
The First-Order Theory of Ordering Constraints over Feature Trees

Martin Müller and Joachim Niehren Ralf Treinen
Programming Systems Lab Laboratoire de Recherche en Informatique
Universität des Saarlandes Université de Paris-Sud

Saarbrücken, Germany Orsay, France
www.ps.uni-sb.de/˜{mmueller,niehren} www.lri.fr/˜treinen

Abstract
The system FT� of ordering constraints over feature

trees has been introduced as an extension of the system
FT of equality constraints over feature trees. We investi-
gate the first-order theory of FT� and its fragments, both
over finite trees and over possibly infinite trees. We prove
that the first-order theory of FT� is undecidable, in con-
trast to the first-order theory of FT which is well-known to
be decidable. We determine the complexity of the entail-
ment problem of FT� with existential quantification to be
PSPACE-complete, by proving its equivalence to the inclu-
sion problem of non-deterministic finite automata. Our re-
duction from the entailment problem to the inclusion prob-
lem is based on a new alogrithm that, given an existential
formula of FT�, computes a finite automaton which ac-
cepts all its logic consequences.

1 Introduction
Feature constraints have been used for describing

records in constraint programming [28, 33] and record-like
structures in computational linguistics [11, 21, 24]. Fea-
ture constraints also occur naturally in type inference for
programming languages with object types or record types
[4, 20, 22].

Following [1–3], we consider feature constraints as
predicate logic formulas interpreted in the structure of fea-
ture trees. A feature tree is a tree with unordered edges
labeled by features and with possibly labeled nodes. Fea-
tures are functional in that the features labeling the edges
departing from the same node must be pairwise different.
The structure of feature trees gives rise to an ordering in a
very natural way which is calledweak subsumption order-
ing in [6]. Consider for example:addressstringstreet � addressstring string stringstreet name�rst last

Intuitively, a feature treeτ1 is smaller than a feature
treeτ2 if τ1 has fewer edges and node labels thanτ2. More

precisely, this means that every word of features in the tree
domain ofτ1 belongs to the tree domain ofτ2, and that the
(partial) labeling function ofτ1 is contained in the labeling
function ofτ2. In this case we writeτ1 � τ2.

We consider the systemFT� of ordering constraints
over feature trees [15, 17, 18]. Its constraintsϕ are given
by the following abstract syntax:

ϕ ::= x�x0 j x[f]x0 j a(x) j ϕ^ϕ0
The constraints ofFT� are interpreted in the structure of
feature trees with the weak subsumption ordering. We dis-
tinguish two cases, the structure of finite feature trees and
the structure of possibly infinite feature trees. A constraint
x�x0 holds if the denotation ofx weakly subsumes the de-
notation ofx0, x[f]x0 is valid if the denotation ofx has an
edge at the root that is labeled with the featuref and leads
to the denotation ofx0, anda(x) means that the root ofx is
labeled witha.

The constraint systemFT� is an extension of the well-
investigated constraint systemFT, which provides for
equality constraintsx=y rather than more general ordering
constraintsx�y. The full first-order theory ofFT is de-
cidable [3] and has non-elementary complexity [34]. The
decidability question for the first-order theory ofFT� has
been raised in [17]. There, two indications in favour of de-
cidability have been formulated: its analogy toFT and its
relationship to second-order monadic logic (we will dis-
cuss this below). In contrast, we show in this paper that
the the first-order theory of FT� is undecidable. Our re-
sult holds in the structure of possibly infinite feature trees
and, more surprisingly, even in the structure of finite fea-
ture trees. Our proof is based on an encoding the Post Cor-
respondence Problem using a technique of [30].

Once the undecidability of the first-order theory of
FT� is settled, it remains to distinguish decidable frag-
ments and their complexity. It is well-known that
the satisfiability problem ofFT, its entailment problem
ϕ j= ϕ0, and its entailment problem with existential quanti-
fiers ϕ j=9x1 : : :9xnϕ0 can be solved in quasi-linear time.
The investigation of ordering constraints was initiated

by Dörre [6] who gave anO(n5)-algorithm for decid-
ing satisfiability ofFT�-constraints. This result was im-
proved toO(n3) in [18], where also the entailment prob-
lem of FT� concerningquantifier-freejudgementsϕ j=
ϕ0 was shown decidable in cubic time. The next step
towards larger fragments of the theory ofFT� was to
consider entailment judgments with existential quantifica-
tion ϕ j=9x1 : : :9xnϕ0 which are equivalent to unsatisfia-
bility judgmentsϕ ^ :9x1 : : :9xnϕ0 with quantification be-
low negation. As shown in [17], this problem is decid-
able, coNP-hard in case of finite trees, and PSPACE-hard
in case of arbitrary trees. Decidability is proved by reduc-
tion to the entailment problem with existential quantifiers
in the related structure of so-calledsufficiently labeledfea-
ture trees. Since the full first-order theory of ordering con-
straints that over sufficiently labeled (finite) feature trees
can easily be encoded in (weak) second order monadic
logic, decidability of entailment follows from the classical
results on (W)S2S [23, 29].

This paper contributes the exact complexity of the en-
tailment problem ofFT� with existential quantification.
We prove PSPACE-completeness, both in structures of fi-
nite trees and of possibly infinite trees. This result is ob-
tained by reducing the entailment problem ofFT� with
existential quantifiers to the inclusion problem of non-
deterministic finite automata (NFA), and vice versa. Our
reduction of entailment is based on the following idea:
Given an existential formula9xϕ we construct an automa-
ton that accepts all its consequences in form of so called
path constraints. The inverse reduction has already been
presented in [17] in the case of possibly infinite trees. Sur-
prisingly, we can adapt this reduction to the structure of
finite trees by inverting all ordering constraints used there.

Applications and Related Work. The application do-
mains of ordering constraints over feature trees are quite
diverse. They have been used to describe so-called coor-
dination phenomena in natural language [6] but also for
the analysis of concurrent constraint programming lan-
guages [16]. The less general equality constraints over
feature trees are central to constraint based grammars, and
they provide record constraints for logic programming [28]
or concurrent constraint programming [13, 25]. In con-
current constraint programming, entailment with existen-
tial quantification is needed for deciding the satisfaction of
conditional guards. As mentioned above, our results are
also relevant for constraint-based inference of record types
and object types. In this context, the entailment test has
recently received some attention as a justification for con-
straint simplification and as a means to check type inter-
faces [4, 9, 10, 14, 22, 32].

Originally, weak subsumption has been introduced as

a weakening of subsumption. The subsumption ordering
between feature structures [5, 12, 26] is omnipresent in lin-
guistic theories like HPSG (head-driven phrase structure
grammar) [21]. According to the more general view of
[6, 27], the subsumption ordering and the weak subsump-
tion ordering are definable between elements of an arbi-
trary feature algebra (not only between feature structures).
This logical perspective enables the definition of subsump-
tion (resp. weak subsumption) constraints [7] which are
interpreted with respect the subsumption (resp. weak sub-
sumption) ordering of arbitrary feature algebras. Syntac-
tically, subsumption constraints, weak subsumption con-
straints, andFT� constraints coincide but semantically
they differ. As proved in [7], the satisfiability problem
of subsumption constraints is undecidable. The satisfiabil-
ity problem of weak subsumption constraints is equivalent
to the satisfiability problem ofFT� constraints [6, 18] and
hence decidable in cubic time.

For the full version containing all proofs see [19].

2 Ordering Constraints
The constraint systemFT� is defined by a set of con-

straints, the structure of feature trees, and an interpreta-
tion of constraints over feature trees. We assume an infi-
nite setV of variablesranged over byx;y;z, a setF of at
least twofeaturesranged over byf ;g and a setL of labels
ranged over bya;b.

Feature Trees. A pathπ is a word of features. Theempty
path is denoted byε and the free-monoid concatenation of
pathsπ andπ0 asππ0. A pathπ0 is called aprefix ofπ if
π = π0π00 for some pathπ00. A tree domainis a non-empty
prefix closed set of paths.

A feature treeτ is a pair(D; L) consisting of a tree do-
main D and a partial functionL : D * L that we callla-
beling functionof τ. Given a feature treeτ,
we write Dτ for its tree domain andLτ for
its labeling function. For instance,τ0 = τ0= �

a
f(fε; fg; f(f ;a)g) is a feature tree with domainDτ0 = fε; fg

andLτ0 = f(f ; a)g. A feature tree isfinite if its tree domain
is finite, andinfinite otherwise. Anode ofτ is an element
of Dτ. A nodeπ of τ is labeled with aif (π; a) 2 Lτ. A
node ofτ is unlabeled if it is not labeled by anya. Theroot
of τ is the nodeε. Theroot labelof τ is Lτ(ε), and f 2 F

is aroot featureof τ if f 2 Dτ. Given a treeτ with π 2 Dτ,
we write asτ[π] the subtree ofτ at pathπ; formally Dτ[π] =fπ0 j ππ0 2 Dτg andLτ[π] = f(π0; a) j (ππ0; a) 2 Lτg.
Syntax and Semantics. An FT� constraintϕ is defined
by the abstract syntax

ϕ ::= x�y j a(x) j x[f]y j ϕ1^ϕ2

An FT� constraint is a conjunction ofbasic constraints
which are eitherordering constraints x�y, labeling con-
straints a(x), or selection constraints x[f]y.

We define the structureFT� over feature trees in which
we interpretFT� constraints. Its universe consists of the
set of all feature trees. The constraints are interpreted as
follows:

τ1�τ2 iff Dτ1 �Dτ2 andLτ1 � Lτ2

τ1[f]τ2 iff Dτ2 = fπ j f π 2Dτ1g and
Lτ2 = f(π; a) j (f π; a) 2 Lτ1g

a(τ) iff (ε; a) 2 Lτ

The substructure ofFT� whose universe contains only
the finite trees is denoted byFTfin� .

First-Order Formulas. If not specified otherwise, a for-
mula is said to be valid (satisfiable) if it is valid (satisfiable)
both in FT� andFTfin� . Let Φ and Φ0 be first-order for-
mulas built fromFT� constraints with the usual first-order
connectives. We say thatΦ entailsΦ0, written Φ j= Φ0, if
Φ!Φ0 is valid, and thatΦ is equivalentto Φ0 if Φ$Φ0 is
valid. We denote withV (Φ) the set of variables occurring
free inΦ, and withF (Φ) andL(Φ) the set of features and
labels occurring inΦ.

3 Expressiveness of the TheoryFT�
In this section we introduce some abbreviations of for-

mulas needed in Section 4. We use the usual abbrevia-
tions for ordering constraints, for instance we writex<y
for x�y^x 6= y, andx�y for y�x.

3.1 Minimal and Maximal Values
We can construct, for any formulaϕ, formulasµxϕ and

νxϕ expressing thatx is minimal (maximal) with the prop-
erty ϕ:

µxϕ := ϕ^:9y(ϕ[y=x]^y<x)
νxϕ := ϕ^:9y(ϕ[y=x]^y>x)

Here,y is a fresh variable not occurring inϕ, andϕ[y=x]
denotes the formula where every free occurrence ofx is re-
placed byy. Typically, x occurs free inϕ but this is not
required. Note that, in contrast to8x and9x, µx andνx are
no variable binders that restrict the scope of the variablex;
hencex is free inµxϕ and inνxϕ if it is free in ϕ. The for-
mulasµxϕ andνxϕ donotstate thatx denotes the smallest
(resp. greatest) tree satisfyingϕ, in fact such a tree may not
exist. This difference is important for the formulaatom(x)
defined below.

Example 1 The sentence9x(µx true) is valid in FT� and
in FTfin� (there even exists a smallest tree, namely(fεg;fg).

Example 2 The formula µx(x[0]x^ x[1]x) is satisfied in
FT� by the full binary, everywhere unlabeled tree, and is
not satisfiable inFTfin� sinceFTfin� contains no infinite trees.

We can now express thatx denotes an atom in the lattice-
theoretic sense, i.e. that it is a minimal tree strictly greater
than the smallest tree(fεg;fg), by:

one-dist(x;y) := (x<y^:9z(x<z<y))
atom(x) := 9y((µy true)^one-dist(y;x))

3.2 Label Restrictions
The formulax� y readsx and y are consistent:

x� y := 9z(x�z^y�z)
For any labela2 L we writex� a to express that the root
of x is either unlabeled or labeled witha:

x� a := 9y(x�y^a(y))
The following formula expresses that the root of a tree is
unlabeled:

not-root-labeled(x) := x� a^x� b

wherea and b are two arbitrary different label symbols.
We obtain a first-class status of labels by encoding a label
a as the feature tree(fεg;f(ε;a)g).

label-atom(x) := atom(x)^:not-root-labeled(x)
We can now express thatx andy either have the same root
label or are both unlabeled at the root by

same-root-label(x;y) :=8z(label-atom(z)! (x� z$ y� z))
3.3 Arity Restrictions

We can simulate a first-class status of feature symbols
by encoding a featuref by the tree(fε; fg; /0).

feature-atom(x) := atom(x)^not-root-labeled(x)
The following formula expresses thatxhas exactly the root
featuresf1; : : : ; fn:

xf f1; : : : ; fng := 9x1; : : : ;xn

� n̂

i=1

x[fi]xi^8y(n̂

i=1

y[fi]xi ^ same-root-label(x;y)! x�y)�

These so-calledarity constraintshave been introduced
in [28]. A decidable feature logic where feature and label
symbols have first class status has been investigated in [31].
The next formula is crucial for our undecidability proof. A
treeτ satisfies this formula ifffε;cg � Dτ � fcg� and all
its nodes are unlabeled:

string-c(x) := xfcg^not-root-labeled(x)^9y(x[c]y^y�x)
In general, we have that

Lemma 3.1 The formula9y(x[f]y^y�x) is satisfied byτ
iff f 2Dτ and whenever n�m; f n; f m 2Dτ, then

τ[f n]�τ[f m]
4 Undecidability Results
Theorem 4.1 The first-order theories ofFTfin� andFT� are
undecidable.

The result holds for arbitrary (even empty)L and forF
of cardinality� 2, we use however, for the sake of clar-
ity, distinct label symbolsa;b and pairwise distinct feature
symbolss ;c ;p; l ; r . We prove Theorem 4.1 by reduction
of the Post Correspondence Problem (PCP). See [30] for a
discussion of the proof technique employed in this chapter.

An instance of PCP is a finite sequenceP =((pi ;qi))i=1;:::;m of pairs of words fromfa;bg�. Such
an instance issolvableif there is a nonempty sequence(i1; : : : ; in), 1� i j �m, such thatpi1 � � � pin = qi1 � � �qin. Ac-
cording to a classical result due to Post, it is undecidable
whether an instance of the PCP is solvable.

In the following, letP = ((pi ;qi))i=1;:::;m be a fixed in-
stance of PCP. We say that a pair(v;w) is P-constructed
from a pair of words(v0;w0) if, for some j, v = p jv0 and
w = q jw0. To encode solvability ofP into the theory of

FTfin� , resp.FT�, we employ the following equivalent defi-
nition of solvability:

Proposition 4.2 P is solvable iff there is a set X of pairs
of words containing a pair(w;w) with w 6= ε, such that ev-
ery pair in X is either(ε;ε) or is P-constructed from some
other pair in X.

4.1 Words and Trees
There is an obvious one-to-one encoding functionγ

from words infa;bg� to feature trees:γ(w) = (Dw;Lw)
whereDw = fε; : : : ;s jwjg, Lw(s j) =w: j for 0� j � jwj�1,
andLw(s jwj) undefined.

We define a left-inverse function̄γ, that is γ̄(γ(w)) =
w, from finite feature trees to words infa;bg� as follows:
If τ does not have root features , or if its root is unlabeled
or has label different froma and fromb then γ̄(τ) = ε.

Otherwise letτ0 be such thatτ[s]τ0. We definēγ(τ) = a �
γ̄(τ0) if τ has root labela, andγ̄(τ) = b � γ̄(τ0) if τ has root
labelb.

To express thaty denotes the fixed wordπ appended
with the denotation ofx, we define for anyπ 2 fa;bg� a
formulaappπ(x;y), such thatappπ[τ;τ0] iff γ̄(τ0) = πγ̄(τ),
by induction onπ:

appε(x;y) := x= y

appaπ(x;y) := a(y)^9z(y[s]z^appπ(x;z))
appbπ(x;y) := b(y)^9z(y[s]z^appπ(x;z))

Furthermore, we defineeps(x), expressing thatx denotes a
treeτ with γ̄(τ) = ε, by

eps(x) := :9y x[s]y_:a(x)_:b(x)
Finally, the following formula expresses thatx denotes a
finite string:

finite(x) := :9y(y[s]y^y�x)
In case ofFTfin� this formula is, of course, equivalent to
true.

4.2 P-Constructions
Provided an appropriate encoding of sets of pairs of

words and a predicatein(xl ;xr ;s), expressing that the pair(xl ;xr) is member of the sets, we can express thats is aP-
constructible set of pairs of words and thatP is solvable:

constructionP(s) := 8y;y0 (in(y;y0;s)!(eps(y)^eps(y0)_9z;z0 (in(z;z0;s)^W
j=1:::m(appp j

(z;y)^appq j
(z0;y0)))))

solvableP := 9s(9x(in(x;x;s)^:eps(x)^ finite(x))^constructionP(s))
Lemma 4.3 For all predicatesin(x;y;z), if solvableP is
valid then the instance P of the Post Correspondence Prob-
lem is solvable.

Proof. Let σ be a fixed value fors such thatsolvableP

holds. We show by induction that ifin(τ;τ0;σ) is satisfied,
then(γ̄(τ); γ̄(τ0)) is finitely constructible according to the
instanceP of the Post Correspondence Problem. 2
Lemma 4.4 There is a predicatein(x;y;z) such that if the
instance P of the Post Correspondence Problem is solvable
thensolvableP is valid.

����p����AAAl r

τl
1 τr

1

PPPPPPPc ����p����AAAl r

τl
2 τr

2

PPPPc PPPPc ����p����AAAl r

τl
n τr

n

Figure 1: Representation of a sequence of pairs of trees((τl
i ;τr

i))i=1;:::;n
Proof. Since we know already how to encode words as
trees, we now have to define an appropriate encoding of
an arbitrary set of pairs of trees as a feature tree, together
with a corresponding formulain. The representation of a
sequence(τl

i ;τr
i)i is given in Figure 1. We define, for

any formulaϕ, a formulaµ!xϕ expressing thatx denotes
thesmallestelement satisfyingϕ (this formula must not be
confused withµxϕ):

µ!xϕ := ϕ^8y(ϕ[y=x]! x�y)
If x denotes a tree as given in Figure 1, then the formula
one-branch(x;x0) given below expresses thatx0 denotes a
tree as given in Figure 2.

one-branch(x;x0) := 9xc (νxc (string-c(xc)^xc�x)^νx0 (x0�x^9z(µ!z(xc<z�x0))))
In this formula,x0 is smaller thanx but is strictly greater
than thec -spinexc of x. The treex0 can have only one of
the p-edges ofx since the set of trees betweenxc andx0
must have a smallest element. By the maximality ofx0,
the treex0 containsxc plus exactly one of the subtrees ofx
starting with ap-edge (see Figure 2). The following for-
mulaselect(τl ;τr ;σ), whereσ is as in Figure 2, expresses
thatτl is the treeτl

i andτr is the treeτr
i :

select(yl ;yr ;x) := 9x0 (µx0(x�x0^9x00 (x0[c]x00^x00�x0))^9z(x0[p]z^z[l]yl ^z[r]yr))
From a treeσ as given in Figure 2, we get the treeσ0 (de-
noted byx0) containing at all nodesc j with j � i a pair(τl 0

j ;τr 0
j) such thatτl

i�τl 0
j and τr

i�τr 0
j (by Lemma 3.1).

By the minimality ofσ0 we get thatτl
i = τl 0

j andτr
i = τr 0

j
for all j, hence in particular forj = 0 (see Figure 3). Com-
bination of the two formulas yields

in(yl ;yr ;x) := 9x 0(one-branch(x;x0)^ select(yl ;yr ;x0))

�PPPP�c �PPPPc ����p����AAAl r

τl
i τr

i

PPPPc PPPPc �
Figure 2: A possible value forx0 such that
one-branch(x;x0), wherex is as in Figure 1.����p����AAAl r

τl
i τr

i

PPPP�c���p����AAAl r

τl
i τr

i

����p����AAAl r

τl
i τr

i

PPPPc ����p����AAAl r

τl
i τr

i

PPPPc PPPPc �
Figure 3: The value ofx0 in the formulaselect(yl ;yr ;x)
wherex is as in Figure 2.

which completes the proof. 2
5 Entailment with Existential Quantifiers

In [17] it is shown that the entailment problem of
FT� with existential quantifiersϕ j= 9xϕ0 is decidable,
PSPACE-hard in the case of infinite trees and coNP-hard
in the case of finite trees. We settle the precise complexity
of this entailment problem in both cases.
Theorem 5.1 Entailment of FT� with existential quantifi-
cation ϕ j= 9xϕ0 is PSPACE-complete for both structures
FT� andFTfin� .

In Section 5.3 we modify the PSPACE-hardness proof
given in [17] for the case of infinite trees such that it
proves PSPACE-hardness for both cases (Proposition 5.3).
In particular, we show that we can encode the Kleene-star
operator without need for infinite trees. Containment in
PSPACE is shown (Proposition 5.8) by reducing in polyno-
mial time the entailment problem to an inclusion problem

between the languages accepted by nondeterministic finite
state automata (NFA). Language equivalence for NFA (and
hence inclusion, sinceA� B$ B= A[B) is known to be
PSPACE-complete if the alphabet contains at least two dis-
tinct symbols [8].

5.1 Path Constraints
We characterize existentialFT� formulas9xϕ by equiv-

alent sets of path constraints (where sets are interpreted as
conjunctions). The abstract syntax ofpath constraintsψ is
defined as follows:

ψ ::= a(x[π]) j x?[π]�a j x?[π]�y[π0] j x?[π]�y?[π0]
The semantics of path constraints is given by extension

of the structureFT� through the following predicates.

a(τ[π]) iff (π; a) 2 Lτ
τ?[π]�a iff π 2 Dτ impliesτ[π]�a
τ?[π]�τ0[π0] iff π0 2 Dτ0 and if

π 2 Dτ thenτ[π]� τ0[π0]
τ?[π]�τ0?[π0] iff if π 2Dτ and

π0 2 Dτ0 thenτ[π]�τ0[π0]
Lemma 5.2 For every path constraintψ there exists an
ordering constraintϕ and variables x1; : : : ;xn such that
ψ j=j 9x1 : : :9xnϕ.

In the Section 5.2, we use path constraints for present-
ing typical examples of entailment judgements. Path con-
straints are also helpful for proving PSPACE-hardness in
Section 5.3. In Section 5.5 we will construct a finite au-
tomaton that accepts all path constraintsψ entailed by9xϕ
and thereby reduce the entailment with existential quantifi-
cation to the inclusion problem of finite automata.

5.2 Examples
A major difficulty in testing entailment with existential

quantifiers is that there exist many equivalentFT� con-
straints of quite distinct syntactic shape. This makes it very
difficult (if not impossible) to apply a standard technique
for deciding entailment, which performs a comparison of
constraints in some¡ syntactic normal form [1, 18, 28]. A
first rather simple case is:

Example 3 The formula9y(x�y^a(y)) is equivalent to
x?[ε]�a which is equivalent to9y9z(x�y^z�y^a(z)).

We next illustrate a more complex case of equivalent
constraints with distinct syntactic shape.

Example 4 (Figure 4) Both of the following formulas are
equivalent to x?[f g]�a and hence equivalent to each other:9y9y09z9z0 (x�y^y[f]y0^y0�z^z[g]z0^a(z0))j=j 9y9y09z9z0 (x�y^y[f]y0^z�y0^z[g]z0^a(z0))

9y9y09z9z0
x�y

y0� z

a(z0) j=j x?[f g]�a j=jf

g

9y9y09z9z0
x �y

z �y0
a(z0) f

g

Figure 4: Graphical Presentation of Example 4

x � y

x0� x00 y0� z0
b(x000) c(z00)f

g

f

g

j= x?[f g]�a

Figure 5: Graphical Presentation of Example 5

In the next example, a constraint is given that entails
x?[f g]�a for all a. Note that this constraint thus also en-
tails the constraints given in the previous example.

Example 5 (Figure 5) If b 6= c then for all a the judgement

x[f]x0^x0�x00^x00[g]x000^b(x000)^
x�y^y[f]y0^y0�u^u�z0^z0[g]z00^c(z00) � j= x?[f g]�a

holds. In other words, ifα is a solution of the constraint
displayed on the left hand side and if f g2Dα(x) then f g is
unlabeled inα(x) and hence compatible with any label a.

Example 6 (Figure 6) The following situation illustrates a
non-trivial example for entailment of selection constraints
without existential quantifiers.

x� v^v[f]v0^v0 � y^
y� u0^u[f]u0^u� x

� j= x[f]y
The right-hand side x[f]y is equivalent to the conjunc-

tion x?[f]�y[ε]^ y?[ε]�x[f] of path constraints which are
entailed by the first and second line of the left-hand side,
respectively.

5.3 Entailment is PSPACE-hard
We next show that entailment is PSPACE-hard in both

the finite and the infinite tree case. PSPACE-hardness
follows from Proposition 5.3, which claims a polynomial

u � x � v

y � u0 v0 � y

j= x

y

f f f

Figure 6: Graphical Representation of Example 6

reduction of the inclusion problem between regular lan-
guages over the alphabetF to an entailment problem be-
tween two existentialFT� formulas. Notice that we have
assumedF to contain at least two features.

Our PSPACE-hardness proof is based on the fact that a
satisfiable ordering constraintϕ may entail an infinite con-
junction of path constraints, even in case of finite trees:

Example 7

1. 8n : x[f]y^y�x^a(y) j= x?[f n]�a.

2. 8n;m : x[f]x j= x?[f m]�x[f n].
For this reason the entailment problem forFTfin� does not
necessarily reduce to an inclusion problem between finite
regular languages (which is decidable in coNP [8]). We
consider regular expressions of the following form

R ::= ε j f j R� j R1[R2 j R1R2

where f 2 F . Define, for all regular expressionsR and
variablesx andy, the existential formulaΘ(x;R;y) recur-
sively as follows.

Θ(x;ε;y) = x�y
Θ(x; f ;y) = 9z(x�z^z[f]y)
Θ(x;S1[S2;y) = Θ(x;S1;y)^Θ(x;S2;y)
Θ(x;S�;y) = 9z(x�z^Θ(z;S;z)^z�y)
Θ(x;S1S2;y) = 9z(Θ(x;S1;z)^Θ(z;S2;y))

Apparently,Θ(x;R;y) has size linear in the size ofR.

Proposition 5.3 For all variables x;y and for every pair of
regular expressions R1 and R2: Θ(x;R1;y) j= Θ(x;R2;y) is
equivalent toL(R2)� L(R1).
Proof. It is sufficient to prove for everyR thatΘ(x;R;y) is
equivalent to

Vfx?[π]�y[ε] j π 2 L(R)g. This is done by
structural induction overR, closely along the lines of the
corresponding proof in [17]. 2
In comparison to [17], the surprising insight here is that it
needs only a minor modification to modify the PSPACE-
hardness proof given for the case of infinite trees such that
it also works in the case of finite trees: Here, every word

in L(R) constrainsx at the associated pathprovided it ex-
ists; in contrast, according to the encoding in [17], a word
in L(R) constrainsxat the associated path andrequires it to
exist. The encoding in [17] uses formulasΘ0(x;R;y) with
the property thatΘ0(x;R;y) j=j Vfy?[ε]�x[π] j π 2 L(R)g
for all R.1 Hence, every solution ofΘ0(x;R;y) mapsx to an
infinite tree ifR denotes an infinite language.

5.4 Satisfiability Test
In this section we recall the satisfiability test forFT�

introduced in [18], which we will also need as a prepro-
cessing step in our entailment test in Section 5.5. Clearly,
satisfiability (and hence entailment) depends on the choice
of finite or infinite trees. For instance,x[f]x is unsatisfiable
in FTfin� but satisfiable inFT�.

Let an extended constraintbe a conjunction of con-
straints ϕ and (atomic) compatibility constraintsx�y.
From now on, we will only deal with extended constraints
and freely call them constraints for simplicity.

In the case of infinite trees, we say that an (extended)
constraintϕ is F-closedif it satisfies the following proper-
ties for allx;y;z;x0;y0; f ;a;b.F1:1 x�x2 ϕ if x2 V (ϕ)F1:2 x�z2 ϕ if x�y2 ϕ andy�z2 ϕF2 x0�y0 2 ϕ if x[f]x0 2 ϕ; x�y2 ϕ; y[f]y0 2 ϕF3:1 x�y2 ϕ if x�y2 ϕF3:2 x�z2 ϕ if x�y2 ϕ andy�z2 ϕF3:3 x�y2 ϕ if y�x2 ϕF4 x0�y0 2 ϕ if x[f]x0 2 ϕ; x�y2 ϕ; y[f]y0 2 ϕF5 a= b if a(x) 2 ϕ; x�y2 ϕ; b(y) 2 ϕ

The rules ofF1 andF2 require thatϕ is closed with respect
to reflexivity, transitivity, and decomposition of�. The
rules inF3 andF4 require thatϕ contains all compatibility
constraints that it entails (this is proved in [18]), andF5
requiresϕ to be clash-free.

In the case of finite trees, we say that a constraintϕ isF-
closedif it satisfiesF1-F5 and the additionaloccurs check
propertyF6 for all n� 1, x1; : : : ;xn+1;y1; : : :yn; f1; : : : ; fn:F6 x1�xn+1 62 ϕ if xi [fi]yi ^xi+1�yi 2 ϕ

for all 1� i � n

The following result is proved in [18]. It holds in both
cases, for finite trees and for possibly infinite trees, but with
the respective notion ofF-closedness.

Proposition 5.4 There exists a cubic time algorithm that,
given a constraintϕ, computes anF-closed constraint con-
tainingϕ or proves its unsatisfiability. EveryF-closed con-
straint is satisfiable.

1In comparison to [17], all ordering symbols have been turnedaround,
and in the clauseΘ(x; f ;y) we have exchanged the ordering and the se-
lection constraint.

5.5 An Automaton for Path Constraints
In this section we show that for everyF-closed con-

straintϕ there is a non-deterministic automatonAϕ of size
polynominal in the size ofϕ which accepts the set of all
path constraints which are entailed byϕ and which men-
tion only symbols from a fixed set of variables, labels, and
features. Note thatF-closedness is a necessary assumption
for our automaton construction. Note also that the automa-
ton does not differ in the case of finite and infinite trees,
only the assumed version ofF-closedness differs.

Path Constraints as Words. The automaton accepts all
wordshψi associated with a path constraintψ over some
finite sub-alphabet ofF [L [V [f�;�;?; [;];(;)g. In
first approximation, lethψi be theconcrete syntaxof ψ.
There is however a serious problem with recognizing the
concrete syntax of entailed constraints:

Example 8 The set of path constraints entailed by x�x isfx?[π]�x?[π] j π 2 F �g[fx?[ε]�x[ε]g (when restricted to
the variables in x�x). If hϕi denotes the abstract syntax of
ϕ then the setfhψi j x�x j= ψg is not regular.

We therefore have to alter the definition ofhϕi slightly
but fundamentally. The trick is to “factor out” the maximal
common suffix of the two paths in a path constraint of the
form x?[π1]�y?[π2]. More exactly, we add the symbol # to
the alphabet and alter the definition ofhψi such that:hx?[π1]�y?[π2]i= x?[π]�y?[π0]#π00
whereπ00 is the longest common suffix ofπ1 andπ2 such
that π1 = ππ00 andπ2 = π0π00; i.e., in x?[π]�y?[π0]#π00 we
require that eitherπ andπ0 end with distinct feature sym-
bols or that at least one of them is the empty path. This
solves the problem of Example 8: With respect to the new
definition ofhψi the setfhϕi j x�x j= ψg is regular:fx?[ε]�x?[ε]#π j π 2 F �g[fx?[ε]�x[ε]g
The definition ofhψi does also adjust some more difficult
regularity problems raised by trivial consequences. All
these consequences are raised by the following valid en-
tailment judgement:

x?[π]�y?[π0] j= x?[ππ00]�y?[π0π00]
Example 9 The setfhψi j x?[g f]�y?[f f] j= ψg restricted
to words with features f;g and variables x;y is:fx?[g]�y?[f]# f π j π 2 f f ;gg�g[fz?[ε]�z?[ε]#π j z2 fx;ygg[fz?[ε]�z[ε] j z2 fx;ygg
By Lemma 5.2 there exists an existential formula equiva-
lent to x?[g f]�y?[f f]; in fact, there are many of them.

Overall Structure of the Automaton. If we consider
an entailment problem of the formϕ j=9xϕ0 then we
construct two non-deterministic automataAϕ and Ax

ϕ0
with the alphabetF (ϕ^ϕ0)[L(ϕ^ϕ0)[V (ϕ^9xϕ0)[f�;�;?; [;];(;);#g.

Each automaton constructed falls into four parts (shar-
ing only the initial stateqs and the accepting stateqf), cor-
responding to the four kinds of path constraints. We just
explain the construction ofAϕ (and equallyAϕ0) for the
quantifier free. The automatonA 0x

ϕ for the constraint9xϕ0
is easily obtained fromAϕ0 by filtration of all words con-
taining variables inx that is by removing all transitions la-
beled with a symbol fromx. Note that the local variables
in x do not occur in the alphabet ofAx

ϕ0 ; they do only matter
for the definition of its states.

The construction of the automatonAϕ is given in Fig-
ure 7. It is completely spelled out except of one addi-
tional symmetry rule (40) which can be expressed through
a dozen further transitions. In the rest of this section we
explain this construction.

Constraints as Graphs. Our construction of the automa-
ton is motivated by considering constraints as graphs. For
instance, the constraint of Example 4

x�x0^x0[f]y^a(y)^z�y^z[g]y
can be depicted as the following graph, where variables are
represented as nodes.

x � x0
z � a(y)f

g

Intuitively, when the automatonAϕ accepts a wordhψi
it traverses the constraint graph associated withϕ where
ψ is associated a certain traversal pattern. We will depict
such traversal patterns graphically; for instance, the above
graph allows for the following traversal:

x

y

a

f

gggg

In these pictures, the horizontal dimension corresponds
to the ordering� (left to right) and the vertical one corre-
sponds to feature selection (top to bottom).

1 qs
a(x[�! x[a]

2 x[a] ε�! y[a] x�y2 ϕ
3 x[a] f�! y[a] x[f]y2 ϕ

4 x[a]])�! qf a(x) 2 ϕ

5 qs
x?[�! x

6 x
ε�! y x�y2 ϕ

7 x
f�! y x[f]y2 ϕ

8 x
]�y[�! y[x]

9 x[z] ε�! y[z] x�y2 ϕ
10 x[z] f�! y[z] x[f]y2 ϕ

11 x[x]]�! qf

12 qs
x?[�! xx

13 xx0 ε�! yy0 x�y;x0�y0 2 ϕ
14 xx0 f�! yy0 x[f]y;x0[f]y0 2 ϕ
15 xx0 ε�! yx0 x� y2 ϕ
16 xx0 ε�! yy0 x�y;x0�y0 2 ϕ
17 xx0 f�! yy0 x[f]y;x0[f]y0 2 ϕ
18 xx0 ε�! xy0 x0 � y0 2 ϕ
19 xx0 ε�! yy0 x�y;x0�y0 2 ϕ
20 xx0 f�! yy0 x[f]y;x0[f]y0 2 ϕ

21 xx0]�a�! qf a(x) 2 ϕ

22 xx0]�c�! qf a(x);b(x0) 2 ϕ;a 6= b

23 qs
x?[�! x[ε]

24 x[h] ε�! y[h] x�y2 ϕ
25 x[h] f�! y[f] x[f]y2 ϕ

26 x[h]]�y?[�! y[x;h;ε]
27 x[z;h;g] ε�! y[z;h;g] x�y2 ϕ
28 x[z;h;g] f�! y[z;h; f] x[f]y2 ϕ

29 x[z;h;g]]#�! x z h 6= g_h= g= ε
30 x[z;h;g] ε�! y[z;h;g] x� y2 ϕ
31 x[z;h;g] ε�! y[z;h;g] x�y2 ϕ
32 x[z;h;g] f�! y[z;h; f] x[f]y2 ϕ

33 x[z;h;g]]#�! x z h 6= g_h= g= ε
34 x x0 ε�! y y0 x�y;x0�y0 2 ϕ
35 x x0 f�! y y0 x[f]y;x0[f]y0 2 ϕ
36 x x0 ε�! x y0 x0 � y0 2 ϕ
37 x x0 ε�! y y0 x�y;x0�y0 2 ϕ
38 x x0 f�! y y0 x[f]y;x0[f]y0 2 ϕ
39 x x

F ��! qf

40 x?[π]�y?[π0]#π00 2 L(Aϕ)
y?[π0]�x?[π]#π00 2 L(Aϕ)

Figure 7: The automatonAϕ recognizing the path constraints implied byϕ.

Labeling Path Constraints. The subautomaton com-
prising rules 1–4 recognizes all the constraintsa(x[π]) en-
tailed byϕ. The associated pattern looks as follows.

x

a(y)π| {z }j= a(x[π])
In particular, note that rules 2 and 3 allow to derive every
constraint of the formy?[ε]�x[π] entailed byϕ:

ϕ j= y?[ε]�x[π] if x[a] π
y[a]

for any labela. Here, we memorize in the state the labela
read at the beginning of the constraint (rule 1) to check it
against a labeling constraint inϕ (rule 4).

Ordering Path Constraints. The next group of rules 5–
11 serves to recognize constraints of the formx?[π]�y[π0].
Note thatϕ j=x?[π]�y[π0] iff there is azsuch that

ϕ j= x?[π]�z[ε] (1)

ϕ j= z?[ε]�y[π0] (2)

The associated graph pattern is this one:

x y

z

π π0| {z }j= x?[π]�y[π0]
Condition (1) is verified by the rules 6 and 7, while condi-
tion (2) is checked by rules 9 and 10 which are analogous
to 2 and 3 except that we do not memorize a label but the
variablez found in condition (1).

Example 10 The constraint from Example 6 entails x[f]y.
This selection constraint is equivalent to the conjunction of
the two path constraints x?[f]�y[ε] and y?[ε]�x[f].

qs
x?[�! x

ε�! v
f�! v0

ε�! y
]�y[�! y[y]]�! qf

qs
y?[�! y

ε�! u0]�x[�! x[u0]
ε�! u[u0] f�! u0[u0]]�! qf

Label Compatibility. Rules 12–22 check constraints of
the kind x?[π]�a. Note thatϕ j=x?[π]�a iff there are
y;y0;z;z0;v;v0;b;c andπ1;π0

1;π2;π0
2 with π = π1π2 = π0

1π0
2

such that:

ϕ j= x?[π1]�y[ε]^y�z (3)

ϕ j= x?[π0
1]�y0[ε]^y0�z0 (4)

ϕ j= v?[ε]�z[π2]; (5)

ϕ j= v0?[ε]�z0[π0
2] (6)

ϕ j= b(v)^c(v0) and (b 6= c or a= b= c) (7)

The associated pattern look as follows.

x x

z � y

z0 � y0
b(v) c(v0)| {z }j= x?[π1π0

1]�a
if (b 6= c or a= b= c) andπ1π2 = π0

1π0
2

π1

π0
1

π2

π0
2

We check the conditions (3) and (4) as well as (5) and
(6) in parallel where we assume, by symmetry, thatπ1 is
a prefix ofπ0

1. With the names used above, the automaton
consumesπ1 by rules 13–14, switchesy to z with rule 15,
then consumesπ2 minus its suffixπ0

2 (which is identical
to π0

1 minus its prefixπ1) by rules 16–17, switches formy0
to z0 in rule 18 and consumesπ0

2 in rules 19–20. Finally
rules 21–22 check the label constraints (7).

Example 11 In the case of Example 5 we obtain

qs
x?[�! xx

ε�! xy
f�! x0y0

ε�! x00y0 ε�! x00z0 g�! x000z00]�a�! qf

Path Compatibility. Rules 23–39 check for constraints
x1?[π1]�x2?[π0

2]#π0π00. One possible justification for
ϕ j=x1?[π1]�x2?[π2]#π0π00 is that there are variables
y1;y2;y02�z;v and pathsπ000;π0v such thatπ0 = π000π0v and

ϕ j= x1?[π1]�y1[ε] (8)

ϕ j= y1?[π0]�v[ε] (9)

ϕ j= x2?[π2]�y2[ε] (10)

ϕ j= y2?[π000]�y02[ε] (11)

ϕ j= v?[ε]�z[π0v] (12)

These situations correspond to the following pattern:

x1 x2

y1 y2

z � y02
v| {z }j= x1?[π1]�x2?[π2]#π000π0vπ00

π1
π2

π0 π000
π0v

The rules 23–29 and 34–39 deal with this situation: Rules
23–29 and 34–35 consumeπ1 and π2, rules 37 and 38
the common suffixπ0 that is explicit in the constraint, and
rule 39 an arbitrary common suffixπ000: In order to guaran-
tee thatπ1 andπ2 have no common suffix themselves, the
automaton must memorize the last feature inπ1 andπ2 and
check them to be distinct before switching in rule 33. In or-
der to allow forπ1 and/orπ2 to equalε, the automaton also
memorizes whether or not a feature has been consumed at
all (rule 26). Slightly abusing notation, we allow forh and
g in these rules to denote either a feature symbol orε.

The second justification is similar but contains the
switch through the compatibility constraint� within π2

instead ofπ0; i.e., there are variablesy1;y2;y2�z;z0;v and
pathsπ0

2;π00
2 such thatπ2 = π0

2π00
2 and

ϕ j= x1?[π1]�y1[ε] (13)

ϕ j= y1?[π0]�v[ε] (14)

ϕ j= x2?[π0
2]�y2[ε] (15)

ϕ j= z0?[ε]�z[π00
2] (16)

ϕ j= v?[ε]�z0[π0] (17)

The associated pattern is:

x1 x2

z � y2

y1 z0
v| {z }j= x1?[π1]�x2?[π0

2π00
2]#π0π00

π1

π0
2

π00
2

π0 π0
For the traversal of this pattern we need the additional
rules 30–33.

For both situations there also is the symmetric one
which contains the switch through the compatibility con-
straint� in the branch forx1. We do not detail the au-
tomaton checking for these possibilities since its definition
is completely symmetric to the rules 23–39.

5.6 Deciding Entailment in PSPACE
In order to decideϕ j= 9xϕ0, we test satisfiability ofϕ

andϕ^9xϕ0. By Proposition 5.4, this can be done in time
O(n3) wheren is the size of the entailment problem. If one
of the tests fails, entailment is trivial. Otherwise, we com-
pute theF-closures ofϕ and ofϕ0 and define the associated
automatonAϕ andAx

ϕ0 in time O(n3). By Proposition 5.8,
ϕ j= 9xϕ0 if and only if L(Ax

ϕ0)� L(Aϕ). This inclusion is
decidable in PSPACE [8].

Proposition 5.5 (Correctness)If hψi 2 L(Ax
ϕ) then9xϕ j= ψ.

Proof. By induction over the paths mentioned inψ. 2
Lemma 5.6 (Key) For all paths µ1;µ2;π1;π2, variables
x;y1;y2, and constraintsϕ:

1. If hy1?[µ1]�x[π1]i 2 L(Aϕ) and ha(x[π1π2])i 2
L(Aϕ) thenhy1?[µ1π2]�ai 2 L(Aϕ)

2. If hy1?[µ1]�x[π1]i 2 L(Aϕ) andhy2?[µ2]�x[π1π2]i 2
L(Aϕ) thenhy1?[µ1π2]�y2?[µ2]i 2 L(Aϕ).

The path constraints are indeed expressive enough to
capture all logic consequences of a constraint with existen-
tial quantifiers:

Proposition 5.7 (Characterization) If ϕ is an F-closed
FT� constraint, then9xϕ j=j ^fψ j hψi 2 L(Ax

ϕ)g :

Proof. The direction from left to right (correctness) fol-
lows from Proposition 5.5. For the direction from right
to left assume a solutionα of

Vfψ j hψi 2 L(Ax
ϕ)g. De-

fine an extensionα0 of α by setting, for allx 2 V (9xϕ):
α0(x) = α(x), and for allx2 fxg: α0(x) = τ where

Dα0(x) = fπ j hx?[π]�x[π]i 2 L(Aϕ0)g [fππ00 j z2V; π0π00 2 Dα(z);hz?[π0]�x[π]i 2 L(Aϕ0)g
Lα0(x) = f(π; a) j a(x[π]) 2 L(Aϕ0)g [f(ππ00; a) j z2V; (π0π00; a) 2 Lα(z);hz?[π0]�x[π]i 2 L(Aϕ0)g

It is obvious thatD0
α(x) is prefix closed. The Key

Lemma 5.6 implies thatL0
α(x) is a partial function. It can

be shown by a case distinction thatα0 satisfies all basic
constraints inϕ0. For details see the full paper [19]. 2
Proposition 5.8 (Reduction) Let ϕ andϕ0 be closedFT�
constraints andx a sequence of variables such that all free
variables in9xϕ0 occur inϕ. Further assume thatϕ^9xϕ0
is satisfiable. Then

ϕ j= 9xϕ0 iff L(Ax
ϕ0)� L(Aϕ) :

Proof. The direction from right to left follows directly
from Proposition 5.7. For the inverse direction we show
that for allψ with V (ψ)�V (ϕ) it holds thathψi 62L(Aϕ)
implies hψi 62 L(Ax

ϕ). For more details, see the full pa-
per [19]. 2
Acknowledgments. The research reported in this paper
has been supported by the BMBF (FKZ ITW 9601), the
Esprit Working Group CCL II (EP 22457), and the DFG
(SFB 378). Special thanks are due to Denys Duchier for
providing the initial zigzag macros.

References
[1] H. Aı̈t-Kaci, A. Podelski, G. Smolka. A feature-based con-

straint system for logic programming with entailment.The-
oretical Computer Science, 122(1–2):263–283, 1994.

[2] R. Backofen. A complete axiomatization of a theory with
feature and arity constraints.J. of Logic Programming,
24(1&2):37–71, 1995.

[3] R. Backofen, G. Smolka. A complete and recursive feature
theory. Theoretical Computer Science, 146(1–2):243–268,
1995.

[4] F. Bourdoncle, S. Merz. Type checking higher-order poly-
morphic multi-methods. In24th ACM Symposium on Prin-
ciples of Programming Languages, 302–315, Paris, France,
Jan. 1997. ACM Press, New York.

[5] B. Carpenter.The Logic of Typed Feature Structures - with
Applications to Unification Grammars, Logic Programs and
Constraint Resolution. No. 32 in Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press,
1992.

[6] J. Dörre. Feature logics with weak subsumption constraints.
In Annual Meeting of the Association of Computational Lin-
guistics, 256–263, 1991.

[7] J. Dörre, W. C. Rounds. On subsumption and semiunifica-
tion in feature algebras. In5th LICS, 300–310, 1990.

[8] M. R. Garey, D. S. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman
and Company, 1979.

[9] F. Henglein, J. Rehof. The complexity of subtype entail-
ment for simple types. In12th LICS, Warsaw, Poland, 1997.
IEEE Computer Society Press.

[10] F. Henglein, J. Rehof. Constraint automata and the com-
plexity of recursive subtype entailment. In K. Larsen
(ed.), 25th Internat. Conf. on Automata, Languages, and
Programming, LNCS, Aalborg, Denmark, 1998. Springer-
Verlag, Berlin, Germany. to appear.

[11] R. M. Kaplan, J. Bresnan. Lexical-functional grammar:A
formal system for grammatical representation. In J. Bresnan
(ed.),The Mental Representation of Grammatical Relations,
173–281. The MIT Press, 1982.

[12] R. T. Kasper, W. C. Rounds. A logical semantics for feature
structures. InAnnual Meeting of the Association of Compu-
tational Linguistics, 257–265, 1986.

[13] M. J. Maher. Logic semantics for a class of committed-
choice programs. In J.-L. Lassez (ed.),Internat. Conf. on
Logic Programming, 858–876. The MIT Press, 1987.

[14] S. Marlow, P. Wadler. A practical subtyping system for Er-
lang. In2nd ACM SIGPLAN Internat. Conf. on Functional
Programming, 136–149. ACM Press, New York, 1997.

[15] M. Müller. Ordering constraints over feature trees with or-
dered sorts. In P. Lopez, S. Manandhar, W. Nutt (eds.),
Computational Logic and Natural Language Understand-
ing, LNAI, to appear. Springer-Verlag, Berlin, Germany.

[16] M. Müller. Set-based Failure Diagnosis for Concurrent
Constraint Programming. Doctoral Dissertation. Univer-
sität des Saarlandes, Tech. Fak., Germany, 1998. In prepa-
ration.

[17] M. Müller, J. Niehren. Ordering constraints over feature
trees expressed in second-order monadic logic. In T. Nip-
kow (ed.),Internat. Conf. on Rewriting Techniques and Ap-
plications, no. 1379 in LNCS, 196–210, Tsukuba, Japan,
1998.

[18] M. Müller, J. Niehren, A. Podelski. Ordering constraints
over feature trees. In G. Smolka (ed.),3rd Internat. Conf.
on Principles and Practice of Constraint Programming, vol.
1330 ofLNCS, 297–311, 1997.

[19] M. Müller, J. Niehren, R. Treinen. The first-
order theory of ordering constraints over feature
trees. http://www.ps.uni-sb.de/Papers/
abstracts/FTSubTheory-98.html .

[20] J. Palsberg. Efficient inference of object types. In9th LICS,
186–185, 1994.

[21] C. Pollard, I. Sag.Head-Driven Phrase Structure Gram-
mar. Studies in Contemporary Linguistics. Cambridge Uni-
versity Press, Cambridge, England, 1994.

[22] F. Pottier. Simplifying subtyping constraints. InACM SIG-
PLAN Internat. Conf. on Functional Programming, 122–
133. ACM Press, 1996.

[23] M. O. Rabin. Decidability of second-order theories andau-
tomata on infinite trees.Transactions of the American Math-
ematical Society, 141:1–35, 1969.

[24] W. C. Rounds. Feature logics. In J. v. Benthem, A. ter
Meulen (eds.),Handbook of Logic and Language. Elsevier
Science Publishers B.V. (North Holland), 1997.

[25] V. A. Saraswat.Concurrent Constraint Programming. The
MIT Press, 1993.

[26] S. Shieber. An Introduction to Unification-based Ap-
proaches to Grammar. CSLI Lecture Notes No. 4. Center
for the Study of Language and Information, 1986.

[27] G. Smolka. Feature constraint logics for unification gram-
mars.J. of Logic Programming, 12:51–87, 1992.

[28] G. Smolka, R. Treinen. Records for logic programming.J.
of Logic Programming, 18(3):229–258, 1994.

[29] J. W. Thatcher, J. B. Wright. Generalized finite automata
theory with an application to a decision problem of second-
order logic. Mathematical Systems Theory, 2(1):57–81,
1968.

[30] R. Treinen. A new method for undecidability proofs of first
order theories.J. of Symbolic Computation, 14:437–457,
1992.

[31] R. Treinen. Feature trees over arbitrary structures. In
P. Blackburn, M. de Rijke (eds.),Specifying Syntactic Struc-
tures, chap. 7, 185–211. CSLI Publications and FoLLI,
1997.

[32] V. Trifonov, S. Smith. Subtyping constrained types. In
R. Cousot, D. A. Schmidt (eds.),3rd Internat. Static Analy-
sis Symposium, vol. 1145 ofLNCS, 349–365, Aachen, 1996.
Springer-Verlag, Berlin, Germany.

[33] P. Van Roy, M. Mehl, R. Scheidhauer. Integrating efficient
records into concurrent constraint programming. InInter-
nat. Symposium on Programming Language Implementa-
tion and Logic Programming, Aachen, Germany, Sep. 1996.
Springer-Verlag.

[34] S. Vorobyov. An improved lower bound for the elementary
theories of trees. InInternat. Conf. on Automated Deduc-
tion, vol. 1104 ofLNCS, 275–287, 1996.

