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As graphs, feature trees are easily described as �nite trees whose nodes are labeled by con-structor symbols, and whose edges are labeled by feature symbols, all those edges outgoingfrom the same node by di�erent ones. Thus, symbolic keywords called features denote thepossible argument positions of a node. They access uniquely the node's direct subtrees.All constructor symbols can label a node with any features attached to it, in any, though�nite, number.Although thoroughly investigated [AK86, Smo92, BS92, AKPS92], also in comparison with�rst-order trees [ST92], feature trees have never been characterized as composable elementsin an algebraic structure, i.e., with operations de�ned on them. Also, up to now, therehas been no corresponding notion of automata. This device has generally proven useful fordealing e�ciently with systems calculating over sets of elements.In our case, the practical motivation consists of the possibility of de�ning a hierarchy oftypes denoting sets of feature trees, as a Boolean lattice. For its use in a logical programmingsystem employing feature trees such as LIFE [AKP91b], we need to compute e�ciently theintersection of two types (roughly, for uni�cation). Concurrent systems, in connection withcontrol mechanisms such as residuation or guards [AKP91a], require furthermore an e�cienttest of the subset relation (matching). Thus, we need to provide a formalism de�ning thetypes in a way which is expressive enough and yet keeps the two problems decidable. Such aformalism can be given, for example, as a system of equations and a corresponding automatanotion with Boolean closure properties and decidable emptyness problem.A major di�culty of an algebraic framework for feature trees1 comes from the fact that theset F of features, i.e., of possible argument positions of a node accessing its direct subtrees,is in�nite. The in�niteness of F is, however, an essential ingredient of the formal frameworksmodeling exible record structures. A practical motivation is the need to account fordynamic record �eld updates. It turns out that this semantical point of view has advantagesin e�ciency as well. Namely, the correctness of the algorithms for entailment and for solvingnegated constraints on feature trees [AKPS92] relies on the in�niteness of F .The Method. The �rst step in solving the problem described above is to build an appro-priate algebraic framework. Such a framework is provided by universal algebra in the case of�rst-order trees. Formally, these are the elements of the free algebra over a given signatureof function symbols (�nite or in�nite, cf., [Mah88]). This framework yields immediately a\good" notion of automata.In fact, as Courcelle has shown in [Cou89, Cou92], universal algebra provides a frameworkfor a rich variety of trees. Clearly, it is that work that inspired our notion of the algebraunderlying feature trees. We introduce this notion in Section 2. Informally speaking, theoperation composing feature trees in the algebra takes a record value and adds a record�eld containing another value to it. In a special case, this amounts to Nivat's notion of`sum of trees' [Niv92]; thus, incidentally, we obtain an algebraic formalization hereof.To de�ne feature automata as algebras, it is useful to consider the class of all �nite treeswhose nodes are labeled by constructor symbols, and whose edges are labeled by feature1: : :with the property that automata and equational systems coincide (let us note that the expressivenessof tree automata is equal to the one of equational systems for the free term algebras over �nite signatures;it is strictly weaker in the case of in�nite signatures for all tree species, also those considered in [Cou89,Cou92]) 2



symbols. We call these multitrees.2 Multitrees are of interest on their own, namely forrepresentation of knowledge with set-valued attributes [Rou88]. Thus, feature trees aremultitrees with the restriction that features are \functional," i.e., all edges outgoing fromthe same node are labeled with di�erent features. Feature automata recognize languagesof multitrees, which are then cut down to recognize languages of feature trees.In Section 3, we will de�ne feature automata and show the basic properties of this notion:closure under the Boolean operations and decidability of the emptyness problem. In orderto restrict our study to �nitely presentable automata and yet to account for the in�nitenessof the set of features F , we introduce the notion of a �nitary automaton: the number ofstates is �nite, and the evaluation of the automaton can be speci�ed not only on singlesymbols, but also on �nite sets or on complements of �nite sets of symbols. Thus, say: onf for f 2 F , or: on f for f 62 F , where F � F �nite.Roughly, a feature automaton reads a feature tree in two directions: along its branches(from the frontier to the root) and along the fan-out of each node (along all argumentpositions). This is necessary in order to account for the exibility in the depth as well as inthe out-degree of the nodes of feature trees. The �rst direction is standard for all automataover trees. In order to study its behavior in the latter direction, or what we call the localstructure of the recognized language, we consider recognizable sets of feature trees of depth1, called at feature trees.In Section 4, we de�ne a class of logical formulas, called counting constraints. The namecomes from the fact that they express threshold- or modulo counting of the subtrees whichare accessed via features from a �nite or co-�nite set of features.The main technical result of this paper is a theorem saying that counting constraints char-acterize exactly the recognizable sets of at feature trees. The proof takes up Sections 8and 9. The theorem essentially links counting and the �nitary-condition; in all of the set-de�ning devices presented here, either of these two notions accounts for the in�nitenessof F .Counting constraints can express that certain features exist in the at feature tree (labelingedges from the root), and that others do not.3 As a consequence, one can show that theset of �rst-order trees, with �xed arity assigned to constructor symbols, and recognizablesubsets of these, are sets recognized by feature automata.In Sections 5 and 6 we give two alternative ways to de�ne recognizable sets of feature treeswhich are more practical than automata: regular expressions and equational systems. Inthe �rst one, the sets are constructed by union, substitution and star (and, optionally,complement or intersection). In the second, they are de�ned as solutions of equations in acertain form. For both, counting constraints can be used to de�ne the base cases. Thanksto the main theorem in Section 4, we are able to show that either class of de�ned sets isequal to the one for feature automata. Moreover, the devices can be e�ectively translatedone into another. These results, together with the previous ones, are necessary to presenta complete regular theory of feature trees and to o�er a solution to the practical problem2The unranked unordered trees studied in [Cou89] (the number of arguments of the nodes is not re-stricted, and the arguments are not ordered) are a special case of multitrees, namely with just one feature.In the framework of [Cou89], however, recognizability by automata is strictly weaker than de�nability byequational systems, even if the set of node labels is �nite.3In [ST92, Smo92], these correspond to the constraints xF , xf# or their negations, where F � F �niteand f 2 F . 3



of computing with types denoting sets of feature trees as described above.2 The Algebra JIn this section we will introduce feature trees and the more general multitrees as elementsof an algebra that we de�ne, called J . This yields the notion of a J -automaton. Thissection follows the approach of [Cou89] and [Cou92].In the following we will assume a given set S of constructor symbols (also called sorts,referred to by A, B, etc.) and a given set F of feature symbols (also called attributes, orrecord �eld selectors, referred to by f , g, etc.).Formally, multitrees are trees (i.e., �nite directed acyclic rooted graphs) whose nodes arelabeled over S, and whose edges are labeled over F . Or, the set MT of multitrees over Sand F can be introduced as MT = Sn�0MT n where (let N denote the set of all naturalnumbers, and NM�nite the set of �nite multisets with elements from the set M):MT 0 = f (A; ;) jA 2 Sg;MT n = f (A;E) jA 2 S; E 2 NF �MT n�1�nite g [ MT n�1:MT n contains the multitrees of depth � n.Feature trees are multitrees such that all edges outgoing from the same node are labeledby di�erent features. FT denote the set of all feature trees (and FT n all those of depth� n).We introduce two sorts MT and F for multitrees and features, respectively, and de�ne thefMT;Fg-sorted signature: � = f)g ] F ] Swhere ) is a function symbol of pro�le: MT � F �MT 7! MT , and the symbols in Fand S are constants of sort F and of sort MT , respectively.The algebra of multitrees J is de�ned as a �-algebra. Its two domains are DMT = MTand DF = F of the sorts MT and F , respectively. The function symbol ) is interpretedin J as the operation which composes two multitrees t; t0 2 MT via a feature f 2 F to anew multitree composed of t and t0 with an edge labeled f from the root of t to the root oft0. Or (where t denotes multiset union),)J ((A;E); f; t) = (A;E t f(f; t)g):Borrowing the `tree sum' notation from [Niv92], we might write)J (t; f; t0) more intuitivelyas t+ ft0. In fact, for the special case where F = f1; 2g (the two features denoting the leftand right successor), we obtain an algebraic reading of the notation of [Niv92].The interpretation of the constants is given by fJ = f and AJ = (A; ;).It is easy to verify that the algebra J satis�es the order independence (OIT), i.e., thefollowing equation is valid in J .) () (x; f1; x1); f2; x2) = ) () (x; f2; x2); f1; x1) (1)4



In the `tree sum' notation this expresses the commutativity4 of +, in the sense that t +f1t1 + f2t2 = t+ f2t2 + f1t1. Of course, always t+ f1t1 + f2t2 6= t+ f1(t1 + f2t2).We use T� to denote the free algebra of terms over the signature �.Lemma 2.1 The algebra of multitrees J is isomorphic to the quotient of the free termalgebra over � with the least congruence generated by the order-independence equation (1),J = T�/OIT :It is well-known that, given any system of equations E, T�/E is the initial object in thecategory of all �-algebras satisfying the equations E.A J -automaton is a tupel (A; h;Q�nal) consisting of a �-algebra A, a homomorphismh : J 7! A and the subset Q�nal � DAMT of values of sort MT (\�nal states") where thenumber of values of sort MT and of sort F (\states") is �nite. A J -automaton correspondsto the \more concrete" notion of a (�nite deterministic bottom-up) tree automaton overthe terms of T� such that all terms which are equal modulo OIT are evaluated to the samestate. This means that any representation of a multitree t as a term in T� can be chosenin order to calculate the value of t.3 Feature AutomataGiven any many-sorted signature � with a �nite number of non-constant function symbolsc 2 �0s, we de�ne a �-algebra A to be �nitary if, for each sort s and each value q 2 DAs ofsort s, the set: fc 2 �0s j cA = q gof constant symbols in � of sort s which are valued to q is �nite or co-�nite.We now return to the particular fMT;Fg-sorted signature � introduced above; clearly, thede�nitions below can be made in general framework as well.A feature automaton A is de�ned as a �nitary J {automaton. The set of multitrees recog-nized by A is the set: LMT (A) = ft 2 MT j h(t) 2 Q�nalg;and the set of feature trees recognized by A is the set: LFT (A) = LMT (A) \ FT . Thefamilies RecMT (J ) and RecFT (J ) of recognizable sets of multitrees and feature trees arede�ned accordingly.Remark. If (and only if) the set of features is in�nite, the set of all feature trees is not arecognizable language of multitrees (with respect to J ).Example. We will construct a feature automaton A that recognizes the setof natural numbers. These are coded into the feature trees of the form(0; f(succ; (0; f(succ; (:::; f(0; ;)g)g)g, with n edges labeled succ for the natural numbern. The congruence classes, i.e., the elements in the quotient term algebra T�/OIT, are the4In a sense which can be made formal (cf., Section 8), also the associativity holds for +; this justi�esdropping the parenthesis. 5



singletons f) (0; succ;) (0; succ;) (:::; 0)))g. The feature automaton A has the statesQ = fqnat; qotherg and P = fpsucc; potherg of sort MT and F , respectively. The evaluation isgiven by: 0A = qnat ;AA = qother if A 6= 0 ;succA = psucc ;fA = pother if f 6= succ ;)A (qnat; psucc; qnat) = qnat ;)A (q1; p; q2) = qother otherwise.As �nal state set we chooseQ�nal = fqnatg. It is clear thatA respects the order independencetheory and the �nitary-condition. Of course, it will be more practical to de�ne this set byregular expressions or equational systems.The following theorem and corollary states that the standard properties of recognizablelanguages are valid for the sets in RecFT as well.Theorem 3.11. Feature automata have a �nite representation.2. The family of recognizable languages of feature trees RecFT is closed under the Booleanoperations. The corresponding feature automata can be given e�ectively.3. The emptiness problem (LFT (A) ?= ;) is decidable for each feature automaton A.Proof. The known constructions for Boolean operations on automata are still valid forJ -automata. To see that the �nitary-condition is preserved, simply note that the systemof �nite and co-�nite sets is Boolean closed and, for two states q1 and q2 of the featureautomata A1 and A2, respectively,fc 2 �0s j c(A1;A2) = (q1; q2) g = fc 2 �0s j cA1 = q1 g \ fc 2 �0s j cA2 = q2 g:Since J = T�/OIT, each J -automaton A corresponds to a tree automaton AT over termsin T�, and: LFT (A) = ; i� LT�(AT ) = ;;it su�ces to decide the emptiness problem for the tree automaton AT . As usually, this canbe done by checking all terms of depth smaller than the number of states of AT . Let C besome �nite set of constants c such that cA = q for each state q which is a value of someconstant. I� L is not empty, it contains a term of bounded depth that is constructed withconstants of C and non-constant function symbols. But there are only �nitely many termsof this kind.A �nitary automaton can be �nitely represented. From such a representation one cancalculate some set C as described above. This yields an algorithm for testing LMT (A) = ;.In the case of LFT (A) the algorithm checks only terms representing feature trees. 2We conclude the section by de�ning non-deterministic feature automata which are neededin Sections 5 and 6. 6



De�nition 3.2 A non-deterministic feature automaton A = (Q;P; h;Q�nal) is a tupel suchthat:Q is the set of states of sort MT , P the states of sort F and Q�nal � Q is the set of �nalstates,h is composed of the functions h : S ! 2Q and h : F ! 2P and the transition function)A: Q� P �Q! 2Q,A satis�es the OIT -theory, i.e., for all states q; p1; q1; p2; q2,)A ()A (q; p1; q1); p2; q2) = )A ()A (q; p2; q2); p1; q1);A satis�es the �nitary-condition, i.e., for all states p and q, the setsff 2 F j p 2 fA g and fA 2 S j q 2 AA g are �nite or co-�nite.The evaluation of the term t 2 T� by A, i.e., the set h(t) � Q is de�ned inductively by:h() (t1; f; t2)) =)A (h(t1); h(f); h(t2)):If t1 and t2 are congruent modulo OIT, we have h(t1) = h(t2). Thus, h([t]) = h(t) is wellde�ned for all congruence classes [t]. The language of multitrees recognized by A is:LMT (A) = f [t] j h([t]) \Q�nal 6= ; g;and the language of feature trees recognized by A is LFT (A) = LMT (A) \ FT . Eachfeature automaton is also a non-deterministic feature automaton.Lemma 3.3 Given a non-deterministic feature automaton A, an equivalent (deterministic)feature automaton Ad can be constructed e�ectively.Proof We apply the usual subset construction on a given non-deterministic feature automa-ton A of the form above, yielding the equivalent automaton Ad as follows: Qd = 2Q; P d =2P ; AAd = AA; fAd := fA; and:)Ad (qd1; pd; qd2) = [f)A (q1; p; q2) j (q1; p; q2) 2 qd1 � pd � qd2g:We de�ne the �nal states of Ad by: Qd�nal = fqd j qd \Q�nal 6= ; g:Clearly, the algebra Ad satis�es the OIT -theory. The equality: The �nitary-condition ispreserved, since:fA jAAd = qdg = \q2qdfA j q 2 AAg \ \q 62qdfA j q 2 AAgCshows that the �nitary-condition is preserved, too. 24 Counting ConstraintsIn this section we characterize recognizable languages of feature trees using formulae of acertain from, called counting constraints. The proof of this characterization, which is themain technical result of this paper, will be done in Sections 8 and 9.7



The syntax of counting constraints C (written C(x) to indicate that x is the only freevariable) is de�ned in the BNF style as follows.C(x) ::= card f' 2 F j 9y: (x'y ^ Ty)g 2 Nj Sxj C(x) ^ C(x)j C(x) _ C(x) (2)Here, N is a set of natural numbers which is recognizable in the monoid (N ;+; 0); S, andT , a �nite or co-�nite subset of S; F a �nite or co-�nite sets of features.The counting constraint C(x) � cardf' 2 F j9y: (x'y ^ Ty)g 2 N holds for the multitreex if the number of all edges in x, which go from the root to a node labeled by a symbol inT and which are labeled by a feature in F , lies in the set N . Thus, the cardinality operatercard applies on a multiset of features, i.e., counts double occurrences.The counting constraint C(x) � Sx holds for the multitree x if the root of x is labeled bysome symbol in S.Some important feature constraints can be expressed by our new constraints. For example,in the syntax of [Smo92], for F � F �nite, for f 2 F , and for A 2 S: xF (\for exactly thefeatures f in F there exists one edge labeled f from the root"), xf # (\there exists no edgelabeled f from the root"), and Ax (\the root is labeled by A").xF � f̂2F cardf' 2 ffg j 9y: x'yg 2 f1g^ cardf' 2 F c j 9y: x'y g 2 f0g ;xf # � cardf' 2 ffg j 9y: x'yg 2 f0g ;Ax � fAgx :Moreover our constraints are closed under negation. Indeed, : card f' 2 F j 9y: (x'y ^Ty)g 2 N is equivalent to card f' 2 F j 9y: (x'y ^ Ty)g 2 N c, and : Tx is equivalent toT cx.Each constraint C(x) de�nes the set LMT (C) of multitrees x for which the constraint C(x)holds. Accordingly, we de�ne: LFT (C) = LMT (C)\FT , LMT1(C) = LMT (C)\MT 1, andLFT1(C) = LFT (C)\FT 1. The languages of at multitrees of the form LMT1(C), or of atfeature trees LFT1(C), are called counting-de�nable.The following theorem holds for multitrees instead of feature trees, as well.Theorem 4.1 A language of at feature trees is counting-de�nable i� it is recognizable (inJ , by a feature automaton).Proof Sketch. A at multitree can be represented as a �nite multiset over (F[frootg)�S.The operation )J corresponds to the union of such multisets. In Section 8 we study thealgebra M of �nite multisets of pairs. It is three-sorted, the sorts denoting F [ frootg, Sand MT , respectively. We show that J - and M-recognizability coincide.In Section 9, we consider counting constraints D(x) for multisets x of M. They are of theform: D(x) � cardf(f;A) 2 x j f 2 F; A 2 Tg 2 N ;8



or conjunctions or disjunctions of these. Again F and T are �nite or co-�nite subsets of Fand S and N is a recognizable set of natural numbers.We show that de�nability of languages of multisets by these constraints and M-recognizability coincide. The main idea is that the mapping:x 7! cardf(f;A) 2 x j f 2 F; A 2 Tgis essentially a homomorphism from M into N . 2We �nish this section noting a fact (cf., [Eil74]) which expresses exactly that feature au-tomata can count features either threshold or modulo a natural number.Fact 4.2 A language of natural numbers is recognizable i� it can be decomposed into a�nite union of sets of the form: fp + rs j r 2 Ng; with p; s 2 N .5 Kleene's TheoremWe de�ne regular expressions over feature trees. In generalization of the standard cases, theatomic constituents of these are not just constants (denoting singletons or trees of depth1), but expressions which denote sets of feature trees of depth � 1.As usual, we need construction variables labeling the nodes where the substitution and theKleene star operations can take place. These variables are taken from a set Y which isassumed given (disjoint from S). It is in�nite; the de�nition of each regular language, ofcourse, uses only a �nite number of construction variables. We call a syntactic expressionC of the form (2) a counting-expression if T ranges over �nite or co-�nite subsets of S [ Y .A regular expression R over F and S [ Y is of the form given by:R ::= C C is a counting-expressionj R �y R concatenation (where y 2 Y )j R?y Kleene star (where y 2 Y )j R [ R unionComplement and intersection are optional operators, which, as we will see, do not properlyadd expressiveness.The de�nition of the language LFT (R) of feature trees (or LMT (R) of multitrees) denotedby the regular expression R is by straightforward induction. For concatenation and Kleenestar for sets of multitrees: If L1 and L2 are sets of feature trees, then L1 �y L2 is obtained byreplacing the construction variable y in the leaves of the trees of L1 by (possibly di�erent)trees of L2. The Kleene star operation on a set is an iterated concatenation of a set withitself. Formally, for a set L of feature trees, L1y = L, Lny := Ln�1y �y L, and L?y = Sn�1 Lny .The languages of feature trees (or multitrees) denoted by regular expressions are calledregular languages.Theorem 5.1 (Kleene) A language of feature trees (or multitrees) is regular i� it is rec-ognizable. 9



Proof. It is su�cient to prove the theorem for multitrees. We show by induction overthe structure of the regular expressions that the language of each regular expression overS [ Y and F is recognizable. The base case R = C is handled by Theorem 4.1. Unionis captured by the Boolean closure properties in Theorem 3.1. Substitution and star areestablished using the equivalence of deterministic and non deterministic feature automata.For the other direction, we use the standard McNaughton/Papert induction technique, thebase case being handled again by Theorem 4.1. 26 Equational SystemsThe next possibility to de�ne recognizable sets of feature trees (or multitrees) in a conve-nient way uses equational systems. These systems again generalize the constituents fromsingletons of trees of the form a or f(y1; : : : ; yn), for a 2 �0 and f 2 �n in the case of aranked signature for �rst-order trees, to counting-expressions denoting (unions of) sets ofat feature trees.The extra symbols y 2 Y in these counting expressions now correspond to set variables ofthe equations.We write C(y1; : : : ; yn) instead of C if the set variables of C are contained in the setfy1; : : : ; yng. These variables are not to be confused with the logical variable x used inC = C(x) as a logical formula.An equational system is a �nite set E of equations of the form (where Ci is a counting-expression, for i = 1; : : : ; n): yi = Ci(y1; : : : ; yn):Given an assignment, i.e., a mapping � : Y 7! 2FT , the equations in E are interpreted suchthat Ci(y1; : : : ; yn) denotes the set:LFT (Ci) �y1 �(y1) �y2 : : : �yn �(yn):A solution of E is an assignment � satisfying E. Each equational system has a least solution.The existence follows with the usual �xed point argument. Namely, an equational systemis considered as an operator over the lattice of assignments � and the least solution isobtained in ! iteration steps of this operator, starting with the assignment �(yi) = ; fori = 1; : : : ; n.A language of feature trees is called equational if it is the union of some of the sets �(yi)for the least solution � of E. The notion is de�ned accordingly for multitrees.Theorem 6.1 A language of feature trees (or multitrees) is equational i� it is recognizable.Proof Since J -recognizability corresponds to the characterization by congruence relations,and Theorem 4.1 covers the case of feature trees of depth � 1, the proof can be donefollowing the standard one for �rst-order trees (cf., [GS84]). 210



7 Conclusion and Further WorkThe results of this paper together present a complete regular theory of feature trees. Theyo�er a solution to the concrete practical problem of computing with types denoting sets offeature trees as described in the introduction.Now, it is interesting to investigate where, in the wide range of applications of �rst-ordertrees, feature trees can be useful in replacing or extending those. Since tree automata playa major role, either directly or just by underlying some other formalism, the regular theoryof feature trees developed here is a prerequisite for this investigation.A more speculative application might be conceived as part of the compiler optimizer ofthe programming language LIFE [AKP91b]. Namely, unary predicates over feature treesde�ned by Horn clauses without multiple occurrences of variables de�ne recognizable setsof feature trees. Now, satis�ability of the conjunction of two such predicates corresponds tonon-emptyness of the intersection of the de�ned sets. When used in deep guards, entailmentof a predicate by others of this kind corresponds to the subset relation on the de�ned setsof feature trees.We are curious to extend the developed theory in the following ways. First, we wouldlike to �nd a logical characterization of the class of recognizable feature trees, extendingthe results of Doner, Thatcher/Wright and Courcelle [Don70, TW67, Cou90]. It will beinteresting to combine second-order logic and the counting constraints introduced here, inorder to account for the exibility in the depth as well as in the out-degree of the nodes offeature trees.Also, in order to account for circular data structures, like, e.g., circular lists, it is necessaryto consider in�nite (rational) feature trees. Thus, it would be useful to construct a regulartheory of these.Finally, in [CD91] it is shown that the �rst-order theory of a tree automaton is decidable(in the case of a �nite signature). More precisely, it is possible to solve �rst-order formulasbuilt up from equalities between �rst-order terms and membership constraints of the formx 2 q, where q denotes a set de�ned by a tree automaton. Since we have establishedthe corresponding automaton notion, we may hope to obtain the corresponding result forfeature trees. For the special case of the set of all feature trees, this is the decidability of�rst-order feature logic. A proof for in�nite feature trees can be found in [BS92]. Can thetechniques of that proof be combined with the ones of [CD91]?
11
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Appendix(Proof of Theorem 4.1)8 The Algebra of MultisetsWe will reduce J -recognizability for languages of at multitrees to a notion of recognizabil-ity of �nite multisets of pairs. The idea is to identify a at multitree with a �nite multisetof pairs, (A;E) � f(root; A)g t Ewhere root is considered like an extra feature. Roughly, the operation of adding edgescorresponds to the union operation on multisets.In all generality, we introduce the algebra M = M(U1; : : : ;Un) of �nite multisets over n-tuples with components in given sets U1; : : : ;Un, for some n � 1. (Later, we will instantiateU1 = F [ frootg and U2 = S.) M is n + 1-sorted, over the the sorts s1; : : : ; sn andFMS which denote, respectively, the domains Ds1 = U1, : : : , Dsn = Un, and DFMS =NU1 � : : :� Un�nite (where NM�nite denotes the set of �nite multisets over M).The operations of M are the (associative and commutative) union tM of multisetsand the creation of a singleton multiset from n elements, one for each component, i.e.,hu1; : : : ; uniM = f(u1; : : : ; un)g. Thus, they are mappings tM : DFMS �DFMS 7! DFMS ,and h iM : U1 � : : :� Un 7! DFMS.Formally,M is an algebra over the fs1; : : : ; sn; FMSg-sorted signature:�U1 ;:::;Un = U1 ] : : : ] Un ] fh:; : : : ; :i ; tgwhere the constants of sort si are just the elements of Ui, and the two function symbolshave the pro�le: t : FMS � FMS 7! FMS, and h i : s1 � : : :� sn 7! FMS.Lemma 8.1 The algebra M is isomorphic to the quotient of the term algebra with thecongruence generated by the associativity and commutativity laws for t,M = T�U1 ;:::;Un/AC :We de�ne a subset of DFMT of multisets of n-tuples to be recognizable if it is recognized bya �nitary M-automaton.It is important to note that the notions of recognizability in M = M(U1; : : : ;Un) andM(U1 � : : :� Un) can be di�erent, namely if n � 2 and one of the Ui is in�nite.5Now, we consider the special case where U1 = F [ frootg and U2 = S, i.e.,M = M(F [ frootg;S):5Generally, the �niteness condition for M(U1 � : : : � Un)-automata is weaker then the one for M-automata. It may be strictly weaker since cartesian products of �nite and co-�nite sets need neither be�nite nor co-�nite. For example, suppose U to be an in�nite set. The cartesian product U � f1g is neither�nite nor co-�nite as subset of U � f0; 1g. Thus, the language of the singleton subsets of U � f1g is notrecognizable in the algebra M(U � f0; 1g), but it is with respect to M =M(U ; f0; 1g).|In fact, it is this�nitary-condition which makes the proofs that complicated and non-standard.14



Thus, the domains of M are DMs1 = F [ frootg, DMs2 = S, and DMFMS = FMS(F [frootg� S) :We de�ne the injection: I :MT 1 ! N (F [ frootg)� S�niteby I((A;E)) = f(root;A)g t E. Thus (writing the operator tM in�x):I()J (t; f;A)) = I(t) tM hf;AiM:Lemma 8.2 (Reduction Lemma) A language L of at multitrees is recognizable in Ji� the language I(L) of multisets of pairs is recognizable in M.Proof The di�cult direction is from left to right. Given a �nitary J -automaton(A; h;Q�nal), where DMTA = Q and DFA = P , we construct a �nitary M-automaton(A?; h?; Q�nal) such that, for all at multitrees t:h?(I(t)) = h(t): (3)This is su�cient to show the recognizability of I(L), since I(L) = h�1(A) \ I(MT 1), andI(MT 1) is a recognizable set in M.We set DA?s2 = Q, DA?s1 = P [ fprootg, and (where Func denotes the set of functionsgenerated by the functions )J ( : ; p; q); i.e., the smallest set containing these and closedunder composition): DA?FMS = Func ] Q ] fq?g:The evaluation of A? is de�ned by (we write �A? instead of h?(�) and use the more intuitivein�x notation): hp; qiA? = )A ( : ; p; q) ;hproot; qiA? = q ;h1 tA? h2 = h1 � h2 ;q tA? h = h(q) ;h tA? q = h(q) ;q tA? ~q = q? :Every function in the interpretations taking q? as argument is again mapped to q?. Pre-cisely: q? tA? h = q? ;h tA? q? = q? ;q? tA? q = q? ;q tA? q? = q? ;hp; q?iA? = q? ;hproot; q?iA? = q? :Clearly, A? is an AC-automaton,i.e., the operation tA? is associative and commutative.The associativity is trivial for functions as arguments. The commutativity for functionsfollows from the OIT -theory, and the associativity for functions by:)A ( : ; p; q) tA? )A ( : ; p1; q1) = )A ()A ( : ; p1; q1); p; q) )= )A ()A ( : ; p; q); p1; q1) )= )A ( : ; p1; q1) tA? )A ( : ; p; q) :15



The proof for all possible cases is now easily established.The identity (3) is now easily veri�ed. Finally, we note that the �nitary-condition is pre-served from A to A?.For the other direction, given a �nitary M-automaton A?, we will construct a �nitary J -automaton A satisfying (3). This is su�cient, now, since MT 1 is a recognizable set in J .In fact, we will construct an automaton in another algebra.6 Next, we will introduce thisalgebra. We resume this proof after having proven Lemma 8.4.The algebra Jlocal of at multitrees is obtained from the algebra J by restricting the domainof the third argument fromMT to S (: : : =MT 0), and the domain of the �rst from MTto MT 1, i.e., to to at multitrees instead of arbitrary ones.That is, the algebra Jlocal is three-sorted with sorts MT1; F and S. The domains are givenby DMT1 = MT 1, DF = F , DS = S. The operation is given by (where E is a �nitemultiset over pairs in F � S):)Jlocal ((A1; E); f;A2) = (A1; E t f(f;A2)g)(which is equal to )J ( (A1; E); f;A2)). The signature of Jlocal is the disjoint union:�local = S ] F ] S ] f)g:Here, the symbols in S appear twice: they are supposed to be renamed apart. Firstly,they are constants of sort MT1, and secondly, they are constants of sort S. The di�erentfunctionality is made clear syntactically by writing AMT1 and AS, with interpretations(AMT1)Jlocal = (A; ;) 2 MT 0 �MT 1 and (AS)Jlocal = A 2 S.The features are constants of sort F and interpreted freely. The pro�le of the functionsymbol in Jlocal is ):MT1 � F � S !MT1.The algebra Jlocal satis�es the order independence theory (OIT); namely, for all at multi-trees t, features f and symbols A the following holds.)Jlocal (()Jlocal (t; f1; A1); f2; A2) =)Jlocal (()Jlocal (t; f2; A2); f1; A1)The following lemma states that we can use the more concrete notion of tree automata.Lemma 8.3 Jlocal is isomorphic to a quotient term algebra,Jlocal = T�local=OIT :Again, we de�ne recognizability in Jlocal in terms of �nitary automata.Lemma 8.4 A language of at multitrees is recognizable in J i� it is recognizable in Jlocal .Proof We will �rst modify a �nitary J -automaton A, where DMTA = Q and DFA = P ,in order to obtain a �nitary Jlocal -automaton A1 such that the two automata (with the6The motivation for the construction of yet another algebra is, roughly, the fact that a symbol A 2 Soccurs as a root-labeling as well as a leave-labeling; these two roles are distinguished in J -automata, butnot in M-automata. 16



same set of �nal states) will recognize the same languages of at multitrees. We de�ne thedomains of A1 by: DA1S = Q ;DA1MT1 = Q ;DA1F = P ;and we de�ne the evaluation of A1 by (for all A 2 S, f 2 F , and for all q; q0 2 Q andp 2 P ): (AMT1)A1 = AA ;(AS)A1 = AA ;fA1 = fA ;)A1 (q; p; q0) = )A (q; p; q0) :Clearly the �nitary-condition and the order independence theory are preserved between A1and A.For the other direction, given a �nitary Jlocal -automaton A2 (with �nal states Q2�nal, of sortMT1), we will de�ne a �nitary Jlocal -automaton A1 that recognizes the same language, buthas the two properties: DA1MT1 = DA1S , and, for all symbols A in S, (AMT1)A1 = (AS)A1 .Thanks to these, one can de�ne a J -automaton A that accepts the same at multitrees asA1. Again, this is su�cient since the language MT 1 is recognizable with respect to J .We de�ne the domains of A1 by:DA1MT1 = DA2MT1 �DA2S ;DA1S = DA2MT1 �DA2S ;DA1F = DA2F ;and, after having �xed an arbitrary element rfix 2 DA2S , we de�ne the evaluation of A1 by(for all A 2 S, f 2 F , and for all q; ~q 2 DA2MT1, p 2 DA2F and r; ~r 2 DA2S ):(AMT1)A1 = ( (AMT1)A2; (AS)A2 );(AS)A1 = ( (AMT1)A2; (AS)A2 );fA1 = fA2 ;)A1 ((q; r); p; (~q; ~r)) = ()A2 (q; p; ~r) ; rfix):As �nal states of A1 we choose:Q1�nal = f(q; r) j q 2 Q2�nal and r 2 DA2S g:Again, the �niteness condition and the order independence theory are preserved. Thisconcludes the proof of Lemma 8.4. 217



End of Proof of Reduction Lemma 8.2Given a �nitary M-automaton A?, we construct a �nitary Jlocal -automaton A such that(I(t))A? = tA for all at multitrees t. The domains of A are: DAS = DA?s2 , DAF = DA?s1and DAMT1 = DA?FMS .The evaluation of A is de�ned by (where q; p and r are states of A of sorts MT1, F and S):(AS)A = AA? ;fA = fA? ;(AMT1)A = h rootA? ; (AS)A? iA? ;)A (q; p; r) = q tA? hp; riA? :Since A? satis�es (AC), A satis�es (OIT). The �nitary-condition is preserved, as well. 29 Counting in MultisetsAgain in the general framework where M =M(U1; : : : ;Un), We will characterize recogniz-ability in M, i.e., of languages of �nite multisets, by appropiate counting constraints.We de�ne M-counting constraints C (written C(x) to indicate that x is the only freevariable|logically, a multiset variable) to expressions of the following form:C(x) ::= card f(u1; : : : ; un) 2 x j ui 2 Ui for all i g 2 Nj C(x) \ C(x)j C(x) [ C(x):Here, N is a recognizable set of natural numbers with respect to the monoid (N ;+; 0), andthe sets Ui � Ui are �nite or co-�nite. The counting constraintC(x) � card f(u1; : : : ; un) 2 x j ui 2 Ui for all i g 2 N holds for the multiset x if thenumber of tuples (u1; : : : ; un) in x such that ui 2 Ui for all i = 1; : : : ; n is an elementof N . The cardinality operater card applies on a multiset of tuples, i.e., counts doubleoccurrences.The language de�ned by an M-counting constraint C(x) is the set of all �nite multisets xthat satisfy C(x). It is denoted by LM(C).Theorem 9.1 The family of languages de�ned by M-counting constraints is exactly thefamily of languages of multisets recognizable in M.Proof. Given an M-counting constraint of the form: C = card f(u1; : : : ; un) 2 x j ui 2Ui for all i g 2 N , we will show the recognizability of LM(C).We can de�ne a homomorphism h : M(U1 : : : ;Un) !M(f1g; : : : ; f1g) by setting h(ui) =f1g for ui 2 Ui, and h(ui) = ; otherwise.Furthermore, the homomorphism J : Nf1g � : : :� f1g�nite ! N , given by J(f(u1; : : : ; un)g =1 if (u1; : : : ; un) = (1; : : : ; 1), and : : : = 0, otherwise, identi�es a multiset consisting of ktuples (1; : : : ; 1) with k 2 N . 18



Thus, for all �nite multisets of n-tupels x 2 DFMT ,J(h(x)) = card f(u1; : : : ; un) 2 x j ui 2 Ui for all i g:Hence, LM(C) = h�1(J�1(N)). The �nitary-condition is invariant under inverse images ofhomomorphisms. Thus, LM(C) is recognizable in M.For the reverse inclusion, suppose that L is recognized by a �nitary M-automaton(A; h;Q�nal) with, say, the set DFMS = fq1; : : : ; qng of states of sort FMS.The evaluation of the multiset t by A leads to the state (written in a notation which isjusti�ed by the fact that A satis�es (AC), even if tA is taken over the empty multiset):tA = G(u1;:::;un)2tA huA1 ; : : : ; uAn iA :We de�ne the natural numbers: at(i) = card f(u1; : : : ; un) 2 t j huA1 ; : : : ; uAn iA = qi g andobtain (again thanks to (AC) being satis�ed):tA = nGi=1A at(i)Gj=1A qi :We de�ne a mapping �t : f1; : : : ; ng ! f1; : : : ; ng such that q�t(i) = Fat(i)j=1 A qi : If t 2 LM(A),then: nGi=1A q�t(i) 2 Q�nal; (4)Generally, for a mapping � : f1; : : : ; ng ! f1; : : : ; ng, we de�ne, for i = 1; : : : ; n, the set ofnatural numbers: N i� = fm 2 N j mGj=1A qi = q�(i) g:We note that at(i) 2 N i�t for i = 1; : : : ; n. That is, t is an element of the language de�nedby the M-counting constraint: n̂i=1 ax(i) 2 N i�t:Vice versa, for each mapping � satisfying the property (4), the language of theM-countingconstraint: n̂i=1 ax(i) 2 N i�is contained in L. We get L = L(R) where R is the M-counting constraint:R = _�with (4) n̂i=1 ax(i) 2 N i� :Since the number of mappings � with (4) is �nite, it only remains to show that the con-straints used in R are of the de�ned form. The constituents ai(x) are admissible by the�nitary-condition of A. Finally, we have to proof that the sets N i� are recognizable with19



respect to (N ;+; 0). We will construct appropiate automata Ai� from A. We set DAi� = Q,0Ai� = ;A, 1Ai� = qi and interpret the addition by tA. As �nal states we take the singletonfq�(i)g. Then, Ai� recognizes N i�. 2Proof of Theorem 4.1.For each language L of at multitrees de�ned by a counting constraint C we will �nd anM-counting constraint C 0 that de�nes I(L), and vice versa.Given a counting constraint for at multitrees of the form:C(x) = card f' 2 F j 9y: (x'y ^ Tyg 2 N ;we set: C 0(x) = card f('; y) 2 x j ' 2 F ^ y 2 Tg 2 N\ card f(root; y) 2 x j y 2 Fg = 1 :The case C = Tx is obvious, as well as conjunction and disjunction.For the other direction, given an M-counting constraint C 0 for �nite multisets, we willgive a constraint C such that LMT 1(Cx) = I�1(LM(C 0)), or, equivalently, LMT 1(C) =LM(C 0)\I(MT 1). We note that the languages of the form I(L) are the multisets containingexactly one pair with �rst component root . Given the M-counting constraint:C 0 = card f('; y) 2 x j ' 2 F ^ y 2 T g 2 N ;we have to distinguish the two cases root =2 F and root 2 F . In the �rst case we set:C = card f' 2 F j 9y: (x'y ^ Tyg 2 N :In the second case, we note that the set: N�1 = fn�1 jn 2 N and n � 1g is recognizablewith respect to (N ;+; 0), and set:C = card f' 2 F � frootg j 9y: (x'y ^ Ty)g 2 N � 1\ Tx :In either case C has the required property.This concludes the proof of Theorem 4.1, since the reduction lemma (Lemma 8.2, page 15)and the above theorem (Theorem 9.1) close the cycle from counting-de�nable languagesL of at feature trees to those recognizable in J by feature automata. Namely, accord-ing to the above correspondence between counting- and M-counting constraints, via M-counting-de�nable languages I(L), which, according to Theorem 9.1, are exactly the onesrecognizable in M, back to L according to Lemma 8.2. 2
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