The First-Order Theory of Ordering Constraints over Feature Trees
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Abstract precisely, this means that every word of features in the tree

The system FJ of ordering constraints over feature ~domain oft; belongs to the tree domain of, and that the
trees has been introduced as an extension of the systen{partial) labeling function of; is contained in the labeling
FT of equality constraints over feature trees. We investi- function oft,. In this case we write; < To.
gate the first-order theory of ETand its fragments, both We consider the systefAT< of ordering constraints
over finite trees and over possibly infinite trees. We prove over feature trees [15,17,18]. Its constraifitare given
that the first-order theory of FTis undecidable, in con- by the following abstract syntax:
trast to the first-order theory of FT which is well-known to B p
be decidable. We determi}rqe the complexity of the entail- ¢ u=x<xX | XX | a) | 970
ment problem of FI with existential quantification to be  The constraints oF T< are interpreted in the structure of
PSPACE-complete, by proving its equivalence to the inclu- feature trees with the weak subsumption ordering. We dis-
sion problem of non-deterministic finite automata. Our re- tinguish two cases, the structure of finite feature trees and
duction from the entailment problem to the inclusion prob- the structure of possibly infinite feature trees. A constraint
lem is based on a new alogrithm that, given an existential x<x' holds if the denotation of weakly subsumes the de-
formula of F&, computes a finite automaton which ac- notation ofx’, x[f]x’ is valid if the denotation ok has an

cepts all its logic consequences. edge at the root that is labeled with the featti@nd leads
. to the denotation of’, anda(x) means that the root ofis
1 Introduction labeled witha.

Feature constraints have been used for describing The constraint systeT< is an extension of the well-
records in constraint programming [28, 33] and record-like investigated constraint systefT, which provides for
structures in computational linguistics [11,21,24]. Fea- equality constraints=y rather than more general ordering
ture constraints also occur naturally in type inference for constraintsx<y. The full first-order theory of T is de-
programming languages with object types or record types cidable [3] and has non-elementary complexity [34]. The
[4,20,22]. decidability question for the first-order theory BT< has

Following [1-3], we consider feature constraints as been raised in [17]. There, two indications in favour of de-
predicate logic formulas interpreted in the structure of fea- cidability have been formulated: its analogyRd and its
ture trees. A feature tree is a tree with unordered edgesrelationship to second-order monadic logic (we will dis-
labeled by features and with possibly labeled nodes. Fea-cuss this below). In contrast, we show in this paper that
tures are functional in that the features labeling the edgesthe the first-order theory of FJ is undecidable Our re-
departing from the same node must be pairwise different. sult holds in the structure of possibly infinite feature trees
The structure of feature trees gives rise to an ordering in aand, more surprisingly, even in the structure of finite fea-
very natural way which is calledreak subsumption order-  ture trees. Our proof is based on an encoding the Post Cor-

ing in [6]. Consider for example: respondence Problem using a technique of [30].
address Once the undecidability of the first-order theory of
address Stry/ &me FT< is settled, it remains to distinguish decidable frag-
< string ments and their complexity. It is well-known that
street . - - . .
ﬁrst/ \Iast the satisfiability problem of T, its entailment problem
string string  string ¢ =¢’, and its entailment problem with existential quanti-

Intuitively, a feature trea; is smaller than a feature fiers$ =3x;...3%,¢’ can be solved in quasi-linear time.
treet, if T4 has fewer edges and node labels tarMore The investigation of ordering constraints was initiated



by Doérre [6] who gave arO(n®)-algorithm for decid- a weakening of subsumption. The subsumption ordering
ing satisfiability ofF T<-constraints. This result was im-  between feature structures [5, 12, 26] is omnipresentin lin-
proved toO(n%) in [18], where also the entailment prob- guistic theories like HPSG (head-driven phrase structure
lem of FT< concerningquantifier-freejudgementsp |= grammar) [21]. According to the more general view of
¢’ was shown decidable in cubic time. The next step [6,27], the subsumption ordering and the weak subsump-
towards larger fragments of the theory Bfl< was to tion ordering are definable between elements of an arbi-
consider entailment judgments with existential quantifica- trary feature algebra (not only between feature structures).
tion ¢ =3x1...3x,¢’ which are equivalent to unsatisfia- This logical perspective enables the definition of subsump-
bility judgmentsp A =3x; ... 3%, ¢’ with quantification be-  tion (resp. weak subsumption) constraints [7] which are
low negation. As shown in [17], this problem is decid- interpreted with respect the subsumption (resp. weak sub-
able, coNP-hard in case of finite trees, and PSPACE-hardsumption) ordering of arbitrary feature algebras. Syntac-
in case of arbitrary trees. Decidability is proved by reduc- tically, subsumption constraints, weak subsumption con-
tion to the entailment problem with existential quantifiers straints, andFT< constraints coincide but semantically
in the related structure of so-calledfficiently labeledea- they differ. As proved in [7], the satisfiability problem
ture trees. Since the full first-order theory of ordering con- of subsumption constraints is undecidable. The satisfiabil-
straints that over sufficiently labeled (finite) feature trees ity problem of weak subsumption constraints is equivalent
can easily be encoded in (weak) second order monadicto the satisfiability problem df T< constraints [6, 18] and
logic, decidability of entailment follows from the classical hence decidable in cubic time.
results on (W)S2S [23, 29]. For the full version containing all proofs see [19].

This paper contributes the exact complexity of the en-
tailment problem ofF T with existential quantification. 2 Ordering Constraints
We prove PSPACE-completeness, both in structures of fi-  The constraint systeri T< is defined by a set of con-
nite trees and of possibly infinite trees. This result is ob- straints, the structure of feature trees, and an interpreta-
tained by reducing the entailment problemFT< with tion of constraints over feature trees. We assume an infi-
existential quantifiers to the inclusion problem of non- nite set? of variablesranged over by,y,z, a set¥ of at
deterministic finite automata (NFA), and vice versa. Our least twofeaturesranged over byf,g and a set_ of labels
reduction of entailment is based on the following idea: ranged over by, b.
Given an existential formulax$ we construct an automa-

ton that accepts all its consequences in form of so called Feature Trees. A pathttis a word of features. Thempty
path constraints. The inverse reduction has already beemyathis denoted by and the free-monoid concatenation of
presented in [17] in the case of possibly infinite trees. Sur- pathsirand asmt. A path is called aprefix of tif
prisingly, we can adapt this reduction to the structure of r— i/t for some pattrt’. A tree domairis a non-empty
finite trees by inverting all ordering constraints used there. prefix closed set of paths.

A feature treet is a pair(D, L) consisting of a tree do-

Applications and Related Work. The application do- main D and a partial fgncﬂorh. :D — L that we callla-
beling functionof t. Given a feature treg,

n"_nains of ordering constraints over featu_re trees are quiteWe write D- for its tree domain and. for  To= ‘ f
diverse. They have been used to describe so-called CoOr5, o Iabelingr function. For instance:‘,o _ a
dination phenomena in natural language [6] but also for ({e. ), {(f.a)}) isaféaturetreewith domaidy, = {&, f}
the analysis of concurrent constraint programming lan- AR e 0 C
guages [16]. The less general equality constraints overff’mql‘TO - {(f_’ @}' Afeaturg tree iginite f 't$ tree domain
feature trees are central to constraint based grammars, anéf finité, andinfinite otherwise. Anode oft is an element
they provide record constraints for logic programming [28] ©f Dr- A nodetof T is labeled with aif (. a) € L. A
or concurrent constraint programming [13,25]. In con- nod_e oftis unlabeled if it is not Iabelled by aray Theroot
current constraint programming, entailment with existen- Of 1S the nodee. Theroot labelof Tis Lt(¢), andf € F
tial quantification is needed for deciding the satisfaction of 1S @root featureof Tif f € Dy. Given a trea with 1€ Dy,
conditional guards. As mentioned above, our results are W& Write ast[r{ the subtree of at pathrt, formally Dy =
also relevant for constraint-based inference of record types{T | 70T € D} andLyy = {(17, @) | (10T, @) € L}
and object types. In this context, the entailment test has
recently received some attention as a justification for con- syntax and Semantics. An FT< constraint¢ is defined
straint simplification and as a means to check type inter- py the apstract syntax N
faces [4,9,10, 14,22, 32].

Originally, weak subsumption has been introduced as o = xy | ax | Xfly | ¢1Ad2



An FT< constraint is a conjunction dfasic constraints
which are eitherwordering constraints Xy, labeling con-
straints &x), or selection constraints[X]y.

We define the structureT< over feature trees in which
we interpretF T< constraints. Its universe consists of the

Example 2 The formula pxXx[0]x A X[1]x) is satisfied in
FT< by the full binary, everywhere unlabeled tree, and is

not satisfiable irFTln sinceFTln contains no infinite trees.

We can now express thatdenotes an atom in the lattice-

set of all feature trees. The constraints are interpreted astheoretic sense, i.e. that it is a minimal tree strictly greater

follows:
TlSTZ |ff D'[l g D'[Z andL'[l g LTZ
1[f]tz  iff Dy, ={m| frte Dy} and
LTZ = {(T[v a) ‘ (fT[a a) € LT:L}
at)y iff  (e,@) €l

The substructure oFT< whose universe contains only
the finite trees is denoted bS/T;”.

First-Order Formulas. If not specified otherwise, a for-
mula is said to be valid (satisfiable) if it is valid (satisfiable)
both in FT< and FT'L”. Let ® and @' be first-order for-
mulas built fromF T< constraints with the usual first-order
connectives. We say thdt entails®’, written ® = @', if

® — @' isvalid, and thatb is equivalento @' if ® <+ @' is
valid. We denote withl/(®) the set of variables occurring
free in®, and with# (d) and L(®P) the set of features and
labels occurring inb.

3 Expressiveness of the Theor§T<
In this section we introduce some abbreviations of for-

mulas needed in Section 4. We use the usual abbrevia-

tions for ordering constraints, for instance we writey
for x<yAXx £y, andx>y for y<x.

3.1 Minimal and Maximal Values

We can construct, for any formudg formulasux¢ and
vx$ expressing that is minimal (maximal) with the prop-
erty ¢:

b A =3y (Dly/X] Ay<x)
oA =3y (dly/X] Ay>X)

Here,y is a fresh variable not occurring i, and$[y/x]
denotes the formula where every free occurrenceiefe-
placed byy. Typically, x occurs free inp but this is not
required. Note that, in contrast¥x and3x, ux andvx are
no variable binders that restrict the scope of the varigble
hencexis free inux¢ and invx¢ if it is free in ¢. The for-
mulaspx$ andvx¢ do notstate thak denotes the smallest
(resp. greatest) tree satisfyithgin fact such a tree may not
exist. This difference is important for the formwsm(x)
defined below.

Hx¢
VX

Example 1 The sentencéx (uxtrug is valid in FT< and
in FT;” (there even exists a smallest tree, nani¢d}, {}).

than the smallest trege}, {}), by:

one-dist(X,y) := (X<y A —3z(X<z<Yy))

atom(x) := 3y ((py true A one-dist(y, X))

3.2 Label Restrictions
The formulax ~ y readsx and y are consistent
X~ yi=3z2(X<zAY<2)

For any labeh € £ we writex ~ ato express that the root
of xis either unlabeled or labeled with

X~ a:=3Jy(x<yAaly))

The following formula expresses that the root of a tree is
unlabeled:

not-root-labeled(X) := X~ aAx~ b

wherea andb are two arbitrary different label symbols.
We obtain a first-class status of labels by encoding a label
aas the feature tregle}, {(¢,a)}).

label-atom(x) := atom(Xx) A —not-root-labeled(X)

We can now express thatandy either have the same root
label or are both unlabeled at the root by

same-root-label(Xx,y) :=
Vz(label-atom(z) — (X~ 2+ y ~ 2))

3.3 Arity Restrictions
We can simulate a first-class status of feature symbols
by encoding a featuré by the treg({g, f},0).

feature-atom(X) := atom(X) A not-root-labeled(X)
The following formula expresses thahas exactly the root

featuresfy,..., f:

n
{1, ) i= I, % (/\x[fi]xi/\
n
vy (\ Yl fi]x A same-root-label(x, y) — ng))
i=1



These so-calledrity constraintshave been introduced — Otherwise lett’ be such that[s]t’. We definey(t) = a-
in [28]. A decidable feature logic where feature and label y(t') if T has root labeh, andy(t) = b - (1) if T has root
symbols have first class status has been investigated in [31]labelb.

The next formula is crucial for our undecidability proof. A To express thay denotes the fixed wordt appended
treet satisfies this formula iffe,c} C D; C {c}* and all with the denotation ok, we define for anyte {a,b}* a
its nodes are unlabeled: formulaappy(x,y), such thatpp,[t,7] iff y(T') = ny(1),

by induction onrt
string-c (X) := x{¢ } A not-root-labeled(x) A Jy (X[c]y A y<X)

appe(X,Y) x=y
In general, we have that appan(xy) = a(y)A3z(y[s]zAappn(X,2))
appp(%,y) = b(y) A3z(y[s]zAappn(x,2))

Lemma 3.1 The formulady (X[ f]y A y<X) is satisfied by
iff f € Dr and whenever & m, f", f™ € Dy, then Furthermore, we defineps(x), expressing that denotes a

ettt
LM< treet with y(t) = ¢, by
=3 VA VvV =b
4 Undecidability Results eps(x) ==~y Xslyv-a(x) v =b(x)

Theorem 4.1 The first-order theories dﬂﬂ” andFT< are Finally, the following formula expresses thatenotes a
undecidable. N finite string:
The result holds for arbitrary (even empt§)and for ¥ finite(X) := =3y (Y[S]y A Y<X)

of cardinality > 2, we use however, for the sake of clar-
ity, distinct label symbola, b and pairwise distinct feature  |n case of/:fl” this formula is, of course, equivalent to
symbolss,c,p,l ,r. We prove Theorem 4.1 by reduction trye. -
of the Post Correspondence Problem (PCP). See [30] for a
discussion of the proof technique employed in this chapter. 4.2 P-Constructions

An instance of PCP is a finite sequende = Provided an appropriate encoding of sets of pairs of
((pi,Gi))i=1,...m Of pairs of words from{a,b}*. Such  words and a predicaie(x,x,s), expressing that the pair

an instance issolvableif there is a nonempty sequence (x;,x;) is member of the set we can express thais aP-

(i1,...,in), 1<ij <m, suchthap, --- pi, = G, - - - Gi,- Ac- constructible set of pairs of words and tiais solvable:
cording to a classical result due to Post, it is undecidable
whether an instance of the PCP is solvable. constructionp(s) := Vy,y (in(y,y,s) —

In the following, letP = ((pi,qi))i=1,..m be a fixed in-

stance of PCP. We say that a pairw) is P-constructed (eps(y) neps(y) vz Z (in(zZ,5)7

from a pair of wordgV',w') if, for somej, v= p;Vv and Vi=1.m(appp, (zy) /\apqu(z’,y’)))))
w = qg;w. To encode solvability oP into the theory of solvablep := 3s(3x (in(X, X, s) A ~eps(X) A finite(X))
FTln, resp.FT<, we employ the following equivalent defi- Aconstructionp(s))

nition of solvability:

Proposition 4.2 P is solvable iff there is a set X of pairs

of words containing a paifw,w) with w# €, such thatev-  Lemma 4.3 For all predicatesin(x,y,z), if solvablep is

ery pair in X is either(g, €) or is P-constructed from some  valid then the instance P of the Post Correspondence Prob-
other pair in X. lem is solvable.

4.1 Words and Trees

There is an obvious one-to-one encoding function
from words in{a,b}* to feature treesy(w) = (Dw,Lw)
whereDy, = {¢,..., s}, Ly(s)) =wjfor0< j <|w -1,
andLy(s ™)) undefined.

We define a left-inverse functiop that isy(y(w)) =
w, from finite feature trees to words fa,b}* as follows: Lemma 4.4 There is a predicatén(x,y,z) such that if the
If T does not have root featuse or if its root is unlabeled  instance P of the Post Correspondence Problem is solvable
or has label different frona and fromb theny(t) = ¢. thensolvablep is valid.

Proof. Let o be a fixed value fos such thatsolvablep
holds. We show by induction thatiii(t, ', o) is satisfied,
then (y(1),y(t")) is finitely constructible according to the
instanceP of the Post Correspondence Problem. O
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Figure 1: Representation of a sequence of pairs of treesFigure 2: A possible value forx such that

(U5, T9))i=1,.n

Proof. Since we know already how to encode words as

trees, we now have to define an appropriate encoding of /\
an arbitrary set of pairs of trees as a feature tree, together

with a corresponding formula. The representation of a
sequenceT';,T')); is given in Figure 1. We define, for
any formulad, a formulap!x¢ expressing that denotes

thesmallestelement satisfying (this formula must not be
confused withux¢):

WX = AVY (9[y/X] = x<y)

If x denotes a tree as given in Figure 1, then the formula
one-branch(x,X') given below expresses thdtdenotes a
tree as given in Figure 2.

one-branch(x,X') := Ix¢ (VXc (string-c(Xc) A X<X)
AVX (X <xAFz(Wz(x:.<z<X))))

In this formula,X is smaller tharx but is strictly greater
than thec-spinex; of x. The treex' can have only one of
the p-edges ofx since the set of trees betwernand X
must have a smallest element. By the maximalityof
the treex' containsx; plus exactly one of the subtreesyof
starting with ap-edge (see Figure 2). The following for-
mulaselect(t', 1", 0), whereo is as in Figure 2, expresses
thatt' is the treer'; andt' is the trea’;:

select(yr,Yr,X) = 3IX (X (XX ATX' (X[c]X' AX'<X))
A3z(X [p]zAZ]l Iy AZr ]yr))
From a treeo as given in Figure 2, we get the treé(de-
noted byx') containing at all nodes! with j <i a pair
(t'}.17) such thatt'i<t'j andt'{<t"} (by Lemma 3.1).
By the minimality ofo’ we get that'; = T} andt'; = 1
for all j, hence in particular foj = O (see Figure 3). Com-
bination of the two formulas yields

in(yi,¥r,X) = 3x’(one-branch(x,X) A select(y,yr,X))

one-branch(x, X' ), wherex is as in Figure 1.

> C
p
[ ] y
/N
l. -["i

.
T |

c
° \
T A\r .

Tli ul

Figure 3: The value ok’ in the formulaselect(y, Yr,X)
wherex is as in Figure 2.

which completes the proof. |

5 Entailment with Existential Quantifiers

In [17] it is shown that the entailment problem of
FT< with existential quantifiersp = 3x¢’ is decidable,
PSPACE-hard in the case of infinite trees and coNP-hard
in the case of finite trees. We settle the precise complexity
of this entailment problem in both cases.
Theorem 5.1 Entailment of F T with existential quantifi-
cationd = Ix¢’ is PSPACE-complete for both structures

FT< andFTe.

In Section 5.3 we modify the PSPACE-hardness proof
given in [17] for the case of infinite trees such that it
proves PSPACE-hardness for both cases (Proposition 5.3).
In particular, we show that we can encode the Kleene-star
operator without need for infinite trees. Containment in
PSPACE is shown (Proposition 5.8) by reducing in polyno-
mial time the entailment problem to an inclusion problem



between the languages accepted by nondeterministic finite
state automata (NFA). Language equivalence for NFA (and

. . . . Ay3y' 337 y3y' 337
hence inclusion, sincé C B «<» B= AUB) is known to be XZ;/ ); y<y
PSPACE-complete if the alphabet contains at least two dis- t | t |

tinct symbols [8]. J< z = xAfg~a = , <y
5.1 Path Constraints g | g |
We characterize existentiflll< formulas3xé by equiv- a(7) a(Z)
alent sets of path constraints (where sets are interpreted as
conjunctions). The abstract syntaxmdth constraints) is
defined as follows: Figure 4: Graphical Presentation of Example 4
Y= axr) | x?Arj~a | xAri<y[r] | x?Ar]~y?[m]
The semantics of path constraints is given by extension x <y
of the structuré=T< through the following predicates. f | f |
. X< X'y~ 7 = x?fgl~a
a(t[m) iff (ma) €L g | 9 |
?[m~a iff 1€ D impliest[rj~a b(x") o2
<[] iff weDyandif

T e Dy thent[m) < T[]

trj~tm] iff if e D and Figure 5: Graphical Presentation of Example 5
T € Dy thent[m]~T1'[17]

Lemma 5.2 For every path constraing there exists an In the next example, a constraint is given that entails
ordering constraintp and variables x....,x, such that  yorf1 a for all a. Note that this constraint thus also en-
W 3. 3xnd. tails the constraints given in the previous example.

In the Section 5.2, we use path constraints for present-
ing typical examples of entailment judgements. Path con-
straints are also helpful for proving PSPACE-hard_ness inx[ F% AX <X AX[GIX" A B(X")A
Section 5.3. In Section 5.5 we will construct a finite au- X<y AY[FY AY <UAUSZ AZ[GZ' Ac(Z') } Ex?fgl~a
tomaton that accepts all path constraiptsntailed by3xé - - =
and thereby reduce the entailment with existential quantifi- ,414s  In other words, ifi is a solution of the constraint

cation to the inclusion problem of finite automata. displayed on the left hand side and if €Dy then fg is

5.2 Examples unlabeled ina(x) and hence compatible with any label a.
A major difficulty in testing entailment with existential

quantifiers is that there exist many equival&W¥< con-

straints of quite distinct syntactic shape. This makes it very Example 6 (Figure 6) The following situation illustrates a

difficult (if not impossible) to apply a standard technique hon-trivial example for entailment of selection constraints

for deciding entailment, which performs a comparison of Without existential quantifiers.

constraints in somej syntactic normal form [1,18,28]. A

first rather simple case is:

Example 5 (Figure 5) If b# c then for all a the judgement

X< VAV[FIVAV <yA _ 0f
y<UAUflUAu<X = xfly
Example 3 The formulady(x<yAa(y)) is equivalent to

x?[e]~awhich is equivalent t8yJz(x<y A z<y A a(z)). The right-hand side [f]y is equivalent to the conjunc-

¢ tion X[ f]<y[e] A y?le] <X f] of path constraints which are
entailed by the first and second line of the left-hand side,
respectively.

We next illustrate a more complex case of equivalen
constraints with distinct syntactic shape.

Example 4 (Figure 4) Both of the following formulas are
equivalent to  fg)~a and hence equivalentto each other: 5.3 Entailmentis PSPACE-hard
We next show that entailment is PSPACE-hard in both
Jy3y3AZ (x<yny(fly Ay <znZglz Aa(Z)) the finite and the infinite tree case. PSPACE-hardness
= 3y3y3IAZ (x<y ATl Az<y AZglZ Aa(Z)) follows from Proposition 5.3, which claims a polynomial
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Figure 6: Graphical Representation of Example 6

reduction of the inclusion problem between regular lan-
guages over the alphabgtto an entailment problem be-
tween two existentiaFT< formulas. Notice that we have
assumedrf to contain at least two features.

Our PSPACE-hardness proof is based on the fact that a

satisfiable ordering constraiftmay entail an infinite con-
junction of path constraints, even in case of finite trees:

Example 7

1. vVn:x[flyAay<xAa(y) = x?[f"]|~a.

2. Vn,m: x[f]x = x?[fM <x[f"].

For this reason the entailment problem féﬂ” does not
necessarily reduce to an inclusion problem between finite
regular languages (which is decidable in coNP [8]). We
consider regular expressions of the following form

R

= 8|f‘R*|R1UR2|R1R2
where f € F. Define, for all regular expressiosand
variablesx andy, the existential formul®(x, R y) recur-
sively as follows.

G)(x.,s./y) = Xy

O fy = Jz(x<zAZfly)
O(XSIUS,Y) = O(xS,y) AO(X S,Y)
O(x,S,y) = Jz(x<zAO(2,5,2) AZ<y)
O(xS%y) = J2O(xS.2A0(zS.Y))

Apparently,©(x,R y) has size linear in the size &

Proposition 5.3 For all variables xy and for every pair of
regular expressionsfand R: O(x,Ry,y) = ©(X,Ry,y) is
equivalenttaL(Ry) C L(Ry).

Proof. Itis sufficient to prove for everRthat®(x, Ry) is
equivalent toA {x?m<y[e] | me L(R)}. This is done by
structural induction oveR, closely along the lines of the
corresponding proofin [17]. |

In comparison to [17], the surprising insight here is that it
needs only a minor modification to modify the PSPACE-

in L(R) constrain at the associated paiovided it ex-
ists in contrast, according to the encoding in [17], a word
in L(R) constrainx at the associated path aredjuires it to
exist The encoding in [17] uses formul&¥(x, R,y) with
the property tha® (x,Ry) = A{yZel<x(m] | e L(R)}

for all R Hence, every solution @& (x,R,y) mapsxto an
infinite tree ifR denotes an infinite language.

5.4 Satisfiability Test

In this section we recall the satisfiability test f6if<
introduced in [18], which we will also need as a prepro-
cessing step in our entailment test in Section 5.5. Clearly,
satisfiability (and hence entailment) depends on the choice
of finite or infinite trees. For instance,f|x is unsatisfiable
in FT™" but satisfiable ifF T<.

Let an extended constrainbe a conjunction of con-
straints @ and (atomic) compatibility constraints~y.
From now on, we will only deal with extended constraints
and freely call them constraints for simplicity.

In the case of infinite trees, we say that an (extended)
constraintp is F-closedif it satisfies the following proper-
tiesforallx,y,z X,y f,a b.

F1.1 x<xe¢ if xe V()

F1.2 x<zed¢ if x<yedandy<ze¢

F2 X<y ed if XfXeod x<yeo,y[flyeo
F3.1 x~yed if x<yed

F3.2 x~zc¢ if x<yedandy~zed

F3.3 x~ye¢d if y~xe¢

F4 X~y edp if XfIXed x~yed,y[flyed
F5 a=b if ax)ed, x~yeod, bly)eod

The rules off1 andF2 require that is closed with respect
to reflexivity, transitivity, and decomposition af. The
rules inF3 andF4 require thath contains all compatibility
constraints that it entails (this is proved in [18]), afsl
requiresh to be clash-free.

In the case of finite trees, we say that a constiguistf-
closedif it satisfiesF1-F5 and the additionabccurs check
propertyF6 foralln> 1,xy,..., X041, Y1, ---Yn, f1,-- -, fn:

F6 xi<xnt1 € ¢ if X[filyiAxi1<yi€d
forall1<i<n

The following result is proved in [18]. It holds in both
cases, for finite trees and for possibly infinite trees, but with
the respective notion d¥-closedness.

Proposition 5.4 There exists a cubic time algorithm that,
given a constraind, computes afi-closed constraint con-
taining ¢ or proves its unsatisfiability. Evefyrclosed con-
straint is satisfiable.

1In comparison to [17], all ordering symbols have been tuaredind,

hardness proof given for the case of infinite trees such thatang in the claus®(x, f,y) we have exchanged the ordering and the se-

it also works in the case of finite trees: Here, every word

lection constraint.



5.5 An Automaton for Path Constraints

In this section we show that for evefyrclosed con-
straint¢ there is a non-deterministic automatdg of size
polynominal in the size o which accepts the set of all
path constraints which are entailed §yand which men-
tion only symbols from a fixed set of variables, labels, and

Overall Structure of the Automaton. If we consider
an entailment problem of the formp|=3x¢’ then we
construct two non-deterministic automa and A,

with the alphabetF (D A YU LAY )U V(P ATxP')U

{<7 ~,?, [7]7 (7)7#}'

" Each automaton constructed falls into four parts (shar-

features. Note thdt-closedness is a necessary assumption ing only the initial stateys and the accepting statg), cor-
for our automaton construction. Note also that the automa- responding to the four kinds of path constraints. We just

ton does not differ in the case of finite and infinite trees,
only the assumed version Bfclosedness differs.

Path Constraints as Words. The automaton accepts all
words () associated with a path constraiptover some
finite sub-alphabet off U LU VU {<,~,?2,[,],(,)}. In
first approximation, le{y) be theconcrete syntaxf .
There is however a serious problem with recognizing the
concrete syntax of entailed constraints:

Example 8 The set of path constraints entailed byxis
{x?m~x?m | me F*} U {x?e]<x[g]} (when restricted to
the variables in xx). If (¢) denotes the abstract syntax of
¢ then the sef(Y) | x<x|= Y} is not regular.

We therefore have to alter the definition(@f) slightly
but fundamentally. The trick is to “factor out” the maximal
common suffix of the two paths in a path constraint of the
form x?[1y)~y?[Te]. More exactly, we add the symbol # to
the alphabet and alter the definition(df) such that:

(XAT]~y2iTe]) = X2~y 2t

wherett” is the longest common suffix af, and T, such
thatmy = T’ andp = WTY'; i.e, in X?[T]~y?[T0 [#1T’ we
require that eithertand’ end with distinct feature sym-
bols or that at least one of them is the empty path. This
solves the problem of Example 8: With respect to the new
definition of (Y) the set{(¢) | x<x |= W} is regular:

{x?e]~x?el#m| me F*}U{x7e]<x[e]}

The definition of(y)) does also adjust some more difficult
regularity problems raised by trivial consequences. All

these consequences are raised by the following valid en-

tailment judgement:
XA~y ?Tt] = X2t |~y AT

Example 9 The set{ (W) | x?[gf]~y?[f f] |= W} restricted
to words with features,fj and variables xy is:

g~y Tl e {1,0)')
U {ZAe~ZAem] ze {xy}}
U {ZAe)<Ze] | z€ {(xy}}

By Lemma 5.2 there exists an existential formula equiva-
lent to X?[g f]~y?[ f f]; in fact, there are many of them.

explain the construction aofly (and equally4y) for the
quantifier free. The automatofy* for the constrainBxd’
is easily obtained fron#ly by filtration of all words con-
taining variables irx that is by removing all transitions la-
beled with a symbol fronx. Note that the local variables
in X do not occur in the alphabet ﬂﬂf;f,; they do only matter
for the definition of its states.

The construction of the automatdty is given in Fig-
ure 7. It is completely spelled out except of one addi-
tional symmetry rule (40) which can be expressed through
a dozen further transitions. In the rest of this section we
explain this construction.

Constraints as Graphs. Our construction of the automa-
ton is motivated by considering constraints as graphs. For
instance, the constraint of Example 4

x<X AX[flyna(y) Az<yAZgly

can be depicted as the following graph, where variables are
represented as nodes.

x < X

/|
z < ay)
kg)

Intuitively, when the automatod, accepts a wordy)
it traverses the constraint graph associated itlvhere
Y is associated a certain traversal pattern. We will depict
such traversal patterns graphically; for instance, the above
graph allows for the following traversal:

In these pictures, the horizontal dimension corresponds
to the ordering< (left to right) and the vertical one corre-
sponds to feature selection (top to bottom).



16 % X 21yl 23 g ax) € ¢
2 Xa - pya xxyeod 22 )HxK S g a(x),b(X) € ¢,a#b
3 & — pd Hflyeo % o E—
a s oar awed 24 \x[h| —5 wih X<y € ¢
5 05 b\ 25 \wWh 5 wif]  xflyeo
6 X Sy x<yeod 26 x| M i h,g]
7 \X TN Xflyed 27 wh\zhg - Wizhg x<yeo
8 w A A 28 \W\zhg — Wizhf] xflyeo
9 M\ = NN\] x>yed 29 \x[\zh,g] B, \X\Z h#Zgvh=g=¢
10 X\ — N xflyed 30 W\zhg -5 )yizhg x~yed
11 MW -5 q 31 yx\zhgd -5 Hyhzhg x>yed
2 & 5w 32 yxpzh.g —f#> wizh f] xflyeo
13 WX = \YY  x<Y,X<Y € ¢ 33 )x\zh,g] -, \%z h#Zgvh=g=¢
14w 5wy Kflx(flyeg| |34 0 o WY xsyxXsy o
15 WX  — NyX  X~YEOD 35 WX — WY X[ fly.X[fly € ¢
16 yxX  — Ny x>YX<y ed 36 XWX % Y% X~yed
17 3w 5 nyy Aflyx[flyeg | |37 WX o WY xsuxey ed
18 ywX - wxy X ~YEod 38 XX — WY X[fly.X[fly € ¢
19 xS pyy xeyx>yed | |39 wx L qr
20 WxX - onyy XEyxX[fly €o | [40  xAmi~y?AmH € L(Fp)

VAT~ € (A

Figure 7: The automatafy recognizing the path constraints implied ¢y

Labeling Path Constraints. The subautomaton com- Ordering Path Constraints. The next group of rules 5—

prising rules 1-4 recognizes all the constrasatg]) en- 11 serves to recognize constraints of the fofajm <y[rT].
tailed by¢. The associated pattern looks as follows. Note that =x?[m <y[r] iff there is az such that
¢ = xAn<7e] 1)
X ¢ Ze<y[m] ()
s
il The associated graph pattern is this one:
a(y)
D Y — X
- am) \ /
\ /
\
In particular, note that rules 2 and 3 allow to derive every LN // i
constraint of the forny?[€] <x[m] entailed byp: N
S————
¢ =yAel<x(n] if /xa] G -

Condition (1) is verified by the rules 6 and 7, while condi-
for any labela. Here, we memorize in the state the label tion (2) is checked by rules 9 and 10 which are analogous
read at the beginning of the constraint (rule 1) to check it to 2 and 3 except that we do not memorize a label but the
against a labeling constraint n(rule 4). variablez found in condition (1).



Example 10 The constraint from Example 6 entaild . Path Compatibility. Rules 23-39 check for constraints

This selection constraintis equivalent to the conjunction of x|~ ?TJ#’.  One possible justification for

the two path constraintsf]<y[e] and y?[e]<x[f]. b =xidm]~x?m#nn’ is that there are variables

I . . y1,Y2,Yo~2z v and pathst”, 7" such thatt? = ’rt¥ and

Os — \X —\V —\V
oy 2 vyl L gy

as oy 5w = ]

s f ] b adfml<yile] ®)
— JUNUT — /U] — g5 o E  yi?Am]<V 9)
— ?)
Label Compatibility. Rules 12—-22 check constraints of ¢ |_ X2 ,)[:[,2,], §<yz[8] (12)
the kind x?[m~a. Note that$ =x?m]~a iff there are L ]—%2[8] (11)
Y,Y,zZ,v,V,b,c andmy, T, TR, T, with TT= TqT, = T, o F Vve<n’] (12)
such that:
These situations correspond to the following pattern:
o = xAmu]<ylg]Ay~z 3)
¢ = xAr<y[e]Ay~Z (4)
6 = VAe<zm], (5) xR
6 = V<Y ®) T B
Y1 y2 "
® = b(v)Ac(V) and (b#cora=b=c) (7) \\ N
The associated pattern look as follows. v \\ ,Z ~ Y
/
Vot
X X
R = x?m]~x?mol#
\
;oo \\ u
/ Yo N The rules 23-29 and 34-39 deal with this situation: Rules
) \ 23-29 and 34-35 consunmg and 1y, rules 37 and 38
) 7~ \)/ the common suffixt that is explicit in the constraint, and
/ L rule 39 an arbitrary common suffix”: In order to guaran-
/ )/ m, tee thatty andm have no common suffix themselves, the
b(\;) c(\/l) automaton must memorize the last featuregimndm and
check them to be distinct before switching in rule 33. In or-
der to allow forry and/or, to equak, the automaton also
= xmmyl~a memorizes whether or not a feature has been consumed at
if (b#cora=b=c)andmm =T, all (rule 26). Slightly abusing notation, we allow forand
We check the conditions (3) and (4) as well as (5) and 9 in these rules to denote either a feature symbal or
(6) in parallel where we assume, by symmetry, thats The second justification is similar but contains the
a prefix ofry. With the names used above, the automaton switch through the compatibility constraint within 1o
consumest by rules 13-14, switchesto zwith rule 15, instead offt; i.e, there are variableg,y2,y>~z Z,v and

then consumes, minus its suffixr, (which is identical pathsT,, T4 such thate, = 15,1, and
to T, minus its prefixm) by rules 16—17, switches forg

to Z in rule 18 and consumes, in rules 19-20. Finally

rules 21-22 check the label constraints (7).

Example 11 In the case of Example 5 we obtain o FE x?ml<ylg] (13)
A e Fo ¢ F i<Vl (14)
G = \WXX == AWy — \W y O £ x?m<yle] (15)
—IWXY = )NX'Z = X7 0 Z7e)<drny] (16)

J~a lel= 2



The associated pattern is:

X1
\\ N
TT \
Ly
\
yi 27

\ /
T['\//
\

/
/ !
e

T

.

X1 2Tl |~ X TG TG [#TU T

For the traversal of this pattern we need the additional

rules 30-33.

Proof. The direction from left to right (correctness) fol-
lows from Proposition 5.5. For the direction from right
to left assume a solutiom of A{Y | (W) € L(A43)}. De-
fine an extensiom’ of a by setting, for allx € 9/(3x¢):

o’'(x) = a(x), and for allx € {x}: o’(x) = T where

Doy = {T1| (AT<XTH) € £( )} U
{TlTl” | Z€EV, ' e Da(z),
(M) <XT0) € L(Ay)}
Lay = {(ma) | a(x[m) e L(Ay)} U

{(m’, @) | zeV, (M, @) € Ly(y,
(M) <X[r]) € L(Ay)}

It is obvious thatDj(x) is prefix closed. The Key

For both situations there also is the symmetric one Lemma 5.6 implies thalty (x) is a partial function. It can

which contains the switch through the compatibility con-
straint ~ in the branch forx;. We do not detail the au-
tomaton checking for these possibilities since its definition
is completely symmetric to the rules 23-39.

5.6 Deciding Entailment in PSPACE

In order to decide) = 3x¢’, we test satisfiability of
and¢ A 3x¢’. By Proposition 5.4, this can be done in time
O(n3) wheren s the size of the entailment problem. If one
of the tests fails, entailment is trivial. Otherwise, we com-
pute theF-closures ofp and ofd’ and define the associated
automatondy andﬁlg, in time O(n®). By Proposition 5.8,
¢ = 3x¢’ if and only ifL(ﬁlj;f,) C L(Ay). This inclusion is
decidable in PSPACE [8].

(W) € L(Ag) then

Proposition 5.5 (Correctness)If
30 = U

Proof. By induction over the paths mentionedin a

Lemma 5.6 (Key) For all paths y,pp, 4,0, variables

X, Y1, Y2, and constraintg:

1 (yiZl<xm]) € L(A) and (a(Xmume])) €
L(Ay) then(y1?uTe]~a) € L(Ay)

2. It (y1 ] <xm]) € L(Ap) and (y2 7] <X[Tu1r2]) €
L(Ay) then({y1 A uTe]~Y2We]) € L(Ap).

The path constraints are indeed expressive enough to
capture all logic consequences of a constraint with existen- 3]

tial quantifiers:

Proposition 5.7 (Characterization) If ¢ is an F-closed
FT< constraint, then

o H o AW (W) e £(A)}

be shown by a case distinction that satisfies all basic
constraints inp’. For details see the full paper [19]. O

Proposition 5.8 (Reduction) Let ¢ and¢’ be closedFT<

constraints anc a sequence of variables such that all free

variables indx¢’ occuring. Further assume that A 3x¢’

is satisfiable. Then
o= it L(AR) CL(A).

Proof. The direction from right to left follows directly

from Proposition 5.7. For the inverse direction we show

that for all with 7/(g) C V(¢) it holds that{y) & £(4y)

implies () ¢ £(A5). For more details, see the full pa-

per [19]. |
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