are hidden,and 103:5 seconds otherwise. The search tree needs 4366 Kilobytes, if allcomputation spaces are recomputed when needed (i.e., the recomputationdistance is in�nite).10 Related WorkIn the following we relate the Explorer to the Grace tool [12], which is builton top of the ECLiPSe Prolog system [1]. The Grace tool is intended to sup-port the development and debugging of �nite domain constraint programs.Rather than using the metaphor of a search tree, it maintains and displaysa backtracking history of the �nite domain variables involved.Exploration of the search space is not user-guided but �xed to a depth-�rst strategy. In contrast to the Explorer it allows tracing of constraintpropagation. The display of information supports di�erent levels of detail,but cannot be replaced by user de�ned display procedures. To use the Gracetool the user's program requires modi�cation.In the area of parallel logic programming, tools are used to visualize theparallel execution of programs, e.g., the Must Tool [9] and the VisAndOrTool [2]. These tools also visualize the (OR-parallel) search process, howeverthey are designed to be used o�-line. During execution of a program a trace�le is created. After execution has �nished, the tool is used to visualize andanalyze the created trace. This is very di�erent from the Explorer, where13



exploration is interactive and user-controlled and where the user has accessto the constraints of the search tree.AcknowledgementsI would like to thank all users of the Oz Explorer who helped to improveit. I am grateful to Gert Smolka for a program on which the example inSection 3 is based, and to Martin Henz, Leif Kornstaedt, Tobias M�uller,Joachim Niehren, Gert Smolka, Peter Van Roy, JoachimWalser, J�org W�urtz,Detlev Zimmermann, and the anonymous referees for providing very helpfulcomments on this paper.The research reported in this paper has been supported by the Bundes-minister f�ur Bildung, Wissenschaft, Forschung und Technologie (FTZ-ITW-9105 and FTZ-ITW-9601), the Esprit Project ACCLAIM (PE 7195), andthe Esprit Working Group CCL-II (EP 22457).References[1] A. Aggoun, D. Chan, P. Dufresne, E. Falvey, H. Grant, A. Herold,G. Macartney, M. Meier, D. Miller, S. Mudambi, B. Perez, E. VanRossum, J. Schimpf, P. A. Tsahageas, and D. H. de Villeneuve.ECLiPSe 3.5. User manual, European Computer Industry ResearchCentre (ECRC), Munich, 1995.[2] M. Carro, L. G�omez, and M. Hermenegildo. Some paradigms for visual-izing parallel execution of logic programs. In International Conferenceon Logic Programming, pages 184{200, Budapest, 1993. MIT Press.[3] D. Diaz and P. Codognet. A minimal extension of the WAM for clp(FD).In International Conference on Logic Programming, pages 774{790, Bu-dapest, 1993. MIT Press.[4] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving Large Com-binatorial Problems in Logic Programming. Journal of Logic Program-ming, 8(1-2):74{94, 1990.[5] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, andF. Berthier. The constraint logic programming language CHIP. In Pro-ceedings of the International Conference on Fifth Generation ComputerSystems FGCS-88, pages 693{702, Tokyo, 1988.[6] M. Fr�ohlich and M. Werner. Demonstration of the interactive graph vi-sualization system daVinci. In Graph Drawing, DIMACS InternationalWorkshop GD'94, LNCS 894, Princeton, USA, 1995. Springer Verlag.14



[7] M. Henz, G. Smolka, and J. W�urtz. Object-oriented concurrent con-straint programming in Oz. In Principles and Practice of ConstraintProgramming, pages 29{48. The MIT Press, Cambridge, MA, 1995.[8] ILOG. ILOG Solver. URL: http://www.ilog.com/.[9] R. Karlsson. A High Performance OR-parallel Prolog System. PhDthesis, Swedish Institute of Computer Science, Kista, Sweden, 1992.[10] A. J. Kennedy. Drawing trees. Journal of Functional Programming,6(3):527{534, 1996.[11] M. Mehl and C. Schulte. Window programming in DFKI Oz. DFKIOz documentation series, German Research Center for Arti�cial Intel-ligence (DFKI), Saarbr�ucken, Germany, 1997.[12] M. Meier. Debugging constraint programs. In Proceedings of the FirstInternational Conference on Principles and Practice of Constraint Pro-gramming, LNCS 976, pages 204{221, Cassis, France, 1995. SpringerVerlag.[13] J. K. Ousterhout. Tcl and the Tk Toolkit. Professional ComputingSeries. Addison-Wesley, Cambridge, MA, 1994.[14] G. Sander. Graph layout through the VCG tool. In Graph Drawing,DIMACS International Workshop GD'94, LNCS 894, pages 194{205,Princeton, USA, 1995. Springer Verlag.[15] V. A. Saraswat and M. Rinard. Concurrent constraint programming.In Proceedings of the 7th Symposium on Principles of ProgrammingLanguages, pages 232{245, San Francisco, CA, 1990. ACM Press.[16] C. Schulte and G. Smolka. Encapsulated search in higher-order concur-rent constraint programming. In Logic Programming: Proceedings ofthe 1994 International Symposium, pages 505{520, Ithaca, NY, 1994.The MIT Press.[17] G. Smolka. The de�nition of Kernel Oz. In Constraints: Basics andTrends, LNCS 910, pages 251{292. Springer-Verlag, 1995.[18] G. Smolka. The Oz programming model. In Computer Science Today,LNCS 1000, pages 324{343. Springer-Verlag, 1995.[19] J. W�urtz. Constraint-based scheduling in Oz. In Symposium on Opera-tions Research, LNCS, Braunschweig, Germany, 1997. Springer-Verlag.To appear.
15


